51
|
Li B, Mao Q, Zhou D, Luo M, Gan R, Li H, Huang S, Saimaiti A, Shang A, Li H. Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice. Foods 2021; 10:1232. [PMID: 34071491 PMCID: PMC8228948 DOI: 10.3390/foods10061232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis has been a crucial contributor to the pathogenesis of alcoholic fatty liver disease (AFLD). Tea is a popular beverage worldwide and exerts antioxidant and anti-inflammatory activities, as well as hepatoprotective effects. However, the potential role of gut microbiota regulated by tea in the prevention and management of AFLD remains unclear. Here, the protective effects of oolong tea, black tea, and dark tea on AFLD and its regulation of gut microbiota in chronic alcohol-exposed mice were explored and investigated. The results revealed that tea supplementation significantly prevented liver steatosis, decreased oxidative stress and inflammation, and modulated gut microbiota in chronic alcohol-exposed mice, especially oolong tea and dark tea. However, black tea showed less effectiveness against liver injury caused by alcohol. Moreover, the diversity, structure and composition of chronic alcohol-disrupted gut microbiota were restored by the supplementation of oolong tea and dark tea based on the analysis of gut microbiota. Furthermore, the relationship between liver injury biochemical indicators and gut microbiota indicated that some specific bacteria, such as Bacteroides, Alloprevotella, and Parabacteroides were closely associated with AFLD. In addition, the phytochemical components in tea extracts were measured by high-performance liquid chromatography, which could contribute to preventive effects on AFLD. In summary, oolong tea and dark tea could prevent chronic alcohol exposure-induced AFLD by modulating gut microbiota.
Collapse
Affiliation(s)
- Bangyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Qianqian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Dandan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, China
| | - Hangyu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| |
Collapse
|
52
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
53
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
54
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
55
|
Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, Maggi F, Giron MC, Giaroni C, Baj A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:1623. [PMID: 33562721 PMCID: PMC7915037 DOI: 10.3390/ijms22041623] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Davide Banfi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| |
Collapse
|
56
|
Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, Forlenza OV, Barichello T. The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacol Res 2021; 164:105314. [PMID: 33246175 DOI: 10.1016/j.phrs.2020.105314] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiota is a complex ecosystem that comprises of more than 100 trillion symbiotic microbial cells. The microbiota, the gut, and the brain form an association, 'the microbiota-gut-brain axis,' and synchronize the gut with the central nervous system and modify the behavior and brain immune homeostasis. The bidirectional communication between gut and brain occurs via the immune system, the vagus nerve, the enteric nervous system, and microbial metabolites, including short-chain fatty acids (SCFAs), proteins, and tryptophan metabolites. Recent studies have implicated the gut microbiota in many neurodegenerative diseases, including Alzheimer's disease (AD). In this review, we present an overview of gut microbiota, including Firmicutes, Bacteroidetes, SCFA, tryptophan, bacterial composition, besides age-related changes in gut microbiota composition, the microbiota-gut-brain axis pathways, the role of gut metabolites in amyloid-beta clearance, and gut microbiota modulation from experimental and clinical AD models. Understanding the role of the microbiota may provide new targets for treatment to delay the onset, progression, or reverse AD, and may help in reducing the prevalence of AD.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jaqueline S Generoso
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gursimrat Bhatti
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allan Collodel
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paul E Schulz
- Neurocognitive Disorders Center, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Orestes V Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
57
|
Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front Cell Dev Biol 2021; 8:629073. [PMID: 33553169 PMCID: PMC7859111 DOI: 10.3389/fcell.2020.629073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rajendra K. Chauhan
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - William W. Cheng
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Stem Cells and Regenerative Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
58
|
Chen Z, Maqbool J, Sajid F, Hussain G, Sun T. Human gut microbiota and its association with pathogenesis and treatments of neurodegenerative diseases. Microb Pathog 2020; 150:104675. [PMID: 33352217 DOI: 10.1016/j.micpath.2020.104675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Human gut microbiota consists of various microorganisms whose numbers are similar to those of human cells. Human gut microbes and the brain form bidirectional communications through the brain-gut-axis, and play a central role in normal physiological processes and in pathogenesis of many human diseases. Accumulating evidence has demonstrated the crucial effect of gut microbes in proper brain functions and under disease conditions. Here we first focus on revealing current knowledge of the role of gut microbes in neural development and functions. We then summarize mutual relationships between gut microbes and human diseases, in particular neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Multiple sclerosis. Finally, we highlight ongoing studies in exploring gut microbes in treatments of human diseases. Applying gut microbes as a means in treatment of human diseases is becoming a promising research direction, and has a great potential in clinical practice.
