51
|
Tracking Community Timing: Pattern and Determinants of Seasonality in Culicoides (Diptera: Ceratopogonidae) in Northern Florida. Viruses 2020; 12:v12090931. [PMID: 32854272 PMCID: PMC7552033 DOI: 10.3390/v12090931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Community dynamics are embedded in hierarchical spatial–temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides β-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.
Collapse
|
52
|
Tozan Y, Sjödin H, Muñoz ÁG, Rocklöv J. Transmission dynamics of dengue and chikungunya in a changing climate: do we understand the eco-evolutionary response? Expert Rev Anti Infect Ther 2020; 18:1187-1193. [PMID: 32741233 DOI: 10.1080/14787210.2020.1794814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We are witnessing an alarming increase in the burden and range of mosquito-borne arboviral diseases. The transmission dynamics of arboviral diseases is highly sensitive to climate and weather and is further affected by non-climatic factors such as human mobility, urbanization, and disease control. As evidence also suggests, climate-driven changes in species interactions may trigger evolutionary responses in both vectors and pathogens with important consequences for disease transmission patterns. AREAS COVERED Focusing on dengue and chikungunya, we review the current knowledge and challenges in our understanding of disease risk in a rapidly changing climate. We identify the most critical research gaps that limit the predictive skill of arbovirus risk models and the development of early warning systems, and conclude by highlighting the potentially important research directions to stimulate progress in this field. EXPERT OPINION Future studies that aim to predict the risk of arboviral diseases need to consider the interactions between climate modes at different timescales, the effects of the many non-climatic drivers, as well as the potential for climate-driven adaptation and evolution in vectors and pathogens. An important outcome of such studies would be an enhanced ability to promulgate early warning information, initiate adequate response, and enhance preparedness capacity.
Collapse
Affiliation(s)
- Yesim Tozan
- School of Global Public Health, New York University , New York, NY, USA
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University , Umeå, Sweden
| | - Ángel G Muñoz
- International Research Institute for Climate and Society, the Earth Institute at Columbia University , New York, NY, USA
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University , Umeå, Sweden.,Heidelberg Institute of Global Health, University of Heidelberg , Heidelberg, Germany
| |
Collapse
|
53
|
Krasteva S, Jara M, Frias-De-Diego A, Machado G. Nairobi Sheep Disease Virus: A Historical and Epidemiological Perspective. Front Vet Sci 2020; 7:419. [PMID: 32793646 PMCID: PMC7387652 DOI: 10.3389/fvets.2020.00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Nairobi Sheep Disease virus (NSDv) is a zoonotic and tick-borne disease that can cause over 90% mortality in small ruminants. NSDv has historically circulated in East Africa and has recently emerged in the Asian continent. Despite efforts to control the disease, some regions, mostly in warmer climates, persistently report disease outbreaks. Consequently, it is necessary to understand how environmental tolerances and factors that influence transmission may shed light on its possible emergence in other regions. In this study, we quantified the available literature of NSDv from which occurrence data was extracted. In total, 308 locations from Uganda, Kenya, Tanzania, Somalia, India, Sri Lanka and China were coupled with landscape conditions to reconstruct the ecological conditions for NSDv circulation and identify areas of potential disease transmission risk. Our results identified areas suitable for NSDv in Ethiopia, Malawi, Zimbabwe, Southeastern China, Taiwan, and Vietnam. Unsuitable areas included Democratic Republic of Congo, Zambia, and Southern Somalia. In summary, soil moisture, livestock density, and precipitation predispose certain areas to NSDv circulation. It is critical to investigate the epidemiology of NSDv in order to promote better allocation of resources to control its spread in regions that are more at risk. This will help reduce disease impact worldwide as climate change will favor emergence of such vector-borne diseases in areas with dense small ruminant populations.
Collapse
Affiliation(s)
- Stephanie Krasteva
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
54
|
Vector Competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for Three Zika Virus Lineages. Pathogens 2020; 9:pathogens9070575. [PMID: 32708536 PMCID: PMC7399907 DOI: 10.3390/pathogens9070575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) has caused severe epidemics in South America beginning in 2015, following its spread through the Pacific. We comparatively assessed the vector competence of ten populations of Aedesaegypti and Ae. albopictus from Brazil and two of Ae.aegypti and one of Culex quinquefasciatus from New Caledonia to transmit three ZIKV isolates belonging to African, Asian and American lineages. Recently colonized mosquitoes from eight distinct sites from both countries were orally challenged with the same viral load (107 TCID50/mL) and examined after 7, 14 and 21 days. Cx. quinquefasciatus was refractory to infection with all virus strains. In contrast, although competence varied with geographical origin, Brazilian and New Caledonian Ae. aegypti could transmit the three ZIKV lineages, with a strong advantage for the African lineage (the only one reaching saliva one-week after challenge). Brazilian Ae. albopictus populations were less competent than Ae. aegypti populations. Ae. albopictus generally exhibited almost no transmission for Asian and American lineages, but was efficient in transmitting the African ZIKV. Viral surveillance and mosquito control measures must be strengthened to avoid the spread of new ZIKV lineages and minimize the transmission of viruses currently circulating.
Collapse
|
55
|
Ecological Niche Models of Four Hard Tick Genera (Ixodidae) in Mexico. Animals (Basel) 2020; 10:ani10040649. [PMID: 32283708 PMCID: PMC7222792 DOI: 10.3390/ani10040649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Vector-borne diseases currently represent a significant threat to public health, mainly due to the changes that humans are producing in ecosystems and climates. Analyzing the environmental conditions that allow the establishment and survival of ticks could help determine possible sites for the appearance of infectious outbreaks. In this study, nine ecological niche models were generated from different algorithms to determine the current potential distribution of four tick genera in Mexico. Temperature and moisture have been considered as the main factors limiting tick distribution. However, the analysis of the ecological niche models determined that the four genera exhibited different distribution patterns, which may be associated with their physiological and ecological differences. This type of analysis can improve our understanding of the dynamics of ticks and, therefore, can be very useful in monitoring programs of the diseases they transmit. Abstract Ticks are vectors of a large number of pathogens of medical and veterinary importance, and in recent years, they have participated in the rise of multiple infectious outbreaks around the world. Studies have proposed that temperature and precipitation are the main variables that limit the geographical distribution of ticks. The analysis of environmental constraints with ecological niche modeling (ENM) techniques can improve our ability to identify suitable areas for emergence events. Algorithms used in this study showed different distributional patterns for each tick genera; the environmental suitability for Amblyomma includes warm and humid localities below 1000 m above the sea level, while Ixodes is mainly associated with ecosystems with high vegetation cover. Dermacentor and Rhipicephalus genus presented wider distribution patterns; the first includes species that are well adapted to resist desiccation, whereas the latter includes generalist species that are mostly associated with domestic hosts in Mexico. Ecological niche models have proven to be useful in estimating the geographic distribution of many taxa of ticks. Despite our limited knowledge of tick’s diversity, ENM can improve our understanding of the dynamics of vector-borne diseases and can assist public health decision-making processes.
Collapse
|
56
|
Sardar AA, Chatterjee M, Jana K, Saha P, Maji AK, Guha SK, Kundu PK. Seasonal variation of sand fly populations in Kala-azar endemic areas of the Malda district, West Bengal, India. Acta Trop 2020; 204:105358. [PMID: 31987778 DOI: 10.1016/j.actatropica.2020.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
Vector control is one of the main aspects to reach the target of eliminating visceral leishmaniasis from Indian sub-continent as set by the World Health Organisation. Data on different aspects of vector like ecology, behaviour, population dynamics and their association with environmental factors are very important for formulating an effective vector control strategy. The present work was designed to study the species abundance and impact of environmental factors on population dynamics of vector P. argentipes in a visceral leishmaniasis endemic area of Malda district, West Bengal. Adult sand flies were collected using light traps and mouth aspirators from twelve kala-azar affected villages of Habibpur block of Malda district, on a monthly basis from January to December, 2018. Morphological and molecular methods were used for species identification. Population dynamics were assessed by man hour density and per night per trap collection. Data were analysed using SPSS software to determine the impact of environmental factors on vector population P. argentipes was found to the predominant species and prevalent throughout the year. A significantly higher number of sand flies were collected from cattle sheds than human dwellings and peri-domestic vegetation. A portion of the P. argentipes population was exophilic and exophagic as evidenced by their collection from peri-domestic vegetation. The highest population density was recorded during April to September. Population dynamics were mostly influenced by average temperature along humidity and rain fall. Resting behaviour of sand flies was not restricted to the lower portion of the wall but equally distributed throughout the wall and ceiling. Programme officials should consider management of outdoor populations of the sand flies and timings of indoor residual spray for chemical control purpose.
