51
|
Aguiar ERGR, de Almeida JPP, Queiroz LR, Oliveira LS, Olmo RP, de Faria IJDS, Imler JL, Gruber A, Matthews BJ, Marques JT. A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes. RNA (NEW YORK, N.Y.) 2020; 26:581-594. [PMID: 31996404 PMCID: PMC7161354 DOI: 10.1261/rna.073965.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster.
Collapse
Affiliation(s)
- Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, CEP 40101-909, Brazil
| | - João Paulo Pereira de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Lucio Rezende Queiroz
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Liliane Santana Oliveira
- Department of Parasitology, Instituto de Ciências Biomédicas, USP, São Paulo, SP, 05508-000, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Isaque João da Silva de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Arthur Gruber
- Department of Parasitology, Instituto de Ciências Biomédicas, USP, São Paulo, SP, 05508-000, Brazil
| | - Benjamin J Matthews
- Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, Canada
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| |
Collapse
|
52
|
Watanabe T, Kawaoka Y. Villains or heroes? The raison d'être of viruses. Clin Transl Immunology 2020; 9:e01114. [PMID: 32099651 PMCID: PMC7029637 DOI: 10.1002/cti2.1114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
The relationship between humans and viruses has a long history. Since the first identification of viruses in the 19th century, we have considered them to be 'pathogens' and have studied their mechanisms of replication and pathogenicity to combat the diseases that they cause. However, the relationships between hosts and viruses are various and virus infections do not necessarily cause diseases in their hosts. Rather, recent studies have shown that viral infections sometimes have beneficial effects on the biological functions and/or evolution of hosts. Here, we provide some insight into the positive side of viruses.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Division of VirologyDepartment of Microbiology and ImmunologyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Yoshihiro Kawaoka
- Division of VirologyDepartment of Microbiology and ImmunologyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Special PathogensInternational Research Center for Infectious DiseasesInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| |
Collapse
|
53
|
Dietrich DE, Bode L, Spannhuth CW, Hecker H, Ludwig H, Emrich HM. Antiviral treatment perspective against Borna disease virus 1 infection in major depression: a double-blind placebo-controlled randomized clinical trial. BMC Pharmacol Toxicol 2020; 21:12. [PMID: 32066504 PMCID: PMC7027224 DOI: 10.1186/s40360-020-0391-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Whether Borna disease virus (BDV-1) is a human pathogen remained controversial until recent encephalitis cases showed BDV-1 infection could even be deadly. This called to mind previous evidence for an infectious contribution of BDV-1 to mental disorders. Pilot open trials suggested that BDV-1 infected depressed patients benefitted from antiviral therapy with a licensed drug (amantadine) which also tested sensitive in vitro. Here, we designed a double-blind placebo-controlled randomized clinical trial (RCT) which cross-linked depression and BDV-1 infection, addressing both the antidepressant and antiviral efficacy of amantadine. Methods The interventional phase II RCT (two 7-weeks-treatment periods and a 12-months follow-up) at the Hannover Medical School (MHH), Germany, assigned currently depressed BDV-1 infected patients with either major depression (MD; N = 23) or bipolar disorder (BD; N = 13) to amantadine sulphate (PK-Merz®; twice 100 mg orally daily) or placebo treatment, and contrariwise, respectively. Clinical changes were assessed every 2–3 weeks by the 21-item Hamilton rating scale for depression (HAMD) (total, single, and combined scores). BDV-1 activity was determined accordingly in blood plasma by enzyme immune assays for antigens (PAG), antibodies (AB) and circulating immune complexes (CIC). Results Primary outcomes (≥25% HAMD reduction, week 7) were 81.3% amantadine vs. 35.3% placebo responder (p = 0.003), a large clinical effect size (ES; Cohen’s d) of 1.046, and excellent drug tolerance. Amantadine was safe reducing suicidal behaviour in the first 2 weeks. Pre-treatment maximum infection levels were predictive of clinical improvement (AB, p = 0.001; PAG, p = 0.026; HAMD week 7). Respective PAG and CIC levels correlated with AB reduction (p = 0,001 and p = 0.034, respectively). Follow-up benefits (12 months) correlated with dropped cumulative infection measures over time (p < 0.001). In vitro, amantadine concentrations as low as 2.4–10 ng/mL (50% infection-inhibitory dose) prevented infection with human BDV Hu-H1, while closely related memantine failed up to 100,000-fold higher concentration (200 μg/mL). Conclusions Our findings indicate profound antidepressant efficacy of safe oral amantadine treatment, paralleling antiviral effects at various infection levels. This not only supports the paradigm of a link of BDV-1 infection and depression. It provides a novel possibly practice-changing low cost mental health care perspective for depressed BDV-1-infected patients addressing global needs. Trial registration The trial was retrospectively registered in the German Clinical Trials Registry on 04th of March 2015. The trial ID is DRKS00007649; https://www.drks.de/drks_web/setLocale_EN.do
Collapse
Affiliation(s)
- Detlef E Dietrich
- Department of Psychiatry, Burghof-Clinic, Ritterstr. 19, 31737, Rinteln, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany. .,Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| | - Liv Bode
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany.
| | - Carsten W Spannhuth
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hartmut Hecker
- Department of Biometrics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hanns Ludwig
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany
| | - Hinderk M Emrich
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| |
Collapse
|
54
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
55
|
Nobach D, Herden C. No evidence for European bats serving as reservoir for Borna disease virus 1 or other known mammalian orthobornaviruses. Virol J 2020; 17:11. [PMID: 32000801 PMCID: PMC6993374 DOI: 10.1186/s12985-020-1289-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The majority of emerging infectious diseases are zoonotic in nature and originate from wildlife reservoirs. Borna disease, caused by Borna disease virus 1 (BoDV-1), is an infectious disease affecting mammals, but recently it has also been shown to cause fatal encephalitis in humans. The endemic character of Borna disease points towards a nature-bound reservoir, with only one shrew species identified as reservoir host to date. Bats have been identified as reservoirs of a variety of zoonotic infectious agents. Endogenous borna-like elements in the genome of certain bat species additionally point towards co-evolution of bats with bornaviruses and therefore raise the question whether bats could serve as a potential reservoir of orthobornaviruses. METHODS Frozen brain samples (n = 257) of bats of seven different genera from Germany were investigated by orthobornaviral RT-PCR. Additionally, tissue slides of formalin-fixed paraffin-embedded material of a subset of these bats (n = 140) were investigated for orthobornaviral phosphoprotein by immunohistochemistry. RESULTS The brain samples were tested by RT-PCR without any evidence of orthobornavirus specific amplicons. Immunohistochemistry revealed a faint immunoreaction in 3/140 bats but with an untypical staining pattern for viral antigen. CONCLUSIONS RT-PCR-screening showed no evidence for orthobornaviral RNA in the investigated bats. However, immunohistochemistry results should be investigated further to elucidate whether the reaction might be associated with expressed endogenous bornaviral elements or other so far unknown bornaviruses.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany.