Collapse
Affiliation(s)
- Zhong Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
59
|
Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, Lu HY, Wang J, Thompson JD, Lickwar CR, Poss KD, Keating DJ, Jordt SE, Clardy J, Liddle RA, Rawls JF. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 2020; 29:179-196.e9. [PMID: 33352109 DOI: 10.1016/j.chom.2020.11.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel W Thorpe
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alyce M Martin
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - John D Thompson
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Damien J Keating
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Veterans Affairs, Durham, NC 27705, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
60
|
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far? Front Microbiol 2020; 11:585857. [PMID: 33362735 PMCID: PMC7758234 DOI: 10.3389/fmicb.2020.585857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sci 2020; 265:118736. [PMID: 33176177 DOI: 10.1016/j.lfs.2020.118736] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
AIMS Sleep deprivation (SD) correlates with exacerbated systemic inflammation after sepsis. However, the underlying mechanisms remain unclear. This study aimed to evaluate the roles and mechanisms of SD in inflammatory organ injury after lipopolysaccharide (LPS) administration. MAIN METHODS Mice were intraperitoneally injected with LPS followed by 3 consecutive days of SD. The pseudo germ-free (PGF) mice received fecal microbiota transplant by being gavaged with supernatant from fecal suspension of septic mice with or without SD. The subdiaphragmatic vagotomy (SDV) or splenectomy was performed 14 days prior to LPS injection or antibiotics administration. KEY FINDINGS Post-septic SD increased the plasma levels of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), reduced IL-10 plasma level, increased spleen weight, and promoted inflammatory injury of the lung, liver and kidney. The relative abundance of Proteobacteria and its subgroups were increased after post-septic SD. PGF mice transplanted with fecal bacteria from septic mice subjected to SD developed splenomegaly, systemic inflammation, organ inflammation and damage as their donors did. Intriguingly, SDV abolished the aggravated effects of SD on splenomegaly and inflammatory organ injury in septic mice received SD or in PGF mice transplanted with fecal bacteria from septic mice subjected to SD. Furthermore, splenectomy also abrogated the increase in IL-6 and TNF-α plasma levels and the decrease in IL-10 plasma level in PGF mice transplanted with fecal bacteria from septic mice subjected to SD. SIGNIFICANCE Gut microbiota-vagus nerve axis and gut microbiota-spleen axis play key roles in modulating systemic inflammation induced by SD after LPS administration.
Collapse
|
62
|
Foong JPP, Hung LY, Poon S, Savidge TC, Bornstein JC. Early life interaction between the microbiota and the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2020; 319:G541-G548. [PMID: 32902314 PMCID: PMC8087348 DOI: 10.1152/ajpgi.00288.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies on humans and their key experimental model, the mouse, have begun to uncover the importance of gastrointestinal (GI) microbiota and enteric nervous system (ENS) interactions during developmental windows spanning from conception to adolescence. Disruptions in GI microbiota and ENS during these windows by environmental factors, particularly antibiotic exposure, have been linked to increased susceptibility of the host to several diseases. Mouse models have provided new insights to potential signaling factors between the microbiota and ENS. We review very recent work on maturation of GI microbiota and ENS during three key developmental windows: embryogenesis, early postnatal, and postweaning periods. We discuss advances in understanding of interactions between the two systems and highlight research avenues for future studies.
Collapse
Affiliation(s)
- Jaime P. P. Foong
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Lin Y. Hung
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Sabrina Poon
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
63
|
Lindsay EC, Metcalfe NB, Llewellyn MS. The potential role of the gut microbiota in shaping host energetics and metabolic rate. J Anim Ecol 2020; 89:2415-2426. [PMID: 32858775 DOI: 10.1111/1365-2656.13327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.
Collapse
Affiliation(s)
- Elle C Lindsay
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
64
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
65
|
Serna-Duque JA, Esteban MÁ. Effects of inflammation and/or infection on the neuroendocrine control of fish intestinal motility: A review. FISH & SHELLFISH IMMUNOLOGY 2020; 103:342-356. [PMID: 32454211 DOI: 10.1016/j.fsi.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Food is the largest expense in fish farms. On the other hand, the fish health and wellbeing are determining factors in aquaculture production where nutrition is a vital process for growing animals. In fact, it is important to remember that digestion and nutrition are crucial for animals' physiology. However, digestion is a very complex process in which food is processed to obtain necessary nutrients and central mechanisms of this process require both endocrine and neuronal regulation. In this context, intestinal motility is essential for the absorption of the nutrients (digestive process determining nutrition). An imbalance in the intestinal motility due to an inadequate diet or an infectious process could result in a lower use of the food and inefficiency in obtaining nutrients from food. Very frequently, farmed fish are infected with different pathogenic microorganism and this situation could alter gastrointestinal physiology and, indirectly reduce fish growth. For these reasons, the present review focuses on analysing how different inflammatory molecules or infections can alter conventional modulators of fish intestinal motility.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
66
|
Solis CJ, Hamilton MK, Caruffo M, Garcia-Lopez JP, Navarrete P, Guillemin K, Feijoo CG. Intestinal Inflammation Induced by Soybean Meal Ingestion Increases Intestinal Permeability and Neutrophil Turnover Independently of Microbiota in Zebrafish. Front Immunol 2020; 11:1330. [PMID: 32793187 PMCID: PMC7393261 DOI: 10.3389/fimmu.2020.01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Intestinal inflammation is a condition shared by several intestinal chronic diseases, such as Crohn's disease and ulcerative colitis, with severely detrimental consequences in the long run. Current mammalian models have considerably increased understanding of this pathological condition, highlighting the fact that, in most of the cases, it is a highly complex and multifactorial problem and difficult to deal with. Thus, there is an increasingly evident need for alternative animal models that could offer complementary approaches that have not been exploited in rodents, thereby contributing to a different view on the disease. Here, we report the effects of a soybean meal-induced intestinal inflammation model on intestinal integrity and function as well as on neutrophil recruitment and microbiota composition in zebrafish. We find that the induced intestinal inflammation process is accompanied by an increase in epithelial permeability in addition to changes in the mRNA levels of different tight junction proteins. Conversely, there was no evidence of damage of epithelial cells nor an increase in their proliferation. Of note, our results show that this intestinal inflammatory model is induced independently of the presence of microbiota. On the other hand, this inflammatory process affects intestinal physiology by decreasing protein absorption, increasing neutrophil replacement, and altering microbiota composition with a decrease in the diversity of cultivable bacteria.