Collapse
Affiliation(s)
- Ashif Ali Sardar
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| | - Moytrey Chatterjee
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| | - Kingsuk Jana
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| | - Pabitra Saha
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India; Department of Zoology, A. P. C. Roy Govt. College, Himachal Bihar, Matigara, Siliguri, West Bengal, India.
| | - Ardhendu Kumar Maji
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| | - Subhasish Kamal Guha
- Department of Tropical Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| | - Pratip Kumar Kundu
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| |
Collapse
|
57
|
Uelmen JA, Brokopp C, Patz J. A 15 Year Evaluation of West Nile Virus in Wisconsin: Effects on Wildlife and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1767. [PMID: 32182764 PMCID: PMC7084944 DOI: 10.3390/ijerph17051767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
West Nile virus (WNV) is the most important and widespread mosquito-borne virus in the United States (U.S.). WNV has the ability to spread rapidly and effectively, infecting more than 320 bird and mammalian species. An examination of environmental conditions and the health of keystone species may help predict the susceptibility of various habitats to WNV and reveal key risk factors, annual trends, and vulnerable regions. Since 2002, WNV outbreaks in Wisconsin varied by species, place, and time, significantly affected by unique climatic, environmental, and geographical factors. During a 15 year period, WNV was detected in 71 of 72 counties, resulting in 239 human and 1397 wildlife cases. Controlling for population and sampling efforts in Wisconsin, rates of WNV are highest in the western and northwestern rural regions of the state. WNV incidence rates were highest in counties with low human population densities, predominantly wetland, and at elevations greater than 1000 feet. Resources for surveillance, prevention, and detection of WNV were lowest in rural counties, likely resulting in underestimation of cases. Overall, increasing mean temperature and decreasing precipitation showed positive influence on WNV transmission in Wisconsin. This study incorporates the first statewide assessment of WNV in Wisconsin.
Collapse
Affiliation(s)
- Johnny A. Uelmen
- Department of Population Health Sciences, University of Wisconsin, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, USA; (C.B.); (J.P.)
- Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Charles Brokopp
- Department of Population Health Sciences, University of Wisconsin, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, USA; (C.B.); (J.P.)
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, P.O. Box 7904, Madison, WI 53718, USA
| | - Jonathan Patz
- Department of Population Health Sciences, University of Wisconsin, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, USA; (C.B.); (J.P.)
- Nelson Institute for Environmental Sciences, University of Wisconsin, 258 Enzyme Institute, 1710 University Avenue, Madison, WI 53726, USA
| |
Collapse
|
58
|
Sarli M, Novoa MB, Mazzucco MN, Signorini ML, Echaide IE, de Echaide ST, Primo ME. A vaccine using Anaplasma marginale subdominant type IV secretion system recombinant proteins was not protective against a virulent challenge. PLoS One 2020; 15:e0229301. [PMID: 32084216 PMCID: PMC7034839 DOI: 10.1371/journal.pone.0229301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplasma marginale is the most prevalent tick-borne livestock pathogen with worldwide distribution. Bovine anaplasmosis is a significant threat to cattle industry. Anaplasmosis outbreaks in endemic areas are prevented via vaccination with live A. centrale produced in splenectomized calves. Since A. centrale live vaccine can carry other pathogens and cause disease in adult cattle, research efforts are directed to develop safe recombinant subunit vaccines. Previous work found that the subdominant proteins of A. marginale type IV secretion system (T4SS) and the subdominant elongation factor-Tu (Ef-Tu) were involved in the protective immunity against the experimental challenge in cattle immunized with the A. marginale outer membrane (OM). This study evaluated the immunogenicity and protection conferred by recombinant VirB9.1, VirB9.2, VirB10, VirB11, and Ef-Tu proteins cloned and expressed in E. coli. Twenty steers were randomly clustered into four groups (G) of five animals each. Cattle from G1 and G2 were immunized with a mixture of 50 μg of each recombinant protein with Quil A® or Montanide™ adjuvants, respectively. Cattle from G3 and G4 (controls) were immunized with Quil A and Montanide adjuvants, respectively. Cattle received four immunizations at three-week intervals and were challenged with 107 A. marginale-parasitized erythrocytes 42 days after the fourth immunization. After challenge, all cattle showed clinical signs, with a significant drop of packed cell volume and a significant increase of parasitized erythrocytes (p<0.05), requiring treatment with oxytetracycline to prevent death. The levels of IgG2 induced in the immunized groups did not correlate with the observed lack of protection. Additional strategies are required to evaluate the role of these proteins and their potential utility in the development of effective vaccines.
Collapse
Affiliation(s)
- Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - María B. Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Matilde N. Mazzucco
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Marcelo L. Signorini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Ignacio E. Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Susana T. de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - María E. Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| |
Collapse
|
59
|
Filipe JF, Herrera V, Curone G, Vigo D, Riva F. Floods, Hurricanes, and Other Catastrophes: A Challenge for the Immune System of Livestock and Other Animals. Front Vet Sci 2020; 7:16. [PMID: 32083100 PMCID: PMC7004950 DOI: 10.3389/fvets.2020.00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change involves different dramatic phenomena including desertification and wildfires, severe storms such as hurricanes and blizzards, increased sea levels resulting in flooding coastal cities and rise of atmospheric CO2 concentration. The alteration of the climate in a specific region affects the life of indigenous animals and humans. The climate changes influence living beings both directly and indirectly. The immune system of animals dramatically suffers the climate instability, making animals more susceptible to infectious and not infectious diseases. Different species of livestock animals respond with similar mechanisms to global warming, but some of them are more susceptible depending on their age, metabolism, and genetic conditions. The selection and study of autochthonous species and breeds, more easily adapted to specific environmental conditions could be an interesting strategy to face livestock rearing in the future.
Collapse
Affiliation(s)
- Joel F Filipe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valentina Herrera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
60
|
Bannister-Tyrrell M, Gryseels C, Sokha S, Dara L, Sereiboth N, James N, Thavrin B, Ly P, Soy Ty K, Peeters Grietens K, Sovannaroth S, Yeung S. Forest Goers and Multidrug-Resistant Malaria in Cambodia: An Ethnographic Study. Am J Trop Med Hyg 2020; 100:1170-1178. [PMID: 30860021 PMCID: PMC6493920 DOI: 10.4269/ajtmh.18-0662] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum malaria on the Cambodia-Thailand border is associated with working in forested areas. Beyond broad recognition of "forest-going" as a risk factor for malaria, little is known about different forest-going populations in this region. In Oddar Meanchey Province in northwestern Cambodia, qualitative ethnographic research was conducted to gain an in-depth understanding of how different populations, mobility and livelihood patterns, and activities within the forest intersect with potentiate malaria risk and impact on the effectiveness of malaria control and elimination strategies. We found that most forest-going in this area is associated with obtaining precious woods, particularly Siamese rosewood. In the past, at-risk populations included large groups of temporary migrants. As timber supplies have declined, so have these large migrant groups. However, groups of local residents continue to go to the forest and are staying for longer. Most forest-goers had experienced multiple episodes of malaria and were well informed about malaria risk. However, economic realities mean that local residents continue to pursue forest-based livelihoods. Severe constraints of available vector control methods mean that forest-goers have limited capacity to prevent vector exposure. As forest-goers access the forest using many different entry and exit points, border screening and treatment interventions will not be feasible. Once in the forest, groups often converge in the same areas; therefore, interventions targeting the mosquito population may have a potential role. Ultimately, a multisectoral approach as well as innovative and flexible malaria control strategies will be required if malaria elimination efforts are to be successful.
Collapse
Affiliation(s)
| | | | - Suon Sokha
- Center for Health and Social Development, Phnom Penh, Cambodia
| | - Lim Dara
- Center for Health and Social Development, Phnom Penh, Cambodia
| | - Noan Sereiboth
- Center for Health and Social Development, Phnom Penh, Cambodia
| | - Nicola James
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Boukheng Thavrin
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Po Ly
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Kheang Soy Ty
- Center for Health and Social Development, Phnom Penh, Cambodia
| | | | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Shunmay Yeung
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
61
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
62
|
Foxi C, Delrio G, Luciano P, Mannu R, Ruiu L. Comparative laboratory and field study of biorational insecticides for Culicoides biting midge management in larval developmental sites. Acta Trop 2019; 198:105097. [PMID: 31325415 DOI: 10.1016/j.actatropica.2019.105097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
An appropriate management strategy of bluetongue vectors should include larvicidal treatments in their larval development sites utilizing active substances with low environmental impact. A selection of biorational insecticides with potential against dipteran larvae was assayed in the laboratory against field collected Culicoides larvae including C. cataneii, C. circumscriptus, and C. imicola, determining their median lethal concentrations in water and mud/water substrate. The efficacy of formulations containing the insect growth regulators pyriproxyfen and cyromazine, the botanical insecticide azadirachtin, and the entomopathogenic bacteria Bacillus thuringiensis israelensis and Brevibacillus laterosporus, was also assessed in field conditions in a comparative study conducted in sheep farm larval development sites, including treatments with the organophosphate temephos. Significant larvicidal properties were associated with the various insecticides evaluated in the laboratory assays and in field trials, although with different levels of effectiveness. While temephos was confirmed to be an effective broad spectrum larvicidal substance, B. laterosporus appeared to be the most effective among entomopathogens, while insect growth regulators combined a good efficacy to a long-lasting residual effect in the field. Everything considered, the use of these biorational insecticides alone or in combination with larval habitat manipulation techniques appears to be a promising method to complement integrated biting midge management programs.
