51
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
53
|
Aigha II, Abdelalim EM. NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res Ther 2020; 11:459. [PMID: 33121533 PMCID: PMC7597038 DOI: 10.1186/s13287-020-01977-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.
Collapse
Affiliation(s)
- Idil I Aigha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
54
|
Li X, Yang KY, Chan VW, Leung KT, Zhang XB, Wong AS, Chong CCN, Wang CC, Ku M, Lui KO. Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic β-like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1111-1126. [PMID: 33096048 PMCID: PMC7663789 DOI: 10.1016/j.stemcr.2020.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
To date, it remains unclear if there are specific cell-surface markers for purifying glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells (hPSCs). In searching for this, we generated an efficient protocol for differentiating β-like cells from human embryonic stem cells. We performed single-cell RNA sequencing and found that CD9 is a negative cell-surface marker of β-like cells, as most INS+ cells are CD9−. We purified β-like cells for spontaneous formation of islet-like organoids against CD9, and found significantly more NKX6.1+MAFA+C-PEPTIDE+ β-like cells in the CD9− than in the CD9+ population. CD9− cells also demonstrate better glucose responsiveness than CD9+ cells. In humans, we observe more CD9+C-PEPTIDE+ β cells in the fetal than in the adult cadaveric islets and more Ki67+ proliferating cells among CD9+ fetal β cells. Taken together, our experiments show that CD9 is a cell-surface marker for negative enrichment of glucose-responsive β-like cells differentiated from hPSCs. scRNA-seq reveals the heterogeneity of hPSC-derived β-like cells CD9 is preferentially expressed by immature and proliferating human β cells CD9 may not have a functional role in human β-like cell differentiation CD9 is a negative cell-surface marker for enrichment of GSIS+ human β-like cells
Collapse
Affiliation(s)
- Xisheng Li
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, U.S.A
| | - Alan S Wong
- School of Biomedical Sciences and Department of Electrical Engineering, University of Hong Kong, Hong Kong, China
| | - Charing C N Chong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
55
|
Female mice exposed to low doses of dioxin during pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes. Mol Metab 2020; 42:101104. [PMID: 33075544 PMCID: PMC7683344 DOI: 10.1016/j.molmet.2020.101104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Exposure to persistent organic pollutants is consistently associated with increased diabetes risk in humans. We investigated the short- and long-term impact of transient low-dose dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) exposure during pregnancy and lactation on glucose homeostasis and beta cell function in female mice, including their response to a metabolic stressor later in life. Methods Female mice were injected with either corn oil (CO; vehicle control) or 20 ng/kg/d TCDD 2x/week throughout mating, pregnancy and lactation, and then tracked for 6–10 weeks after chemical exposure stopped. A subset of CO- and TCDD-exposed dams was then transferred to a 45% high-fat diet (HFD) or remained on a standard chow diet for an additional 11 weeks to assess the long-term effects of TCDD on adaptability to a metabolic stressor. To summarize, female mice were transiently exposed to TCDD and then subsequently tracked beyond when TCDD had been excreted to identify lasting metabolic effects of TCDD exposure. Results TCDD-exposed dams were hypoglycemic at birth but otherwise had normal glucose homeostasis during and post-TCDD exposure. However, TCDD-exposed dams on a chow diet were modestly heavier than controls starting 5 weeks after the last TCDD injection, and their weight gain accelerated after transitioning to a HFD. TCDD-exposed dams also had an accelerated onset of hyperglycemia, impaired glucose-induced plasma insulin levels, reduced islet size, increased MAFA-ve beta cells, and increased proinsulin accumulation following HFD feeding compared to controls. Overall, our study demonstrates that low-dose TCDD exposure during pregnancy has minimal effects on metabolism during the period of active exposure, but has detrimental long-term effects on metabolic adaptability to HFD feeding. Conclusions Our study suggests that transient low-dose TCDD exposure in female mice impairs metabolic adaptability to HFD feeding, demonstrating that dioxin exposure may be a contributing factor to obesity and diabetes pathogenesis in females. Female mice exposed to TCDD during pregnancy are hypoglycemic at birth. TCDD exposure promotes weight gain long after exposure ceases. TCDD-exposed dams fed a high-fat diet have accelerated onset of glucose intolerance. TCDDHFD dams have defects in islet morphology and beta cell function.
Collapse
|
56
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
57
|
Diaz M, Garde E, Lopez-Bermejo A, de Zegher F, Ibañez L. Differential DNA methylation profile in infants born small-for-gestational-age: association with markers of adiposity and insulin resistance from birth to age 24 months. BMJ Open Diabetes Res Care 2020; 8:8/1/e001402. [PMID: 33106332 PMCID: PMC7592237 DOI: 10.1136/bmjdrc-2020-001402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/04/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Prenatal growth restraint followed by rapid postnatal weight gain increases lifelong diabetes risk. Epigenetic dysregulation in critical windows could exert long-term effects on metabolism and confer such risk. RESEARCH DESIGN AND METHODS We conducted a genome-wide DNA methylation profiling in peripheral blood from infants born appropriate-for-gestational-age (AGA, n=30) or small-for-gestational-age (SGA, n=21, with postnatal catch-up) at age 12 months, to identify new genes that may predispose to metabolic dysfunction. Candidate genes were validated by bisulfite pyrosequencing in the entire cohort. All infants were followed since birth; cord blood methylation profiling was previously reported. Endocrine-metabolic variables and body composition (dual-energy X-ray absorptiometry) were assessed at birth and at 12 and 24 months. RESULTS GPR120 (cg14582356, cg01272400, cg23654127, cg03629447), NKX6.1 (cg22598426, cg07688460, cg17444738, cg12076463, cg10457539), CPT1A (cg14073497, cg00941258, cg12778395) and IGFBP 4 (cg15471812) genes were hypermethylated (GPR120, NKX6.1 were also hypermethylated in cord blood), whereas CHGA (cg13332653, cg15480367, cg05700406), FABP5 (cg00696973, cg10563714, cg16128701), CTRP1 (cg19231170, cg19472078, cg0164309, cg07162665, cg17758081, cg18996910, cg06709009), GAS6 (N/A), ONECUT1 (cg14217069, cg02061705, cg26158897, cg06657050, cg15446043) and SLC2A8 (cg20758474, cg19021975, cg11312566, cg12281690, cg04016166, cg03804985) genes were hypomethylated in SGA infants. These genes were related to β-cell development and function, inflammation, and glucose and lipid metabolism and associated with body mass index, body composition, and markers of insulin resistance at 12 and 24 months. CONCLUSION In conclusion, at 12 months, abnormal methylation of GPR120 and NKX6.1 persists and new epigenetic marks further involved in adipogenesis and energy homeostasis arise in SGA infants. These abnormalities may contribute to metabolic dysfunction and diabetes risk later in life.