Collapse
Affiliation(s)
- Camila J. Solis
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | | | - Mario Caruffo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Juan P. Garcia-Lopez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Paola Navarrete
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
67
|
Stagaman K, Sharpton TJ, Guillemin K. Zebrafish microbiome studies make waves. Lab Anim (NY) 2020; 49:201-207. [PMID: 32541907 DOI: 10.1038/s41684-020-0573-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Zebrafish have a 50-year history as a model organism for studying vertebrate developmental biology and more recently have emerged as a powerful model system for studying vertebrate microbiome assembly, dynamics and function. In this Review, we discuss the strengths of the zebrafish model for both observational and manipulative microbiome studies, and we highlight some of the important insights gleaned from zebrafish gut microbiome research.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA. .,Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
68
|
Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol 2020; 18:e3000661. [PMID: 32196484 PMCID: PMC7112236 DOI: 10.1371/journal.pbio.3000661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
Some of the densest microbial ecosystems in nature thrive within the intestines of humans and other animals. To protect mucosal tissues and maintain immune tolerance, animal hosts actively sequester bacteria within the intestinal lumen. In response, numerous bacterial pathogens and pathobionts have evolved strategies to subvert spatial restrictions, thereby undermining immune homeostasis. However, in many cases, it is unclear how escaping host spatial control benefits gut bacteria and how changes in intestinal biogeography are connected to inflammation. A better understanding of these processes could uncover new targets for treating microbiome-mediated inflammatory diseases. To this end, we investigated the spatial organization and dynamics of bacterial populations within the intestine using larval zebrafish and live imaging. We discovered that a proinflammatory Vibrio symbiont native to zebrafish governs its own spatial organization using swimming motility and chemotaxis. Surprisingly, we found that Vibrio’s motile behavior does not enhance its growth rate but rather promotes its persistence by enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility traits surrender to host spatial control, becoming aggregated and entrapped within the lumen. Consequently, nonmotile and nonchemotactic mutants are susceptible to intestinal expulsion and experience large fluctuations in absolute abundance. Further, we found that motile Vibrio cells induce expression of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) in gut-associated macrophages and the liver. Using inducible genetic switches, we demonstrate that swimming motility can be manipulated in situ to modulate the spatial organization, persistence, and inflammatory activity of gut bacterial populations. Together, our findings suggest that host spatial control over resident microbiota plays a broader role in regulating the abundance and persistence of gut bacteria than simply protecting mucosal tissues. Moreover, we show that intestinal flow and bacterial motility are potential targets for therapeutically managing bacterial spatial organization and inflammatory activity within the gut. The use of live imaging and bacteria engineered to carry inducible genetic switches reveals how a gut symbiont uses swimming motility to escape the host's spatial control and persist within the physically dynamic confines of the intestine.
Collapse
|
69
|
Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int J Mol Sci 2020; 21:ijms21051554. [PMID: 32106469 PMCID: PMC7084914 DOI: 10.3390/ijms21051554] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota–gut–brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1β (IL1β)- and tumor necrosis factor α (TNFα)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the “expanded endocannabinoid (eCB) system” or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.
Collapse
|
70
|
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020; 578:284-289. [PMID: 32025031 DOI: 10.1038/s41586-020-1975-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.
Collapse
Affiliation(s)
| | | | | | | | - Candice Fung
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | - Mercedes Gomez de Agüero
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Vanden Berghe
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Andrew J Macpherson
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
71
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2690] [Impact Index Per Article: 448.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
72
|
Bosch TCG, Guillemin K, McFall-Ngai M. Evolutionary "Experiments" in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host-Microbe Interactions. Bioessays 2019; 41:e1800256. [PMID: 31099411 PMCID: PMC6756983 DOI: 10.1002/bies.201800256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Current work in experimental biology revolves around a handful of animal species. Studying only a few organisms limits science to the answers that those organisms can provide. Nature has given us an overwhelming diversity of animals to study, and recent technological advances have greatly accelerated the ability to generate genetic and genomic tools to develop model organisms for research on host-microbe interactions. With the help of such models the authors therefore hope to construct a more complete picture of the mechanisms that underlie crucial interactions in a given metaorganism (entity consisting of a eukaryotic host with all its associated microbial partners). As reviewed here, new knowledge of the diversity of host-microbe interactions found across the animal kingdom will provide new insights into how animals develop, evolve, and succumb to the disease.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Zoological Institute, University of Kiel, 24118, Kiel, Germany
| | - Karen Guillemin
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margaret McFall-Ngai
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
73
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
74
|
Cameron A, McAllister TA. Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Benef Microbes 2019; 10:773-799. [PMID: 31965849 DOI: 10.3920/bm2019.0059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Probiotics are most frequently derived from the natural microbiota of healthy animals. These bacteria and their metabolic products are viewed as nutritional tools for promoting animal health and productivity, disease prevention and therapy, and food safety in an era defined by increasingly widespread antimicrobial resistance in bacterial pathogens. In contemporary livestock production, antimicrobial usage is indispensable for animal welfare, and employed to enhance growth and feed efficiency. Given the importance of antimicrobials in both human and veterinary medicine, their effective replacement with direct-fed microbials or probiotics could help reduce antimicrobial use, perhaps restoring or extending the usefulness of these precious drugs against serious infections. Thus, probiotic research in livestock is rapidly evolving, aspiring to produce local and systemic health benefits on par with antimicrobials. Although many studies have clearly demonstrated the potential of probiotics to positively affect animal health and inhibit pathogens, experimental evidence suggests that probiotics' successes are modest, conditional, strain-dependent, and transient. Here, we explore current understanding, trends, and emerging applications of probiotic research and usage in major livestock species, and highlight successes in animal health and performance.