Collapse
|
63
|
Quantifying the potential for bluetongue virus transmission in Danish cattle farms. Sci Rep 2019; 9:13466. [PMID: 31530858 PMCID: PMC6749064 DOI: 10.1038/s41598-019-49866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
We used a mechanistic transmission model to estimate the number of infectious bites (IBs) generated per bluetongue virus (BTV) infected host (cattle) using estimated hourly microclimatic temperatures at 22,004 Danish cattle farms for the period 2000–2016, and Culicoides midge abundance based on 1,453 light-trap collections during 2007–2016. We used a range of published estimates of the duration of the hosts’ infectious period and equations for the relationship between temperature and four key transmission parameters: extrinsic incubation period, daily vector survival rate, daily vector biting rate and host-to-vector transmission rate resulting in 147,456 combinations of daily IBs. More than 82% combinations of the parameter values predicted > 1 IBs per host. The mean IBs (10–90th percentiles) for BTV per infectious host were 59 (0–73) during the transmission period. We estimated a maximum of 14,954 IBs per infectious host at some farms, while a best-case scenario suggested transmission was never possible at some farms. The use of different equations for the vector survival rate and host-to-vector transmission rates resulted in large uncertainty in the predictions. If BTV is introduced in Denmark, local transmission is very likely to occur. Vectors infected as late as mid-September (early autumn) can successfully transmit BTV to a new host until mid-November (late autumn).
Collapse
|
64
|
Tapasco J, LeCoq JF, Ruden A, Rivas JS, Ortiz J. The Livestock Sector in Colombia: Toward a Program to Facilitate Large-Scale Adoption of Mitigation and Adaptation Practices. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
65
|
Khan MD, Thi Vu HH, Lai QT, Ahn JW. Aggravation of Human Diseases and Climate Change Nexus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2799. [PMID: 31390751 PMCID: PMC6696070 DOI: 10.3390/ijerph16152799] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023]
Abstract
For decades, researchers have debated whether climate change has an adverse impact on diseases, especially infectious diseases. They have identified a strong relationship between climate variables and vector's growth, mortality rate, reproduction, and spatiotemporal distribution. Epidemiological data further indicates the emergence and re-emergence of infectious diseases post every single extreme weather event. Based on studies conducted mostly between 1990-2018, three aspects that resemble the impact of climate change impact on diseases are: (a) emergence and re-emergence of vector-borne diseases, (b) impact of extreme weather events, and (c) social upliftment with education and adaptation. This review mainly examines and discusses the impact of climate change based on scientific evidences in published literature. Humans are highly vulnerable to diseases and other post-catastrophic effects of extreme events, as evidenced in literature. It is high time that human beings understand the adverse impacts of climate change and take proper and sustainable control measures. There is also the important requirement for allocation of effective technologies, maintenance of healthy lifestyles, and public education.
Collapse
Affiliation(s)
- Mohd Danish Khan
- Resources Recycling Department, University of Science and Technology, (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon-34113, Korea
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Hong Ha Thi Vu
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Quang Tuan Lai
- Resources Recycling Department, University of Science and Technology, (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon-34113, Korea
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Ji Whan Ahn
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea.
| |
Collapse
|
66
|
Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. CURRENT OPINION IN INSECT SCIENCE 2019; 34:105-111. [PMID: 31247410 PMCID: PMC6717672 DOI: 10.1016/j.cois.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 05/26/2023]
Abstract
The proven ability of vector mosquitoes to adapt to various strategies developed to control them has enabled mosquito-borne diseases such as malaria, dengue, and lymphatic filariasis to remain entrenched as public health threats all over the world. Rather than continuing to seek a miracle cure for all mosquito vector problems among the ranks of single mode-of-action chemical pesticides, today's developers of vector control strategies are increasingly turning to more integrated, varied techniques, relying on pheromones and other semiochemicals to effect vector control through behavioral manipulation of the vector. Examples of this focus include attract-and-kill technologies utilizing floral odors and vertebrate host-associated scent cues to achieve control of adult mosquitoes, and selective oviposition attractants and larval phagostimulants to improve the efficacy of bacterial larvicides.
Collapse
Affiliation(s)
| | - Teun Dekker
- Department of Plant Protection Biology, Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
67
|
Gusmão GMC, Brito GA, Moraes LS, Bandeira MDCA, Rebêlo JMM. Temporal Variation in Species Abundance and Richness of Culicoides (Diptera: Ceratopogonidae) in a Tropical Equatorial Area. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1013-1018. [PMID: 30882152 DOI: 10.1093/jme/tjz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate whether temperature, rainfall, and humidity influence the annual distribution of Culicoides Latreille 1809, species abundance and richness in rural areas on São Luís Island in the state of Maranhão, Brazil. Biting midges were collected in housing for domestic animals in the peridomestic areas of 10 homes. A CDC light trap was installed in each peridomestic area from 6:00 p.m. to 6:00 a.m. once a month for 12 mo. In total, 23,633 individuals belonging to 26 Culicoides species were captured. The most abundant species were Culicoides diabolicus Hoffman, 1925 (27.43%), C. ignacioi Forattini, 1957 (25.9%), C. flavivenulus Costa Lima, 1937 (15.53%), C. insignis Lutz, 1913 (10.66%), C. filariferus Hoffman, 1939 (6.21%), C. boliviensis Spinelli & Wirth, 1984 (6.07%), C. foxi Ortíz, 1950 (2.83%), and C. leopoldoi Ortíz, 1951 (2.54%). Species richness and abundance were greater during the rainy season (24 species; 88% of the individuals) than during the dry season (18 species; 12% of individuals). However, persistent rain on the days the midges were collected or in the preceding 24 h adversely affected abundance. Mean monthly maximum temperature and rainfall on the day of the collection adversely affected Culicoides abundance and richness.
Collapse
Affiliation(s)
- Gaudino Marco Cantanhede Gusmão
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Avenida dos Portugueses, Campus do Bacanga S/N, São Luís, Maranhão, Brazil
| | - Gustavo Almeida Brito
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Avenida dos Portugueses, Campus do Bacanga S/N, São Luís, Maranhão, Brazil
| | - Leandro Santos Moraes
- Laboratório de Entomologia de Vetores, Departamento de Biologia, Universidade Federal do Maranhão, Avenida dos Portugueses 1966, Campus do Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Maria Da Conceição Abreu Bandeira
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Avenida dos Portugueses, Campus do Bacanga S/N, São Luís, Maranhão, Brazil
| | - José Manuel Macário Rebêlo
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Avenida dos Portugueses, Campus do Bacanga S/N, São Luís, Maranhão, Brazil
- Laboratório de Entomologia de Vetores, Departamento de Biologia, Universidade Federal do Maranhão, Avenida dos Portugueses 1966, Campus do Bacanga, 65080-805, São Luís, Maranhão, Brazil
| |
Collapse
|
68
|
Levy K, Smith SM, Carlton EJ. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions. Curr Environ Health Rep 2019; 5:272-282. [PMID: 29721700 DOI: 10.1007/s40572-018-0199-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. RECENT FINDINGS A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.
Collapse
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Shanon M Smith
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, 13001 E 17th Place B119, Aurora, CO, 80045, USA
| |
Collapse
|
69
|
Wilcox BA, Echaubard P, de Garine-Wichatitsky M, Ramirez B. Vector-borne disease and climate change adaptation in African dryland social-ecological systems. Infect Dis Poverty 2019; 8:36. [PMID: 31130141 PMCID: PMC6535848 DOI: 10.1186/s40249-019-0539-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Drylands, which are among the biosphere's most naturally limiting and environmentally variable ecosystems, constitute three-quarters of the African continent. As a result, environmental sustainability and human development along with vector-borne disease (VBD) control historically have been especially challenging in Africa, particularly in the sub-Saharan and Sahelian drylands. Here, the VBD burden, food insecurity, environmental degradation, and social vulnerability are particularly severe. Changing climate can exacerbate the legion of environmental health threats in Africa, the social dimensions of which are now part of the international development agenda. Accordingly, the need to better understand the dynamics and complex coupling of populations and environments as exemplified by drylands is increasingly recognized as critical to the design of more sustainable interventions. MAIN BODY This scoping review examines the challenge of vector-borne disease control in drylands with a focus on Africa, and the dramatic, ongoing environmental and social changes taking place. Dryland societies persisted and even flourished in the past despite changing climates, extreme and unpredictable weather, and marginal conditions for agriculture. Yet intrusive forces largely out of the control of traditional dryland societies, along with the negative impacts of globalization, have contributed to the erosion of dryland's cultural and natural resources. This has led to the loss of resilience underlying the adaptive capacity formerly widely exhibited among dryland societies. A growing body of evidence from studies of environmental and natural resource management demonstrates how, in light of dryland system's inherent complexity, these factors and top-down interventions can impede sustainable development and vector-borne disease control. Strengthening adaptive capacity through community-based, participatory methods that build on local knowledge and are tailored to local ecological conditions, hold the best promise of reversing current trends. CONCLUSIONS A significant opportunity exists to simultaneously address the increasing threat of vector-borne diseases and climate change through methods aimed at strengthening adaptive capacity. The integrative framework and methods based on social-ecological systems and resilience theory offers a novel set of tools that allow multiple threats and sources of vulnerability to be addressed in combination. Integration of recent advances in vector borne disease ecology and wider deployment of these tools could help reverse the negative social and environmental trends currently seen in African drylands.
