51
|
Nyambuya TM, Dludla PV, Nkambule BB. The aberrant expression of CD69 on peripheral T-helper cells in diet-induced inflammation is ameliorated by low-dose aspirin and metformin treatment. Cell Immunol 2021; 363:104313. [PMID: 33631404 DOI: 10.1016/j.cellimm.2021.104313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Chronic inflammation in patients with type 2 diabetes (T2D) is associated with T-cell dysfunction. Using a rodent model, we evaluated changes in metabolic profiles, inflammation status and the expression of T-cell function markers following high-fat diet (HFD)-feeding. In addition, we assessed the modulatory effects of treatment with low-dose aspirin (LDA) and its combination with metformin (LDA + Met) on these parameters. Notably, HFD-feeding induced metabolic disorders and aggravated inflammation. Most importantly, it was associated with decreased expression of CD69 on T-helper cells but had no effect on the expression of programmed cell death 1 (PD-1). Treatment with LDA monotherapy had no effect on metabolic profiles. However, its combination with metformin ameliorated the levels of inflammation and up-regulated the expression of CD69 although it had no therapeutic effect on the levels of PD-1 expression. Therefore, alleviating inflammation and lowering glucose levels in T2D may be an effective strategy to improve T-cell function in these patients.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Aspirin/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Gene Expression/drug effects
- Hypoglycemic Agents/therapeutic use
- Inflammation/immunology
- Lectins, C-Type/immunology
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia.
| | - Phiwayinkosi Vusi Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
52
|
Cheng X, Shihabudeen Haider Ali MS, Moran M, Viana MP, Schlichte SL, Zimmerman MC, Khalimonchuk O, Feinberg MW, Sun X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol 2021; 40:101863. [PMID: 33508742 PMCID: PMC7844131 DOI: 10.1016/j.redox.2021.101863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in diet-induced obese mice. Furthermore, Meg3 expression is elevated in human nonalcoholic fatty livers and nonalcoholic steatohepatitis livers, which positively correlates with the expression of CDKN2A encoding p16, an important hallmark of cellular senescence. Meg3 knockdown potentiates obesity-induced insulin resistance and impairs glucose homeostasis. Insulin signaling is reduced by Meg3 knockdown in the liver and, to a lesser extent, in the skeletal muscle, but not in the visceral fat of obese mice. We found that the attenuation of cellular senescence of hepatic endothelium by ablating p53 expression in vascular endothelium can restore impaired glucose homeostasis and insulin signaling in obesity. In conclusion, our data demonstrate that cellular senescence of hepatic endothelium promotes obesity-induced insulin resistance, which is tightly regulated by the expression of Meg3. Our results suggest that manipulation of Meg3 expression may represent a novel approach to managing obesity-associated hepatic endothelial senescence and insulin resistance. •LncRNA Meg3 is a top differentially expressed lncRNA in the vascular endothelium in obese mice. •Meg3 knockdown causes cellular senescence of HUVECs and of hepatic endothelium in obese mice. •Meg3 expression is elevated in human NAFLD and NASH Nlivers, and correlates with CDKN2A expression -a senescent marker. •Meg3 knockdown impairs glucose homeostasis and insulin signaling in obese mice. •Attenuation of hepatic endothelial senescence improves glucose homeostasis and insulin signaling in obese mice.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | | | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Sarah L Schlichte
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA; Nebraska Redox Biology Center, University of Nebraska - Lincoln, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Redox Biology Center, University of Nebraska - Lincoln, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, USA; Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
53
|
Bao L, Yang C, Shi Z, Wang Z, Jiang D. Analysis of Serum Metabolomics in Obese Mice Induced by High-Fat Diet. Diabetes Metab Syndr Obes 2021; 14:4671-4678. [PMID: 34876827 PMCID: PMC8643162 DOI: 10.2147/dmso.s337979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Obesity is a public health problem all over the world, and dietary habits are considered one of the important reasons. METHODS In this study, serum metabolites of mice fed a normal or high-fat diet (HFD) were analyzed using UPLC-QTOF-MS. RESULTS A significant increase in body weight was noted in HFD mice. The HFD and control groups were significantly different from each other on OPLS-DA scores. The major metabolites contributing to obesity were lipid metabolites (phosphatidylcholines, phosphatidylethanolamine, and lysophosphatidylcholines). In addition, this study revealed that glycerophospholipid metabolism, α-linolenic acid metabolism, and linoleic acid metabolism were related to obesity and obesity-associated diseases. CONCLUSION These results can be used to better understand obesity and assess its risk, which will provide new ideas for treatment.
Collapse
Affiliation(s)
- Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Zhanrong Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Zhanrong Wang Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing100038, People’s Republic of China, Tel +86-10-6392-6405 Email
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
- Dechun Jiang Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing100038, People’s Republic of China, Tel +86-10-6392-6723 Email
| |
Collapse
|
54
|
Low doses of eriocitrin attenuate metabolic impairment of glucose and lipids in ongoing obesogenic diet in mice. J Nutr Sci 2020; 9:e59. [PMID: 33489104 PMCID: PMC7801930 DOI: 10.1017/jns.2020.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Eriocitrin is a citrus flavonoid with a high capacity to reduce the oxidative stress related to metabolic disorders and obesity. We assessed the effects of low doses of eriocitrin on the oxidative stress, inflammation, and metabolism of glucose and lipids of high-fat diet (HFD)-fed obese mice. Fifty male C57BL/6J mice were randomly assigned into five groups (n 10). The mice were fed an HFD (45 % kcal from fat, i.e. lard) for 4 weeks for obesity induction. After this period, the mice continued receiving the same HFD, but supplemented with eriocitrin at 10, 25 or 100 mg/kg body weight (bw) for an additional 4 weeks. Control groups were fed with standard diet (10 % kcal of fat, i.e. soy oil) or with HFD without eriocitrin, for eight consecutive weeks. At the end of the study, mice supplemented with eriocitrin showed lower levels of blood serum glucose and blood and liver triacylglycerols (P < 0⋅05). There was also improved levels of insulin, HOMA-IR, total-cholesterol, resistin and lipid peroxidation in the supplemented mice. It was concluded that the 25 mg dose of eriocitrin improved all the parameters studied and had positive effects on oxidative stress, systemic inflammation and metabolism of lipids and glucose in general.
Collapse
|
55
|
Herring Milt and Herring Milt Protein Hydrolysate Are Equally Effective in Improving Insulin Sensitivity and Pancreatic Beta-Cell Function in Diet-Induced Obese- and Insulin-Resistant Mice. Mar Drugs 2020; 18:md18120635. [PMID: 33322303 PMCID: PMC7763884 DOI: 10.3390/md18120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Although genetic predisposition influences the onset and progression of insulin resistance and diabetes, dietary nutrients are critical. In general, protein is beneficial relative to carbohydrate and fat but dependent on protein source. Our recent study demonstrated that 70% replacement of dietary casein protein with the equivalent quantity of protein derived from herring milt protein hydrolysate (HMPH; herring milt with proteins being enzymatically hydrolyzed) significantly improved insulin resistance and glucose homeostasis in high-fat diet-induced obese mice. As production of protein hydrolysate increases the cost of the product, it is important to determine whether a simply dried and ground herring milt product possesses similar benefits. Therefore, the current study was conducted to investigate the effect of herring milt dry powder (HMDP) on glucose control and the associated metabolic phenotypes and further to compare its efficacy with HMPH. Male C57BL/6J mice on a high-fat diet for 7 weeks were randomized based on body weight and blood glucose into three groups. One group continued on the high-fat diet and was used as the insulin-resistant/diabetic control and the other two groups were given the high-fat diet modified to have 70% of casein protein being replaced with the same amount of protein from HMDP or HMPH. A group of mice on a low-fat diet all the time was used as the normal control. The results demonstrated that mice on the high-fat diet increased weight gain and showed higher blood concentrations of glucose, insulin, and leptin, as well as impaired glucose tolerance and pancreatic β-cell function relative to those on the normal control diet. In comparison with the high-fat diet, the replacement of 70% dietary casein protein with the same amount of HMDP or HMPH protein decreased weight gain and significantly improved the aforementioned biomarkers, insulin sensitivity or resistance, and β-cell function. The HMDP and HMPH showed similar effects on every parameter except blood lipids where HMDP decreased total cholesterol and non-HDL-cholesterol levels while the effect of HMPH was not significant. The results demonstrate that substituting 70% of dietary casein protein with the equivalent amount of HMDP or HMPH protein protects against obesity and diabetes, and HMDP is also beneficial to cholesterol homeostasis.
Collapse
|
56
|
Early Pro-Inflammatory Remodeling of HDL Proteome in a Model of Diet-Induced Obesity: 2H 2O-Metabolic Labeling-Based Kinetic Approach. Int J Mol Sci 2020; 21:ijms21207472. [PMID: 33050482 PMCID: PMC7656294 DOI: 10.3390/ijms21207472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Mice fed a high-fat diet for 12 weeks or longer develop hyperglycemia, insulin resistance, dyslipidemia, and fatty liver. Additionally, a high-fat diet induces inflammation that remodels and affects the anti-inflammatory and antiatherogenic property of the high-density lipoprotein (HDL). However, the precise time course of metabolic disease progression and HDL remodeling remains unclear. Short-term (four weeks) high-fat feeding (60% fat calories) was performed in wild-type male C57BL/6J mice to gain insights into the early metabolic disease processes in conjunction with a HDL proteome dynamics analysis using a heavy water metabolic labeling approach. The high-fat diet-fed mice developed hyperglycemia, impaired glucose tolerance, hypercholesterolemia without hypertriglyceridemia or hepatic steatosis. A plasma HDL proteome dynamics analysis revealed increased turnover rates (and reduced half-lives) of several acute-phase response proteins involved in innate immunity, including complement C3 (12.77 ± 0.81 vs. 9.98 ± 1.20 h, p < 0.005), complement factor B (12.71 ± 1.01 vs. 10.85 ± 1.04 h, p < 0.05), complement Factor H (19.60 ± 1.84 vs. 16.80 ± 1.58 h, p < 0.05), and complement factor I (25.25 ± 1.29 vs. 19.88 ± 1.50 h, p < 0.005). Our findings suggest that an early immune response-induced inflammatory remodeling of the plasma HDL proteome precedes the diet-induced steatosis and dyslipidemia.