Collapse
Affiliation(s)
- A Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| |
Collapse
|
75
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
76
|
Schlomann BH, Parthasarathy R. Timescales of gut microbiome dynamics. Curr Opin Microbiol 2019; 50:56-63. [PMID: 31689582 PMCID: PMC6899164 DOI: 10.1016/j.mib.2019.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
Vast communities of microorganisms inhabit the gastrointestinal tracts of humans and other animals. Understanding their initial development, fluctuations in composition, stability over long times, and responses to transient perturbations - in other words their dynamics - is important both for gaining basic insights into these ecosystems and for rationally manipulating them for therapeutic ends. Gut microbiome dynamics, however, remain poorly understood. We review here studies of gut microbiome dynamics in the presence and absence of external perturbations, noting especially the long timescales associated with overall stability and the short timescales associated with various underlying biological processes. Integrating these disparate timescales, we suggest, is an important goal for future work and is necessary for developing a predictive understanding of microbiome dynamics.
Collapse
Affiliation(s)
- Brandon H Schlomann
- Department of Physics, Materials Science Institute, and Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Raghuveer Parthasarathy
- Department of Physics, Materials Science Institute, and Institute of Molecular Biology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
77
|
|
78
|
Tessaro LWE, Dotta BT, Persinger MA. Bacterial biophotons as non-local information carriers: Species-specific spectral characteristics of a stress response. Microbiologyopen 2019; 8:e00761. [PMID: 30381897 PMCID: PMC6562132 DOI: 10.1002/mbo3.761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Studies by Alexander Gurwitsch in the 1920' s with onion root cells revealed the phenomenon of mitogenetic radiation. Subsequent works by Popp, Van Wijk, Quickenden, Tillbury, and Trushin have demonstrated a link between Gurwitsch's mitogenetic radiation and the biophoton, emissions of light correlated with biological processes. The present study seeks to expand upon these and other works to explore whether biophoton emissions of bacterial cultures is used as an information carrier of environmental stress. Bacterial cultures (Escherichia coli and Serratia marcescens) were incubated for 24 hr in 5 ml of nutrient broth to stationary phase and cell densities of ~107 cells/mL. Cultures of E. coli were placed upon a photomultiplier tube housed within a dark box. A second bacterial culture, either E. coli or S. marcescens, was placed in an identical dark box at a distance of 5 m and received injections of hydrogen peroxide. Spectral analyses revealed significant differences in peak frequencies of 7.2, 10.1, and 24.9 Hz in the amplitude modulation of the emitted biophoton signal with respect to whether a peroxide injection occurred or not, and whether the species receiving the injection was E. coli or S. marcescens. These and the subsequent results of discriminant functions suggest that bacteria may release biophotons as a non-local communication system in response to stress, and that these biophotons are species specific.
Collapse
Affiliation(s)
- Lucas W. E. Tessaro
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| | - Blake T. Dotta
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
| | - Michael A. Persinger
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| |
Collapse
|
79
|
Amato KR, Maurice CF, Guillemin K, Giles-Vernick T. Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. Bioessays 2019; 41:e1900007. [PMID: 31099415 DOI: 10.1002/bies.201900007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/16/2019] [Indexed: 02/06/2023]
Abstract
This essay, written by a biologist, a microbial ecologist, a biological anthropologist, and an anthropologist-historian, examines tensions and translations in microbiome research on animals in the laboratory and field. The authors trace how research questions and findings in the laboratory are extrapolated into the field and vice versa, and the shifting evidentiary standards that these research settings require. Showing how complexities of microbiomes challenge traditional standards of causation, the authors contend that these challenges require new approaches to inferences used in ecology, anthropology, and history. As social scientists incorporate investigations of microbial life into their human studies, microbiome researchers venture into field settings to develop mechanistic understandings about the functions of complex microbial communities. These efforts generate new possibilities for cross-fertilizations and inference frameworks to interpret microbiome findings. Microbiome research should integrate multiple scales, levels of variability, and other disciplinary approaches to tackle questions spanning conditions from the laboratory to the field.
Collapse
Affiliation(s)
- Katherine R Amato
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Corinne F Maurice
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Microbiology and Immunology Department, McGill University, Room 332, Bellini Building, Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Karen Guillemin
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Institute of Molecular Biology, University of Oregon, 1318 Franklin Blvd, Eugene, OR, 97403, USA
| | - Tamara Giles-Vernick
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Emerging Diseases Epidemiology Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
80
|
Wiles TJ, Guillemin K. The Other Side of the Coin: What Beneficial Microbes Can Teach Us about Pathogenic Potential. J Mol Biol 2019; 431:2946-2956. [PMID: 31078557 DOI: 10.1016/j.jmb.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Koch's postulates and molecular Koch's postulates have made an indelible mark on how we study and classify microbes, particularly pathogens. However, rigid adherence to these historic postulates constrains our view of not only microbial pathogenesis but also host-microbe relationships in general. Collectively, the postulates imply that a "microbial pathogen" is a clearly identifiable organism with the exclusive capacity to elicit disease through an arsenal of pathogen-specific "virulence factors." This narrow definition has been repeatedly contradicted. Advances in DNA sequencing technologies and new experimental systems have revealed that the outcomes of host-microbe interactions are highly contextual and dynamic, especially those involving resident microbiota and variable aspects of host biology. Clarifying what differentiates pathogenic from non-pathogenic microbes, including their paradoxical ability to masquerade as one another, is critical to developing targeted diagnostics and treatments for infectious disease. Such endeavors will also inform the design of therapeutic strategies based on microbiome engineering by providing insights into how manipulating entire host-microbe systems may directly or indirectly alter the pathogenic potential of microbial communities. With these goals in mind, we discuss the need to develop experimental models that better capture the contexts that determine the nature of host-microbe relationships. To demonstrate the potential of one such model-the zebrafish and its resident microbiota-we describe recent work that has revealed the thin line between pathogenic and mutualistic relationships, how the intestine physically shapes bacterial populations and inflammation, and the ability of microbial transmission to override the host's innate immune system.