Collapse
Affiliation(s)
- Bruce A. Wilcox
- ASEAN Institute for Health Development, Mahidol University, 999 Salaya Phuttamonthon, Nakon Pathom, 73170 Thailand
| | - Pierre Echaubard
- ASEAN Institute for Health Development, Mahidol University, 999 Salaya Phuttamonthon, Nakon Pathom, 73170 Thailand
| | - Michel de Garine-Wichatitsky
- ASTRE, Université de Montpellier, CIRA, INRA, F-34398 Montpellier, France
- Faculty of Veterinary Sciences, Kasetsart University, Bangkok, Thailand
| | - Bernadette Ramirez
- Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
70
|
El Niño Southern Oscillation, overseas arrivals and imported chikungunya cases in Australia: A time series analysis. PLoS Negl Trop Dis 2019; 13:e0007376. [PMID: 31107863 PMCID: PMC6544329 DOI: 10.1371/journal.pntd.0007376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/31/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an emerging mosquito-borne pathogen circulating in tropical and sub-tropical regions. Although autochthonous transmission has not been reported in Australia, there is a potential risk of local CHIKV outbreaks due to the presence of suitable vectors, global trade, frequent international travel and human adaptation to changes in climate. METHODOLOGY/PRINCIPAL FINDINGS A time series seasonal decomposition method was used to investigate the seasonality and trend of monthly imported CHIKV cases. This pattern was compared with the seasonality and trend of monthly overseas arrivals. A wavelet coherence analysis was applied to examine the transient relationships between monthly imported CHIKV cases and southern oscillation index (SOI) in time-frequency space. We found that the number and geographical distribution of countries of acquisition for CHIKV in travellers to Australia has increased in recent years. The number of monthly imported CHIKV cases displayed an unstable increased trend compared with a stable linear increased trend in monthly overseas arrivals. Both imported CHIKV cases and overseas arrivals showed substantial seasonality, with the strongest seasonal effects in each January, followed by each October and July. The wavelet coherence analysis identified four significant transient relationships between monthly imported CHIKV cases and 6-month lagged moving average SOI, in the years 2009-2010, 2012, 2014 and 2015-2016. CONCLUSION/SIGNIFICANCE High seasonal peaks of imported CHIKV cases were consistent with the high seasonal peaks of overseas arrivals into Australia. Our analysis also indicates that El Niño Southern Oscillation (ENSO) variation may impact CHIKV epidemics in endemic regions, in turn influencing the pattern of imported cases.
Collapse
|
71
|
Rahayu A, Saraswati U, Supriyati E, Kumalawati DA, Hermantara R, Rovik A, Daniwijaya EW, Fitriana I, Setyawan S, Ahmad RA, Wardana DS, Indriani C, Utarini A, Tantowijoyo W, Arguni E. Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101742. [PMID: 31100967 PMCID: PMC6571630 DOI: 10.3390/ijerph16101742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti.
Collapse
Affiliation(s)
- Ayu Rahayu
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Utari Saraswati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Endah Supriyati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Dian Aruni Kumalawati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Rio Hermantara
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Anwar Rovik
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Edwin Widyanto Daniwijaya
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Iva Fitriana
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Sigit Setyawan
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Riris Andono Ahmad
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Dwi Satria Wardana
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Citra Indriani
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Adi Utarini
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Warsito Tantowijoyo
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Eggi Arguni
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
72
|
Veldhuis A, Mars J, Stegeman A, van Schaik G. Changing surveillance objectives during the different phases of an emerging vector-borne disease outbreak: The Schmallenberg virus example. Prev Vet Med 2019; 166:21-27. [PMID: 30935502 DOI: 10.1016/j.prevetmed.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/09/2018] [Accepted: 03/08/2019] [Indexed: 11/27/2022]
Abstract
In the late summer of 2011, a sudden rise in incidence of fever, drop in milk production and diarrhoea was observed in dairy cows in the eastern region of the Netherlands and in north-western Germany. In the autumn of 2011, a novel orthobunyavirus was identified by metagenomic analyses in samples from acutely diseased cows on a farm near the German city of Schmallenberg, and was thereafter named Schmallenberg virus (SBV). Due to the novelty of the virus, there was an immediate need for knowledge regarding the epidemiological characteristics of SBV-infections to inform surveillance and control strategies. A rapid assessment of the spread and impact of an emerging disease supports decision-makers on allocation of resources. This paper reviews the disease mitigation activities during and after the SBV epidemic in the Netherlands, to illustrate the phases in surveillance when a new (vector-borne) pathogen emerges in a country or region. Immediate and short-term disease mitigation activities that were initiated after SBV was identified are discussed in detail, as well as ways to enhance future surveillance (e.g. by syndromic surveillance) and preparedness for similar disease outbreaks. By doing so, lessons learnt from the SBV epidemic will also improve surveillance for other emerging diseases in cattle.
Collapse
Affiliation(s)
- Anouk Veldhuis
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands.
| | - Jet Mars
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands
| | - Arjan Stegeman
- Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| | - Gerdien van Schaik
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| |
Collapse
|
73
|
Rozo-Lopez P, Drolet BS, Londoño-Renteria B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. INSECTS 2018; 9:insects9040190. [PMID: 30544935 PMCID: PMC6315612 DOI: 10.3390/insects9040190] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 12/08/2018] [Indexed: 11/28/2022]
Abstract
Vesicular stomatitis (VS) is a viral disease of veterinary importance, enzootic in tropical and subtropical regions of the Americas. In the U.S., VS produces devastating economic losses, particularly in the southwestern states where the outbreaks display an occurrence pattern of 10-year intervals. To date, the mechanisms of the geographic spread and maintenance cycles during epizootics remain unclear. This is due, in part, to the fact that VS epidemiology has a complex of variables to consider, including a broad range of vertebrate hosts, multiple routes of transmission, and an extensive diversity of suspected vector species acting as both mechanical and biological vectors. Infection and viral progression within vector species are highly influenced by virus serotype, as well as environmental factors, including temperature and seasonality; however, the mechanisms of viral transmission, including non-conventional pathways, are yet to be fully studied. Here, we review VS epidemiology and transmission mechanisms, with comparisons of transmission evidence for the four most incriminated hematophagous dipteran taxa: Aedes mosquitoes, Lutzomyia sand flies, Simulium black flies, and Culicoides biting midges.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA.
| | - Berlin Londoño-Renteria
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA.
| |
Collapse
|
74
|
Portillo A, Ruiz-Arrondo I, Oteo JA. Arthropods as vectors of transmissible diseases in Spain. ACTA ACUST UNITED AC 2018; 151:450-459. [PMID: 32289078 PMCID: PMC7140251 DOI: 10.1016/j.medcle.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Different aspects related to globalization together with the great capacity of the arthropod vectors to adapt to a changing world favour the emergence and reemergence of numerous infectious diseases transmitted by them. Diptera (mosquitoes and sandflies), ticks, fleas and lice, among others, cause a wide spectrum of diseases with relevance in public health. Herein, arthropod-borne disease are reviewed, with special emphasis on the existing risk to contract them in Spain according to different parameters, such as the presence of arthropod and the circulation or the possible circulation of the causative agents.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Ignacio Ruiz-Arrondo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - José A Oteo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| |
Collapse
|
75
|
Kärvemo S, Meurling S, Berger D, Höglund J, Laurila A. Effects of host species and environmental factors on the prevalence of Batrachochytrium dendrobatidis in northern Europe. PLoS One 2018; 13:e0199852. [PMID: 30359384 PMCID: PMC6201871 DOI: 10.1371/journal.pone.0199852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) poses a major threat to amphibian populations. To assist efforts to address such threats, we examined differences in Bd host infection prevalence among amphibian species and its relations to both local environmental factors in breeding habitats and landscape variables measured at three scales (500, 2000 and 5000 m radii) around breeding sites in southernmost Sweden. We sampled 947 anurans of six species in 31 ponds and assessed their infection status. We then examined correlations of infection prevalence with canopy cover, pond perimeter and pH (treated as local-scale pond characteristics), and the number of ponds, area of arable land, area of mature forest, number of resident people and presence of sea within the three radii (treated as landscape variables). The Bd infection prevalence was very low, 0.5–1.0%, in two of the six anuran species (Bufo bufo and Rana temporaria), and substantially higher (13–64%) in the other four (Bombina bombina, Bufotes variabilis, Epidalea calamita, Rana arvalis). In the latter four species Bd infection prevalence was positively associated with ponds’ pH (site range: 5.3–8.1), and negatively associated with areas of mature forest and/or wetlands in the surroundings. Our results show that the infection dynamics of Bd are complex and associated with host species, local pond characteristics and several landscape variables at larger spatial scales. Knowledge of environmental factors associated with Bd infections and differences in species’ susceptibility may help to counter further spread of the disease and guide conservation action plans, especially for the most threatened species.