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
- Center for Mind, Brain and Behavior, Justus Liebig University, Giessen, Germany
| |
Collapse
|
56
|
Horie M. Interactions among eukaryotes, retrotransposons and riboviruses: endogenous riboviral elements in eukaryotic genomes. Genes Genet Syst 2020; 94:253-267. [PMID: 31257309 DOI: 10.1266/ggs.18-00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Riboviruses are viruses that have RNA genomes and replicate only via RNA intermediates. Although they do not require a DNA phase for replication and do not encode reverse transcriptase, the presence of DNA forms of riboviral sequences in ribovirus-infected cells has been reported since the 1970s. Additionally, heritable ribovirus-derived sequences, called riboviral endogenous viral elements (EVEs), have been found in the genomes of many eukaryotes. These are now thought to be formed by the reverse transcription machineries of retrotransposons within eukaryotic genomes sometimes referred to as selfish elements. Surprisingly, some reverse-transcribed riboviral DNAs (including EVEs) provide physiological functions for their hosts, suggesting the occurrence of novel interactions among eukaryotic genomes, retrotransposons and riboviruses, and opening the door to new avenues of investigation. Here I review current knowledge on these triangular interactions, and discuss future directions in this field.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, and Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
57
|
Conservation of Structure and Immune Antagonist Functions of Filoviral VP35 Homologs Present in Microbat Genomes. Cell Rep 2020; 24:861-872.e6. [PMID: 30044983 DOI: 10.1016/j.celrep.2018.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/29/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
Abstract
Non-retroviral integrated RNA viral sequences (NIRVs) potentially encoding ∼280 amino acid homologs to filovirus VP35 proteins are present across the Myotis genus of bats. These are estimated to have been maintained for ∼18 million years, indicating their co-option. To address the reasons for co-option, 16 Myotis VP35s were characterized in comparison to VP35s from the extant filoviruses Ebola virus and Marburg virus, in which VP35s play critical roles in immune evasion and RNA synthesis. The Myotis VP35s demonstrated a conserved suppression of innate immune signaling, albeit with reduced potency, in either human or Myotis cells. Their attenuation reflects a lack of dsRNA binding that in the filoviral VP35s correlates with potent suppression of interferon responses. Despite divergent function, evolution has preserved in Myotis the structure of the filoviral VP35s, indicating that this structure is critical for co-opted function, possibly as a regulator of innate immune signaling.
Collapse
|
58
|
[Virus-host coevolution: Endogenous RNA viral elements as pseudogenes]. Uirusu 2020; 70:49-56. [PMID: 33967113 DOI: 10.2222/jsv.70.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RNA viruses do not need to take the form of DNAs, and RNAs alone complete their replication cycles. On the other hand, since the 1970s, it has been known that DNA fragments derived from RNA viruses can be detected in RNA virus-infected cells. Furthermore, in this decade, it has become clear that the eukaryotic genomes contain genetic sequences derived from non-retroviral RNA viruses. The DNA sequences derived from these RNA viruses are thought to be generatedby using a transposable mechanism of retrotransposon, such as LINE-1. Many endogenous RNA viral sequences are formed by the same mechanism as processed pseudogenes in eukaryotic cells, but the significance of the production of RNA viral "pseudogenes " in infected cells has not been elucidated. We have discovered endogenous bornavirus-like elements (EBLs), which derived from a negative-sense, single-stranded RNA virus, Bornaviruses, and have studied the evolution and function of EBLs in host animals. The analysis of EBLs provides us a clue to unravel the history of host-RNA virus coexistence. In this review, I overview about the function of endogenous RNA virus sequences, especially EBLs in mammalian genomes, and discuss the significance of endogenization of RNA viruses as viral pseudogenes in evolution.
Collapse
|
59
|
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses 2019; 133:109404. [PMID: 31557593 DOI: 10.1016/j.mehy.2019.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Despite strong evidence for the heritability of major depressive disorder (MDD), efforts to identify causal genes have been disappointing. Furthermore, although there is strong support for life stress as a major predictor of MDD, there are also considerable individual differences in susceptibility and resilience that remain poorly understood. Efforts to identify specific gene-by-environment risk factors produced results that were initially encouraging, but that were not supported by later large-scale studies. Here I propose a novel mechanism that could address the "missing heritability" of MDD, the role of environmental risk factors, and individual differences in susceptibility and resilience. This mechanism focuses on a class of transposable elements, Human Endogenous Retroviruses (HERVs), which make up approximately 8% of the human genome as the result of ancient retroviral infections that entered mammalian germ lines throughout the course of evolution. My primary hypothesis is that exposure to either exogenous viruses or traumatic experiences can activate HERVs in the brain to cause depressive (and possibly other psychiatric) symptoms. My secondary hypothesis is that individual differences in vulnerability or resilience result from the balance of activated HERVs with pathogenic versus protective functions in the brain. Future research can test these hypotheses by analysis of postmortem human brain tissue from donors with known viral or trauma histories; animal studies manipulating HERV expression; cell culture studies examining regulatory mechanisms of HERV expression; and from brain imaging studies of individuals with known HERV-expression. Such research may reveal novel functions of HERVs in neural tissue and may lead to a new generation of psychiatric interventions designed to target aberrant HERV activation.