Collapse
Affiliation(s)
- Travis J Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
81
|
Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol 2019; 31:e12684. [PMID: 30614568 DOI: 10.1111/jne.12684] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiota has emerged as an environmental factor that modulates the development of the central nervous system (CNS) and the enteric nervous system (ENS). Before obtaining its own microbiota, eutherian foetuses are exposed to products and metabolites from the maternal microbiota. At birth, the infants are colonised by microorganisms. The microbial composition in early life is strongly influenced by the mode of delivery, the feeding method, the use of antibiotics and the maternal microbial composition. Microbial products and microbially produced metabolites act as signalling molecules that have direct or indirect effects on the CNS and the ENS. An increasing number of studies show that the gut microbiota can modulate important processes during development, including neurogenesis, myelination, glial cell function, synaptic pruning and blood-brain barrier permeability. Furthermore, numerous studies indicate that there is a developmental window early in life during which the gut microbial composition is crucial and perturbation of the gut microbiota during this period causes long-lasting effects on the development of the CNS and the ENS. However, other functions are readily modulated in adult animals, including microglia activation and neuroinflammation. Several neurobehavioural, neurodegenerative, mental and metabolic disorders, including Parkinson disease, autism spectrum disorder, schizophrenia, Alzheimer's disease, depression and obesity, have been linked to the gut microbiota. This review focuses on the role of the microorganisms in the development and function of the CNS and the ENS, as well as their potential role in pathogenesis.
Collapse
Affiliation(s)
- Christina N Heiss
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
82
|
Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148:55-62. [DOI: 10.1016/j.brainresbull.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
|
83
|
Neurostimulation-guided Anal Intrasphincteric Botulinum Toxin Injection in Children With Hirschsprung Disease. J Pediatr Gastroenterol Nutr 2019; 68:527-532. [PMID: 30444834 DOI: 10.1097/mpg.0000000000002204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In Hirschsprung disease (HD), despite successful surgical treatment, 50% of children experience long-term functional gastrointestinal problems, particularly chronic functional obstructive symptoms. We report our experience regarding clinical effects of neurostimulation-guided anal intrasphincteric botulinum toxin (BT) injections on postoperative obstructive symptoms attributed to a nonrelaxing anal sphincter complex in HD patients. METHODS In this monocenter cohort study, 15 HD patients with postoperative functional intestinal obstructive symptoms received neurostimulation-guided anal intrasphincteric BT injections. Short-, medium-, and long-term effects were evaluated. The Bristol stool form scale was used to assess stool consistency, and the Jorge-Wexner (JW) score to assess fecal continence. RESULTS The median age at first injection was 4 years. In the short-term, a significant improvement in stool consistency was noted in 12 of 14 patients (P = 0.0001) and JW score decreased for 14 of 15 patients (P = 0.001). In the medium-term, JW score significantly decreased for all patients (P = 0.0001), with an improvement of 50% or more for 10 patients (66.7%). In the long term, 83.3% of patients had normal stool consistency and JW score was <3 for all. Recurrent enterocolitis decreased from 86.7% to 8.3%. A complete resolution of all symptoms without further medication was observed in 66.7% of patients in the long term. CONCLUSIONS Intrasphincteric BT injection was a safe, effective, and durable option for the management of postoperative functional intestinal obstructive symptoms in HD. The use of neurostimulator guidance for specific delivery of BT to muscular fibers of nonrelaxing anal sphincter complex takes into consideration the variability of patient's anatomy secondary to curative surgery.
Collapse
|
84
|
Medrano G, Cailleux F, Guan P, Kuruvilla K, Barlow-Anacker AJ, Gosain A. B-lymphocyte-intrinsic and -extrinsic defects in secretory immunoglobulin A production in the neural crest-conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis. FASEB J 2019; 33:7615-7624. [PMID: 30908942 DOI: 10.1096/fj.201801913r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hirschsprung disease (HSCR) is a common cause of intestinal obstruction in the newborn. Hirschsprung-associated enterocolitis (HAEC) is a significant and life-threatening complication of HSCR, affecting up to 60% of patients. Animal models of endothelin receptor B (EdnrB) mutation reliably model human HSCR and HAEC. We previously demonstrated intestinal dysbiosis and a gut-specific deficiency of B-lymphocyte-produced secretory IgA (sIgA), the primary effector molecule of mucosal immunity, in mice with homozygous neural crest cell-conditional deletion of EdnrB (EdnrBNCC-/-). To determine mechanisms for sIgA deficiency, we examined intrinsic and extrinsic aspects of B-lymphocyte development and function. Expression of the endothelin axis components [endothelin-1 (ET-1), endothelin-3 (ET-3), endothelin receptor A (EdnrA), EdnrB] were determined over a developmental time course. B-lymphocyte survival and Ig production were assayed in vitro. Polymeric Ig receptor (pIgR)-mediated IgA transport into the intestinal lumen was interrogated. We found endothelin axis component (EdnrA, EdnrB, ET-1, ET-3) expression in developing extramedullary hematopoietic organs and that some splenic B lymphocytes express EdnrB. Splenic B lymphocytes from EdnrBNCC-/- mice showed no intrinsic defect in survival vs. wild-type (WT) B lymphocytes. In vitro stimulation of splenic B lymphocytes demonstrated decreased IgA, IgG, and IgM production in EdnrBNCC-/- vs. WT mice. Additionally, small intestinal pIgR was decreased ∼50% in EdnrBNCC-/- mice. These results suggest an intrinsic B-lymphocyte defect in antibody production as well as an extrinsic defect in IgA transport in the EdnrBNCC-/- model of HAEC. Our results are consistent with human HAEC observations of decreased luminal sIgA and mouse models of other inflammatory bowel diseases, in which decreased pIgR is seen in concert with a dysregulated microbiota. Finally, our results suggest targeting the dysbiotic microbiome and pIgR-mediated sIgA transport as potential therapeutic approaches in prevention and treatment of HAEC.-Medrano, G., Cailleux, F., Guan, P., Kuruvilla, K., Barlow-Anacker, A. J., Gosain, A. B-lymphocyte-intrinsic and -extrinsic defects in secretory immunoglobulinA production in the neural crest-conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis.