Collapse
Affiliation(s)
- Simon Kärvemo
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Sara Meurling
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
76
|
Portillo A, Ruiz-Arrondo I, Oteo JA. Arthropods as vectors of transmisible diseases in Spain. Med Clin (Barc) 2018; 151:450-459. [PMID: 30170738 PMCID: PMC7094594 DOI: 10.1016/j.medcli.2018.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
Abstract
Diferentes aspectos relacionados con la globalización junto a la gran capacidad de los artrópodos vectores para adaptarse a un mundo cambiante propician la emergencia y reemergencia de numerosos procesos infecciosos transmitidos por los mismos. Dípteros (culícidos y flebótomos), garrapatas, pulgas y piojos, entre otros, provocan un variado espectro de enfermedades con gran importancia en Salud Pública. En esta revisión se repasan las diferentes afecciones transmitidas por artrópodos vectores, haciendo un especial hincapié en el riesgo existente para contraerlas en España en función de diferentes parámetros, como la presencia del artrópodo y la circulación o posible circulación de los agentes causales.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España
| | - Ignacio Ruiz-Arrondo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España
| | - José A Oteo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España.
| |
Collapse
|
77
|
|
78
|
Coutinho PEG, Candido LA, Tadei WP, da Silva Junior UL, Correa HKM. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:311. [PMID: 29700629 DOI: 10.1007/s10661-018-6677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.
Collapse
Affiliation(s)
- Paulo Eduardo Guzzo Coutinho
- Nucleus of Research Support in Para (Núcleo de Apoio à Pesquisa no Pará (INPA/Nappa/Santarém)), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Rua 24 de outubro, 3289, Salé, Santarém, Pará, 68040-010, Brazil.
| | - Luiz Antonio Candido
- INPA/CAMPUS 2 (INPA/CAMPUS 2), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Prédio LBA, sala da Coordenação de Dinâmica Ambiental Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Wanderli Pedro Tadei
- INPA/CAMPUS 1 - Malaria and Dengue Laboratory (INPA/CAMPUS 1 - Laboratório de Malária e Dengue), National Institute of Amazon Researches (Instituto Nacional de Pesquisas da Amazônia), Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Urbano Lopes da Silva Junior
- National Center for Research and Conservation of Amazonian Biodiversity (Centro Nacional de Pesquisa e Conservação da Biodiversidade Amazônica (Cepam/ICMBio)), Chico Mendes Institute for Biodiversity Conservation (Instituto Chico Mendes de Conservação da Biodiversidade), UFAM, Campus Universitário Arthur Virgílio Filho setor sul, Av. Gal Rodrigo Otávio Jordão Ramos, 6200, Coroado, Manaus, 69077-000, Brazil
| | - Honorly Katia Mestre Correa
- Institute of Educational Science (Instituto de Ciências da Educação (ICED/UFOPA)), Federal University of Western Para (Universidade Federal do Oeste do Prá), Av. Marechal Rondon, s/n, Caranazal, Santarem, Para, 68040-070, Brazil
| |
Collapse
|
79
|
Guo Y, Song Z, Luo L, Wang Q, Zhou G, Yang D, Zhong D, Zheng X. Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasit Vectors 2018; 11:228. [PMID: 29618379 PMCID: PMC5885320 DOI: 10.1186/s13071-018-2814-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background Aedes (Stegomyia) albopictus (Skuse) is an indigenous species and the predominant vector of dengue fever in China. Understanding of genetic diversity and structure of the mosquito would facilitate dengue prevention and vector control. Sympatric cryptic species have been identified in the Ae. albopictus subgroup in Southeast Asia; however, little is known about the presence and distribution of cryptic species in China. This study aimed to examine the genetic diversity, evaluate potential new cryptic sibling species, and assess the prevalence of Wolbachia infections in field populations. Methods Aedes adult female specimens were collected from five provinces in southern and central China during 2015–2016. Morphological identification was performed under dissection microscope. The mitochondrial DNA cytochrome c oxidase subunit 1 (cox1, DNA barcoding) locus and the ribosomal DNA internal transcribed spacer region 2 (ITS2) marker were used to examine the genetic variation, evaluate cryptic sibling species, and population structure in the field populations. Screening for the presence of Wolbachia was performed using multiplex PCR. Results A total of 140 individual specimens with morphological characteristics similar to Ae. albopictus were sequenced for DNA barcoding. Among these, 129 specimens (92.1%) were confirmed and identified as Ae. albopictus. The remaining 11 specimens, from 2 provinces, were identified as 2 distinct sequence groups, which were confirmed by ITS2 marker sequencing, suggesting the existence of potential cryptic species of Ae. albopictus. In Ae. albopictus, we found significant genetic differentiation and population structure between populations collected from different climate zones. Medium to high frequencies of Wolbachia infections were observed in natural Ae. albopictus populations, whereas Wolbachia was infrequent or absent in cryptic species populations. Conclusions Our findings highlight the population differentiation by climate zone and the presence of novel, cryptic Aedes species in China. The low prevalence of Wolbachia infections in cryptic species populations could reflect either a recent invasion of Wolbachia in Ae. albopictus or different host immune responses to this symbiont in the cryptic species. The study provides useful information for vector control and host-symbiont coevolution. Further study is needed to investigate the potential for arbovirus infection and disease transmission in the emerged cryptic species. Electronic supplementary material The online version of this article (10.1186/s13071-018-2814-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhangyao Song
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Luo
- Department of Disinfection and Pesticide of Center for Disease Control and Prevention of Guangzhou, Guangzhou, Guangdong, China
| | - Qingmin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guofa Zhou
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Dizi Yang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Zhong
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
80
|
Lim EXY, Lee WS, Madzokere ET, Herrero LJ. Mosquitoes as Suitable Vectors for Alphaviruses. Viruses 2018; 10:v10020084. [PMID: 29443908 PMCID: PMC5850391 DOI: 10.3390/v10020084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are arthropod-borne viruses and are predominantly transmitted via mosquito vectors. This vector preference by alphaviruses raises the important question of the determinants that contribute to vector competence. There are several tissue barriers of the mosquito that the virus must overcome in order to establish a productive infection. Of importance are the midgut, basal lamina and the salivary glands. Infection of the salivary glands is crucial for virus transmission during the mosquito’s subsequent bloodfeed. Other factors that may contribute to vector competence include the microflora and parasites present in the mosquito, environmental conditions, the molecular determinants of the virus to adapt to the vector, as well as the effect of co-infection with other viruses. Though mosquito innate immunity is a contributing factor to vector competence, it will not be discussed in this review. Detailed understanding of these factors will be instrumental in minimising transmission of alphaviral diseases.
Collapse
Affiliation(s)
- Elisa X Y Lim
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Wai Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| |
Collapse
|
81
|
Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale J, Savic DA, Muller-Karger FE. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop Med Infect Dis 2018; 3:tropicalmed3010005. [PMID: 30274404 PMCID: PMC6136605 DOI: 10.3390/tropicalmed3010005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Modelling dengue fever in endemic areas is important to mitigate and improve vector-borne disease control to reduce outbreaks. This study applied artificial neural networks (ANNs) to predict dengue fever outbreak occurrences in San Juan, Puerto Rico (USA), and in several coastal municipalities of the state of Yucatan, Mexico, based on specific thresholds. The models were trained with 19 years of dengue fever data for Puerto Rico and six years for Mexico. Environmental and demographic data included in the predictive models were sea surface temperature (SST), precipitation, air temperature (i.e., minimum, maximum, and average), humidity, previous dengue cases, and population size. Two models were applied for each study area. One predicted dengue incidence rates based on population at risk (i.e., numbers of people younger than 24 years), and the other on the size of the vulnerable population (i.e., number of people younger than five years and older than 65 years). The predictive power was above 70% for all four model runs. The ANNs were able to successfully model dengue fever outbreak occurrences in both study areas. The variables with the most influence on predicting dengue fever outbreak occurrences for San Juan, Puerto Rico, included population size, previous dengue cases, maximum air temperature, and date. In Yucatan, Mexico, the most important variables were population size, previous dengue cases, minimum air temperature, and date. These models have predictive skills and should help dengue fever mitigation and management to aid specific population segments in the Caribbean region and around the Gulf of Mexico.
Collapse
Affiliation(s)
- Abdiel E Laureano-Rosario
- Institute for Marine Remote Sensing, University of South Florida, College of Marine Science, 140 7th Avenue South, Saint Petersburg, FL 33701, USA.
| | - Andrew P Duncan
- Centre for Water Systems, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK.
| | - Pablo A Mendez-Lazaro
- Environmental Health Department, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan, PR 00936, USA.
| | - Julian E Garcia-Rejon
- Centro de Investigaciones Regionales, Lab de Arbovirologia, Unidad Inalámbrica, Universidad Autonoma de Yucatan, Calle 43 No. 613 x Calle 90, Colonia Inalambrica, Merida C.P. 97069, Yucatan, Mexico.
| | - Salvador Gomez-Carro
- Servicios de Salud de Yucatan, Hospital General Agustin O'Horan Unidad de Vigilancia Epidemiologica, Avenida Itzaes s/n Av. Jacinto Canek, Centro, Merida C.P. 97000, Yucatan, Mexico.
| | - Jose Farfan-Ale
- Centro de Investigaciones Regionales, Lab de Arbovirologia, Unidad Inalámbrica, Universidad Autonoma de Yucatan, Calle 43 No. 613 x Calle 90, Colonia Inalambrica, Merida C.P. 97069, Yucatan, Mexico.
| | - Dragan A Savic
- Centre for Water Systems, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK.