Collapse
MESH Headings
- Animals
- Brain/virology
- Cells, Cultured
- Cytokines/physiology
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/virology
- Disease Models, Animal
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Environmental Exposure
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Gene-Environment Interaction
- Genes, Viral
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Mice, Transgenic
- Models, Biological
- Models, Psychological
- Schizophrenia/pathology
- Schizophrenia/virology
- Stress, Psychological
- Terminal Repeat Sequences/genetics
- Virus Activation
- Virus Diseases/complications
- Virus Diseases/psychology
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|
60
|
Ballinger MJ, Taylor DJ. Evolutionary persistence of insect bunyavirus infection despite host acquisition and expression of the viral nucleoprotein gene. Virus Evol 2019; 5:vez017. [PMID: 31308960 PMCID: PMC6620529 DOI: 10.1093/ve/vez017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How insects combat RNA virus infection is a subject of intensive research owing to its importance in insect health, virus evolution, and disease transmission. In recent years, a pair of potentially linked phenomena have come to light as a result of this work-first, the pervasive production of viral DNA from exogenous nonretroviral RNA in infected individuals, and second, the widespread distribution of nonretroviral integrated RNA virus sequences (NIRVs) in the genomes of diverse eukaryotes. The evolutionary consequences of NIRVs for viruses are unclear and the field would benefit from studies of natural virus infections co-occurring with recent integrations, an exceedingly rare circumstance in the literature. Here, we provide evidence that a novel insect-infecting phasmavirus (Order Bunyavirales) has been persisting in a phantom midge host, Chaoborus americanus, for millions of years. Interestingly, the infection persists despite the host's acquisition (during the Pliocene), fixation, and expression of the viral nucleoprotein gene. We show that virus prevalence and geographic distribution are high and broad, comparable to the host-specific infections reported in other phantom midges. Short-read mapping analyses identified a lower abundance of the nucleoprotein-encoding genome segment in this virus relative to related viruses. Finally, the novel virus has facilitated the first substitution rate estimation for insect-infecting phasmaviruses. Over a period of approximately 16 million years, we find rates of (0.6 - 1.6) × 10-7 substitutions per site per year in protein coding genes, extraordinarily low for negative-sense RNA viruses, but consistent with the few estimates produced over comparable evolutionary timescales.
Collapse
Affiliation(s)
- Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, PO Box GY, Mississippi State, MS
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY
| |
Collapse
|
61
|
Houé V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect 2019; 8:542-555. [PMID: 30938223 PMCID: PMC6455143 DOI: 10.1080/22221751.2019.1599302] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
Collapse
Affiliation(s)
- Vincent Houé
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France.,b Collège Doctoral , Sorbonne Université , Paris , France
| | | | - Anna-Bella Failloux
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France
| |
Collapse
|
62
|
Broecker F, Moelling K. What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci 2019; 1447:53-68. [PMID: 31032941 PMCID: PMC6850104 DOI: 10.1111/nyas.14097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
We describe mechanisms of genetic innovation mediated by viruses and related elements that, during evolution, caused major genetic changes beyond what was anticipated by Charles Darwin. Viruses and related elements introduced genetic information and have shaped the genomes and immune systems of all cellular life forms. None of these mechanisms contradict Darwin's theory of evolution but extend it by means of sequence information that has recently become available. Not only do small increments of genetic information contribute to evolution, but also do major events such as infection by viruses or bacteria, which can supply new genetic information to a host by horizontal gene transfer. Thereby, viruses and virus-like elements act as major drivers of evolution.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
63
|
Callaway HM, Subramanian S, Urbina CA, Barnard KN, Dick RA, Bator CM, Hafenstein SL, Gifford RJ, Parrish CR. Examination and Reconstruction of Three Ancient Endogenous Parvovirus Capsid Protein Gene Remnants Found in Rodent Genomes. J Virol 2019; 93:e01542-18. [PMID: 30626673 PMCID: PMC6401472 DOI: 10.1128/jvi.01542-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
Parvovirus-derived endogenous viral elements (EVEs) have been found in the genomes of many different animal species, resulting from integration events that may have occurred from more than 50 million years ago to much more recently. Here, we further investigate the properties of autonomous parvovirus EVEs and describe their relationships to contemporary viruses. While we did not find any intact capsid protein open reading frames in the integrated viral sequences, we examined three EVEs that were repaired to form full-length sequences with relatively few changes. These sequences were found in the genomes of Rattus norvegicus (brown rat), Mus spretus (Algerian mouse), and Apodemus sylvaticus (wood mouse). The R. norvegicus sequence was not present in the genomes of the closely related species R. rattus, R. tanezumi, R. exulans, and R. everetti, indicating that it was less than 2 million years old, and the M. spretus and A. sylvaticus sequences were not found in the published genomes of other mouse species, also indicating relatively recent insertions. The M. spretus VP2 sequence assembled into capsids, which had high thermal stability, bound the sialic acid N-acetylneuraminic acid, and entered murine L cells. The 3.89-Å structure of the M. spretus virus-like particles (VLPs), determined using cryo-electron microscopy, showed similarities to rodent and porcine parvovirus capsids. The repaired VP2 sequences from R. norvegicus and A. sylvaticus did not assemble as first prepared, but chimeras combining capsid surface loops from R. norvegicus with canine parvovirus assembled, allowing some of that capsid's structures and functions to be examined.IMPORTANCE Parvovirus endogenous viral elements (EVEs) that have been incorporated into the genomes of different animals represent remnants of the DNA sequences of ancient viruses that infected the ancestors of those animals millions of years ago, but we know little about their properties or how they differ from currently circulating parvoviruses. By expressing the capsid proteins of different parvovirus EVEs that were found integrated into the genomes of three different rodents, we can examine their structures and functions. A VP2 (major capsid protein) EVE sequence from a mouse genome assembled into capsids that had a similar structure and biophysical properties to extant parvoviruses and also bound sialic acids and entered rodent cells. Chimeras formed from combinations of canine parvovirus and portions of the parvovirus sequences from the brown rat genome allowed us to examine the structures and functions of the surface loops of that EVE capsid.
Collapse
Affiliation(s)
- Heather M Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Suriyasri Subramanian
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Christian A Urbina
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Carol M Bator
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L Hafenstein
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
64
|
Intranasal Borna Disease Virus (BoDV-1) Infection: Insights into Initial Steps and Potential Contagiosity. Int J Mol Sci 2019; 20:ijms20061318. [PMID: 30875911 PMCID: PMC6470550 DOI: 10.3390/ijms20061318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.