Collapse
Affiliation(s)
- Marta Diaz
- Endocrinology Department, Institut Pediàtric Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Edurne Garde
- Endocrinology Department, Institut Pediàtric Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Abel Lopez-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital and Girona Institute for Biomedical Research, Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, Leuven, Flanders, Belgium
| | - Lourdes Ibañez
- Endocrinology Department, Institut Pediàtric Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
58
|
Huang H, Bader TN, Jin S. Signaling Molecules Regulating Pancreatic Endocrine Development from Pluripotent Stem Cell Differentiation. Int J Mol Sci 2020; 21:E5867. [PMID: 32824212 PMCID: PMC7461594 DOI: 10.3390/ijms21165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetes is one of the leading causes of death globally. Currently, the donor pancreas is the only source of human islets, placing extreme constraints on supply. Hence, it is imperative to develop renewable islets for diabetes research and treatment. To date, extensive efforts have been made to derive insulin-secreting cells from human pluripotent stem cells with substantial success. However, the in vitro generation of functional islet organoids remains a challenge due in part to our poor understanding of the signaling molecules indispensable for controlling differentiation pathways towards the self-assembly of functional islets from stem cells. Since this process relies on a variety of signaling molecules to guide the differentiation pathways, as well as the culture microenvironments that mimic in vivo physiological conditions, this review highlights extracellular matrix proteins, growth factors, signaling molecules, and microenvironments facilitating the generation of biologically functional pancreatic endocrine cells from human pluripotent stem cells. Signaling pathways involved in stepwise differentiation that guide the progression of stem cells into the endocrine lineage are also discussed. The development of protocols enabling the generation of islet organoids with hormone release capacities equivalent to native adult islets for clinical applications, disease modeling, and diabetes research are anticipated.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Taylor N. Bader
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
59
|
Navarro-Tableros V, Gai C, Gomez Y, Giunti S, Pasquino C, Deregibus MC, Tapparo M, Pitino A, Tetta C, Brizzi MF, Ricordi C, Camussi G. Islet-Like Structures Generated In Vitro from Adult Human Liver Stem Cells Revert Hyperglycemia in Diabetic SCID Mice. Stem Cell Rev Rep 2020; 15:93-111. [PMID: 30191384 PMCID: PMC6510809 DOI: 10.1007/s12015-018-9845-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A potential therapeutic strategy for diabetes is the transplantation of induced-insulin secreting cells. Based on the common embryonic origin of liver and pancreas, we studied the potential of adult human liver stem-like cells (HLSC) to generate in vitro insulin-producing 3D spheroid structures (HLSC-ILS). HLSC-ILS were generated by a one-step protocol based on charge dependent aggregation of HLSC induced by protamine. 3D aggregation promoted the spontaneous differentiation into cells expressing insulin and several key markers of pancreatic β cells. HLSC-ILS showed endocrine granules similar to those seen in human β cells. In static and dynamic in vitro conditions, such structures produced C-peptide after stimulation with high glucose. HLSC-ILS significantly reduced hyperglycemia and restored a normo-glycemic profile when implanted in streptozotocin-diabetic SCID mice. Diabetic mice expressed human C-peptide and very low or undetectable levels of murine C-peptide. Hyperglycemia and a diabetic profile were restored after HLSC-ISL explant. The gene expression profile of in vitro generated HLSC-ILS showed a differentiation from HLSC profile and an endocrine commitment with the enhanced expression of several markers of β cell differentiation. The comparative analysis of gene expression profiles after 2 and 4 weeks of in vivo implantation showed a further β-cell differentiation, with a genetic profile still immature but closer to that of human islets. In conclusion, protamine-induced spheroid aggregation of HLSC triggers a spontaneous differentiation to an endocrine phenotype. Although the in vitro differentiated HLSC-ILS were immature, they responded to high glucose with insulin secretion and in vivo reversed hyperglycemia in diabetic SCID mice.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Sara Giunti
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Pasquino
- Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.,Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Adriana Pitino
- Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy. .,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
60
|
Velazco-Cruz L, Goedegebuure MM, Millman JR. Advances Toward Engineering Functionally Mature Human Pluripotent Stem Cell-Derived β Cells. Front Bioeng Biotechnol 2020; 8:786. [PMID: 32733873 PMCID: PMC7363766 DOI: 10.3389/fbioe.2020.00786] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Human stem cell-derived β (SC-β) cells have the potential to revolutionize diabetes treatment through disease modeling, drug screening, and cellular therapy. SC-β cells are likely to represent an early clinical translation of differentiated human pluripotent stem cells (hPSC). In 2014, two groups generated the first in vitro-differentiated glucose-responsive SC-β cells, but their functional maturation at the time was low. This review will discuss recent advances in the engineering of SC-β cells to understand and improve SC-β cell differentiation and functional maturation, particularly new differentiation strategies achieving dynamic glucose-responsive insulin secretion with rapid correction to normoglycemia when transplanted into diabetic mice.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Madeleine M Goedegebuure
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
61
|
Ilievski V, Toth PT, Valyi-Nagy K, Valyi-Nagy T, Green SJ, Marattil RS, Aljewari HW, Wicksteed B, O'Brien-Simpson NM, Reynolds EC, Layden BT, Unterman TG, Watanabe K. Identification of a periodontal pathogen and bihormonal cells in pancreatic islets of humans and a mouse model of periodontitis. Sci Rep 2020; 10:9976. [PMID: 32561770 PMCID: PMC7305306 DOI: 10.1038/s41598-020-65828-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Results from epidemiological and prospective studies indicate a close association between periodontitis and diabetes. However the mechanisms by which periodontal pathogens influence the development of prediabetes/diabetes are not clear. We previously reported that oral administration of a periodontal pathogen, Porphyromonas gingivalis (Pg) to WT mice results in insulin resistance, hyperinsulinemia, and glucose intolerance and that Pg translocates to the pancreas. In the current study, we determined the specific localization of Pg in relation to mouse and human pancreatic α- and β-cells using 3-D confocal and immunofluorescence microscopy and orthogonal analyses. Pg/gingipain is intra- or peri-nuclearly localized primarily in β-cells in experimental mice and also in human post-mortem pancreatic samples. We also identified bihormonal cells in experimental mice as well as human pancreatic samples. A low percentage of bihormonal cells has intracellular Pg in both humans and experimental mice. Our data show that the number of Pg translocated to the pancreas correlates with the number of bihormonal cells in both mice and humans. Our findings suggest that Pg/gingipain translocates to pancreas, particularly β-cells in both humans and mice, and this is strongly associated with emergence of bihormonal cells.