Collapse
Affiliation(s)
- Giuliana Medrano
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Frederic Cailleux
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Peihong Guan
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Korah Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Amanda J Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
85
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
86
|
Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol 2019; 81:235-259. [DOI: 10.1146/annurev-physiol-021317-121515] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.
Collapse
Affiliation(s)
- Sabine Schneider
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christina M. Wright
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert O. Heuckeroth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Research Center, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
87
|
James DM, Kozol RA, Kajiwara Y, Wahl AL, Storrs EC, Buxbaum JD, Klein M, Moshiree B, Dallman JE. Intestinal dysmotility in a zebrafish ( Danio rerio) shank3a;shank3b mutant model of autism. Mol Autism 2019; 10:3. [PMID: 30733854 PMCID: PMC6357389 DOI: 10.1186/s13229-018-0250-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background and aims Autism spectrum disorder (ASD) is currently estimated to affect more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-occurring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-McDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods To generate a zebrafish model of PMS, we used CRISPR/Cas9 to introduce clinically related C-terminal frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abΔC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (DT) structure and function in zebrafish shank3abΔC+/− heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results Significantly slower rates of DT peristaltic contractions (p < 0.001) with correspondingly prolonged passage time (p < 0.004) occurred in shank3abΔC+/− mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abΔC+/− mutants produced larvae with intestinal bulb emptying similar to wild type (WT), but still deficits in posterior intestinal motility. Serotonin-positive enteroendocrine cells (EECs) were significantly reduced in both shank3abΔC+/− and shank3abΔC−/− mutants (p < 0.05) while enteric neuron counts and overall structure of the DT epithelium, including goblet cell number, were unaffected in shank3abΔC+/− larvae. Conclusions Our data and rescue experiments support mutations in SHANK3 as causal for GI transit and motility abnormalities. Reductions in serotonin-positive EECs and serotonin-filled ENS boutons suggest an endocrine/neural component to this dysmotility. This is the first study to date demonstrating DT dysmotility in a zebrafish single gene mutant model of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M James
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A Kozol
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Yuji Kajiwara
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA.,5Denali Therapeutics, South San Francisco, CA USA
| | - Adam L Wahl
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Emily C Storrs
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Joseph D Buxbaum
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mason Klein
- 3Department of Physics, University of Miami, Coral Gables, FL USA
| | - Baharak Moshiree
- Division of Gastroenterology, Atrium Health, University of North Carolina, Charlotte, NC USA
| | - Julia E Dallman
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
88
|
Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Sci Rep 2019; 9:492. [PMID: 30679567 PMCID: PMC6345786 DOI: 10.1038/s41598-018-36967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Based on the bilateral relationship between the gut microbiota and formation/function of the enteric nervous system (ENS), we sought to determine whether antibiotics-induced dysbiosis might impact the expressivity of genetically-induced ENS abnormalities. To address this, we took advantage of the TashT mouse model of Hirschsprung disease, in which colonic aganglionosis and hypoganglionosis are both much more severe in males. These defects result into two male-biased colon motility phenotypes: either megacolon that is lethal around weaning age or chronic constipation in adults, the latter being also associated with an increased proportion of nitrergic neurons in the distal ENS. Induction of dysbiosis using a cocktail of broad-spectrum antibiotics specifically impacted the colonic ENS of TashTTg/Tg mice in a stage-dependent manner. It further decreased the neuronal density at post-weaning age and differentially modulated the otherwise increased proportion of nitrergic neurons, which appeared normalized around weaning age and further increased at post-weaning age. These changes delayed the development of megacolon around weaning age but led to premature onset of severe constipation later on. Finally, local inhibition of nitric oxide signaling improved motility and prevented death by megacolon. We thus conclude that exposure to antibiotics can negatively influence the expressivity of a genetically-induced enteric neuropathy.
Collapse
|
89
|
Innate Lymphoid Cells: A Link between the Nervous System and Microbiota in Intestinal Networks. Mediators Inflamm 2019; 2019:1978094. [PMID: 30804706 PMCID: PMC6360575 DOI: 10.1155/2019/1978094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/01/2019] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a novel family of innate immune cells that act as key coordinators of intestinal mucosal surface immune defense and are essential for maintaining intestinal homeostasis and barrier integrity by responding to locally produced effector cytokines or direct recognition of exogenous or endogenous danger patterns. ILCs are also involved in the pathogenesis of inflammatory bowel disease (IBD). Many studies have demonstrated the occurrence of crosstalk between ILCs and intestinal microbiota, and ILCs have recently been shown to be connected to the enteric nervous system (ENS). Thus, ILCs may act as a key link between the nervous system and microbiota in intestinal networks. In this review, we briefly summarize the role of the ILCs in the intestinal tract (particularly in the context of IBD) and discuss the relationship between ILCs and the microbiota/ENS.