Collapse
|
65
|
Systematic survey of non-retroviral virus-like elements in eukaryotic genomes. Virus Res 2019; 262:30-36. [DOI: 10.1016/j.virusres.2018.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/30/2017] [Accepted: 02/05/2018] [Indexed: 01/31/2023]
|
66
|
Affiliation(s)
- J H van der Kolk
- a Editor-in-Chief, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern , Bern , Switzerland
| |
Collapse
|
67
|
Pischedda E, Scolari F, Valerio F, Carballar-Lejarazú R, Catapano PL, Waterhouse RM, Bonizzoni M. Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Front Genet 2019; 10:93. [PMID: 30809249 PMCID: PMC6379468 DOI: 10.3389/fgene.2019.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
The Asian tiger mosquito Aedes albopictus is an invasive mosquito and a competent vector for public-health relevant arboviruses such as Chikungunya (Alphavirus), Dengue and Zika (Flavivirus) viruses. Unexpectedly, the sequencing of the genome of this mosquito revealed an unusually high number of integrated sequences with similarities to non-retroviral RNA viruses of the Flavivirus and Rhabdovirus genera. These Non-retroviral Integrated RNA Virus Sequences (NIRVS) are enriched in piRNA clusters and coding sequences and have been proposed to constitute novel mosquito immune factors. However, given the abundance of NIRVS and their variable viral origin, their relative biological roles remain unexplored. Here we used an analytical approach that intersects computational, evolutionary and molecular methods to study the genomic landscape of mosquito NIRVS. We demonstrate that NIRVS are differentially distributed across mosquito genomes, with a core set of seemingly the oldest integrations with similarity to Rhabdoviruses. Additionally, we compare the polymorphisms of NIRVS with respect to that of fast and slow-evolving genes within the Ae. albopictus genome. Overall, NIRVS appear to be less polymorphic than slow-evolving genes, with differences depending on whether they occur in intergenic regions or in piRNA clusters. Finally, two NIRVS that map within the coding sequences of genes annotated as Rhabdovirus RNA-dependent RNA polymerase and the nucleocapsid-encoding gene, respectively, are highly polymorphic and are expressed, suggesting exaptation possibly to enhance the mosquito's antiviral responses. These results greatly advance our understanding of the complexity of the mosquito repeatome and the biology of viral integrations in mosquito genomes.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
68
|
Sulovari A, Li D. VIpower: Simulation-based tool for estimating power of viral integration detection via high-throughput sequencing. Genomics 2019; 112:207-211. [PMID: 30710609 DOI: 10.1016/j.ygeno.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/31/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Viral sequence integrations in the human genome have been implicated in various human diseases. Viral integrations remain among the most challenging-to-detect structural changes of the human genome. No studies have systematically analyzed how molecular and bioinformatics factors affect the power (sensitivity) to detect viral integrations using high-throughput sequencing (HTS). We selected a wide-range of molecular and bioinformatics factors covering genome sequence characteristics, HTS features, and viral integration detection. We designed a fast simulation-based framework to model the process of detecting variable viral integration events in the human genome. We then examined the associations of selected factors with viral integration detection power. We identified six factors that significantly affected viral integration detection power (P < 2 × 10-16). The strongest factors associated with detection power included proportion of sample cells with clonal viral integrations (Pearson's ρ = 0.64), sequencing depth (ρ = 0.37), length of viral integration (ρ = 0.37), paired-end read insert size (ρ = 0.23), user-defined threshold (number of supporting reads) to claim successful identification of integrations (ρ = -0.19), and read length (when sequence volume was fixed) (ρ = -0.09). As the first tool of its kind, VIpower incorporates all these factors, which can be manipulated in concert with each other to optimize the detection power. This tool may be used to estimate viral integration detection power for various combinations of sequencing or analytic parameters. It may also be used to estimate the parameters required to achieve a specific power when designing new sequencing experiments.
Collapse
Affiliation(s)
- Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Department of Computer Science, University of Vermont, Burlington, VT 05405, USA; Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
69
|
Garry RF. Ebola Mysteries and Conundrums. J Infect Dis 2019; 219:511-513. [PMID: 30085161 PMCID: PMC6350945 DOI: 10.1093/infdis/jiy476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
70
|
Broecker F, Moelling K. Evolution of Immune Systems From Viruses and Transposable Elements. Front Microbiol 2019; 10:51. [PMID: 30761103 PMCID: PMC6361761 DOI: 10.3389/fmicb.2019.00051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Virus-derived sequences and transposable elements constitute a substantial portion of many cellular genomes. Recent insights reveal the intimate evolutionary relationship between these sequences and various cellular immune pathways. At the most basic level, superinfection exclusion may be considered a prototypical virus-mediated immune system that has been described in both prokaryotes and eukaryotes. More complex immune mechanisms fully or partially derived from mobile genetic elements include CRISPR-Cas of prokaryotes and the RAG1/2 system of vertebrates, which provide immunological memory of foreign genetic elements and generate antibody and T cell receptor diversity, respectively. In this review, we summarize the current knowledge on the contribution of mobile genetic elements to the evolution of cellular immune pathways. A picture is emerging in which the various cellular immune systems originate from and are spread by viruses and transposable elements. Immune systems likely evolved from simple superinfection exclusion to highly complex defense strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
71
|
Warner BE, Ballinger MJ, Yerramsetty P, Reed J, Taylor DJ, Smith TJ, Bruenn JA. Cellular production of a counterfeit viral protein confers immunity to infection by a related virus. PeerJ 2018; 6:e5679. [PMID: 30280045 PMCID: PMC6166632 DOI: 10.7717/peerj.5679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
DNA copies of many non-retroviral RNA virus genes or portions thereof (NIRVs) are present in the nuclear genomes of many eukaryotes. These have often been preserved for millions of years of evolution, suggesting that they play an important cellular function. One possible function is resistance to infection by related viruses. In some cases, this appears to occur through the piRNA system, but in others by way of counterfeit viral proteins encoded by NIRVs. In the fungi, NIRVs may be as long as 1,400 uninterrupted codons. In one such case in the yeast Debaryomyces hansenii, one of these genes provides immunity to a related virus by virtue of expression of a counterfeit viral capsid protein, which interferes with assembly of viral capsids by negative complementation. The widespread occurrence of non-retroviral RNA virus genes in eukaryotes may reflect an underappreciated method of host resistance to infection. This work demonstrates for the first time that an endogenous host protein encoded by a gene that has been naturally acquired from a virus and fixed in a eukaryote can interfere with the replication of a related virus and do so by negative complementation.