Collapse
Affiliation(s)
- Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peter T Toth
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Fluorescence Imaging Core Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Klara Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tibor Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- DNA Core Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rosann S Marattil
- Undergraduate Program, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haider W Aljewari
- Post-Gradulate Program in Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Eric C Reynolds
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian T Layden
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Terry G Unterman
- Division of Endocrinology, Diabetes & Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
62
|
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat Commun 2020; 11:2742. [PMID: 32488111 PMCID: PMC7265500 DOI: 10.1038/s41467-020-16550-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing studies have highlighted discrepancies in β-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human β-cells postnatally, while its expression is restricted to embryonic and neo-natal β-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to β-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide–positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology. The MAF bZIP transcription factor B (MAFB) is present in postnatal human beta cells but its role is unclear. Here, the authors show that MAFB regulates endocrine pancreatic cell fate specification.
Collapse
Affiliation(s)
- Ronan Russell
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Phichitpol P Carnese
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.,Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jennifer S Liu
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Simone Giacometti
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
63
|
Abreu D, Asada R, Revilla JMP, Lavagnino Z, Kries K, Piston DW, Urano F. Wolfram syndrome 1 gene regulates pathways maintaining beta-cell health and survival. J Transl Med 2020; 100:849-862. [PMID: 32060407 PMCID: PMC7286786 DOI: 10.1038/s41374-020-0408-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Wolfram Syndrome 1 (WFS1) protein is an endoplasmic reticulum (ER) factor whose deficiency results in juvenile-onset diabetes secondary to cellular dysfunction and apoptosis. The mechanisms guiding β-cell outcomes secondary to WFS1 function, however, remain unclear. Here, we show that WFS1 preserves normal β-cell physiology by promoting insulin biosynthesis and negatively regulating ER stress. Depletion of Wfs1 in vivo and in vitro causes functional defects in glucose-stimulated insulin secretion and insulin content, triggering Chop-mediated apoptotic pathways. Genetic proof of concept studies coupled with RNA-seq reveal that increasing WFS1 confers a functional and a survival advantage to β-cells under ER stress by increasing insulin gene expression and downregulating the Chop-Trib3 axis, thereby activating Akt pathways. Remarkably, WFS1 and INS levels are reduced in type-2 diabetic (T2DM) islets, suggesting that WFS1 may contribute to T2DM β-cell pathology. Taken together, this work reveals essential pathways regulated by WFS1 to control β-cell survival and function primarily through preservation of ER homeostasis.
Collapse
Affiliation(s)
- Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA,Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Rie Asada
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Biochemistry, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima 734-8553, Japan
| | - John M. P. Revilla
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Experimental Imaging Center DIBIT, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Kelly Kries
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
64
|
He F, Li N, Huang HB, Wang JB, Yang XF, Wang HD, Huang W, Li FR. LSD1 inhibition yields functional insulin-producing cells from human embryonic stem cells. Stem Cell Res Ther 2020; 11:163. [PMID: 32345350 PMCID: PMC7189473 DOI: 10.1186/s13287-020-01674-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/15/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human embryonic stem cells represent a potentially unlimited source of insulin-producing cells for diabetes therapy. While tremendous progress has been made in directed differentiation of human embryonic stem cells into IPCs in vitro, the mechanisms controlling its differentiation and function are not fully understood. Previous studies revealed that lysine-specific demethylase 1(LSD1) balanced the self-renewal and differentiation in human induced pluripotent stem cells and human embryonic stem cells. This study aims to explore the role of LSD1 in directed differentiation of human embryonic stem cells into insulin-producing cells. METHODS Human embryonic stem cell line H9 was induced into insulin-producing cells by a four-step differentiation protocol. Lentivirus transfection was applied to knockdown LSD1 expression. Immunofluorescence assay and flow cytometry were utilized to check differentiation efficiency. Western blot was used to examine signaling pathway proteins and differentiation-associated proteins. Insulin/C-peptide release was assayed by ELISA. Statistical analysis between groups was carried out with one-way ANOVA tests or a student's t test when appropriate. RESULTS Inhibition or silencing LSD1 promotes the specification of pancreatic progenitors and finally the commitment of functional insulin-producing β cells; Moreover, inhibition or silencing LSD1 activated ERK signaling and upregulated pancreatic progenitor associated genes, accelerating pre-maturation of pancreatic progenitors, and conferred the NKX6.1+ population with better proliferation ability. IPCs with LSD1 inhibitor tranylcypromine treatment displayed enhanced insulin secretion in response to glucose stimulation. CONCLUSIONS We identify a novel role of LSD1 inhibition in promoting IPCs differentiation from hESCs, which would be emerged as potential intervention for generation of functional pancreatic β cells to cure diabetes.
Collapse
Affiliation(s)
- Fei He
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jing-Bo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Hua-Dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China.
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China.
| |
Collapse
|
65
|
Lorberbaum DS, Docherty FM, Sussel L. Animal Models of Pancreas Development, Developmental Disorders, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:65-85. [PMID: 32304069 DOI: 10.1007/978-981-15-2389-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Fiona M Docherty
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lori Sussel
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
66
|
Kim S, Whitener RL, Peiris H, Gu X, Chang CA, Lam JY, Camunas-Soler J, Park I, Bevacqua RJ, Tellez K, Quake SR, Lakey JRT, Bottino R, Ross PJ, Kim SK. Molecular and genetic regulation of pig pancreatic islet cell development. Development 2020; 147:dev186213. [PMID: 32108026 PMCID: PMC7132804 DOI: 10.1242/dev.186213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases such as diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet β-, α- and δ-cells followed by transcriptome analysis (RNA-seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features that are not observed in mice. Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet β-cell functional maturation, including evidence of fetal α-cell GLP-1 production and signaling to β-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases.
Collapse
Affiliation(s)
- Seokho Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert L Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Y Lam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Insung Park
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California at Irvine, Irvine, CA 92868, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
67
|
Jeffery N, Richardson S, Chambers D, Morgan NG, Harries LW. Cellular stressors may alter islet hormone cell proportions by moderation of alternative splicing patterns. Hum Mol Genet 2020; 28:2763-2774. [PMID: 31098640 PMCID: PMC6687954 DOI: 10.1093/hmg/ddz094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 01/12/2023] Open
Abstract
Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-βH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-βH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-βH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.