Collapse
|
90
|
Quigley EMM. Prebiotics and Probiotics in Digestive Health. Clin Gastroenterol Hepatol 2019; 17:333-344. [PMID: 30267869 DOI: 10.1016/j.cgh.2018.09.028] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
As the importance of the gut microbiota in health and disease is increasingly recognized interest in interventions that can modulate the microbiota and its interactions with its host has soared. Apart from diet, prebiotics and probiotics represent the most commonly used substances taken in an effort to sustain a healthy microbiome or restore balance when it is believed bacterial homeostasis has been disturbed in disease. While a considerable volume of basic science attests to the ability of various prebiotic molecules and probiotic strains to beneficially influence host immune responses, metabolic processes and neuro-endocrine pathways, the evidence base from human studies leaves much to be desired. This translational gap owes much to the manner in which this sector is regulated but also speaks to the challenges that confront the investigator who seeks to explore microbiota modulation in either healthy populations or those who suffer from common digestive ailments. For many products marketed as probiotics, some of the most fundamental issues relating to quality control, such as characterization, formulation, viability safety are scarcely addressed.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas.
| |
Collapse
|
91
|
Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A, Banse AV, Hamilton MK, Guillemin K. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. eLife 2018; 7:e37172. [PMID: 30398151 PMCID: PMC6219842 DOI: 10.7554/elife.37172] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.
Collapse
Affiliation(s)
- Annah S Rolig
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Lila E Kaye
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Arden Perkins
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | - Allison V Banse
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Karen Guillemin
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
- Humans and the Microbiome ProgramCanadian Institute for Advanced ResearchTorontoCanada
| |
Collapse
|
92
|
Kulkarni S, Ganz J, Bayrer J, Becker L, Bogunovic M, Rao M. Advances in Enteric Neurobiology: The "Brain" in the Gut in Health and Disease. J Neurosci 2018; 38:9346-9354. [PMID: 30381426 PMCID: PMC6209840 DOI: 10.1523/jneurosci.1663-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022] Open
Abstract
The enteric nervous system (ENS) is a large, complex division of the peripheral nervous system that regulates many digestive, immune, hormonal, and metabolic functions. Recent advances have elucidated the dynamic nature of the mature ENS, as well as the complex, bidirectional interactions among enteric neurons, glia, and the many other cell types that are important for mediating gut behaviors. Here, we provide an overview of ENS development and maintenance, and focus on the latest insights gained from the use of novel model systems and live-imaging techniques. We discuss major advances in the understanding of enteric glia, and the functional interactions among enteric neurons, glia, and enteroendocrine cells, a large class of sensory epithelial cells. We conclude by highlighting recent work on muscularis macrophages, a group of immune cells that closely interact with the ENS in the gut wall, and the importance of neurological-immune system communication in digestive health and disease.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Department of Medicine, The John Hopkins University School of Medicine, Baltimore, Maryland 21205,
| | - Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| | - James Bayrer
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143
| | - Laren Becker
- Department of Medicine, Stanford University, Stanford, California 94305
| | - Milena Bogunovic
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Meenakshi Rao
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
93
|
Bacterial Cohesion Predicts Spatial Distribution in the Larval Zebrafish Intestine. Biophys J 2018; 115:2271-2277. [PMID: 30448038 DOI: 10.1016/j.bpj.2018.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Are there general biophysical relationships governing the spatial organization of the gut microbiome? Despite growing realization that spatial structure is important for population stability, interbacterial competition, and host functions, it is unclear in any animal gut whether such structure is subject to predictive, unifying rules or if it results from contextual, species-specific behaviors. To explore this, we used light sheet fluorescence microscopy to conduct a high-resolution comparative study of bacterial distribution patterns throughout the entire intestinal volume of live, larval zebrafish. Fluorescently tagged strains of seven bacterial symbionts, representing six different species native to zebrafish, were each separately monoassociated with animals that had been raised initially germ-free. The strains showed large differences in both cohesion-the degree to which they auto-aggregate-and spatial distribution. We uncovered a striking correlation between each strain's mean position and its cohesion, whether quantified as the fraction of cells existing as planktonic individuals, the average aggregate size, or the total number of aggregates. Moreover, these correlations held within species as well; aggregates of different sizes localized as predicted from the pan-species observations. Together, our findings indicate that bacteria within the zebrafish intestine are subject to generic processes that organize populations by their cohesive properties. The likely drivers of this relationship-peristaltic fluid flow, tubular anatomy, and bacterial growth and aggregation kinetics-are common throughout animals. We therefore suggest that the framework introduced here of biophysical links between bacterial cohesion and spatial organization should be useful for directing explorations in other host-microbe systems, formulating detailed models that can quantitatively map onto experimental data, and developing new tools that manipulate cohesion to engineer microbiome function.
Collapse
|
94
|
Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages. mBio 2018; 9:mBio.01877-18. [PMID: 30301859 PMCID: PMC6178617 DOI: 10.1128/mbio.01877-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis. Correlating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis and in vitro assays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.
Collapse
|
95
|
Santos AJM, Lo YH, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends Cell Biol 2018; 28:1062-1078. [PMID: 30195922 DOI: 10.1016/j.tcb.2018.08.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium is a rapidly renewing cellular compartment. This constant regeneration is a hallmark of intestinal homeostasis and requires a tightly regulated balance between intestinal stem cell (ISC) proliferation and differentiation. Since intestinal epithelial cells directly contact pathogenic environmental factors that continuously challenge their integrity, ISCs must also actively divide to facilitate regeneration and repair. Understanding niche adaptations that maintain ISC activity during homeostatic renewal and injury-induced intestinal regeneration is therefore a major and ongoing focus for stem cell biology. Here, we review recent concepts and propose an active interconversion of the ISC niche between homeostasis and injury-adaptive states that is superimposed upon an equally dynamic equilibrium between active and reserve ISC populations.