Collapse
Affiliation(s)
- Benjamin E Warner
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew J Ballinger
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer Reed
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch Galveston, Galveston, TX, United States of America
| | - Jeremy A Bruenn
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
72
|
Chu H, Jo Y, Choi H, Lee BC, Cho WK. Identification of viral domains integrated into Arabidopsis proteome. Mol Phylogenet Evol 2018; 128:246-257. [PMID: 30125655 DOI: 10.1016/j.ympev.2018.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Horizontal gene transfer (HGT) contributes to the genome evolution of living organisms. In particular, several recent studies provide convincing data on the integration of viral sequences into diverse organisms. Here, we identified 101 viral domains integrated into the model plant Arabidopsis proteome. Functional analysis based on gene ontology (GO) terms indicates that viral domains in the Arabidopsis proteome were involved in various stress responses with binding functions. Protein interaction networks support the strong protein interactions of viral domains with other Arabidopsis proteins. A proteome-wide analysis gave a comprehensive evolutionary view of viral domains integrated into 41 plant proteomes, revealing the specific and conserved integration of viral domains into plant proteomes. Phylogenetic analyses revealed the possible HGT between viral domains and plant proteomes. Our results provide an overview of the integration of viral domains into plant proteomes and their possible functional roles associated with plant defense mechanisms.
Collapse
Affiliation(s)
- Hyosub Chu
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoseong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju 55365, Republic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Taejin Genome Institute, Gadam-gil 61, Hoeongseong 25239, Republic of Korea.
| |
Collapse
|
73
|
Mukai Y, Horie M, Tomonaga K. Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats. J Vet Med Sci 2018; 80:1356-1363. [PMID: 29973433 PMCID: PMC6115245 DOI: 10.1292/jvms.18-0211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the
family Bornaviridae) that are integrated into animal genomes. They are
formed through germline insertions of segments of bornaviral transcripts into animal
genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious
sources of information to understand the evolutionary history of bornaviruses. Previous
studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and
suggested the long-term association between bats and bornaviruses. However, insertion
dates of EBLs are largely unknown because of the limitations of available bat genome
sequences in the public database. In this study, through a combination of database
searches, PCR, and sequencing approaches, we systematically determined the gene
orthologies of 13 lineages of EBLs in bats of the genus Myotis and
Eptesicus and family Vespertilionidae. Using the above data, we
estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2
to 53 million years ago. These results suggest that vesper bats have been repeatedly
infected by bornaviruses at different points in time during evolution. This study provides
novel insights into the evolutionary history of bornaviruses and demonstrates the
robustness of combining database searches, PCR, and sequencing approaches to estimate
insertion dates of bornaviruses.
Collapse
Affiliation(s)
- Yahiro Mukai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
74
|
Filovirus – Auslöser von hämorrhagischem Fieber. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:894-907. [DOI: 10.1007/s00103-018-2757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Horie M, Tomonaga K. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res 2018; 262:2-9. [PMID: 29630909 DOI: 10.1016/j.virusres.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023]
Abstract
Endogenous viral elements (EVEs) are virus-derived sequences embedded in eukaryotic genomes formed by germline integration of viral sequences. As many EVEs were integrated into eukaryotic genomes millions of years ago, EVEs are considered molecular fossils of viruses. EVEs can be valuable informational sources about ancient viruses, including their time scale, geographical distribution, genetic information, and hosts. Although integration of viral sequences is not required for replications of viruses other than retroviruses, many non-retroviral EVEs have been reported to exist in eukaryotes. Investigation of these EVEs has expanded our knowledge regarding virus-host interactions, as well as provided information on ancient viruses. Among them, EVEs derived from bornaviruses, non-retroviral RNA viruses, have been relatively well studied. Bornavirus-derived EVEs are widely distributed in animal genomes, including the human genome, and the history of bornaviruses can be dated back to more than 65 million years. Although there are several reports focusing on the biological significance of bornavirus-derived sequences in mammals, paleovirology of bornaviruses has not yet been well described and summarized. In this paper, we describe what can be learned about bornaviruses from endogenous bornavirus-like elements from the view of paleovirology using published results and our novel data.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan; Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
76
|
Hyndman TH, Shilton CM, Stenglein MD, Wellehan JFX. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog 2018; 14:e1006881. [PMID: 29462190 PMCID: PMC5834213 DOI: 10.1371/journal.ppat.1006881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue samples from Australian carpet pythons (Morelia spilota) with neurological disease were screened for viruses using next-generation sequencing. Coding complete genomes of two bornaviruses were identified with the gene order 3'-N-X-P-G-M-L, representing a transposition of the G and M genes compared to other bornaviruses and most mononegaviruses. Use of these viruses to search available vertebrate genomes enabled recognition of further endogenous bornavirus-like elements (EBLs) in diverse placental mammals, including humans. Codivergence patterns and shared integration sites revealed an ancestral laurasiatherian EBLG integration (77 million years ago [MYA]) and a previously identified afrotherian EBLG integration (83 MYA). The novel python bornaviruses clustered more closely with these EBLs than with other exogenous bornaviruses, suggesting that these viruses diverged from previously known bornaviruses prior to the end-Cretaceous (K-Pg) extinction, 66 MYA. It is possible that EBLs protected mammals from ancient bornaviral disease, providing a selective advantage in the recovery from the K-Pg extinction. A degenerate PCR primer set was developed to detect a highly conserved region of the bornaviral polymerase gene. It was used to detect 15 more genetically distinct bornaviruses from Australian pythons that represent a group that is likely to contain a number of novel species.
Collapse
Affiliation(s)
- Timothy H. Hyndman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Catherine M. Shilton
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
77
|
Kondoh T, Manzoor R, Nao N, Maruyama J, Furuyama W, Miyamoto H, Shigeno A, Kuroda M, Matsuno K, Fujikura D, Kajihara M, Yoshida R, Igarashi M, Takada A. Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor. PLoS One 2017; 12:e0186450. [PMID: 29040311 PMCID: PMC5645129 DOI: 10.1371/journal.pone.0186450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.