Collapse
|
57
|
Monarca RI, Speakman JR, Mathias ML. Effects of predation risk on the body mass regulation of growing wood mice. J Zool (1987) 2020. [DOI: 10.1111/jzo.12811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R. I. Monarca
- CESAM – Center for Environmental and Marine Studies Universidade de Aveiro Aveiro Portugal
- Departamento de Biologia Animal Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - J. R. Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - M. L. Mathias
- CESAM – Center for Environmental and Marine Studies Universidade de Aveiro Aveiro Portugal
- Departamento de Biologia Animal Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
58
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
59
|
Mokgalaboni K, Dludla PV, Mkandla Z, Mutize T, Nyambuya TM, Mxinwa V, Nkambule BB. Differential expression of glycoprotein IV on monocyte subsets following high-fat diet feeding and the impact of short-term low-dose aspirin treatment. Metabol Open 2020; 7:100047. [PMID: 33015602 PMCID: PMC7520890 DOI: 10.1016/j.metop.2020.100047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To assess the levels of glycoprotein GPIV (CD36) expression on peripheral blood monocyte subsets, in a mouse model of glucose intolerance. Moreover, to determine the effect of; low-dose aspirin (LDA) alone, LDA combined with metformin, or clopidogrel alone, on the expression of CD36 on subsets of circulating monocytes. METHOD The study consisted of two experimental phases. In experiment one, the mice (n = 14) were randomised to receive a low-fat diet (LFD) or a high-fat diet (HFD) for eight weeks. Whereas the secondary phase of the experiment, comprised of twenty-four HFD-fed mice treated with LDA alone (3 mg/kg), or in combination with metformin (150 mg/kg), or clopidogrel alone (10 mg/kg) for six weeks. The surface expression of CD36 on monocytes was measured using flow cytometry. RESULT The levels of CD36 expression on monocytes were upregulated in the HFD-fed compared to LFD-fed group (p < 0.05). In addition, HFD group showed; no significant changes in body weight (p = 0.3848), however, blood glucose (p = 0.0002) and insulin (p = 0.0360) levels were markedly increased following HFD-feeding. Interestingly, all treatments reduced the expression of CD36 on monocytes, decreased fasting blood glucose levels (p = 0.0024) and increased circulating monocyte levels (p = 0.0217) when compared to the untreated HFD group. Moreover, treatment with LDA alone increased basophils levels (p = 0.0272), while when combined with metformin showed an improved effect in enhancing eosinophil levels (p = 0.0302). CONCLUSION HFD-feeding increased the expression of CD36 on monocyte subsets. LDA as a monotherapy or combined with metformin was as effective as clopidogrel monotherapy, in downregulating the expression of CD36 on monocyte subsets. These treatments may be of relevance in preventing cardiovascular complications associated with impaired glucose tolerance.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform (BRIP), The South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
60
|
Khajuria DK, Soliman M, Elfar JC, Lewis GS, Abraham T, Kamal F, Elbarbary RA. Aberrant structure of fibrillar collagen and elevated levels of advanced glycation end products typify delayed fracture healing in the diet-induced obesity mouse model. Bone 2020; 137:115436. [PMID: 32439570 PMCID: PMC7938873 DOI: 10.1016/j.bone.2020.115436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Impaired fracture healing in patients with obesity-associated type 2 diabetes (T2D) is a significant unmet clinical problem that affects millions of people worldwide. However, the underlying causes are poorly understood. Additionally, limited clinical information is available on how pre-diabetic hyperglycemia in obese individuals impacts bone healing. Here, we use the diet-induced obesity (DIO) mouse (C57BL/6J) model to study the impact of obesity-associated pre-diabetic hyperglycemia on bone healing and fibrillar collagen organization as healing proceeds from one phase to another. We show that DIO mice exhibit defective healing characterized by reduced bone mineral density, bone volume, and bone volume density. Differences in the healing pattern between lean and DIO mice occur early in the healing process as evidenced by faster resorption of the fibrocartilaginous callus in DIO mice. However, the major differences between lean and DIO mice occur during the later phases of endochondral ossification and bone remodeling. Comprehensive analyses of fibrillar collagen microstructure and expression pattern during these phases, using a set of complementary techniques that include histomorphometry, immunofluorescence staining, and second harmonic generation microscopy, demonstrate significant defects in DIO mice. Defects include strikingly sparse and disorganized collagen fibers, as well as pathological accumulation of unfolded collagen triple helices. We also demonstrate that DIO-associated changes in fibrillar collagen structure are attributable, at least in part, to the accumulation of advanced glycation end products, which increase the collagen-fiber crosslink density. These major changes impair fibrillar collagens functions, culminating in defective callus mineralization, remodeling, and strength. Our data extend the understanding of mechanisms by which obesity and its associated hyperglycemia impair fracture healing and underline defective fibrillar collagen microstructure as a novel and important contributor.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Thomas Abraham
- Microscopy Imaging Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Neural and Behavioural Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
61
|
Obesity Drives Delayed Infarct Expansion, Inflammation, and Distinct Gene Networks in a Mouse Stroke Model. Transl Stroke Res 2020; 12:331-346. [PMID: 32588199 DOI: 10.1007/s12975-020-00826-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
Obesity is associated with chronic peripheral inflammation, is a risk factor for stroke, and causes increased infarct sizes. To characterize how obesity increases infarct size, we fed a high-fat diet to wild-type C57BL/6J mice for either 6 weeks or 15 weeks and then induced distal middle cerebral artery strokes. We found that infarct expansion happened late after stroke. There were no differences in cortical neuroinflammation (astrogliosis, microgliosis, or pro-inflammatory cytokines) either prior to or 10 h after stroke, and also no differences in stroke size at 10 h. However, by 3 days after stroke, animals fed a high-fat diet had a dramatic increase in microgliosis and astrogliosis that was associated with larger strokes and worsened functional recovery. RNA sequencing revealed a dramatic increase in inflammatory genes in the high-fat diet-fed animals 3 days after stroke that were not present prior to stroke. Genetic pathways unique to diet-induced obesity were primarily related to adaptive immunity, extracellular matrix components, cell migration, and vasculogenesis. The late appearance of neuroinflammation and infarct expansion indicates that there may be a therapeutic window between 10 and 36 h after stroke where inflammation and obesity-specific transcriptional programs could be targeted to improve outcomes in people with obesity and stroke.
Collapse
|
62
|
Marei WFA, Smits A, Mohey-Elsaeed O, Pintelon I, Ginneberge D, Bols PEJ, Moerloose K, Leroy JLMR. Differential effects of high fat diet-induced obesity on oocyte mitochondrial functions in inbred and outbred mice. Sci Rep 2020; 10:9806. [PMID: 32555236 PMCID: PMC7299992 DOI: 10.1038/s41598-020-66702-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal obesity can cause reduced oocyte quality and subfertility. Mitochondrial dysfunction plays a central role here, and most often inbred mouse models are used to study these pathways. We hypothesized that the mouse genetic background can influence the impact of high fat diet (HFD)-induced obesity on oocyte quality. We compared the inbred C57BL/6 (B6) and the outbred Swiss strains after feeding a HFD for 13w. HFD-mice had increased body weight gain, hypercholesterolemia, and increased oocyte lipid droplet (LD) accumulation in both strains. LD distribution was strain-dependent. In Swiss mouse oocytes, HFD significantly increased mitochondrial inner membrane potential (MMP), reactive oxygen species concentrations, mitochondrial ultrastructural abnormalities (by 46.4%), and endoplasmic reticulum (ER) swelling, and decreased mtDNA copy numbers compared with Swiss controls (P < 0.05). Surprisingly, B6-control oocytes exhibited signs of cellular stress compared to the Swiss controls (P < 0.05); upregulated gene expression of ER- and oxidative stress markers, high mitochondrial ultrastructural abnormalities (48.6%) and ER swelling. Consequently, the HFD impact on B6 oocyte quality was less obvious, with 9% higher mitochondrial abnormalities, and no additive effect on MMP and stress marks compared to B6 control (P > 0.1). Interestingly, mtDNA in B6-HFD oocytes was increased suggesting defective mitophagy. In conclusion, we show evidence that the genetic background or inbreeding can affect mitochondrial functions in oocytes and may influence the impact of HFD on oocyte quality. These results should create awareness when choosing and interpreting data obtained from different mouse models before extrapolating to human applications.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium. .,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Anouk Smits
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Laboratory of Cell Biology & Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Daisy Ginneberge
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter E J Bols
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | - Katrien Moerloose
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
63
|
Hendley MA, Isely C, Murphy KP, Hall HE, Annamalai P, Gower RM. Scaffold Implant Into the Epididymal Adipose Tissue Protects Mice From High Fat Diet Induced Ectopic Lipid Accumulation and Hyperinsulinemia. Front Bioeng Biotechnol 2020; 8:562. [PMID: 32612981 PMCID: PMC7308717 DOI: 10.3389/fbioe.2020.00562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Ectopic lipid accumulation, the deposition of lipids in lean tissue, is linked to type 2 diabetes through an association with insulin resistance. It occurs when adipose tissue fails to meet lipid storage needs and there is lipid spillover into tissues not equipped to store them. Ectopic lipid contributes to organ dysfunction because lipids can interfere with insulin signaling and other signaling pathways. Clinical studies indicate that decreasing ectopic lipids through diet and exercise is effective in treating type 2 diabetes; however, its prevalence continues to rise. We propose that strategies to improve lipid handling in the adipose tissue would be adjunctive to healthy lifestyle modification and may address difficulties in treating type 2 diabetes and other syndromes spurred by ectopic lipid. Herein, we investigate biomaterial implants as a means to increase lipid utilization in adipose tissue through the recruitment of highly metabolic cells. Poly(lactide-co-glycolide) scaffolds were implanted into the epididymal fat of mice fed a high fat diet that overwhelms the adipose tissue and promotes ectopic lipid accumulation. Over 5 weeks, mice with scaffolds gained less weight compared to mice without scaffolds and were protected from hyperinsulinemia. These effects correlated with a 53% decrease in triglyceride in the gastrocnemius and a 25% decrease in the liver. Scaffolds increased CPT1A protein levels in the epididymal fat and histology revealed high expression of CTP1A in the cells infiltrating the scaffold relative to the rest of the fat pad. In addition, lacing the scaffold with resveratrol increased CPT1A expression in the epididymal fat over scaffolds with no drug; however, this did not result in further decreases in weight gain or ectopic lipid. Mechanistically, we propose that the cellular activity caused by scaffold implant mitigates the lipid load imposed by the high fat diet and leads to a substantial decrease in lipid accumulation in the muscle and liver. In conclusion, this study establishes that a tissue engineering approach to modulate lipid utilization in the epididymal fat tissue can mitigate ectopic lipid accumulation in mice fed a high fat diet with positive effects on weight gain and whole-body insulin resistance.