Collapse
Affiliation(s)
- Nicola Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - Sarah Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| |
Collapse
|
68
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
69
|
Tran R, Moraes C, Hoesli CA. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Sci Rep 2020; 10:1190. [PMID: 31988329 PMCID: PMC6985188 DOI: 10.1038/s41598-020-57787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived insulin-producing cells are a promising cell source for diabetes cellular therapy. However, the efficiency of the multi-step process required to differentiate PSCs towards pancreatic beta cells is variable between cell lines, batches and even within cultures. In adherent pancreatic differentiation protocols, we observed spontaneous local clustering of cells expressing elevated nuclear expression of pancreatic endocrine transcription factors, PDX1 and NKX6.1. Since aggregation has previously been shown to promote downstream differentiation, this local clustering may contribute to the variability in differentiation efficiencies observed within and between cultures. We therefore hypothesized that controlling and directing the spontaneous clustering process would lead to more efficient and consistent induction of pancreatic endocrine fate. Micropatterning cells in adherent microwells prompted clustering, local cell density increases, and increased nuclear accumulation of PDX1 and NKX6.1. Improved differentiation profiles were associated with distinct filamentous actin architectures, suggesting a previously overlooked role for cell-driven morphogenetic changes in supporting pancreatic differentiation. This work demonstrates that confined differentiation in cell-adhesive micropatterns may provide a facile, scalable, and more reproducible manufacturing route to drive morphogenesis and produce well-differentiated pancreatic cell clusters.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada. .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada.
| |
Collapse
|
70
|
Wang J, Yuan R, Zhu X, Ao P. Adaptive Landscape Shaped by Core Endogenous Network Coordinates Complex Early Progenitor Fate Commitments in Embryonic Pancreas. Sci Rep 2020; 10:1112. [PMID: 31980678 PMCID: PMC6981170 DOI: 10.1038/s41598-020-57903-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
The classical development hierarchy of pancreatic cell fate commitments describes that multipotent progenitors (MPs) first bifurcate into tip cells and trunk cells, and then these cells give rise to acinar cells and endocrine/ductal cells separately. However, lineage tracings reveal that pancreatic progenitors are highly heterogeneous in tip and trunk domains in embryonic pancreas. The progenitor fate commitments from multipotency to unipotency during early pancreas development is insufficiently characterized. In pursuing a mechanistic understanding of the complexity in progenitor fate commitments, we construct a core endogenous network for pancreatic lineage decisions based on genetic regulations and quantified its intrinsic dynamic properties using dynamic modeling. The dynamics reveal a developmental landscape with high complexity that has not been clarified. Not only well-characterized pancreatic cells are reproduced, but also previously unrecognized progenitors-tip progenitor (TiP), trunk progenitor (TrP), later endocrine progenitor (LEP), and acinar progenitors (AciP/AciP2) are predicted. Further analyses show that TrP and LEP mediate endocrine lineage maturation, while TiP, AciP, AciP2 and TrP mediate acinar and ductal lineage maturation. The predicted cell fate commitments are validated by analyzing single-cell RNA sequencing (scRNA-seq) data. Significantly, this is the first time that a redefined hierarchy with detailed early pancreatic progenitor fate commitment is obtained.
Collapse
Affiliation(s)
- Junqiang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoshi Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
71
|
Zhou X, Nair GG, Russ HA, Belair CD, Li ML, Shveygert M, Hebrok M, Blelloch R. LIN28B Impairs the Transition of hESC-Derived β Cells from the Juvenile to Adult State. Stem Cell Reports 2019; 14:9-20. [PMID: 31883920 PMCID: PMC6962644 DOI: 10.1016/j.stemcr.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
Differentiation of human embryonic stem cells into pancreatic β cells holds great promise for the treatment of diabetes. Recent advances have led to the production of glucose-responsive insulin-secreting cells in vitro, but resulting cells remain less mature than their adult primary β cell counterparts. The barrier(s) to in vitro β cell maturation are unclear. Here, we evaluated a potential role for microRNAs. MicroRNA profiling showed high expression of let-7 family microRNAs in vivo, but not in in vitro differentiated β cells. Reduced levels of let-7 in vitro were associated with increased levels of the RNA binding protein LIN28B, a negative regulator of let-7 biogenesis. Ablation of LIN28B during human embryonic stem cell (hESC) differentiation toward β cells led to a more mature glucose-stimulated insulin secretion profile and the suppression of juvenile-specific genes. However, let-7 overexpression had little effect. These results uncover LIN28B as a modulator of β cell maturation in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Gopika G Nair
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Holger A Russ
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Mei-Lan Li
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Mayya Shveygert
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, CA 94143, USA.
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
72
|
The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function. Cell Metab 2019; 30:1091-1106.e8. [PMID: 31607563 PMCID: PMC7205457 DOI: 10.1016/j.cmet.2019.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.
Collapse
|
73
|
Padula SL, Anand D, Hoang TV, Chaffee BR, Liu L, Liang C, Lachke SA, Robinson ML. High-throughput transcriptome analysis reveals that the loss of Pten activates a novel NKX6-1/RASGRP1 regulatory module to rescue microphthalmia caused by Fgfr2-deficient lenses. Hum Genet 2019; 138:1391-1407. [PMID: 31691004 DOI: 10.1007/s00439-019-02084-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023]
Abstract
FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.
Collapse
Affiliation(s)
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Thanh V Hoang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blake R Chaffee
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lin Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
74
|
Jin W, Mulas F, Gaertner B, Sui Y, Wang J, Matta I, Zeng C, Vinckier N, Wang A, Nguyen-Ngoc KV, Chiou J, Kaestner KH, Frazer KA, Carrano AC, Shih HP, Sander M. A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells. iScience 2019; 21:681-694. [PMID: 31733514 PMCID: PMC6889369 DOI: 10.1016/j.isci.2019.10.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.
Collapse
Affiliation(s)
- Wen Jin
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinzhao Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly A Frazer
- Department of Pediatrics, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
75
|
Chen N, Schill RL, O'Donnell M, Xu K, Bagchi DP, MacDougald OA, Koenig RJ, Xu B. The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 2019; 294:18408-18420. [PMID: 31615896 DOI: 10.1074/jbc.ra119.007967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
Although adipogenesis is mainly controlled by a small number of master transcription factors, including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow-derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.
Collapse
Affiliation(s)
- Noah Chen
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael O'Donnell
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kevin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ronald J Koenig
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
76
|
Low-Energy Extracorporeal Shock Wave Ameliorates Streptozotocin Induced Diabetes and Promotes Pancreatic Beta Cells Regeneration in a Rat Model. Int J Mol Sci 2019; 20:ijms20194934. [PMID: 31590394 PMCID: PMC6801760 DOI: 10.3390/ijms20194934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Traditional therapy for diabetes mellitus has focused on supportive treatment, and is not significant in the promotion of pancreatic beta cells regeneration. We investigated the effect of low- energy extracorporeal shock wave (SW) on a streptozotocin induced diabetes (DM) rat model. Methods: The DM rats were treated with ten sessions of low-energy SW therapy (weekly for ten consecutive weeks) or left untreated. We assessed blood glucose, hemoglobin A1c (HbA1c), urine volume, pancreatic islets area, c-peptide, glucagon-like peptide 1 (GLP-1) and insulin production, beta cells number, pancreatic tissue inflammation, oxidative stress, apoptosis, angiogenesis, and stromal cell derived factor 1 (SDF-1) ten weeks after the completion of treatment. Results: The ten- week low-energy SW therapy regimen significantly reduced blood glucose, HbA1c, and urine volume as well as significantly enhancing pancreatic islets area, c-peptide, GLP-1, and insulin production in the rat model of DM. Moreover, low-energy SW therapy increased the beta cells number in DM rats. This was likely primarily attributed to the fact that low-energy SW therapy reduced pancreatic tissue inflammation, apoptosis, and oxidative stress as well as increasing angiogenesis, cell proliferation, and tissue repair potency. Conclusions: Low-energy SW therapy preserved pancreatic islets function in streptozotocin-induced DM. Low-energy SW therapy may serve as a novel noninvasive and effective treatment of DM.