Collapse
Affiliation(s)
- Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Wakako Furuyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Asako Shigeno
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Makoto Kuroda
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
- School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| |
Collapse
|
78
|
Hurwitz JL, Jones BG, Charpentier E, Woodland DL. Hypothesis: RNA and DNA Viral Sequence Integration into the Mammalian Host Genome Supports Long-Term B Cell and T Cell Adaptive Immunity. Viral Immunol 2017; 30:628-632. [PMID: 29028182 DOI: 10.1089/vim.2017.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral sequence integration into the mammalian genome has long been perceived as a health risk. In some cases, integration translates to chronic viral infection, and in other instances, oncogenic gene mutations occur. However, research also shows that animal cells can benefit from integrated viral sequences (e.g., to support host cell development or to silence foreign invaders). Here we propose that, comparable with the clustered regularly interspaced short palindromic repeats that provide bacteria with adaptive immunity against invasive bacteriophages, animal cells may co-opt integrated viral sequences to support immune memory. We hypothesize that host cells express viral peptides from open reading frames in integrated sequences to boost adaptive B cell and T cell responses long after replicating viruses are cleared. In support of this hypothesis, we examine previous literature describing (1) viruses that infect acutely (e.g., vaccinia viruses and orthomyxoviruses) followed by unexplained, long-term persistence of viral nucleotide sequences, viral peptides, and virus-specific adaptive immunity, (2) the high frequency of endogenous viral genetic elements found in animal genomes, and (3) mechanisms with which animal host machinery supports foreign sequence integration.
Collapse
Affiliation(s)
- Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Bart G Jones
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Emmanuelle Charpentier
- 3 Max Planck Institute for Infection Biology , Berlin, Germany .,4 Humboldt University , Berlin, Germany .,5 The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University , Umeå, Sweden
| | | |
Collapse
|
79
|
Abstract
My laboratory investigations have been driven by an abiding interest in understanding the consequences of genetic rearrangement in evolution and disease, and in using viruses to elucidate fundamental mechanisms in biology. Starting with bacteriophages and moving to the retroviruses, my use of the tools of genetics, molecular biology, biochemistry, and biophysics has spanned more than half a century-from the time when DNA structure was just discovered to the present day of big data and epigenetics. Both riding and contributing to the successive waves of technology, my laboratory has elucidated fundamental mechanisms in DNA replication, repair, and recombination. We have made substantial contributions in the area of retroviral oncogenesis, delineated mechanisms that control retroviral gene expression, and elucidated critical details of the structure and function of the retroviral enzymes-reverse transcriptase, protease, and integrase-and have had the satisfaction of knowing that the fundamental knowledge gained from these studies contributed important groundwork for the eventual development of antiviral drugs to treat AIDS. While pursuing laboratory research as a principal investigator, I have also been a science administrator-moving from laboratory head to department chair and, finally, to institute director. In addition, I have undertaken a number of community service, science-related "extracurricular" activities during this time. Filling all of these roles, while being a wife and mother, has required family love and support, creative management, and, above all, personal flexibility-with not too much long-term planning. I hope that this description of my journey, with various roles, obstacles, and successes, will be both interesting and informative, especially to young female scientists.
Collapse
Affiliation(s)
- Anna Marie Ann Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111;
| |
Collapse
|
80
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
81
|
Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 2017; 8:1745. [PMID: 28959243 PMCID: PMC5603734 DOI: 10.3389/fmicb.2017.01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of ZurichZurich, Switzerland
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New YorkNY, United States
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH ZurichZurich, Switzerland
| |
Collapse
|
82
|
Abstract
Viruses must establish an intimate relationship with their hosts and vectors in order to infect, replicate, and disseminate; hence, viruses can be considered as symbionts with their hosts. Symbiotic relationships encompass different lifestyles, including antagonistic (or pathogenic, the most well-studied lifestyle for viruses), commensal (probably the most common lifestyle), and mutualistic (important beneficial partners). Symbiotic relationships can shape the evolution of the partners in a holobiont, and placing viruses in this context provides an important framework for understanding virus-host relationships and virus ecology. Although antagonistic relationships are thought to lead to coevolution, this is not always clear in virus-host interactions, and impacts on evolution may be complex. Commensalism implies a hitchhiking role for viruses-selfish elements just along for the ride. Mutualistic relationships have been described in detail in the past decade, and they reveal how important viruses are in considering host ecology. Ultimately, symbiosis can lead to symbiogenesis, or speciation through fusion, and the presence of large amounts of viral sequence in the genomes of everything from bacteria to humans, including some important functional genes, illustrates the significance of viral symbiogenesis in the evolution of all life on Earth.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edelio R Bazán
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
83
|
Aswad A, Katzourakis A. A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evol 2017; 3:vex016. [PMID: 28798873 PMCID: PMC5544889 DOI: 10.1093/ve/vex016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pathogenic viruses represent a small fraction of viral diversity, and emerging diseases are frequently the result of cross-species transmissions. Therefore, we need to develop high-throughput techniques to investigate a broader range of viral biodiversity across a greater number of species. This is especially important in the context of new practices in agriculture that have arisen to tackle the challenges of global food security, including the rising number of marine and freshwater species that are used in aquaculture. In this study, we demonstrate the utility of combining evolutionary approaches with bioinformatics to mine non-viral genome data for viruses, by adapting methods from paleovirology. We report the discovery of a new lineage of dsDNA viruses that are associated with at least fifteen different species of fish. This approach also enabled us to simultaneously identify sequences that likely represent endogenous viral elements, which we experimentally confirmed in commercial salmon samples. Moreover, genomic analysis revealed that the endogenous sequences have co-opted PiggyBac-like transposable elements, possibly as a mechanism of intragenomic proliferation. The identification of novel viruses from genome data shows that our approach has applications in genomics, virology, and the development of best practices for aquaculture and farming.
Collapse
Affiliation(s)
- Amr Aswad
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS Oxford, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS Oxford, UK
| |
Collapse
|
84
|
Olson KE, Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? CURRENT OPINION IN INSECT SCIENCE 2017; 22:45-53. [PMID: 28805638 DOI: 10.1016/j.cois.2017.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
With few exceptions, all arthropod-borne viruses (arboviruses) are nonretroviral RNA viruses (NRVs). Despite NRVs do not encode reverse transcriptases and integrases, NRVs-DNA fragments are detected in mosquito cells and mosquitoes at early stages of infection as episomal DNA forms. Additionally, next generation sequencing and bioinformatics analyses have convincingly shown NRVs-vDNA integrated in vector genomes. We hypothesize vDNA role may be linked to host immunity and viral persistence. Key questions remain about nonretroviral integrated RNA virus sequences (NIRVS) in mosquitoes such as what is driving vDNA synthesis from NRVs, how does integration occur and what is their biological function. Here we review current knowledge about NIRVS highlighting connections with host immunity and virus-vector co-evolution and we suggest directions for future research.