Collapse
Affiliation(s)
- Michael A Hendley
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, United States
| | - Kendall P Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, United States
| | - Hayley E Hall
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States
| | - Prakasam Annamalai
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, United States
| | - R Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States.,Department of Chemical Engineering, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
64
|
Parikh D, Riascos-Bernal DF, Egaña-Gorroño L, Jayakumar S, Almonte V, Chinnasamy P, Sibinga NES. Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci Rep 2020; 10:3594. [PMID: 32107417 PMCID: PMC7046694 DOI: 10.1038/s41598-020-60433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
The allograft inflammatory factor (AIF) gene family consists of two identified paralogs – AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.
Collapse
Affiliation(s)
- Dippal Parikh
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Dario F Riascos-Bernal
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Lander Egaña-Gorroño
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.,Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Smitha Jayakumar
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Vanessa Almonte
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Prameladevi Chinnasamy
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Nicholas E S Sibinga
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| |
Collapse
|
65
|
Qin Y, Grimm SA, Roberts JD, Chrysovergis K, Wade PA. Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet. Nat Commun 2020; 11:962. [PMID: 32075973 PMCID: PMC7031266 DOI: 10.1038/s41467-020-14796-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic adaptation to nutritional state requires alterations in gene expression in key tissues. Here, we investigated chromatin interaction dynamics, as well as alterations in cis-regulatory loci and transcriptional network in a mouse model system. Chronic consumption of a diet high in saturated fat, when compared to a diet high in carbohydrate, led to dramatic reprogramming of the liver transcriptional network. Long-range interaction of promoters with distal regulatory loci, monitored by promoter capture Hi-C, was regulated by metabolic status in distinct fashion depending on diet. Adaptation to a lipid-rich diet, mediated largely by nuclear receptors including Hnf4α, relied on activation of preformed enhancer/promoter loops. Adaptation to carbohydrate-rich diet led to activation of preformed loops and to de novo formation of new promoter/enhancer interactions. These results suggest that adaptation to nutritional changes and metabolic stress occurs through both de novo and pre-existing chromatin interactions which respond differently to metabolic signals. Metabolic adaptation to different diets results in changes to gene expression. Here, the authors characterise the chromatin landscape and transcriptional network in mice on a diet of high saturated fat, compared to a diet high in carbohydrate, finding a dramatic reprogramming of the liver transcriptional network.
Collapse
Affiliation(s)
- Yufeng Qin
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - John D Roberts
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kaliopi Chrysovergis
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
66
|
Dick BP, McMahan R, Knowles T, Becker L, Gharib SA, Vaisar T, Wietecha T, O'Brien KD, Bornfeldt KE, Chait A, Kim F. Hematopoietic Cell-Expressed Endothelial Nitric Oxide Protects the Liver From Insulin Resistance. Arterioscler Thromb Vasc Biol 2020; 40:670-681. [PMID: 31996027 DOI: 10.1161/atvbaha.119.313648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mice genetically deficient in endothelial nitric oxide synthase (Nos3-/-) have fasting hyperinsulinemia and hepatic insulin resistance, indicating the importance of Nos3 (nitric oxide synthase) in maintaining metabolic homeostasis. Although the current paradigm holds that these metabolic effects are derived specifically from the expression of Nos3 in the endothelium, it has been established that bone marrow-derived cells also express Nos3. The aim of this study was to investigate whether bone marrow-derived cell Nos3 is important in maintaining metabolic homeostasis. Approach and Results: To test the hypothesis that bone marrow-derived cell Nos3 contributes to metabolic homeostasis, we generated chimeric male mice deficient or competent for Nos3 expression in circulating blood cells. These mice were placed on a low-fat diet for 5 weeks, a time period which is known to induce hepatic insulin resistance in global Nos3-deficient mice but not in wild-type C57Bl/6 mice. Surprisingly, we found that the absence of Nos3 in the bone marrow-derived component is associated with hepatic insulin resistance and that restoration of Nos3 in the bone marrow-derived component in global Nos3-deficient mice is sufficient to restore hepatic insulin sensitivity. Furthermore, we found that overexpression of Nos3 in bone marrow-derived component in wild-type mice attenuates the development of hepatic insulin resistance during high-fat feeding. Finally, compared with wild-type macrophages, the loss of macrophage Nos3 is associated with increased inflammatory responses to lipopolysaccharides and reduced anti-inflammatory responses to IL-4, a macrophage phenotype associated with the development of hepatic and systemic insulin resistance. CONCLUSIONS These results would suggest that the metabolic and hepatic consequences of high-fat feeding are mediated by loss of Nos3/nitric oxide actions in bone marrow-derived cells, not in endothelial cells.
Collapse
Affiliation(s)
- Brian P Dick
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Ryan McMahan
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Taft Knowles
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, IL (L.B.)
| | - Sina A Gharib
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomas Vaisar
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomasz Wietecha
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Kevin D O'Brien
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Alan Chait
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Francis Kim
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| |
Collapse
|
67
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
68
|
Oakie A, Zhou L, Rivers S, Cheung C, Li J, Wang R. Postnatal knockout of beta cell insulin receptor impaired insulin secretion in male mice exposed to high-fat diet stress. Mol Cell Endocrinol 2020; 499:110588. [PMID: 31541682 DOI: 10.1016/j.mce.2019.110588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
The presence of insulin receptor (IR) on insulin-secreting beta cells suggests an autocrine regulatory role for insulin in its own signalling. Congenital beta cell-specific IR knockout (βIRKO) mouse studies have demonstrated the development of age-dependent glucose intolerance. We investigated the role of beta cell IR signalling specifically during postnatal life following undisturbed prenatal pancreatic development and maturation. We utilized a tamoxifen-inducible mouse insulin 1 promoter (MIP) driven Cre recombinase IR knockout mouse model (MIP-βIRKO) to achieve partial knockout of IR in islets and determine the functional role of beta cell IR in adult mice fed a control normal diet (ND) or 60% high-fat diet (HFD). At 24 weeks of age, MIP-βIRKO ND mice maintained glucose tolerance, insulin release, and unchanged beta cell mass when compared to control ND mice. In contrast, 24-week-old MIP-βIRKO mice demonstrated significant glucose intolerance and lower insulin release after 18 weeks of HFD feeding. A reduction in beta cell soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression, phosphorylated AktS473 and P70S6K1T389, and glucose transporter 2 (GLUT2) expression were also identified in MIP-βIRKO HFD islets. Overall, the postnatal knockout of beta cell IR in HFD-fed mice resulted in decreased expression of beta cell glucose-sensing and exocytotic proteins and a reduction in intracellular signalling. These findings highlight that IR expression in the adult islet is required to maintain beta cell function under hyperglycemic stress.
Collapse
Affiliation(s)
- Amanda Oakie
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Liangyi Zhou
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Sydney Rivers
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Christy Cheung
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Jinming Li
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Physiology and Pharmacology, and University of Western Ontario, London, ON, N6C 2V5, Canada; Department of Medicine, University of Western Ontario, London, ON, N6C 2V5, Canada.
| |
Collapse
|
69
|
Parida IS, Takasu S, Ito J, Ikeda R, Yamagishi K, Kimura T, Eitsuka T, Nakagawa K. Supplementation ofBacillus amyloliquefaciensAS385 culture broth powder containing 1-deoxynojirimycin in a high-fat diet altered the gene expressions related to lipid metabolism and insulin signaling in mice epididymal white adipose tissue. Food Funct 2020; 11:3926-3940. [DOI: 10.1039/d0fo00271b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplementation ofBacillus amyloliquefaciensAS385 culture broth powder in high-fat diet restored adiposity, glucose tolerance and insulin sensitivity in mice.
Collapse
Affiliation(s)
- Isabella Supardi Parida
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Soo Takasu
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Ryoichi Ikeda
- Food Research Laboratory
- Asahimatsu Foods Co
- Ltd
- Iida
- Nagano
| | - Kenji Yamagishi
- Food Research Institute (NFRI)
- National Agriculture and Food Research Organization (NARO)
- Tsukuba
- Japan
| | - Toshiyuki Kimura
- Food Research Institute (NFRI)
- National Agriculture and Food Research Organization (NARO)
- Tsukuba
- Japan
| | - Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
70
|
Wang P, Shao X, Bao Y, Zhu J, Chen L, Zhang L, Ma X, Zhong XB. Impact of obese levels on the hepatic expression of nuclear receptors and drug-metabolizing enzymes in adult and offspring mice. Acta Pharm Sin B 2020; 10:171-185. [PMID: 31993314 PMCID: PMC6976990 DOI: 10.1016/j.apsb.2019.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity-associated conditions raises new challenges in clinical medication. Although altered expression of drug-metabolizing enzymes (DMEs) has been shown in obesity, the impacts of obese levels (overweight, obesity, and severe obesity) on the expression of DMEs have not been elucidated. Especially, limited information is available on whether parental obese levels affect ontogenic expression of DMEs in children. Here, a high-fat diet (HFD) and three feeding durations were used to mimic different obese levels in C57BL/6 mice. The hepatic expression of five nuclear receptors (NRs) and nine DMEs was examined. In general, a trend of induced expression of NRs and DMEs (except for Cyp2c29 and 3a11) was observed in HFD groups compared to low-fat diet (LFD) groups. Differential effects of HFD on the hepatic expression of DMEs were found in adult mice at different obese levels. Family-based dietary style of an HFD altered the ontogenic expression of DMEs in the offspring older than 15 days. Furthermore, obese levels of parental mice affected the hepatic expression of DMEs in offspring. Overall, the results indicate that obese levels affected expression of the DMEs in adult individuals and that of their children. Drug dosage might need to be optimized based on the obese levels.