Collapse
|
77
|
Hu L, He F, Luo Y, Luo H, Hai L, Li Y, Zhou Z, Liu F, Dai YS. Reduced Compensatory β-Cell Proliferation in Nfatc3-Deficient Mice Fed on High-Fat Diet. Exp Clin Endocrinol Diabetes 2019; 129:651-660. [PMID: 31546271 DOI: 10.1055/a-1008-9110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND High-fat-diet induces pancreatic β-cell compensatory proliferation, and impairments in pancreatic β-cell proliferation and function can lead to defects in insulin secretion and diabetes. NFATc3 is important for HFD-induced adipose tissue inflammation. But it is unknown whether NFATc3 is required for β cell compensatory growth in mice fed with HFD. METHODS NFATc3 mRNA and protein expression levels were quantified by RT-qPCR and Western blotting, respectively, in pancreatic islets of WT mice fed on HFD for 12-20 weeks. Adenoviral-mediated overexpression of NFATc3 were conducted in Min6 cells and cultured primary mouse islets. NFATc3-/- mice and WT control mice were fed with HFD and metabolic and functional parameters were measured. RESULTS We observed that the NFATc3 expression level was reduced in the islets of high-fat-diet (HFD)-fed mice. Adenovirus-mediated overexpression of NFATc3 enhanced glucose-stimulated insulin secretion and β-cell gene expression in cultured primary mouse islets. Nfatc3-/- mice initially developed similar glucose tolerance at 2-4 weeks after HFD feeding than HFD-fed WT mice, but Nfatc3-/- mice developed improved glucose tolerance and insulin sensitivity after 8 weeks of HFD feeding compared to Nfatc3+/+fed with HFD. Furthermore, Nfatc3-/- mice on HFD exhibited decreased β-cell mass and reduced expression of genes important for β-cell proliferation and function compared to Nfatc3+/+mice on HFD. CONCLUSIONS The findings suggested that NFATc3 plays a role in maintaining the pancreatic β-cell compensatory growth and gene expression in response to obesity.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Hai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yabin Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Bristol-Myers Squibb Company, Princeton, NJ 08540, United States
| |
Collapse
|
78
|
Wilson CS, Spaeth JM, Karp J, Stocks BT, Hoopes EM, Stein RW, Moore DJ. B lymphocytes protect islet β cells in diabetes prone NOD mice treated with imatinib. JCI Insight 2019; 5:125317. [PMID: 30964447 PMCID: PMC6538336 DOI: 10.1172/jci.insight.125317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/02/2019] [Indexed: 01/10/2023] Open
Abstract
Imatinib (Gleevec) reverses type 1 diabetes (T1D) in NOD mice and is currently in clinical trials in individuals with recent-onset disease. While research has demonstrated that imatinib protects islet β cells from the harmful effects of ER stress, the role the immune system plays in its reversal of T1D has been less well understood, and specific cellular immune targets have not been identified. In this study, we demonstrate that B lymphocytes, an immune subset that normally drives diabetes pathology, are unexpectedly required for reversal of hyperglycemia in NOD mice treated with imatinib. In the presence of B lymphocytes, reversal was linked to an increase in serum insulin concentration, but not an increase in islet β cell mass or proliferation. However, improved β cell function was reflected by a partial recovery of MafA transcription factor expression, a sensitive marker of islet β cell stress that is important to adult β cell function. Imatinib treatment was found to increase the antioxidant capacity of B lymphocytes, improving reactive oxygen species (ROS) handling in NOD islets. This study reveals a novel mechanism through which imatinib enables B lymphocytes to orchestrate functional recovery of T1D β cells.
Collapse
Affiliation(s)
- Christopher S. Wilson
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason M. Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jay Karp
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Blair T. Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emilee M. Hoopes
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
79
|
Russell MA, Leete P. Glucocorticoids: novel agents to stimulate beta-cell neogenesis? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:166. [PMID: 31168447 DOI: 10.21037/atm.2019.03.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mark A Russell
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
| | - Pia Leete
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
| |
Collapse
|
80
|
Gu L, Cui X, Lang S, Wang H, Hong T, Wei R. Glucagon receptor antagonism increases mouse pancreatic δ-cell mass through cell proliferation and duct-derived neogenesis. Biochem Biophys Res Commun 2019; 512:864-870. [PMID: 30929915 DOI: 10.1016/j.bbrc.2019.03.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic δ-cells, which produce somatostatin, play an indispensable role in glucose homeostasis by inhibiting glucagon and insulin secretion in a paracrine manner. Recent studies have shown that δ-cells are couple with β-cells to suppress α-cell activity. Under certain circumstances, δ-cells could also be trans-differentiated into insulin-producing β-cells. Thus, pancreatic islet may benefit from δ-cell hyperplasia. However, an effective way to increase δ-cell mass has been rarely reported. Here, we found that REMD 2.59, a human monoclonal antibody and competitive antagonist of the glucagon receptor, massively boosted δ-cell number and increased plasma somatostatin level in both normoglycemic and type 1 diabetic (T1D) mice. The increased δ-cells were due to both δ-cell proliferation and derivation of duct lining cells. Notably, the enlarged δ-cell mass could reduce β-cell burdens by inducing FoxO1 nuclear translocation in normoglycemic mice. Moreover, some somatostatin-positive cells were co-localized with C-peptide in T1D mice, suggesting that δ-cells might be a source of the newborn β-cells. Collectively, these observations suggest that treatment with the glucagon receptor monoclonal antibody can increase pancreatic δ-cell mass by promoting self-replication and inducing duct-derived neogenesis both in normoglycemia and diabetic mice.