| | - Frank E Muller-Karger
- Institute for Marine Remote Sensing, University of South Florida, College of Marine Science, 140 7th Avenue South, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
82
|
Servadio JL, Rosenthal SR, Carlson L, Bauer C. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia. J Infect Public Health 2017; 11:566-571. [PMID: 29274851 DOI: 10.1016/j.jiph.2017.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vector-borne infectious diseases, particularly mosquito-borne, pose a substantial threat to populations throughout South and Southeast Asia. Outbreaks have affected this region several times during the early years of the 21st century, notably through outbreaks of Chikungunya and Dengue. These diseases are believed to be highly prevalent at endemic levels in the region as well. With a changing global climate, the impacts of changes in ambient temperatures and precipitation levels on mosquito populations are important for understanding the effects on risk of mosquito-borne disease outbreaks. This study aims to make use of a large data set to determine how risk of mosquito-borne infectious disease outbreaks relates to the highest monthly average temperature and precipitation for each year in South and Southeast Asia. METHODS Generalized additive models were used in a marked point process to fit nonlinear trends relating temperature and precipitation to outbreak risk, fitting splines for temperature and precipitation. Confounding factors for nation affluence, climate type, and ability to report outbreaks were also included. RESULTS Parabolic trends for both temperature and precipitation were observed relating to outbreak risk. The trend for temperature, which was significant, showed that outbreak risk peaks near 33.5°C as the highest monthly average temperature. Though not significant, a trend for precipitation was observed showing risk peaking when the highest monthly average precipitation is 650mm. CONCLUSIONS Peak levels of temperature and precipitation were identified for outbreak risk. These findings support the notion of a poleward shift in the distribution of mosquitoes within this region rather than a poleward expansion in geographic range.
Collapse
Affiliation(s)
- Joseph L Servadio
- Department of Biostatistics, Brown University School of Public Health, 121 South Main St., Providence, RI, USA; Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St. SE, Minneapolis, MN, USA.
| | - Samantha R Rosenthal
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St., Providence, RI, USA.
| | - Lynn Carlson
- Geological Sciences, Brown University, 85 Waterman St., Providence, RI, USA.
| | - Cici Bauer
- Department of Biostatistics, Brown University School of Public Health, 121 South Main St., Providence, RI, USA.
| |
Collapse
|
83
|
Nyangiwe N, Horak IG, Van der Mescht L, Matthee S. Range expansion of the economically important Asiatic blue tick, <i>Rhipicephalus microplus</i>, in South Africa. J S Afr Vet Assoc 2017; 88:e1-e7. [PMID: 29227140 PMCID: PMC6138174 DOI: 10.4102/jsava.v88i0.1482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/23/2022] Open
Abstract
The Asiatic blue tick, Rhipicephalus microplus, a known vector of bovine babesiosis and bovine anaplasmosis, is of great concern in the cattle industry. For this reason, detailed knowledge of the distribution of R. microplus is vital. Currently, R. microplus is believed to be associated mainly with the northern and eastern Savanna and Grassland vegetation in South Africa. The objective of the study was to record the distribution of R. microplus, and the related endemic Rhipicephalus decoloratus, in the central-western region of South Africa that comprises Albany Thicket, Fynbos and Savanna vegetation. In this survey, ticks were collected from 415 cattle in four provinces (Eastern Cape, Northern Cape and Western Cape and Free State provinces) and from the vegetation in the Eastern Cape province of South Africa between October 2013 and September 2015. More than 8000 ticks were collected from cattle at 80 localities of which R. microplus was present at 64 localities and R. decoloratus at 47 localities. A total of 7969 tick larvae were recorded from the vegetation at 20 localities of which 6593 were R. microplus and 1131 were R. decoloratus. Rhipicephalus microplus was recorded in each of the regions that were sampled. Rhipicephalus microplus is now present throughout the coastal region of the Eastern Cape province and at multiple localities in the north-eastern region of the Northern Cape province. It was also recorded in the western region of the Western Cape province and one record was made for the Free State province. The observed range changes may be facilitated by the combined effects of environmental adaptability by the tick and the movement of host animals.
Collapse
Affiliation(s)
| | | | | | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University.
| |
Collapse
|
84
|
Firth C, Blasdell KR, Amos-Ritchie R, Sendow I, Agnihotri K, Boyle DB, Daniels P, Kirkland PD, Walker PJ. Genomic analysis of bluetongue virus episystems in Australia and Indonesia. Vet Res 2017; 48:82. [PMID: 29169390 PMCID: PMC5701493 DOI: 10.1186/s13567-017-0488-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The distribution of bluetongue viruses (BTV) in Australia is represented by two distinct and interconnected epidemiological systems (episystems)—one distributed primarily in the north and one in the east. The northern episystem is characterised by substantially greater antigenic diversity than the eastern episystem; yet the forces that act to limit the diversity present in the east remain unclear. Previous work has indicated that the northern episystem is linked to that of island South East Asia and Melanesia, and that BTV present in Indonesia, Papua New Guinea and East Timor, may act as source populations for new serotypes and genotypes of BTV to enter Australia’s north. In this study, the genomes of 49 bluetongue viruses from the eastern episystem and 13 from Indonesia were sequenced and analysed along with 27 previously published genome sequences from the northern Australian episystem. The results of this analysis confirm that the Australian BTV population has its origins in the South East Asian/Melanesian episystem, and that incursions into northern Australia occur with some regularity. In addition, the presence of limited genetic diversity in the eastern episystem relative to that found in the north supports the presence of substantial, but not complete, barriers to gene flow between the northern and eastern Australian episystems. Genetic bottlenecks between each successive episystem are evident, and appear to be responsible for the reduction in BTV genetic diversity observed in the north to south–east direction.
Collapse
Affiliation(s)
- Cadhla Firth
- CSIRO Health & Biosecurity, 5 Portarlington Road, Geelong, VIC, 3220, Australia. .,School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kim R Blasdell
- CSIRO Health & Biosecurity, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Rachel Amos-Ritchie
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Indrawati Sendow
- Virology Department, Indonesian Research Center for Veterinary Science, Bogor, West Java, 16114, Indonesia
| | - Kalpana Agnihotri
- Biosecurity Sciences Laboratory, 39 Kessels Road, Coopers Plains, Brisbane, QLD, 4109, Australia
| | - David B Boyle
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter Daniels
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Peter J Walker
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.,School of Biological Sciences, University of Queensland, St Lucia, QLD, 4067, Australia
| |
Collapse
|
85
|
Sage KM, Johnson TL, Teglas MB, Nieto NC, Schwan TG. Ecological niche modeling and distribution of Ornithodoros hermsi associated with tick-borne relapsing fever in western North America. PLoS Negl Trop Dis 2017; 11:e0006047. [PMID: 29084219 PMCID: PMC5679642 DOI: 10.1371/journal.pntd.0006047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/09/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
Tick-borne relapsing fever in western North America is a zoonosis caused by the spirochete bacterium, Borrelia hermsii, which is transmitted by the bite of infected Ornithodoros hermsi ticks. The pathogen is maintained in natural cycles involving small rodent hosts such as chipmunks and tree squirrels, as well as the tick vector. In order for these ticks to establish sustained and viable populations, a narrow set of environmental parameters must exist, primarily moderate temperatures and moderate to high amounts of precipitation. Maximum Entropy Species Distribution Modeling (Maxent) was used to predict the species distribution of O. hermsi and B. hermsii through time and space based on current climatic trends and future projected climate changes. From this modeling process, we found that the projected current distributions of both the tick and spirochete align with known endemic foci for the disease. Further, global climate models predict a shift in the distribution of suitable habitat for the tick vector to higher elevations. Our predictions are useful for targeting surveillance efforts in areas of high risk in western North America, increasing the efficiency and accuracy of public health investigations and vector control efforts. The model presented here provides valuable epidemiological information on tick-borne relapsing fever in western North America. The inference gleaned from these models represents areas where human infection with B. hermsii is likely to occur. The predicted distribution of O. hermsi and B. hermsii may allow health officials to decrease human disease burden by implementing targeted surveillance efforts, thus better utilizing resources. The models we created predict the current distribution of O. hermsi and B. hermsii, as well as the predicted distribution in 2050 under medium and high greenhouse gas (GHG) concentration trajectories. Understanding how the distribution of the pathogen and its vector expand or contract in response to GHG concentrations is necessary for understanding human risk of infection with this debilitating disease both now and in the future.
Collapse
Affiliation(s)
- Kylie M. Sage
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| | - Tammi L. Johnson
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael B. Teglas
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, NV, United States of America
| | - Nathan C. Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
86
|
Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 2017; 16:3148-3160. [PMID: 27862981 DOI: 10.1002/pmic.201600287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Alexandra C Willcox
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Idir Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
87
|
Wang HH, Corson MS, Grant WE, Teel PD. Quantitative models of Rhipicephalus
(Boophilus
) ticks: historical review and synthesis. Ecosphere 2017. [DOI: 10.1002/ecs2.1942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Hsiao-Hsuan Wang
- Department of Wildlife and Fisheries Sciences; Texas A&M University; College Station Texas 77843 USA
| | | | - William E. Grant
- Department of Wildlife and Fisheries Sciences; Texas A&M University; College Station Texas 77843 USA
| | - Pete D. Teel
- Department of Entomology; Texas A&M AgriLife Research; College Station Texas 77843 USA
| |
Collapse
|
88
|
Mweya CN, Mboera LEG, Kimera SI. Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania. Am J Trop Med Hyg 2017; 97:109-114. [PMID: 28719317 DOI: 10.4269/ajtmh.16-0444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.