Collapse
Key Words
- 18-HA, adult mice fed with 18 weeks HFD
- 18-LA, adult mice fed with 18 weeks LFD
- 4-HA, adult mice fed with 4 weeks HFD
- 4-LA, adult mice fed with 4 weeks LFD
- 7-ER, 7-ethoxyresorufin
- 8-HA, adult mice fed with 8 weeks HFD
- 8-LA, adult mice fed with 8 weeks LFD
- AhR, aryl hydrocarbon receptor
- BMI, body mass index
- CAR, constitutive androstane receptor
- CHZ, chlorzoxazone
- CYP2E1, cytochrome P450 2E1
- DIO, diet-induced obesity
- DMEs, drug-metabolizing enzymes
- Diet-induced obesity
- Drug-metabolizing enzymes
- EFV, efavirenz
- Gapdh, glyceraldehyde-3-phosphate dehydrogenase
- HFD, high-fat diet
- HNF4α, hepatocyte nuclear factor 4 alpha
- High-fat diet
- LFD, low-fat diet
- MDZ, midazolam
- MPA, mobile phase A
- MPB, mobile phase B
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NRs, nuclear receptors
- Nuclear receptors
- O-18-HA, offspring from parental mice fed with 18 weeks HFD
- O-18-LA, offspring from parental mice fed with 18 weeks LFD
- O-4-HA, offspring from parental mice fed with 4 weeks HFD
- O-4-LA, offspring from parental mice fed with 4 weeks LFD
- O-8-HA, offspring from parental mice fed with 8 weeks HFD
- O-8-LA, offspring from parental mice fed with 8 weeks LFD
- Ontogenic expression
- Overweight
- PBS, phosphate-buffered saline
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane X receptor
- RSF, resorufin
- RT-qPCR, real-time quantitative PCR
- SD, standard deviation
- SULT1A1, sulfotransferase 1A1
- UGT1A1, uridine diphosphate glucuronosyltransferase 1A1
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xueyan Shao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
71
|
Freire-Regatillo A, Fernández-Gómez MJ, Díaz F, Barrios V, Sánchez-Jabonero I, Frago LM, Argente J, García-Segura LM, Chowen JA. Sex differences in the peripubertal response to a short-term, high-fat diet intake. J Neuroendocrinol 2020; 32:e12756. [PMID: 31179596 DOI: 10.1111/jne.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Abstract
Obesity is one of the most important health problems facing developed countries because being overweight is associated with a higher incidence of type 2 diabetes, cardiovascular disease and cancer, as well as other comorbidities. Although increased weight gain results from a combination of poor dietary habits and decreased energy expenditure, not all individuals have equal propensities to gain weight or to develop secondary complications of obesity. This is partially a result not only of genetics, including sex, but also the time during which an individual is exposed to an obesogenic environment. In the present study, we have compared the response of male and female mice to short-term exposure to a high-fat diet (HFD) or a low-fat diet during the peripubertal period (starting at 42 days of age) because this is a stage of dramatic hormonal and metabolic modifications. After 1 week on a HFD, there was no significant increase in body weight, although females significantly increased their energy intake. Serum leptin levels increased in both sexes, even though no change in fat mass was detected. Glyceamia and homeostasis model assessment increased in males, suggesting a rapid change in glucose metabolism. Hypothalamic pro-opiomelanocortin mRNA levels were significantly higher in females on a HFD compared to all other groups, which may be an attempt to reduce their increased energy intake. Hypothalamic inflammation and gliosis have been implicated in the development of secondary complications of obesity; however, no indication of activation of inflammatory processes or gliosis was found in response to 1 week of HFD in the hypothalamus, hippocampus or cerebellum of these young mice. These results indicate that there are both sex and age effects in the response to poor dietary intake because peripubertal male and female mice respond differently to short-term dietary changes and this response is different from that reported in adult rodents.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
| | - María J Fernández-Gómez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
| | | | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- CIBERFES (Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable), Instituto Carlos III, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición), Instituto Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
72
|
Serum Amyloid P and a Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin Ligand Inhibit High-Fat Diet-Induced Adipose Tissue and Liver Inflammation and Steatosis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2400-2413. [PMID: 31539521 DOI: 10.1016/j.ajpath.2019.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
High-fat diet (HFD)-induced inflammation is associated with a variety of health risks. The systemic pentraxin serum amyloid P (SAP) inhibits inflammation. SAP activates the high-affinity IgG receptor Fcγ receptor I (FcγRI; CD64) and the lectin receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). Herein, we show that for mice on an HFD, injections of SAP and a synthetic CD209 ligand (1866) reduced HFD-increased adipose and liver tissue inflammation, adipocyte differentiation, and lipid accumulation in adipose tissue. HFD worsened glucose tolerance test results and caused increased adipocyte size; for mice on an HFD, SAP improved glucose tolerance test results and reduced adipocyte size. Mice on an HFD had elevated serum levels of IL-1β, IL-23, interferon (IFN)-β, IFN-γ, monocyte chemoattractant protein 1 [MCP-1; chemokine (C-C motif) ligand 2 (CCL2)], and tumor necrosis factor-α. SAP reduced serum levels of IL-23, IFN-β, MCP-1, and tumor necrosis factor-α, whereas 1866 reduced IFN-γ. In vitro, SAP, but not 1866, treated cells isolated from white fat tissue (stromal vesicular fraction) produced the anti-inflammatory cytokine IL-10. HFD causes steatosis, and both SAP and 1866 reduced it. Conversely, compared with control mice, SAP knockout mice fed on a normal diet had increased white adipocyte cell sizes, increased numbers of inflammatory cells in adipose and liver tissue, and steatosis; and these effects were exacerbated on an HFD. SAP and 1866 may inhibit some, but not all, of the effects of a high-fat diet.
Collapse
|
73
|
Flanagan TW, Sebastian MN, Battaglia DM, Foster TP, Maillet EL, Nichols CD. Activation of 5-HT 2 Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice. Sci Rep 2019; 9:13444. [PMID: 31530895 PMCID: PMC6748996 DOI: 10.1038/s41598-019-49987-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/25/2019] [Indexed: 01/14/2023] Open
Abstract
Coronary artery disease (CAD) is a progressive cardiovascular syndrome characterized by cholesterol-induced focal arterial lesions that impair oxygen delivery to the heart. As both innate and adaptive immune cells play critical roles in the formation and progression of arterial plaques and endothelial cell dysfunction, CAD is commonly viewed as a chronic inflammatory disorder. Our lab has previously discovered that 5-HT2A receptor activation with the 5-HT2 receptor selective agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] has potent anti-inflammatory activity in both cell culture and whole animal models. Here we have examined the putative therapeutic effects of (R)-DOI in the ApoE−/− high fat model of cardiovascular disease. Subcutaneously implanted osmotic minipumps were used to infuse sustained low rates (0.15 μg / hr) of (R)-DOI∙HCl to mice fed a high-fat “Western” diet. (R)-DOI treated mice had significant reductions in expression levels of mRNA for inflammatory markers like Il6 in vascular tissue, normalized glucose homeostasis, and reduced circulating cholesterol levels. As cardiovascular disease is a leading cause of death both globally and in the Western world, activation of 5-HT2A receptors at sub-behavioral levels may represent a new strategy to treat inflammation-based cardiovascular disease.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Melaine N Sebastian
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Diana M Battaglia
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Emeline L Maillet
- Eleusis Benefit Corporation 11 East 44th St., Suite 104, New York, NY, 10017, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA.
| |
Collapse
|
74
|
McLean FH, Campbell FM, Sergi D, Grant C, Morris AC, Hay EA, MacKenzie A, Mayer CD, Langston RF, Williams LM. Early and reversible changes to the hippocampal proteome in mice on a high-fat diet. Nutr Metab (Lond) 2019; 16:57. [PMID: 31462902 PMCID: PMC6708244 DOI: 10.1186/s12986-019-0387-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background The rise in global obesity makes it crucial to understand how diet drives obesity-related health conditions, such as premature cognitive decline and Alzheimer's disease (AD). In AD hippocampal-dependent episodic memory is one of the first types of memory to be impaired. Previous studies have shown that in mice fed a high-fat diet (HFD) episodic memory is rapidly but reversibly impaired. Methods In this study we use hippocampal proteomics to investigate the effects of HFD in the hippocampus. Mice were fed either a low-fat diet (LFD) or HFD containing either 10% or 60% (Kcal) from fat for 3 days, 1 week or 2 weeks. One group of mice were fed the HFD for 1 week and then returned to the LFD for a further week. Primary hippocampal cultures were challenged with palmitic acid (PA), the most common long-chain saturated FA in the Western diet, and with the anti-inflammatory, n-3 polyunsaturated FA, docosahexaenoic acid (DHA), or a combination of the two to ascertain effects of these fatty acids on dendritic structure. Results HFD-induced changes occur in hippocampal proteins involved in metabolism, inflammation, cell stress, cell signalling, and the cytoskeleton after 3 days, 1 week and 2 weeks of HFD. Replacement of the HFD after 1 week by a low-fat diet (LFD) for a further week resulted in partial recovery of the hippocampal proteome. Microtubule-associated protein 2 (MAP2), one of the earliest proteins changed, was used to investigate the impact of fatty acids (FAs) on hippocampal neuronal morphology. PA challenge resulted in shorter and less arborised dendrites while DHA had no effect when applied alone but counteracted the effects of PA when FAs were used in combination. Dendritic morphology recovered when PA was removed from the cell culture media. Conclusion This study provides evidence for the rapid and reversible effects of diet on the hippocampal proteome and the impact of PA and DHA on dendritic structure.