Collapse
Affiliation(s)
- António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
96
|
Rich A. Improved Imaging of Zebrafish Motility. Neurogastroenterol Motil 2018; 30:e13435. [PMID: 30240125 PMCID: PMC6152886 DOI: 10.1111/nmo.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/06/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
Zebrafish larvae are transparent and the entire gastrointestinal (GI) tract is easily visualized. Application of a new image analysis technique is reported in this issue of Neurogastroenterology and Motility (Neurogastroenterol Motil., 2018, volume 30, e13351). The technique quantifies movement in images collected in a timed sequence, and characterizes smooth muscle contractions based on contraction distance and frequency. The technique also reports the contraction amplitude, or the distance moved. This technique, and current spatiotemporal mapping techniques, are essential tools enabling characterization of GI motility patterns in intact physiological settings. Advances and development of transgenic zebrafish that lack pigmentation, with calcium reporters expressed in specific cell types, or with inactivation of specific genes contribute to our understanding of the generation, and regulation of GI motility at the molecular, cellular, and systemic level. Finally, development of chambers that immobilize zebrafish larvae for long-duration imaging will contribute to our technique toolbox, and will provide an increased experimental throughput.
Collapse
Affiliation(s)
- Adam Rich
- The College at Brockport, SUNY, 350 New Campus Drive, Brockport, NY 14420 USA, Telephone: 585-395-5740
| |
Collapse
|
97
|
Ganz J, Baker RP, Hamilton MK, Melancon E, Diba P, Eisen JS, Parthasarathy R. Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility. Neurogastroenterol Motil 2018; 30:e13351. [PMID: 29722095 PMCID: PMC6150784 DOI: 10.1111/nmo.13351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. METHODS We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. KEY RESULTS We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. CONCLUSIONS & INFERENCES Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403
| | - Ryan P. Baker
- Department of Physics, 1274 University of Oregon, Eugene, OR 97403
| | | | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403
| | - Judith S. Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403,Corresponding authors (JSE, ; RP, )
| | - Raghuveer Parthasarathy
- Department of Physics, 1274 University of Oregon, Eugene, OR 97403,Corresponding authors (JSE, ; RP, )
| |
Collapse
|
98
|
Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. Gut microbiome and aging: Physiological and mechanistic insights. NUTRITION AND HEALTHY AGING 2018; 4:267-285. [PMID: 29951588 PMCID: PMC6004897 DOI: 10.3233/nha-170030] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of human gut microbiota begins as soon as the neonate leaves the protective environment of the uterus (or maybe in-utero) and is exposed to innumerable microorganisms from the mother as well as the surrounding environment. Concurrently, the host responses to these microbes during early life manifest during the development of an otherwise hitherto immature immune system. The human gut microbiome, which comprises an extremely diverse and complex community of microorganisms inhabiting the intestinal tract, keeps on fluctuating during different stages of life. While these deviations are largely natural, inevitable and benign, recent studies show that unsolicited perturbations in gut microbiota configuration could have strong impact on several features of host health and disease. Our microbiota undergoes the most prominent deviations during infancy and old age and, interestingly, our immune health is also in its weakest and most unstable state during these two critical stages of life, indicating that our microbiota and health develop and age hand-in-hand. However, the mechanisms underlying these interactions are only now beginning to be revealed. The present review summarizes the evidences related to the age-associated changes in intestinal microbiota and vice-versa, mechanisms involved in this bi-directional relationship, and the prospective for development of microbiota-based interventions such as probiotics for healthy aging.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rabina Mainali
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shokouh Ahmadi
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shaohua Wang
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ria Singh
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology (Comparative Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W. Kitzman
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Almagul Kushugulova
- Center for Life Sciences, NLA, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Francesco Marotta
- ReGenera Research and Development for Aging Interventions, and San Babila Clinic, Corso Matteotti 1/A, Milano, Italy
| | - Hariom Yadav
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
99
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
100
|
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders. Cell Mol Neurobiol 2018; 38:1197-1206. [PMID: 29802603 PMCID: PMC6061125 DOI: 10.1007/s10571-018-0589-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022]
Abstract
It has become apparent that the molecular and biochemical integrity of interactive families, genera, and species of human gut microflora is critically linked to maintaining complex metabolic and behavioral processes mediated by peripheral organ systems and central nervous system neuronal groupings. Relatively recent studies have established intrinsic ratios of enterotypes contained within the human microbiome across demographic subpopulations and have empirically linked significant alterations in the expression of bacterial enterotypes with the initiation and persistence of several major metabolic and psychiatric disorders. Accordingly, the goal of our review is to highlight potential thematic/functional linkages of pathophysiological alterations in gut microbiota and bidirectional gut-brain signaling pathways with special emphasis on the potential roles of gut dysbiosis on the pathophysiology of psychiatric illnesses. We provide critical discussion of putative thematic linkages of Parkinson's disease (PD) data sets to similar pathophysiological events as potential causative factors in the development and persistence of diverse psychiatric illnesses. Finally, we include a concise review of preclinical paradigms that involve immunologically-induced GI deficits and dysbiosis of maternal microflora that are functionally linked to impaired neurodevelopmental processes leading to affective behavioral syndromes in the offspring.
Collapse
Affiliation(s)
- G B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - N Pilonis
- Warsaw Medical University, Public Central Teaching Hospital, Warsaw, Poland
| | - R Ptacek
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - J Raboch
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - M Vnukova
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - R M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|