Collapse
Affiliation(s)
- Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
81
|
Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue. In Vitro Cell Dev Biol Anim 2019; 55:285-301. [PMID: 30868438 DOI: 10.1007/s11626-019-00336-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
The isolation of a cell line, PICM-31D, with phenotypic characteristics like pancreatic duct cells is described. The PICM-31D cell line was derived from the previously described pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. The PICM-31D cell line was morphologically distinct from the parental cells in growing as a monolayer rather than self-assembling into multicellular acinar-like structures. The PICM-31D cells were propagated for over a year at split ratios of 1:3 to 1:10 at each passage without change in phenotype or growth rate. Electron microscopy showed the cells to be a polarized epithelium of cuboidal cells joined by tight junction-like adhesions at their apical/lateral aspect. The cells contained numerous mucus-like secretory vesicles under their apical cell membrane. Proteomic analysis of the PICM-31D's cellular proteins detected MUC1 and MUC4, consistent with mucus vesicle morphology. Gene expression analysis showed the cells expressed pancreatic ductal cell-related transcription factors such as GATA4, GATA6, HES1, HNF1A, HNF1B, ONECUT1 (HNF6), PDX1, and SOX9, but little or no pancreas progenitor cell markers such as PTF1A, NKX6-1, SOX2, or NGN3. Pancreas ductal cell-associated genes including CA2, CFTR, MUC1, MUC5B, MUC13, SHH, TFF1, KRT8, and KRT19 were expressed by the PICM-31D cells, but the exocrine pancreas marker genes, CPA1 and PLA2G1B, were not expressed by the cells. However, the exocrine marker, AMY2A, was still expressed by the cells. Surprisingly, uroplakin proteins were prominent in the PICM-31D cell proteome, particularly UPK1A. Annexin A1 and A2 proteins were also relatively abundant in the cells. The expression of the uroplakin and annexin genes was detected in the cells, although only UPK1B, UPK3B, ANXA2, and ANXA4 were detected in fetal pig pancreatic duct tissue. In conclusion, the PICM-31D cell line models the mucus-secreting ductal cells of the fetal pig pancreas.
Collapse
|
82
|
Wang YJ, Traum D, Schug J, Gao L, Liu C, Atkinson MA, Powers AC, Feldman MD, Naji A, Chang KM, Kaestner KH. Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metab 2019; 29:769-783.e4. [PMID: 30713110 PMCID: PMC6436557 DOI: 10.1016/j.cmet.2019.01.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/15/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
The interaction between the immune system and endocrine cells in the pancreas is crucial for the initiation and progression of type 1 diabetes (T1D). Imaging mass cytometry (IMC) enables multiplexed assessment of the abundance and localization of more than 30 proteins on the same tissue section at 1-μm resolution. Herein, we have developed a panel of 33 antibodies that allows for the quantification of key cell types including pancreatic exocrine cells, islet cells, immune cells, and stromal components. We employed this panel to analyze 12 pancreata obtained from donors with clinically diagnosed T1D and 6 pancreata from non-diabetic controls. In the pancreata from donors with T1D, we simultaneously visualized significant alterations in islet architecture, endocrine cell composition, and immune cell presentation. Indeed, we demonstrate the utility of IMC to investigate complex events on the cellular level that will provide new insights on the pathophysiology of T1D.
Collapse
Affiliation(s)
- Yue J Wang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Traum
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | - Alvin C Powers
- Department of Medicine, Department of Molecular Physiology and Biophysics, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center VA, Tennessee Valley Healthcare, Nashville, TN, USA
| | - Michael D Feldman
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
83
|
Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo JA, Joosten AM, Berney T, Bosco D, Dorrell C, Grompe M, Ræder H, Roep BO, Thorel F, Herrera PL. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 2019; 567:43-48. [PMID: 30760930 PMCID: PMC6624841 DOI: 10.1038/s41586-019-0942-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Cell identity switches, where terminally-differentiated cells convert into different cell-types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin expressers upon ablation of insulin-secreting β-cells, promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-β-cells, namely α-cells and PPY-producing γ–cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors Pdx1 and MafA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and remain producing insulin even after 6 months. Surprisingly, insulin-producing α-cells maintain α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.
Collapse
Affiliation(s)
- Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Damond
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Antoinette M Joosten
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Bart O Roep
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
84
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
85
|
HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 2018; 475:3997-4010. [PMID: 30322885 DOI: 10.1042/bcj20180465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.
Collapse
|
86
|
Balboa D, Saarimäki-Vire J, Otonkoski T. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology. Stem Cells 2018; 37:33-41. [PMID: 30270471 PMCID: PMC7379656 DOI: 10.1002/stem.2913] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic β‐cells are the only source of insulin. Disturbances in β‐cell development or function may thus result in insulin deficiency or excess, presenting as hyper‐ or hypoglycemia. It is increasingly evident that common forms of diabetes (types 1 and 2) are pathogenically heterogeneous. Development of efficient therapies is dependent on reliable disease models. Although animal models are remarkably useful research tools, they present limitations because of species differences. As an alternative, human pluripotent stem cell technologies offer multiple possibilities for the study of human diseases in vitro. In the last decade, advances in the derivation of induced pluripotent stem cells from diabetic patients, combined with β‐cell differentiation protocols, have resulted in the generation of useful disease models for diabetes. First disease models have been focusing on monogenic diabetes. The development of genome editing technologies, more advanced differentiation protocols and humanized mouse models based on transplanted cells have opened new horizons for the modeling of more complex forms of β‐cell dysfunction. We present here the incremental progress made in the modeling of diabetes using pluripotent stem cells. We discuss the current challenges and opportunities of these approaches to dissect β‐cell pathology and devise new pharmacological and cell replacement therapies. stem cells2019;37:33–41
Collapse
Affiliation(s)
- Diego Balboa
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
87
|
Teo AKK, Lim CS, Cheow LF, Kin T, Shapiro JA, Kang NY, Burkholder W, Lau HH. Single-cell analyses of human islet cells reveal de-differentiation signatures. Cell Death Discov 2018; 4:14. [PMID: 29531811 PMCID: PMC5841351 DOI: 10.1038/s41420-017-0014-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic islets containing insulin-secreting β-cells are notoriously heterogeneous in cell composition. Since β-cell failure is the root cause of diabetes, understanding this heterogeneity is of paramount importance. Recent reports have cataloged human islet transcriptome but not compared single β-cells in detail. Here, we scrutinized ex vivo human islet cells from healthy donors and show that they exhibit de-differentiation signatures. Using single-cell gene expression and immunostaining analyses, we found healthy islet cells to contain polyhormonal transcripts, and INS+ cells to express decreased levels of β-cell genes but high levels of progenitor markers. Rare cells that are doubly positive for progenitor markers/exocrine signatures, and endocrine/exocrine hormones were also present. We conclude that ex vivo human islet cells are plastic and can possibly de-/trans-differentiate across pancreatic cell fates, partly accounting for β-cell functional decline once isolated. Therefore, stabilizing β-cell identity upon isolation may improve its functionality.