Collapse
Affiliation(s)
- Fiona H McLean
- 1Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY UK.,2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Fiona M Campbell
- 2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Domenico Sergi
- 2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Christine Grant
- 2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Amanda C Morris
- 2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Elizabeth A Hay
- 3Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Alasdair MacKenzie
- 3Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Claus D Mayer
- 4Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Rosamund F Langston
- 1Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY UK
| | - Lynda M Williams
- 2Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| |
Collapse
|
75
|
Herring Milt Protein Hydrolysate Improves Insulin Resistance in High-Fat-Diet-Induced Obese Male C57BL/6J Mice. Mar Drugs 2019; 17:md17080456. [PMID: 31382619 PMCID: PMC6724050 DOI: 10.3390/md17080456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Protein consumption influences glucose homeostasis, but the effect depends on the type and origin of proteins ingested. The present study was designed to determine the effect of herring milt protein hydrolysate (HPH) on insulin function and glucose metabolism in a mouse model of diet-induced obesity. Male C57BL/6J mice were pretreated with a low-fat diet or a high-fat diet for 6 weeks. Mice on the high-fat diet were divided into four groups where one group continued on the high-fat diet and the other three groups were fed a modified high-fat diet where 15%, 35%, and 70%, respectively, of casein was replaced with an equal percentage of protein derived from HPH. After 10 weeks, mice that continued on the high-fat diet showed significant increases in body weight, blood glucose, insulin, and leptin levels and exhibited impaired oral glucose tolerance, insulin resistance, and pancreatic β-cell dysfunction. Compared to mice fed the high-fat diet, the 70% replacement of dietary casein with HPH protein reduced body weight, semi-fasting blood glucose, fasting blood glucose, insulin, leptin, and cholesterol levels and improved glucose tolerance, homeostasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of β-cell function (HOMA-β) indices. The 35% replacement of dietary casein with HPH protein showed moderate effects, while the 15% replacement of dietary casein with HPH protein had no effects. This is the first study demonstrating that replacing dietary casein with the same amount of protein derived from HPH can prevent high-fat-diet-induced obesity and insulin resistance.
Collapse
|
76
|
Landrier JF, Mounien L, Tourniaire F. Obesity and Vitamin D Metabolism Modifications. J Bone Miner Res 2019; 34:1383. [PMID: 31141222 DOI: 10.1002/jbmr.3739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lourdes Mounien
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | | |
Collapse
|
77
|
Samodien E, Johnson R, Pheiffer C, Mabasa L, Erasmus M, Louw J, Chellan N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol Metab 2019; 27:1-10. [PMID: 31300352 PMCID: PMC6717768 DOI: 10.1016/j.molmet.2019.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The prevalence of obesity and metabolic diseases continues to rise globally. The increased consumption of unhealthy energy-rich diets that are high in fat and sugars results in oxidative stress and inflammation leading to hypothalamic dysfunction, which has been linked with these diseases. Conversely, diets rich in polyphenols, which are phytochemicals known for their antioxidant and anti-inflammatory properties, are associated with a reduced risk for developing metabolic diseases. SCOPE OF REVIEW This review provides an overview of the effects of polyphenols against diet-induced hypothalamic dysfunction with respect to neural inflammation and mitochondrial dysfunction. Results show that polyphenols ameliorate oxidative stress and inflammation within the hypothalamus, thereby improving leptin signaling and mitochondrial biogenesis. Furthermore, they protect against neurodegeneration by decreasing the production of reactive oxygen species and enhancing natural antioxidant defense systems. MAJOR CONCLUSIONS The potential of polyphenols as nutraceuticals against hypothalamic inflammation, mitochondrial dysfunction, and neurodegeneration could hold tremendous value. With hypothalamic inflammation increasing naturally with age, the potential to modulate these processes in order to extend longevity is exciting and warrants exploration. The continued escalation of mental health disorders, which are characterized by heightened neuronal inflammation, necessitates the furthered investigation into polyphenol therapeutic usage in this regard.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
78
|
Haley MJ, Krishnan S, Burrows D, de Hoog L, Thakrar J, Schiessl I, Allan SM, Lawrence CB. Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J Cereb Blood Flow Metab 2019; 39:1026-1037. [PMID: 29171775 PMCID: PMC6545621 DOI: 10.1177/0271678x17744718] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic consumption of diets high in fat leads to obesity and can negatively affect brain function. Rodents made obese by long-term maintenance on a high-fat diet have worse outcome after experimental stroke. High-fat consumption for only three days does not induce obesity but has rapid effects on the brain including memory impairment. However, the effect of brief periods of high-fat feeding or high-fat consumption in the absence of obesity on stroke is unknown. We therefore tested the effect of an acute period of high-fat feeding (three days) in C57B/6 mice on outcome after middle cerebral artery occlusion (MCAo). In contrast to a chronic high-fat diet (7.5 months), an acute high-fat diet had no effect on body weight, adipose tissue, lipid profile or inflammatory markers (in periphery and the brain). Three days of high-fat feeding impaired glucose tolerance, increased plasma glucose and insulin and brain expression of the glucose transporter GLUT-1. Ischaemic damage was increased (48%) in mice fed an acute high-fat diet, and was associated with a further reduction in GLUT-1 in the ischaemic hemisphere. These data demonstrate that only a brief period of high-fat consumption has a negative effect on glucose homeostasis and worsens outcome after ischaemic stroke.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - David Burrows
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Leon de Hoog
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Jamie Thakrar
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Ingo Schiessl
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
79
|
Benzler M, Benzler J, Stoehr S, Hempp C, Rizwan MZ, Heyward P, Tups A. "Insulin-like" effects of palmitate compromise insulin signalling in hypothalamic neurons. J Comp Physiol B 2019; 189:413-424. [PMID: 31123821 DOI: 10.1007/s00360-019-01220-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
Abstract
Saturated fatty acids are implicated in the development of metabolic diseases, including obesity and type 2 diabetes. There is evidence, however, that polyunsaturated fatty acids can counteract the pathogenic effects of saturated fatty acids. To gain insight into the early molecular mechanisms by which fatty acids influence hypothalamic inflammation and insulin signalling, we performed time-course experiments in a hypothalamic cell line, using different durations of treatment with the saturated fatty acid palmitate, and the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). Western blot analysis revealed that palmitate elevated the protein levels of phospho(p)AKT in a time-dependent manner. This effect is involved in the pathogenicity of palmitate, as temporary inhibition of the PI3K/AKT pathway by selective PI3K inhibitors prevented the palmitate-induced attenuation of insulin signalling. Similar to palmitate, DHA also increased levels of pAKT, but to a weaker extent. Co-administration of DHA with palmitate decreased pAKT close to the basal level after 8 h, and prevented the palmitate-induced reduction of insulin signalling after 12 h. The monounsaturated fatty acid oleate had a similar effect on the palmitate-induced attenuation of insulin signalling, the polyunsaturated fatty acid linoleate had no effect. Measurement of the inflammatory markers pJNK and pNFκB-p65 revealed tonic elevation of both markers in the presence of palmitate alone. DHA alone transiently induced elevation of pJNK, returning to basal levels by 12 h treatment. Co-administration of DHA with palmitate prevented palmitate-induced inflammation after 12 h, but not at earlier timepoints.