Collapse
Affiliation(s)
- Ken E Olson
- Department of Microbiology, Immunology and Pathology, Arthropod-Borne and Infectious Disease Laboratory, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
85
|
Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes. J Virol 2017; 91:JVI.00571-17. [PMID: 28539440 PMCID: PMC5512259 DOI: 10.1128/jvi.00571-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo. The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system.
Collapse
|
86
|
Palatini U, Miesen P, Carballar-Lejarazu R, Ometto L, Rizzo E, Tu Z, van Rij RP, Bonizzoni M. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics 2017; 18:512. [PMID: 28676109 PMCID: PMC5497376 DOI: 10.1186/s12864-017-3903-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes. Results We used a bioinformatic approach to analyse the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presently available 22 mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, in which they are approximately ~10-fold more abundant than in other mosquito species analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs. Conclusions Differences in the number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exist. Viral integrations are abundant in Ae. aegypti and Ae. albopictus, and represent a thus far underappreciated component of their genomes. Additionally, the genome locations of viral integrations and their production of piRNAs indicate a functional link between viral integrations and the piRNA pathway. These results greatly expand the breadth and complexity of small RNA-mediated regulation and suggest a role for viral integrations in antiviral defense in these two mosquito species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3903-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, Nijmegen, The Netherlands
| | | | - Lino Ometto
- Indepenent Researcher, Mezzocorona, Trento, Italy
| | | | - Zhijian Tu
- Department of Biochemistry and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, Nijmegen, The Netherlands
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
87
|
EFSA Panel on Animal Health and Welfare (AHAW), More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Borna disease. EFSA J 2017; 15:e04951. [PMID: 32625602 PMCID: PMC7009998 DOI: 10.2903/j.efsa.2017.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Borna disease to be listed, Article 9 for the categorisation of Borna disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Borna disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Borna disease cannot be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no compliance on criterion 5 A(v). Consequently, the assessment on compliance of Borna disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is not applicable, as well as which animal species can be considered to be listed for Borna disease according to Article 8(3) of the AHL.
Collapse
|
88
|
The biological significance of bornavirus-derived genes in mammals. Curr Opin Virol 2017; 25:1-6. [PMID: 28666136 DOI: 10.1016/j.coviro.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
The discoveries of sequences derived from non-retroviral viruses in eukaryotic genomes have significantly expanded our knowledge about virus evolution as well as the co-evolution between viruses and eukaryotes. However, the biological functions of such sequences in the host are largely unknown. Endogenous bornavirus-like elements (EBLs) have been relatively well studied by molecular biological methods, which have provided evidence that some EBLs have been co-opted by their hosts. This review highlights the current knowledge on the biological significance of EBLs, and discusses possible functions of EBLs. Further, we highlight the importance of extensive surveillance of exogenous viruses for a better understanding of endogenous viral sequences as well as the co-evolution of viruses and eukaryotes.
Collapse
|
89
|
Blinov VM, Zverev VV, Krasnov GS, Filatov FP, Shargunov AV. Viral component of the human genome. Mol Biol 2017; 51:205-215. [PMID: 32214476 PMCID: PMC7089383 DOI: 10.1134/s0026893317020066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/27/2016] [Indexed: 12/17/2022]
Abstract
Relationships between viruses and their human host are traditionally described from the point of view taking into consideration hosts as victims of viral aggression, which results in infectious diseases. However, these relations are in fact two-sided and involve modifications of both the virus and host genomes. Mutations that accumulate in the populations of viruses and hosts may provide them advantages such as the ability to overcome defense barriers of host cells or to create more efficient barriers to deal with the attack of the viral agent. One of the most common ways of reinforcing anti-viral barriers is the horizontal transfer of viral genes into the host genome. Within the host genome, these genes may be modified and extensively expressed to compete with viral copies and inhibit the synthesis of their products or modulate their functions in other ways. This review summarizes the available data on the horizontal gene transfer between viral and human genomes and discusses related problems.
Collapse
Affiliation(s)
- V M Blinov
- 1Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064 Russia
| | - V V Zverev
- 1Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064 Russia
| | - G S Krasnov
- 1Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064 Russia.,2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 111911 Russia.,3Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119121 Russia
| | - F P Filatov
- 1Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064 Russia.,Gamaleya Research Center of Epidemiology and Microbiology, Moscow, 123098 Russia
| | - A V Shargunov
- 1Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064 Russia
| |
Collapse
|
90
|
Shatizadeh-Malekshahi S, Ahmadkhaniha HR, Kiani SJ, Nejati A, Janani L, Yavarian J. No molecular evidence of Borna disease virus among schizophrenia and bipolar disorder patients in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:112-118. [PMID: 29214003 PMCID: PMC5715276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Viruses have been suggested as one of the risk factors for psychiatric disorders. Among infectious agents Borna disease virus (BDV) has been known as a neurotropic virus which is able to cause neurological disorders in different animals. Recently there were controversial findings about BDV association with pathogenesis of human psychotic disorders. MATERIALS AND METHODS Here we performed a nested reverse transcription polymerase chain reaction for detection of BDV P40 RNA in peripheral blood mononuclear cell samples of schizophrenia (SC), bipolar disorder (BD) patients and healthy controls (HCs). RESULTS Only one out of 120 (0.8 %) psychiatric patients and two samples (2.7%) in 75 HCs showed positive results. There were no significant molecular evidence of BDV infection in 120 psychotic patients (60 SC and 60 BD) and 75 matched HCs. CONCLUSION Our findings showed no association between BDV infection and pathogenesis of these psychiatric disorders. This is an interesting issue given both the as yet un-clarified role of BDV in human mental disorders and addressing patients in the so far under-investigating Middle East era.