Collapse
Affiliation(s)
- Adrian Keong Kee Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Lih Feng Cheow
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - James A. Shapiro
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Helios, Singapore, Singapore
| | - William Burkholder
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| |
Collapse
|
88
|
Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL. Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon + α-cells. Nat Cell Biol 2018; 20:1267-1277. [PMID: 30361701 PMCID: PMC6215453 DOI: 10.1038/s41556-018-0216-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
The mechanisms that restrict regeneration and maintain cell identity following injury are poorly characterized in higher vertebrates. Following β-cell loss, 1-2% of the glucagon-producing α-cells spontaneously engage in insulin production in mice. Here we explore the mechanisms inhibiting α-cell plasticity. We show that adaptive α-cell identity changes are constrained by intra-islet insulin- and Smoothened-mediated signalling, among others. The combination of β-cell loss or insulin-signalling inhibition, with Smoothened inactivation in α- or δ-cells, stimulates insulin production in more α-cells. These findings suggest that the removal of constitutive 'brake signals' is crucial to neutralize the refractoriness to adaptive cell-fate changes. It appears that the maintenance of cell identity is an active process mediated by repressive signals, which are released by neighbouring cells and curb an intrinsic trend of differentiated cells to change.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Gupta
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Graduate School of Medicine , Juntendo University , Tokyo, Japan
| | - Hideaki Kaneto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mark A Magnuson
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Christopher E V Wright
- Department of Cell and Developmental Biology, Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa K Thomas
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
89
|
Huising MO, Lee S, van der Meulen T. Evidence for a Neogenic Niche at the Periphery of Pancreatic Islets. Bioessays 2018; 40:e1800119. [PMID: 30264410 PMCID: PMC6570402 DOI: 10.1002/bies.201800119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Indexed: 02/06/2023]
Abstract
We recently discovered a novel subset of beta cells that resemble immature beta cells during pancreas development. We named these "virgin" beta cells as they do not stem from existing mature beta cells. Virgin beta cells are found exclusively at the islet periphery in areas that we therefore designated as the "neogenic niche." As beta cells are our only source of insulin, their loss leads to diabetes. Islets also contain glucagon-producing alpha cells and somatostatin-producing delta cells, that are important for glucose homeostasis and form a mantle surrounding the beta cell core. This 3D architecture is important and determines access to blood flow and innervation. We propose that the distinctive islet architecture may also play an important, but hitherto unappreciated role in generation of new endocrine cells, including beta cells. We discuss several predictions to further test the contribution of the neogenic niche to beta cell regeneration.
Collapse
Affiliation(s)
- Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
90
|
Malenczyk K, Szodorai E, Schnell R, Lubec G, Szabó G, Hökfelt T, Harkany T. Secretagogin protects Pdx1 from proteasomal degradation to control a transcriptional program required for β cell specification. Mol Metab 2018; 14:108-120. [PMID: 29910119 PMCID: PMC6034064 DOI: 10.1016/j.molmet.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Specification of endocrine cell lineages in the developing pancreas relies on extrinsic signals from non-pancreatic tissues, which initiate a cell-autonomous sequence of transcription factor activation and repression switches. The steps in this pathway share reliance on activity-dependent Ca2+ signals. However, the mechanisms by which phasic Ca2+ surges become converted into a dynamic, cell-state-specific and physiologically meaningful code made up by transcription factors constellations remain essentially unknown. METHODS We used high-resolution histochemistry to explore the coincident expression of secretagogin and transcription factors driving β cell differentiation. Secretagogin promoter activity was tested in response to genetically manipulating Pax6 and Pax4 expression. Secretagogin null mice were produced with their pancreatic islets morphologically and functionally characterized during fetal development. A proteomic approach was utilized to identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome and verified in vitro by focusing on Pdx1 retention. RESULTS Here, we show that secretagogin, a Ca2+ sensor protein that controls α and β cell turnover in adult, is in fact expressed in endocrine pancreas from the inception of lineage segregation in a Pax4-and Pax6-dependent fashion. By genetically and pharmacologically manipulating secretagogin expression and interactome engagement in vitro, we find secretagogin to gate excitation-driven Ca2+ signals for β cell differentiation and insulin production. Accordingly, secretagogin-/- fetuses retain a non-committed pool of endocrine progenitors that co-express both insulin and glucagon. We identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome complex to prevent Pdx1 degradation through proteasome inactivation. This coincides with retained Nkx6.1, Pax4 and insulin transcription in prospective β cells. CONCLUSIONS In sum, secretagogin scales the temporal availability of a Ca2+-dependent transcription factor network to define β cell identity.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Gert Lubec
- Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden.
| |
Collapse
|
91
|
Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR, Ros R, Kumta PN, Rege K, Banerjee I. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 2018; 177:27-39. [PMID: 29883914 DOI: 10.1016/j.biomaterials.2018.05.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 01/05/2023]
Abstract
Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering.
Collapse
Affiliation(s)
- Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, PA, United States
| | | | - Saik Kia Goh
- Department of Bioengineering, University of Pittsburgh, PA, United States
| | - Vimal Vaidya
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, United States
| | - Maya Lemmon-Kishi
- Department of Bioengineering, University of Pittsburgh, PA, United States
| | - Kiarash Rahmani Eliato
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Robert Ros
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Prashant N Kumta
- Department of Bioengineering, University of Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, United States; Department of Mechanical Engineering and Material Science, University of Pittsburgh, PA, United States; Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ, United States
| | - Ipsita Banerjee
- Department of Bioengineering, University of Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, United States.
| |
Collapse
|
92
|
Gupta SK, Wesolowska-Andersen A, Ringgaard AK, Jaiswal H, Song L, Hastoy B, Ingvorsen C, Taheri-Ghahfarokhi A, Magnusson B, Maresca M, Jensen RR, Beer NL, Fels JJ, Grunnet LG, Thomas MK, Gloyn AL, Hicks R, McCarthy MI, Hansson M, Honoré C. NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations. Stem Cell Res 2018; 29:220-231. [PMID: 29734117 DOI: 10.1016/j.scr.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 04/21/2018] [Indexed: 12/30/2022] Open
Abstract
Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC) lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies.
Collapse
Affiliation(s)
- Shailesh Kumar Gupta
- Discovery Biology, Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | | | - Anna K Ringgaard
- Department of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Himjyot Jaiswal
- Discovery Biology, Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Luyan Song
- Lilly Research Laboratories, 46285 Indianapolis, IN, USA
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | | | | | - Björn Magnusson
- Discovery Biology, Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rikke R Jensen
- Department of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Johannes J Fels
- Research Bioanalysis, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Lars G Grunnet
- Department of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | | | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Mattias Hansson
- Stem Cell Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Christian Honoré
- Department of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, Denmark.