Collapse
Affiliation(s)
- Martin Benzler
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Jonas Benzler
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Sigrid Stoehr
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Cindy Hempp
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Mohammed Z Rizwan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Phil Heyward
- Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Alexander Tups
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany. .,Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
80
|
Honce R, Schultz-Cherry S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 2019; 10:1071. [PMID: 31134099 PMCID: PMC6523028 DOI: 10.3389/fimmu.2019.01071] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of obesity has come an increasing awareness of its impact on communicable disease. As a consequence of the 2009 H1N1 influenza A virus pandemic, obesity was identified for the first time as a risk factor for increased disease severity and mortality in infected individuals. Over-nutrition that results in obesity causes a chronic state of meta-inflammation with systemic implications for immunity. Obese hosts exhibit delayed and blunted antiviral responses to influenza virus infection, and they experience poor recovery from the disease. Furthermore, the efficacy of antivirals and vaccines is reduced in this population and obesity may also play a role in altering the viral life cycle, thus complementing the already weakened immune response and leading to severe pathogenesis. Case studies and basic research in human cohorts and animal models have highlighted the prolonged viral shed in the obese host, as well as a microenvironment that permits the emergence of virulent minor variants. This review focuses on influenza A virus pathogenesis in the obese host, and on the impact of obesity on the antiviral response, viral shed, and viral evolution. We comprehensively analyze the recent literature on how and why viral pathogenesis is altered in the obese host along with the impact of the altered host and pathogenic state on viral evolutionary dynamics in multiple models. Finally, we summarized the effectiveness of current vaccines and antivirals in this populations and the questions that remain to be answered. If current trends continue, nearly 50% of the worldwide population is projected to be obese by 2050. This population will have a growing impact on both non-communicable and communicable diseases and may affect global evolutionary trends of influenza virus.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
81
|
Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, Luscombe-Marsh N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front Physiol 2019; 10:532. [PMID: 31130874 PMCID: PMC6510277 DOI: 10.3389/fphys.2019.00532] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the cause-effect relationship remains to be fully elucidated. Compelling evidence suggests that boosting mitochondrial function may represent a valuable therapeutic tool to improve insulin sensitivity. Mitochondria are highly dynamic organelles, which adapt to short- and long-term metabolic perturbations by undergoing fusion and fission cycles, spatial rearrangement of the electron transport chain complexes into supercomplexes and biogenesis governed by peroxisome proliferator-activated receptor γ co-activator 1α (PGC 1α). However, these processes appear to be dysregulated in type 2 diabetic individuals. Herein, we describe the mechanistic link between mitochondrial dysfunction and insulin resistance in skeletal muscle alongside the intracellular pathways orchestrating mitochondrial bioenergetics. We then review current evidence on nutritional tools, including fatty acids, amino acids, caloric restriction and food bioactive derivatives, which may enhance insulin sensitivity by therapeutically targeting mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, Australia
| | | | - Mahinda Abeywardena
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Nathan O'Callaghan
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Natalie Luscombe-Marsh
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
82
|
Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle. Diabetologia 2019; 62:845-859. [PMID: 30707251 PMCID: PMC6451670 DOI: 10.1007/s00125-019-4824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Anwita Biosciences Inc, San Carlos, CA, USA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Karla E Merz
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
83
|
Sharma Y, Ahmad A, Yavvari PS, Kumar Muwal S, Bajaj A, Khan F. Targeted SHP-1 Silencing Modulates the Macrophage Phenotype, Leading to Metabolic Improvement in Dietary Obese Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:626-636. [PMID: 31108319 PMCID: PMC6526246 DOI: 10.1016/j.omtn.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Chronic over-nutrition promotes adipocyte hypertrophy that creates inflammatory milieu leading to macrophage infiltration and their phenotypic switching during obesity. The SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has been identified as an important player in inflammatory diseases involving macrophages. However, the role of SHP-1 in modulating the macrophage phenotype has not been elucidated yet. In the present work, we show that adipose tissue macrophage (ATM)-specific deletion of SHP-1 using glucan particle-loaded siRNA improves the metabolic phenotype in dietary obese insulin-resistant mice. The molecular mechanism involves AT remodeling via reducing crown-like structure formation and balancing the pro-inflammatory (M1) and anti-inflammatory macrophage (M2) population. Therefore, targeting ATM-specific SHP-1 using glucan-particle-loaded SHP-1 antagonists could be of immense therapeutic use for the treatment of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Yadhu Sharma
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | | | - Sandeep Kumar Muwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre of Biotechnology, Faridabad, Haryana 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre of Biotechnology, Faridabad, Haryana 121001, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
84
|
McLean FH, Campbell FM, Langston RF, Sergi D, Resch C, Grant C, Morris AC, Mayer CD, Williams LM. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab (Lond) 2019; 16:26. [PMID: 31168311 PMCID: PMC6489262 DOI: 10.1186/s12986-019-0352-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prolonged over-consumption of a high-fat diet (HFD) commonly leads to obesity and insulin resistance. However, even 3 days of HFD consumption has been linked to inflammation within the key homeostatic brain region, the hypothalamus. METHODS Mice were fed either a low-fat diet (LFD) or HFD containing 10% or 60% (Kcal) respectively from fat for 3 days. Mice were weighed, food intake measured and glucose tolerance calculated using intraperitoneal glucose tolerance tests (IPGTT). Proteomic analysis was carried out to determine if hypothalamic proteins were changed by a HFD. The direct effects of dietary fatty acids on mitochondrial morphology and on one of the proteins most changed by a HFD, dihydropyrimidinase-related protein 2 (DRP-2) a microtubule-associated protein which regulates microtubule dynamics, were also tested in mHypoE-N42 (N42) neuronal cells challenged with palmitic acid (PA) and oleic acid (OA). RESULTS Mice on the HFD, as expected, showed increased adiposity and glucose intolerance. Hypothalamic proteomic analysis revealed changes in 104 spots after 3 days on HFD, which, when identified by LC/MS/MS, were found to represent 78 proteins mainly associated with cytoskeleton and synaptic plasticity, stress response, glucose metabolism and mitochondrial function. Over half of the changed proteins have also been reported to be changed in neurodegenerative conditions such as Alzheimer's disease. Also,in N42 neurons mitochondrial morphology and DRP-2 levels were altered by PA but not by OA. CONCLUSION These results demonstrate that within 3 days, there is a relatively large effect of HFD on the hypothalamic proteome indicative of cellular stress, altered synaptic plasticity and mitochondrial function, but not inflammation. Changes in N42 cells show an effect of PA but not OA on DRP-2 and on mitochondrial morphology indicating that long-chain saturated fatty acids damage neuronal function.
Collapse
Affiliation(s)
- Fiona H. McLean
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
- Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY UK
| | - Fiona M. Campbell
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
| | - Rosamund F. Langston
- Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY UK
| | - Domenico Sergi
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
- Nutrition & Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA 5000 Australia
| | - Cibell Resch
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
| | - Christine Grant
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
| | - Amanda C. Morris
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
| | - Claus D. Mayer
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Lynda M. Williams
- Rowett Institute, University of Aberdeen Foresterhill Campus, Aberdeen, AB25 2ZD UK
| |
Collapse
|
85
|
Nasias D, Evangelakos I, Nidris V, Vassou D, Tarasco E, Lutz TA, Kardassis D. Significant changes in hepatic transcriptome and circulating miRNAs are associated with diet-induced metabolic syndrome in apoE3L.CETP mice. J Cell Physiol 2019; 234:20485-20500. [PMID: 31016757 DOI: 10.1002/jcp.28649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Long-term exposure to excess dietary fat leads to obesity and the metabolic syndrome (MetS). The purpose of the present study was to identify global changes in liver gene expression and circulating miRNAs in a humanized mouse model of diet-induced MetS. Male apoE3L.CETP mice received a high-fat diet (HFD) or a low-fat diet (LFD) for different time periods and the progression of MetS pathology was monitored. A separate group of mice was divided into responders (R) or nonresponders (NR) and received HFD for 16 weeks. We found that mice receiving the HFD developed manifestations of MetS and displayed an increasing number of differentially expressed transcripts at 4, 8, and 12 weeks compared with mice receiving the LFD. Significantly changed genes were functionally annotated to metabolic diseases and pathway analysis revealed the downregulation of genes in cholesterol and fatty acid biosynthesis and upregulation of genes related to lipid droplet formation, which was in line with the development of hepatic steatosis. In the serum of the apoE3L.CETP mice we identified three miRNAs that were upregulated specifically in the HFD group. We found that responder mice have a distinct gene signature that differentiates them from nonresponders. Comparison of the two diet intervention studies revealed a limited number of common differentially expressed genes but the expression of these common genes was affected in a similar way in both studies. In conclusion, the characteristic hepatic gene signatures and serum miRNAs identified in the present study provide novel insights to MetS pathology and could be exploited for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Dimitris Nasias
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Ioannis Evangelakos
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Vasilis Nidris
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece.,Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| |
Collapse
|
86
|
Jall S, Finan B, Collden G, Fischer K, Dong X, Tschöp MH, Müller TD, Clemmensen C. Pirt deficiency has subtle female-specific effects on energy and glucose metabolism in mice. Mol Metab 2019; 23:75-81. [PMID: 30902502 PMCID: PMC6479763 DOI: 10.1016/j.molmet.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
Objective The contribution of brown adipose tissue (BAT) to adult human metabolic control is a topic of ongoing investigation. In context, understanding the cellular events leading to BAT uncoupling, heat production, and energy expenditure is anticipated to produce significant insight into this endeavor. The phosphoinositide interacting regulator of transient receptor potentials (Pirt) was recently put forward as a key protein regulating cold sensing downstream of the transient receptor potential melastatin 8 (TRPM8). Notably, TRPM8 has been identified as a non-canonical regulator of BAT thermogenesis. The aim of this investigation was to delineate the role of Pirt in energy homeostasis and glucose metabolism - and the possible involvement of Pirt in TRPM8-elicited energy expenditure. Methods To this end, we metabolically phenotyped male and female Pirt deficient (Pirt−/−) mice exposed to a low-fat chow diet or to a high-fat, high-sugar (HFHS) diet. Results We identified that chow-fed female Pirt−/− mice have an increased susceptibility to develop obesity and glucose intolerance. This effect is abrogated when the mice are exposed to a HFHS diet. Conversely, Pirt−/− male mice display no metabolic phenotype on either diet relative to wild-type (WT) control mice. Finally, we observed that Pirt is dispensable for TRPM8-evoked energy expenditure. Conclusion We here report subtle metabolic abnormalities in female, but not male, Pirt−/− mice. Future studies are required to tease out if metabolic stressors beyond dietary interventions, e.g. temperature fluctuations, are interacting with Pirt-signaling and metabolic control in a sex-specific fashion. Pirt is robustly expressed in several nuclei of the hypothalamus. Chow-fed female Pirt−/− mice present with increased propensity to gain body weight. Pirt is dispensable for icilin-evoked TRPM8-dependent energy expenditure induction.