Collapse
Affiliation(s)
- Clement N Mweya
- Tukuyu Research Centre, National Institute for Medical Research, Tukuyu, Tanzania
| | - Leonard E G Mboera
- Headquarters, National Institute for Medical Research, Dar es salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
89
|
Haider N, Kirkeby C, Kristensen B, Kjær LJ, Sørensen JH, Bødker R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci Rep 2017; 7:8175. [PMID: 28811576 PMCID: PMC5557972 DOI: 10.1038/s41598-017-08514-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
We quantified the difference between the meteorological temperature recorded by the Danish Meteorological Institute (DMI) weather stations and the actual microclimatic temperatures at two or three different heights at six potential insect habitats. We then compared the impact of the hourly temperature on the extrinsic incubation period (EIP) of six pathogens. Finally, we developed a regression model, enabling us to predict the microclimatic temperatures of different habitats based on five standard meteorological parameters readily available from any meteorological institution. Microclimatic habitats were on average 3.5-5 °C warmer than the DMI recorded temperatures during midday and 1-3 °C cooler at midnight. The estimated EIP for five of the six microclimatic habitats was shorter than the estimates based on DMI temperatures for all pathogens studied. The microclimatic temperatures also predicted a longer season for virus development compared to DMI temperatures. Based on DMI data of hourly temperature, solar radiation, wind speed, rain and humidity, we were able to predict the microclimatic temperature of different habitats with an R2 of 0.87-0.96. Using only meteorological temperatures for vector-borne disease transmission models may substantially underestimate both the daily potential for virus development and the duration of the potential transmission season.
Collapse
Affiliation(s)
- Najmul Haider
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
| | - Carsten Kirkeby
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Birgit Kristensen
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Lene Jung Kjær
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jens Havskov Sørensen
- Research and Development Department, Danish Meteorological Institute, Copenhagen, Denmark
| | - Rene Bødker
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
90
|
Burgin L, Ekström M, Dessai S. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1233-1245. [PMID: 28091855 DOI: 10.1007/s00484-016-1301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.
Collapse
Affiliation(s)
| | - Marie Ekström
- CSIRO Land and Water, Black Mountain, GPO Box 1700, Canberra, 2601, ACT, Australia.
| | - Suraje Dessai
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
91
|
Simón F, González-Miguel J, Diosdado A, Gómez PJ, Morchón R, Kartashev V. The Complexity of Zoonotic Filariasis Episystem and Its Consequences: A Multidisciplinary View. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6436130. [PMID: 28642878 PMCID: PMC5469992 DOI: 10.1155/2017/6436130] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022]
Abstract
Vector-borne transmitted helminthic zoonosis affects the health and economy of both developing and developed countries. The concept of episystem includes the set of biological, environmental, and epidemiological elements of these diseases in defined geographic and temporal scales. Dirofilariasis caused by different species of the genus Dirofilaria is a disease affecting domestic and wild canines and felines and man, transmitted by different species of culicid mosquitoes. This complexity is increased because Dirofilaria species harbor intracellular symbiont Wolbachia bacteriae, which play a key role in the embryogenesis and development of dirofilariae and in the inflammatory pathology of the disease. In addition, the vector transmission makes the dirofilariasis susceptible to the influence of the climate and its variations. The present review addresses the analysis of dirofilariasis from the point of view of the episystem, analyzing the complex network of interactions established between biological components, climate, and factors related to human activity, as well as the different problems they pose. The progress of knowledge on human and animal dirofilariasis is largely due to the multidisciplinary approach. Nevertheless, different aspects of the disease need to continue being investigated and cooperation between countries and specialists involved should be intensified.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Alicia Diosdado
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Paula Josefina Gómez
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Rodrigo Morchón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Vladimir Kartashev
- Department of Infectious Diseases, Rostov State Medical University, Rostov-na-Donu, Russia
| |
Collapse
|
92
|
Marcondes CB, Contigiani M, Gleiser RM. Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now? JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:509-532. [PMID: 28399216 DOI: 10.1093/jme/tjw209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 06/07/2023]
Abstract
Varios arbovirus han emergido y/o reemergido en el Nuevo Mundo en las últimas décadas. Los virus Zika y chikungunya, anteriormente restringidos a África y quizás Asia, invadieron el continente, causando gran preocupación; además siguen ocurriendo brotes causados por el virus dengue en casi todos los países, con millones de casos por año. El virus West Nile invadió rápidamente América del Norte, y ya se han encontrado casos en América Central y del Sur. Otros arbovirus, como Mayaro y el virus de la encefalitis equina del este han aumentado su actividad y se han encontrado en nuevas regiones. Se han documentado cambios en la patogenicidad de algunos virus que conducen a enfermedades inesperadas. Una fauna diversa de mosquitos, cambios climáticos y en la vegetación, aumento de los viajes, y urbanizaciones no planificadas que generan condiciones adecuadas para la proliferación de Aedes aegypti (L.), Culex quinquefasciatus Say y otros mosquitos vectores, se han combinado para influir fuertemente en los cambios en la distribución y la incidencia de varios arbovirus. Se enfatiza la necesidad de realizar estudios exhaustivos de la fauna de mosquitos y modificaciones de las condiciones ambientales, sobre todo en las zonas urbanas fuertemente influenciadas por factores sociales, políticos y económicos.
Collapse
Affiliation(s)
- Carlos Brisola Marcondes
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marta Contigiani
- Emeritus Professor, Instituto de Virologia "Dr. J. M. Vanella", Enfermera Gordillo Gomez s/n, Ciudad Universitaria, National University of Córdoba, Córdoba, Argentina
| | - Raquel Miranda Gleiser
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN) - Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
93
|
Picky eaters are rare: DNA-based blood meal analysis of Culicoides (Diptera: Ceratopogonidae) species from the United States. Parasit Vectors 2017; 10:169. [PMID: 28376843 PMCID: PMC5381053 DOI: 10.1186/s13071-017-2099-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biting midges in the genus Culicoides (Diptera; Ceratopogonidae) have been implicated in the transmission of a number of parasites and highly pathogenic viruses. In North America, the complete transmission cycles of many of these pathogens need further elucidation. One way to increase our knowledge about the evolution and ecology of Culicoides species and the pathogens they transmit is to document the diversity of vertebrate hosts that Culicoides feed upon. Our objective was to identify the diversity of Culicoides hosts in the United States. RESULTS We sequenced two vertebrate mitochondrial genes (cytochrome c oxidase subunit 1 and cytochrome b) from blood-engorged Culicoides to identify Culicoides species and their blood meals. We detected the mitochondrial DNA of 12 host species from seven different Culicoides species from three states. The majority of the identified blood meals were from the C. variipennis species complex in California. The hosts included both mammals and birds. We documented new host records for some of the Culicoides species collected. The majority of the mammalian hosts were large ungulate species but we also detected a lagomorph and a carnivore. The bird species that were detected included house finch and emu; the latter is evidence that the species in the C. variipennis species complex are not strictly mammalophilic. CONCLUSIONS These results demonstrate that Culicoides will feed on multiple classes of vertebrates and may be more opportunistic in regards to host choice than previously thought. This knowledge can help with identification of susceptible host species, pathogen reservoirs, and new vector species which, in turn, will improve disease outbreak risk assessments.
Collapse
|
94
|
Ajesh K, Nagaraja BK, Sreejith K. Kyasanur forest disease virus breaking the endemic barrier: An investigation into ecological effects on disease emergence and future outlook. Zoonoses Public Health 2017; 64:e73-e80. [PMID: 28220635 DOI: 10.1111/zph.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 11/26/2022]
Abstract
Kyasanur Forest disease (KFD) is found in a limited range of India, but is epidemiologically understudied. The seasonal patterns of KFD are well known; however, the significant concern is on the extent to which changes in epidemiology happen especially under the influence of ecological destructions and by the eventual effects of resulting climate change. Presently, a southward and northward spread of the Kyasanur Forest disease virus (KFDV) along the Western Ghats has been reported in the adjoining states of Kerala, Tamil Nadu, Goa and Maharashtra. In this review, we investigate the cascade of factors that might have facilitated the resurgence of KFDV among the endemic regions in higher frequency and its recent emergence in the area previously not reported. Utilizing published data, we additionally endeavour to exhibit a portion of the impediments of control systems and embody the powerful option strategies for developing KFDV control.
Collapse
Affiliation(s)
- K Ajesh
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - B K Nagaraja
- Department of Microbiology, Sir M V Government Science College, Shimoga, Karnataka, India
| | - K Sreejith
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| |
Collapse
|
95
|
Shragai T, Tesla B, Murdock C, Harrington LC. Zika and chikungunya: mosquito-borne viruses in a changing world. Ann N Y Acad Sci 2017; 1399:61-77. [PMID: 28187236 DOI: 10.1111/nyas.13306] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022]
Abstract
The reemergence and growing burden of mosquito-borne virus infections have incited public fear and growing research efforts to understand the mechanisms of infection-associated health outcomes and to provide better approaches for mosquito vector control. While efforts to develop therapeutics, vaccines, and novel genetic mosquito-control technologies are underway, many important underlying ecological questions remain that could significantly enhance our understanding and ability to predict and prevent transmission. Here, we review the current knowledge about the transmission ecology of two recent arbovirus invaders, the chikungunya and Zika viruses. We introduce the viruses and mosquito vectors, highlighting viral biology, historical routes of transmission, and viral mechanisms facilitating rapid global invasion. In addition, we review factors contributing to vector global invasiveness and transmission efficiency. We conclude with a discussion of how human-induced biotic and abiotic environmental changes facilitate mosquito-borne virus transmission, emphasizing critical gaps in understanding. These knowledge gaps are tremendous; much of our data on basic mosquito ecology in the field predate 1960, and the mosquitoes themselves, as well as the world they live in, have substantially changed. A concerted investment in understanding the basic ecology of these vectors, which serve as the main drivers of pathogen transmission in both wildlife and human populations, is now more important than ever.