| |
Collapse
|
93
|
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability. Am J Physiol Endocrinol Metab 2018; 314:E308-E321. [PMID: 29351489 PMCID: PMC5966755 DOI: 10.1152/ajpendo.00260.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Collapse
Affiliation(s)
- Peter A Kropp
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Doris A Stoffers
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
94
|
Juan-Mateu J, Alvelos MI, Turatsinze JV, Villate O, Lizarraga-Mollinedo E, Grieco FA, Marroquí L, Bugliani M, Marchetti P, Eizirik DL. SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival. Diabetes 2018; 67:423-436. [PMID: 29246973 PMCID: PMC5828453 DOI: 10.2337/db17-0736] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Progressive failure of insulin-producing β-cells is the central event leading to diabetes, but the signaling networks controlling β-cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining the function and survival of human β-cells. RNA sequencing analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion, and c-Jun N-terminal kinase (JNK) signaling. In particular, SRp55-mediated splicing changes modulate the function of the proapoptotic proteins BIM and BAX, JNK signaling, and endoplasmic reticulum stress, explaining why SRp55 depletion triggers β-cell apoptosis. Furthermore, SRp55 depletion inhibits β-cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human β-cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55, that may cross talk with candidate genes for diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabio Arturo Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Marroquí
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
95
|
Wang Y, Dorrell C, Naugler WE, Heskett M, Spellman P, Li B, Galivo F, Haft A, Wakefield L, Grompe M. Long-Term Correction of Diabetes in Mice by In Vivo Reprogramming of Pancreatic Ducts. Mol Ther 2018; 26:1327-1342. [PMID: 29550076 DOI: 10.1016/j.ymthe.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Direct lineage reprogramming can convert readily available cells in the body into desired cell types for cell replacement therapy. This is usually achieved through forced activation or repression of lineage-defining factors or pathways. In particular, reprogramming toward the pancreatic β cell fate has been of great interest in the search for new diabetes therapies. It has been suggested that cells from various endodermal lineages can be converted to β-like cells. However, it is unclear how closely induced cells resemble endogenous pancreatic β cells and whether different cell types have the same reprogramming potential. Here, we report in vivo reprogramming of pancreatic ductal cells through intra-ductal delivery of an adenoviral vector expressing the transcription factors Pdx1, Neurog3, and Mafa. Induced β-like cells are mono-hormonal, express genes essential for β cell function, and correct hyperglycemia in both chemically and genetically induced diabetes models. Compared with intrahepatic ducts and hepatocytes treated with the same vector, pancreatic ducts demonstrated more rapid activation of β cell transcripts and repression of donor cell markers. This approach could be readily adapted to humans through a commonly performed procedure, endoscopic retrograde cholangiopancreatography (ERCP), and provides potential for cell replacement therapy in type 1 diabetes patients.
Collapse
Affiliation(s)
- Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Willscott E Naugler
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Heskett
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; CEDAR Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bin Li
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Annelise Haft
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
96
|
Feeder-cell-independent culture of the pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. In Vitro Cell Dev Biol Anim 2018; 54:321-330. [PMID: 29442225 DOI: 10.1007/s11626-017-0218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the derivative cell line, PICM-31A1. PICM-31A1 cells were adapted to growth on a polymerized collagen matrix using feeder cell-conditioned medium and were designated PICM-31FF. Like the parental cells, the PICM-31FF cells were small and grew relatively slowly in closely knit colonies that eventually coalesced into a continuous monolayer. The PICM-31FF cells were extensively cultured: 40 passages at 1:2, 1:3, and finally 1:5 split ratios over a 1-yr period. Ultrastructure analysis showed the cells' epithelial morphology and revealed that they retained their secretory granules typical of pancreas acinar cells. The cells maintained their expression of digestive enzymes, including carboxypeptidase A1 (CPA1), amylase 2A (AMY2A), and phospholipase A2 (PLA2G1B). Alpha-fetoprotein (AFP), a fetal cell marker, continued to be expressed by the cells as was the pancreas alpha cell-associated gene, transthyretin. Several pancreas-associated developmental genes were also expressed by the cells, including pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor, 1a (PTF1A). Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratin-8 and cytokeratin-18. The PICM-31FF cell line provides an in vitro model of fetal pig pancreatic exocrine cells without the complicating presence of feeder cells.
Collapse
|
97
|
Mohan V, Radha V, Nguyen TT, Stawiski EW, Pahuja KB, Goldstein LD, Tom J, Anjana RM, Kong-Beltran M, Bhangale T, Jahnavi S, Chandni R, Gayathri V, George P, Zhang N, Murugan S, Phalke S, Chaudhuri S, Gupta R, Zhang J, Santhosh S, Stinson J, Modrusan Z, Ramprasad VL, Seshagiri S, Peterson AS. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India. BMC MEDICAL GENETICS 2018; 19:22. [PMID: 29439679 PMCID: PMC5811965 DOI: 10.1186/s12881-018-0528-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. METHODS In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. RESULTS We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. CONCLUSIONS Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.
Collapse
Affiliation(s)
- Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, No. 4, Conran Smith Road, Gopalapuram, Chennai, Tamil Nadu, 600 086, India.
| | - Venkatesan Radha
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, No. 4, Conran Smith Road, Gopalapuram, Chennai, Tamil Nadu, 600 086, India
| | - Thong T Nguyen
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eric W Stawiski
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kanika Bajaj Pahuja
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer Tom
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, No. 4, Conran Smith Road, Gopalapuram, Chennai, Tamil Nadu, 600 086, India
| | - Monica Kong-Beltran
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tushar Bhangale
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Human Genetics, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Suresh Jahnavi
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, No. 4, Conran Smith Road, Gopalapuram, Chennai, Tamil Nadu, 600 086, India
| | | | - Vijay Gayathri
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, No. 4, Conran Smith Road, Gopalapuram, Chennai, Tamil Nadu, 600 086, India
| | - Paul George
- MedGenome, Bangalore, Karnataka, 560 099, India
| | - Na Zhang
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | | - Subhra Chaudhuri
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ravi Gupta
- MedGenome, Bangalore, Karnataka, 560 099, India
| | - Jingli Zhang
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Jeremy Stinson
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
98
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
99
|
Loo LSW, Lau HH, Jasmen JB, Lim CS, Teo AKK. An arduous journey from human pluripotent stem cells to functional pancreatic β cells. Diabetes Obes Metab 2018; 20:3-13. [PMID: 28474496 DOI: 10.1111/dom.12996] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
Type 1 and type 2 diabetes are caused by a destruction and decrease in the number of functional insulin-producing β cells, respectively; therefore, the generation of functional β cells from human embryonic stem cells and human induced pluripotent stem cells, collectively known as human pluripotent stem cells (hPSCs), for potential cell replacement therapy and disease modelling is an intensely investigated area. Recent scientific breakthroughs enabled derivation of large quantities of human pancreatic β-like cells in vitro, although with varied glucose-stimulated insulin secretion kinetics. In the present review, we comprehensively summarize, compare and critically analyze the intricacies of these developing technologies, including differentiation platforms, robustness of protocols, and methodologies used to characterize hPSC-derived β-like cells. We also discuss experimental issues that need to be resolved before these β-like cells can be used clinically.
Collapse
Affiliation(s)
- Larry Sai Weng Loo
- Programme in Stem Cell, Regenerative Medicine and Ageing, Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hwee Hui Lau
- Programme in Stem Cell, Regenerative Medicine and Ageing, Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanita Binte Jasmen
- Programme in Stem Cell, Regenerative Medicine and Ageing, Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chang Siang Lim
- Programme in Stem Cell, Regenerative Medicine and Ageing, Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Programme in Stem Cell, Regenerative Medicine and Ageing, Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
100
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|