Collapse
Affiliation(s)
- Sigrid Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Brian Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gustav Collden
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Katrin Fischer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
87
|
Butler MJ, Eckel LA. Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. Integr Zool 2019; 13:673-686. [PMID: 29851251 DOI: 10.1111/1749-4877.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eating is a basic motivated behavior that provides fuel for the body and supports brain function. To ensure survival, the brain's feeding circuits are tuned to monitor peripheral energy balance and promote food-seeking behavior when energy stores are low. The brain's bias toward a positive energy state, which is necessary to ensure adequate nutrition during times of food scarcity, is evolutionarily conserved across mammalian species and is likely to drive overeating in the presence of a palatable, energy-dense diet. Animal models of diet-induced overeating have played a vital role in investigating how the drive to consume palatable food may override the homeostatic processes that serve to maintain energy balance. These animal models have provided valuable insights into the neurobiological mechanisms underlying homeostatic and non-homeostatic eating, motivation and food reward, and the development of obesity and related comorbidities. Here, we provide a brief review of this literature and discuss how diet-induced inflammation in the central nervous system impacts the neural control of food intake and regulation of body weight. The connection between diet and the immune system provides an exciting new direction for the study of ingestive behavior and the pathophysiology of obesity.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
88
|
Kushwaha R, Mishra J, Gupta AP, Gupta K, Vishwakarma J, Chattopadhyay N, Gayen JR, Kamthan M, Bandyopadhyay S. Rosiglitazone up-regulates glial fibrillary acidic protein via HB-EGF secreted from astrocytes and neurons through PPARγ pathway and reduces apoptosis in high-fat diet-fed mice. J Neurochem 2018; 149:679-698. [PMID: 30311190 DOI: 10.1111/jnc.14610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/17/2022]
Abstract
The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India.,Babu Banarasi Das University, Lucknow, India
| | - Anand Prakash Gupta
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Keerti Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Jitendra Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Naibedya Chattopadhyay
- Department of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Jiaur Rahaman Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Mohan Kamthan
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| |
Collapse
|
89
|
Rinninella E, Mele MC, Merendino N, Cintoni M, Anselmi G, Caporossi A, Gasbarrini A, Minnella AM. The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut⁻Retina Axis. Nutrients 2018; 10:nu10111677. [PMID: 30400586 PMCID: PMC6267253 DOI: 10.3390/nu10111677] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged ≥65 years in developed countries. Globally, it affects 30–50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many studies, such as the randomized controlled trials (RCTs) Age-Related Eye Disease Study (AREDS) and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high-fat and high-glucose or -fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression.
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Maria Cristina Mele
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Nicolò Merendino
- Laboratorio di Nutrizione Cellulare e Molecolare, Dipartimento di Scienze Ecologiche e Biologiche (DEB), Università della Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell'Alimentazione, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Gaia Anselmi
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Aldo Caporossi
- UOC di Oculistica, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Antonio Gasbarrini
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Angelo Maria Minnella
- UOC di Oculistica, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
90
|
Rudnicki M, Abdifarkosh G, Rezvan O, Nwadozi E, Roudier E, Haas TL. Female Mice Have Higher Angiogenesis in Perigonadal Adipose Tissue Than Males in Response to High-Fat Diet. Front Physiol 2018; 9:1452. [PMID: 30405427 PMCID: PMC6206240 DOI: 10.3389/fphys.2018.01452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023] Open
Abstract
Background: Impaired capillary growth (angiogenesis) in skeletal muscle and adipose tissue contributes to the development of metabolic disorders in obese males. This association remains unexplored in females, despite mounting evidence that endothelial cells have sex-specific transcriptional profiles. Therefore, herein we assessed whether males and females show distinct angiogenic capacities in response to diet-induced obesity. Methods: Age-matched male and female mice were fed normal chow or high-fat obesogenic diets for 16 weeks. At the end of diet period, systemic glucose disposal was assessed as well as insulin sensitivity of skeletal muscle and visceral adipose tissue. Capillary content and the expression of angiogenic regulators were also evaluated in these tissues. Results: When placed on a high-fat diet, female mice gained less weight than males and showed a metabolic phenotype similar to NC-fed mice, contrasting with the impaired whole-body glucose metabolism observed in high-fat-fed males. However, high-fat-feeding elevated serum lipid levels similarly in male and female mice. Although skeletal muscle of high-fat-fed female mice had higher insulin sensitivity than male counterparts, no sex difference was detected in muscle capillarization. Metabolic functions of perigonadal white adipose tissue (pgWAT) were retained in high-fat-fed females, as evidenced by smaller adipocytes with preserved insulin sensitivity, greater responsiveness to isoproterenol, higher expression of Adiponectin and a lower ratio of Leptin:Adiponectin mRNA. An enhanced browning phenotype was detected in HF-fed female adipocytes with upregulation of Ucp1 expression. PgWAT from high-fat-fed females also showed augmented capillary number and expression of endothelial cell markers, which was associated with elevated mRNA levels of pro-angiogenic mediators, including vascular endothelial growth factor A (Vegfa) and its receptor (Vegfr2), the Notch ligand Jagged-1 (Jag1) and Angiopoietin-2 (Angpt2). Conclusion: Taken together, our findings provide novel evidence that visceral adipose tissue of female mice display greater levels of pro-angiogenic factors and vascularity than males in response to high-fat diet. This phenotype is associated with preserved metabolic homeostasis at both tissue and systemic levels. Our study discloses that a thus-far-unappreciated sex-specific difference in the regulation of adipose angiogenesis may contribute to an individual's susceptibility to developing adipose dysfunction and obesity-related metabolic disturbances.
Collapse
Affiliation(s)
- Martina Rudnicki
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Ghoncheh Abdifarkosh
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Omid Rezvan
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Emilie Roudier
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Tara L Haas
- Angiogenesis Research Group, School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
91
|
Dalby MJ, Aviello G, Ross AW, Walker AW, Barrett P, Morgan PJ. Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 2018; 8:15648. [PMID: 30353127 PMCID: PMC6199263 DOI: 10.1038/s41598-018-33928-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
Hypothalamic inflammation is thought to contribute to obesity. One potential mechanism is via gut microbiota derived bacterial lipopolysaccharide (LPS) entering into the circulation and activation of Toll-like receptor-4. This is called metabolic endotoxemia. Another potential mechanism is systemic inflammation arising from sustained exposure to high-fat diet (HFD) over more than 12 weeks. In this study we show that mice fed HFD over 8 weeks become obese and show elevated plasma LPS binding protein, yet body weight gain and adiposity is not attenuated in mice lacking Tlr4 or its co-receptor Cd14. In addition, caecal microbiota composition remained unchanged by diet. Exposure of mice to HFD over a more prolonged period (20 weeks) to drive systemic inflammation also caused obesity. RNAseq used to assess hypothalamic inflammation in these mice showed increased hypothalamic expression of Serpina3n and Socs3 in response to HFD, with few other genes altered. In situ hybridisation confirmed increased Serpina3n and Socs3 expression in the ARC and DMH at 20-weeks, but also at 8-weeks and increased SerpinA3N protein could be detected as early as 1 week on HFD. Overall these data show lack of hypothalamic inflammation in response to HFD and that metabolic endotoxemia does not link HFD to obesity.
Collapse
Affiliation(s)
- Matthew J Dalby
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Gabriella Aviello
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alexander W Ross
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| |
Collapse
|
92
|
Dietary fibers inhibit obesity in mice, but host responses in the cecum and liver appear unrelated to fiber-specific changes in cecal bacterial taxonomic composition. Sci Rep 2018; 8:15566. [PMID: 30349136 PMCID: PMC6197265 DOI: 10.1038/s41598-018-34081-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Dietary fibers (DF) can prevent obesity in rodents fed a high-fat diet (HFD). Their mode of action is not fully elucidated, but the gut microbiota have been implicated. This study aimed to identify the effects of seven dietary fibers (barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester) effective in preventing diet-induced obesity and links to differences in cecal bacteria and host gene expression. Mice (n = 12) were fed either a low-fat diet (LFD), HFD or a HFD supplemented with the DFs, barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester for 8 weeks. Cecal bacteria were determined by Illumina MiSeq sequencing of 16S rRNA gene amplicons. Host responses, body composition, metabolic markers and gene transcription (cecum and liver) were assessed post intervention. HFD mice showed increased adiposity, while all of the DFs prevented weight gain. DF specific differences in cecal bacteria were observed. Results indicate that diverse DFs prevent weight gain on a HFD, despite giving rise to different cecal bacteria profiles. Conversely, common host responses to dietary fiber observed are predicted to be important in improving barrier function and genome stability in the gut, maintaining energy homeostasis and reducing HFD induced inflammatory responses in the liver.
Collapse
|
93
|
Pierre C, Guillebaud F, Airault C, Baril N, Barbouche R, Save E, Gaigé S, Bariohay B, Dallaporta M, Troadec JD. Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity. Front Physiol 2018; 9:1358. [PMID: 30333759 PMCID: PMC6176076 DOI: 10.3389/fphys.2018.01358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity.
Collapse
Affiliation(s)
- Clément Pierre
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France.,Biomeostasis CRO, La Penne-sur-Huveaune, France
| | - Florent Guillebaud
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Nathalie Baril
- CNRS, Fédération de Recherche 3C FR 3512, Aix-Marseille Université, Marseille, France
| | - Rym Barbouche
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Stéphanie Gaigé
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | | | - Michel Dallaporta
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Jean-Denis Troadec
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| |
Collapse
|
94
|
Tarasco E, Pellegrini G, Whiting L, Lutz TA. Phenotypical heterogeneity in responder and nonresponder male ApoE*3Leiden.CETP mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G602-G617. [PMID: 29975550 DOI: 10.1152/ajpgi.00081.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metabolic syndrome (MetS) is a major health issue worldwide and is associated with obesity, insulin resistance, and hypercholesterolemia. Several animal models were used to describe the MetS; however, many of them do not mimic well the MetS pathophysiology in humans. The ApoE*3Leiden.CETP mouse model overcomes part of this limitation, since they have a humanised lipoprotein metabolism and a heterogeneous response to MetS, similar to humans. The reported heterogeneity among them and their common classification refer to responder (R) and nonresponder (NR) mice; R mice show increased body weight, cholesterol, and triglycerides levels, whereas NR mice do not show this expected phenotype when fed a Western type diet. To define better the differences between R and NR mice, we focused on feeding behavior, body weight gain, glucose tolerance, and lipid parameters, and on an extensive pathological examination along with liver histology analysis. Our data confirmed that R mice resemble the pathological features of the human MetS: obesity, dysplipidemia, and glucose intolerance. NR mice do not develop the full dysmetabolic phenotype because of a severe inflammatory hepatic condition, which may heavily affect liver function. We conclude that R and NR mice are metabolically different and that NR mice have indications of severely impaired liver function. Hence, it is critical to identify and separate the respective mice to decrease data heterogeneity. Clinical chemistry and histological analysis should be used to confirm retrospectively the animals' classification. Moreover, we point out that NR mice may not be an appropriate control for studies involving ApoE*3Leiden.CETP R mice. NEW & NOTEWORTHY When compared with some other animal models, ApoE*3Leiden.CETP mice are better models to describe the metabolic syndrome. However, there is phenotypic heterogeneity between "responder" and "nonresponder" mice, the latter showing some evidence of hepatic pathology. A full phenotypic characterization and eventually postmortem analysis of the liver are warranted.