Collapse
Affiliation(s)
- Talya Shragai
- Department of Entomology, Cornell University, Ithaca, New York
| | - Blanka Tesla
- Department of Infectious Diseases and Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Courtney Murdock
- Department of Infectious Diseases and Odum School of Ecology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
96
|
Kostopoulou D, Claerebout E, Arvanitis D, Ligda P, Voutzourakis N, Casaert S, Sotiraki S. Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: The scenario of Crete, Greece. Parasit Vectors 2017; 10:43. [PMID: 28122583 PMCID: PMC5264337 DOI: 10.1186/s13071-017-1989-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background The objectives of this study were to evaluate the prevalence and infection intensity of intestinal parasites in different dog and cat populations in Crete, Greece, estimate the zoonotic risk and identify risk factors. Methods Faecal samples from shelter, household and shepherd dogs and shelter and household cats were analyzed using sedimentation/flotation techniques. Giardia and Cryptosporidium were detected by a quantitative direct immunofluorescence assay (IFA). PCR and sequencing was performed to evaluate the zoonotic potential of Giardia and Cryptosporidium positive samples. Results Totals of 879 dog and 264 cat faecal samples were examined. In dogs, the overall prevalence was 25.2% (CI: 22.4–28.1) for Giardia spp.; 9.2% (CI: 7.3–11.1) for Ancylostoma/Uncinaria spp.; 7.6% (CI: 5.9–9.4) for Toxocara spp.; 5.9% (CI: 4.4–7.5) for Cryptosporidium spp.; 4.6% (CI: 3.2–5.9) for Cystoisospora spp.; 2.7% (CI: 1.7–3.8) for Toxascaris leonina; 1.7% (CI: 0.9–2.6) for Capillaria spp.; 0.8% (CI: 0.2–1.4) for taeniid eggs; 0.2% (CI: 0–0.5) for Dipylidium caninum; and 0.1% (CI: 0–0.3) for Strongyloides stercoralis. In cats, the prevalence was 20.5% (CI: 15.6–25.3) for Giardia spp.; 9.5% (CI: 5.9–13.0) for Cystoisospora spp.; 8.3% (CI: 5.0–11.7) for Toxocara spp.; 7.6% (CI: 4.4–10.8) for Ancylostoma/Uncinaria spp.; 6.8% (CI: 3.8–9.9) for Cryptosporidium spp.; 4.2% (CI: 1.8–6.6) for Capillaria spp.; 0.8% (CI: 0–1.8) for taeniid eggs; and 0.4% (CI: 0–1.1) for Hammondia/Toxoplasma. Concerning the risk factors evaluated, there was a negative association between age and Giardia infection and between age and T. leonina infection intensity for dogs. Sequencing results revealed the presence of mainly animal-specific G. duodenalis assemblages C and D in dogs and assemblages F, C and BIV-like in cats, with only a limited number of (co-)infections with assemblage A. As for Cryptosporidium, the dog-specific C. canis and the pig-specific C. scrofarum were detected in dogs and the cat-specific C. felis was detected in cats. Conclusions High levels of parasitism in both dogs and cats were recorded. Giardia was the most prevalent parasite in all dog and cat populations except for shepherd dogs. Genotyping results suggest a limited zoonotic risk of Giardia and Cryptosporidium infections from dogs and cats in Crete. Taeniid eggs were more prevalent in shepherd dogs suggesting access to carcasses and posing a threat for cystic echinococcosis transmission. Infection rates of Toxocara spp. in both dogs and cats show that companion animals could be a significant source of infection to humans. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1989-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Despoina Kostopoulou
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium. .,Veterinary Research Institute - Hellenic Agricultural Organization Demeter, Thermi, Thessaloniki, 57001, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Dimitrios Arvanitis
- Veterinary Research Institute - Hellenic Agricultural Organization Demeter, Thermi, Thessaloniki, 57001, Greece
| | - Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium.,Veterinary Research Institute - Hellenic Agricultural Organization Demeter, Thermi, Thessaloniki, 57001, Greece
| | - Nikolaos Voutzourakis
- Veterinary Research Institute - Hellenic Agricultural Organization Demeter, Thermi, Thessaloniki, 57001, Greece
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Smaragda Sotiraki
- Veterinary Research Institute - Hellenic Agricultural Organization Demeter, Thermi, Thessaloniki, 57001, Greece
| |
Collapse
|
97
|
Schulte P, Bhattacharya A, Butler C, Chun H, Jacklitsch B, Jacobs T, Kiefer M, Lincoln J, Pendergrass S, Shire J, Watson J, Wagner G. Advancing the framework for considering the effects of climate change on worker safety and health. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:847-65. [PMID: 27115294 PMCID: PMC5017900 DOI: 10.1080/15459624.2016.1179388] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988-2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008-2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers.
Collapse
Affiliation(s)
- P.A. Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Education and Infomation Division, Cincinnati, Ohio
- CONTACT P.A. Schulte National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, MS C-14, Cincinnati, OH45226
| | - A. Bhattacharya
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Education and Infomation Division, Cincinnati, Ohio
| | - C.R. Butler
- Western States Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Denver, Colorado
| | - H.K. Chun
- Georgia Southern University, College of Public Health, Statesboro, Georgia
| | - B. Jacklitsch
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Education and Infomation Division, Cincinnati, Ohio
| | - T. Jacobs
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio
| | - M. Kiefer
- Western States Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Denver, Colorado
| | - J. Lincoln
- Western States Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - S. Pendergrass
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Education and Infomation Division, Cincinnati, Ohio
| | - J. Shire
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio
| | - J. Watson
- Western States Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Spokane, Washington
| | - G.R. Wagner
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention; Washington, D.C.
| |
Collapse
|
98
|
Onyango MG, Aitken NC, Jack C, Chuah A, Oguya J, Djikeng A, Kemp S, Bellis GA, Nicholas A, Walker PJ, Duchemin JB. Genotyping of whole genome amplified reduced representation libraries reveals a cryptic population of Culicoides brevitarsis in the Northern Territory, Australia. BMC Genomics 2016; 17:769. [PMID: 27716062 PMCID: PMC5045647 DOI: 10.1186/s12864-016-3124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advent of genotyping by Next Generation Sequencing has enabled rapid discovery of thousands of single nucleotide polymorphism (SNP) markers and high throughput genotyping of large populations at an affordable cost. Genotyping by sequencing (GBS), a reduced representation library sequencing method, allows highly multiplexed sequencing of genomic subsets. This method has limitations for small organisms with low amounts of genomic DNA, such as the bluetongue virus (BTV) vectors, Culicoides midges. RESULTS This study employed the GBS method to isolate SNP markers de novo from whole genome amplified Culicoides brevitarsis genomic DNA. The individuals were collected from regions representing two different Australian patterns of BTV strain distribution: the Northern Territory (NT) and the east coast. We isolated 8145 SNPs using GBS. Phylogenetic analysis conducted using the filtered 3263 SNPs revealed the presence of a distinct C. brevitarsis sub-population in the NT and this was confirmed by analysis of mitochondrial DNA. Two loci showed a very strong signal for selection and were unique to the NT population. Bayesian analysis with STRUCTURE indicated a possible two-population cluster. CONCLUSIONS The results suggest that genotyping vectors with high density markers in combination with biological and environmental data is useful. However, more extensive sampling over a wider spatial and temporal range is needed. The presence of sub-structure in populations and loci under natural selection indicates the need for further investigation of the role of vectors in shaping the two Australian systems of BTV transmission. The described workflow is transferable to genotyping of small, non-model organisms, including arthropod vectors of pathogens of economic and medical importance.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, 3216, VIC, Australia
| | - Nicola C Aitken
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron Jack
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Aaron Chuah
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - James Oguya
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Appolinaire Djikeng
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya.,Biosciences eastern and central Africa-ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya
| | - Steve Kemp
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Glenn A Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, 0812, NT, Australia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, 0909, NT, Australia
| | - Adrian Nicholas
- NSW Department of Primary Industries, Biosecurity, 4 Marsden Park Road, Calala, 2340, NSW, Australia
| | - Peter J Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.
| |
Collapse
|
99
|
Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol 2016; 3:125-145. [DOI: 10.1146/annurev-virology-110615-035630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Walter J. Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, Florida 32962;
| |
Collapse
|
100
|
Research Contributing to Improvements in Controlling Florida's Mosquitoes and Mosquito-borne Diseases. INSECTS 2016; 7:insects7040050. [PMID: 27690112 PMCID: PMC5198198 DOI: 10.3390/insects7040050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/24/2023]
Abstract
Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.
Collapse
|