Collapse
Affiliation(s)
- Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich , Zurich , Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty University of Zurich , Zurich , Switzerland
| | - Lynda Whiting
- Institute of Drug and Discovery Biology, University of Monash , Victoria , Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich , Zurich , Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich , Zurich , Switzerland
| |
Collapse
|
95
|
Dall M, Penke M, Sulek K, Matz-Soja M, Holst B, Garten A, Kiess W, Treebak JT. Hepatic NAD + levels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice. Mol Cell Endocrinol 2018; 473:245-256. [PMID: 29408602 DOI: 10.1016/j.mce.2018.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Dietary supplementation of nicotinamide adenine dinucleotide (NAD+) precursors has been suggested as a treatment for non-alcoholic fatty liver disease and obesity. In the liver, NAD+ is primarily generated by nicotinamide phosphoribosyltransferase (NAMPT), and hepatic levels of NAMPT and NAD+ have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+ salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60% HFD for 6, 12, 24, and 48 weeks, and we evaluated time course-dependent changes in whole body metabolism, liver steatosis, and abundance of hepatic NAD-associated metabolites and enzymes. Mice fed a 60% HFD rapidly accumulated fat and hepatic triglycerides with associated changes in respiratory exchange ratio (RER) and a disruption of the circadian feeding pattern. The HFD did not alter hepatic NAD+ levels, but caused a decrease in NADP+ and NADPH levels. Decreased NADP+ content was not accompanied by alterations in NAD kinase (NADK) abundance in HFD-fed mice, but NADK levels increased with age regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD+ salvage capacity is resistant to long-term HFD feeding, and hepatic lipid accumulation does not compromise the hepatic NAD+ pool in HFD-challenged C57BL/6JBomTac male mice.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Penke
- Center for Pediatric Research Leipzig, Department for Women and Child Health, University Hospital Leipzig, Leipzig, Germany
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Receptology, University of Copenhagen, Copenhagen, Denmark
| | - Antje Garten
- Center for Pediatric Research Leipzig, Department for Women and Child Health, University Hospital Leipzig, Leipzig, Germany; Institute for Metabolism and Systems Research, College for Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, Department for Women and Child Health, University Hospital Leipzig, Leipzig, Germany
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
96
|
McLean FH, Grant C, Morris AC, Horgan GW, Polanski AJ, Allan K, Campbell FM, Langston RF, Williams LM. Rapid and reversible impairment of episodic memory by a high-fat diet in mice. Sci Rep 2018; 8:11976. [PMID: 30097632 PMCID: PMC6086894 DOI: 10.1038/s41598-018-30265-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease is a leading cause of morbidity and mortality with no cure and only limited treatment available. Obesity and type 2 diabetes are positively associated with the development of premature cognitive decline and Alzheimer’s disease, linking diet with these conditions. Here we demonstrate that in mice episodic memory, together with spatial and contextual associative memory, is compromised after only one day of high-fat diet. However, object memory remains intact. This shows not only a more rapid effect than previously reported but also that more complex memories are at higher risk of being compromised by a high-fat diet. In addition, we show that these memory deficits are rapidly reversed by switching mice from a high-fat diet back to a low-fat diet. These findings have important implications for the contribution of nutrition to the development of cognitive decline and Alzheimer’s disease.
Collapse
Affiliation(s)
- Fiona H McLean
- Division of Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK. .,Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Christine Grant
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Amanda C Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Graham W Horgan
- Biomathematics and Statistics Scotland, Aberdeen, AB25 2ZD, UK
| | - Alex J Polanski
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Kevin Allan
- School of Psychology, University of Aberdeen, Kings College, Old Aberdeen, AB24 3FX, UK
| | - Fiona M Campbell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Rosamund F Langston
- Division of Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
97
|
Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, MacKenzie A, Martinoli MG, Drew JE, Williams LM. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 2018; 23:321-334. [PMID: 30032721 DOI: 10.1080/1028415x.2018.1501533] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.
Collapse
Affiliation(s)
- Domenico Sergi
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amanda C Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Darcy E Kahn
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fiona H McLean
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Elizabeth A Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Phil Kubitz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria G Martinoli
- Cellular Neurobiology Group, Université du Québec, Trois-Rivières, Québec, G9A 5H7 Canada
| | - Janice E Drew
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
98
|
Ramachandran D, Clara R, Fedele S, Michel L, Burkard J, Kaufman S, Diaz AA, Weissfeld N, De Bock K, Prip-Buus C, Langhans W, Mansouri A. Enhancing enterocyte fatty acid oxidation in mice affects glycemic control depending on dietary fat. Sci Rep 2018; 8:10818. [PMID: 30018405 PMCID: PMC6050244 DOI: 10.1038/s41598-018-29139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Studies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically. CPT1mt expression led to an upregulation of FAO in the enterocytes. On CD, iCPT1mt mice had impaired glycemic control and showed concomitant activation of lipogenesis, glycolysis and gluconeogenesis in their enterocytes. On HFD, both iCPT1mt and control mice developed DIO, but iCPT1mt mice showed improved glycemic control and reduced visceral fat mass. Together these data indicate that modulating enterocyte metabolism in iCPT1mt mice affects glycemic control in a body weight-independent, but dietary fat-dependent manner.
Collapse
Affiliation(s)
| | - Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ladina Michel
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Johannes Burkard
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Sharon Kaufman
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Nadja Weissfeld
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Excercise and Health Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Carina Prip-Buus
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR, 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
99
|
Martinic A, Barouei J, Bendiks Z, Mishchuk D, Heeney DD, Martin R, Marco ML, Slupsky CM. Supplementation of Lactobacillus plantarum Improves Markers of Metabolic Dysfunction Induced by a High Fat Diet. J Proteome Res 2018; 17:2790-2802. [PMID: 29931981 DOI: 10.1021/acs.jproteome.8b00282] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a prevalent chronic condition in many developed and developing nations that raises the risk for developing heart disease, stroke, and diabetes. Previous studies have shown that consuming particular probiotic strains of Lactobacillus is associated with improvement in the obese and diabetic phenotype; however, the mechanisms of these beneficial effects are not well understood. In this study, C57BL/6J male mice were fed a lard-based high fat diet for 15 weeks with Lactobacillus plantarum supplementation NCIMB8826 (Lp) between weeks 10 and 15 ( n = 10 per group). Systemic metabolic effects of supplementation were analyzed by NMR metabolomics, protein expression assays, gene transcript quantification, and 16S rRNA marker gene sequencing. Body and organ weights were not significantly different with Lp supplementation, and no microbiota community structure changes were observed in the cecum; however, L. plantarum numbers were increased in the treatment group according to culture-based and 16S rRNA gene quantification. Significant differences in metabolite and protein concentrations (serum, liver, and colon), gene expression (ileum and adipose), and cytokines (colon) were observed between groups with increases in the gene expression of tight junction proteins in the ileum and cecum and improvement of some markers of glucose homeostasis in blood and tissue with Lp supplementation. These results indicate Lp supplementation impacts systemic metabolism and immune signaling before phenotypic changes and without large-scale changes to the microbiome. This study supports the notion that Lp is a beneficial probiotic, even in the context of a high fat diet.
Collapse
Affiliation(s)
| | | | | | | | | | - Roy Martin
- Western Human Nutrition Research Center , USDA , Davis , California 95616 , United States
| | | | | |
Collapse
|
100
|
Rajaie A, Allahyari M, Nazari-Robati M, Fallah H. Inhibition of Interleukin-1 Receptor-Associated Kinases 1/4, Increases Gene Expression and Serum Level of Adiponectin in Mouse Model of Insulin Resistance. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:185-192. [PMID: 31565650 PMCID: PMC6744615 DOI: 10.22088/ijmcm.bums.7.3.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/08/2018] [Indexed: 11/07/2022]
Abstract
Insulin resistance is a feature of most patients with type 2 diabetes mellitus. Epidemiological evidence suggest a correlation between inflammation and insulin resistant states such as obesity, but the underlying mechanisms are largely unknown. Interleukin-1 receptor-associated kinases (IRAK) play a central role in inflammatory responses by regulating the expression of various inflammatory genes in immune cells. This study was aimed to investigate the effect of IRAK inhibitor on gene transcription and serum concentration of adiponectin in insulin-resistant mice. Experimental mice were randomly divided into 6 groups: the healthy control group was fed a regular chow diet while other groups were fed with a high-fat diet for 12 weeks. After this period, the animals were treated with IRAK inhibitor, pioglitazone, both IRAK and pioglitazone, and DMSO, for two weeks. Adiponectin gene expression level was analyzed by real-time PCR. Additionally, serum adiponectin levels were measured by ELISA. Homeostasis model assessment-adiponectin (HOMA-AD) as an insulin sensitivity index was calculated. IRAK inhibitor and pioglitazone increased significantly the expression of adiponectin gene. Also, adiponectin concentration in the control group (9.67±1.1 μg/ml) increased to 25.34±2.04 μg/ml in pioglitazone treatment group. IRAK inhibitor also increased adiponectin concentration (18.24±1.53 μg/ml) but did not show a synergistic effect with pioglitazone when administered simultaneously (26.66±2.5 μg/ml). HOMA-AD was 0.33±0.04 in pioglitazone treated group, 0.6±0.13 in IRAK inhibitor group, and 0.31±0.03 in animals that received IRAKi and pioglitazone. Our findings suggest that increased adiponectin secretion from adipose tissue mediated by IRAK inhibitor may increase the insulin sensitivity in an animal model of insulin resistance.
Collapse
Affiliation(s)
- Athena Rajaie
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Allahyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|