Collapse
Affiliation(s)
| | - Hamid Reza Ahmadkhaniha
- Mental Health Research Center, Department of Psychiatry, Iran Mental Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Jila Yavarian MD, PhD, Porsina Ave, Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Telefax: 00982188962343
| |
Collapse
|
91
|
Henzy JE, Gifford RJ, Kenaley CP, Johnson WE. An Intact Retroviral Gene Conserved in Spiny-Rayed Fishes for over 100 My. Mol Biol Evol 2017; 34:634-639. [PMID: 28039384 PMCID: PMC5939848 DOI: 10.1093/molbev/msw262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have identified a retroviral envelope gene with a complete, intact open reading frame (ORF) in 20 species of spiny-rayed fishes (Acanthomorpha). The taxonomic distribution of the gene, "percomORF", indicates insertion into the ancestral lineage >110 Ma, making it the oldest known conserved gene of viral origin in a vertebrate genome. Underscoring its ancient provenence, percomORF exists as an isolated ORF within the intron of a widely conserved host gene, with no discernible proviral sequence nearby. Despite its remarkable age, percomORF retains canonical features of a retroviral glycoprotein, and tests for selection strongly suggest cooption for a host function. Retroviral envelope genes have been coopted for a role in placentogenesis by numerous lineages of mammals, including eutherians and marsupials, representing a variety of placental structures. Therefore percomORF's presence within the group Percomorpha-unique among spiny-finned fishes in having evolved placentation and live birth-is especially intriguing.
Collapse
Affiliation(s)
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | |
Collapse
|
92
|
Pleet ML, DeMarino C, Lepene B, Aman MJ, Kashanchi F. The Role of Exosomal VP40 in Ebola Virus Disease. DNA Cell Biol 2017; 36:243-248. [PMID: 28177658 DOI: 10.1089/dna.2017.3639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.
Collapse
Affiliation(s)
- Michelle L Pleet
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| | - Catherine DeMarino
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| | | | - M Javad Aman
- 3 Integrated BioTherapeutics, Inc. , Gaithersburg, Maryland
| | - Fatah Kashanchi
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| |
Collapse
|
93
|
Guterres A, de Oliveira RC, Fernandes J, de Lemos ERS, Schrago CG. New bunya-like viruses: Highlighting their relations. INFECTION GENETICS AND EVOLUTION 2017; 49:164-173. [PMID: 28111322 DOI: 10.1016/j.meegid.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/18/2022]
Abstract
The standard virus classification scheme for arenaviruses and bunyaviruses shifted dramatically when several groups reported the detection and isolation of divergent groups of viruses in a variety of insect collections. Although these viral families can differ in terms of morphology, structure and genetics, recent findings indicate these viruses may have a shared evolutionary origin. To determine the phylogenetic relations among these families, we inferred phylogenetic trees using three methods. The Maximum Likelihood and Bayesian trees were rooted as suggested by the (molecular clock-rooted) BEAST tree. Our results highlight a noteworthy relation among these viral supergroups of different genome organizations. Our study suggests that the best scenario is the existence of at least three monophyletic supergroups, all of them well supported. The recent data indicate that these viruses are evolutionarily and genetically interconnected. While these supergroups appear to be closely related in our phylogenetic analysis, other viruses should be investigated in future research. In sum, our results also provide insights into the classification scheme, thereby providing a new perspective about the fundamental questions of family origins, diversity and genome evolution.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata Carvalho de Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Carlos Guerra Schrago
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
94
|
Abstract
Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
95
|
Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03. J Virol Methods 2016; 242:35-45. [PMID: 28025125 DOI: 10.1016/j.jviromet.2016.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/12/2023]
Abstract
There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells.
Collapse
|
96
|
Pleet ML, Mathiesen A, DeMarino C, Akpamagbo YA, Barclay RA, Schwab A, Iordanskiy S, Sampey GC, Lepene B, Nekhai S, Aman MJ, Kashanchi F. Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction. Front Microbiol 2016; 7:1765. [PMID: 27872619 PMCID: PMC5098130 DOI: 10.3389/fmicb.2016.01765] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80–90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| | - Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk VA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| | - Yao A Akpamagbo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| | - Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| | - Sergey Iordanskiy
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Gavin C Sampey
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, ManassasVA, USA; University of North Carolina HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel HillNC, USA
| | | | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington DC, USA
| | - M J Aman
- Integrated BioTherapeutics, Inc., Gaithersburg MD, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas VA, USA
| |
Collapse
|
97
|
Zaliunaite V, Steibliene V, Bode L, Podlipskyte A, Bunevicius R, Ludwig H. Primary psychosis and Borna disease virus infection in Lithuania: a case control study. BMC Psychiatry 2016; 16:369. [PMID: 27809822 PMCID: PMC5093928 DOI: 10.1186/s12888-016-1087-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hypothesis that microbial infections may be linked to mental disorders has long been addressed for Borna disease virus (BDV), but clinical and epidemiological evidence remained inconsistent due to non-conformities in detection methods. BDV circulating immune complexes (CIC) were shown to exceed the prevalence of serum antibodies alone and to comparably screen for infection in Europe (DE, CZ, IT), the Middle East (IR) and Asia (CN), still seeking general acceptance. METHODS We used CIC and antigen (Ag) tests to investigate BDV infection in Lithuania through a case-control study design comparing in-patients suffering of primary psychosis with blood donors. One hundred and six acutely psychotic in-patients with no physical illness, consecutively admitted to the regional mental hospital, and 98 blood donors from the Blood Donation Centre, Lithuania, were enrolled in the study. The severity of psychosis was assessed twice, prior and after acute antipsychotic therapy, by the Brief Psychiatric Rating Scale (BPRS). BDV-CIC and Ag markers were tested once after therapy was terminated. RESULTS What we found was a significantly higher prevalence of CIC, indicating a chronic BDV infection, in patients with treated primary psychosis than in blood donor controls (39.6 % vs. 22.4 %, respectively). Free BDV Ag, indicating currently active infection, did not show significant differences among study groups. Higher severity of psychosis prior to treatment was inversely correlated to the presence of BDV Ag (42.6 vs. 34.1 BPRS, respectively; p = 0.022). CONCLUSIONS The study concluded significantly higher BDV infection rates in psychotic than in healthy Lithuanians, thus supporting similar global trends for other mental disorders. The study raised awareness to consider the integration of BDV infection surveillance in psychiatry research in the future.
Collapse
Affiliation(s)
- Violeta Zaliunaite
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135, Lithuania.
| | - Vesta Steibliene
- Psychiatry Clinic, Lithuanian University of Health Sciences, Mickeviciaus str. 9, Kaunas, LT-44307 Lithuania
| | - Liv Bode
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| | - Aurelija Podlipskyte
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Robertas Bunevicius
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| |
Collapse
|
98
|
The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Sci Rep 2016; 6:35548. [PMID: 27739501 PMCID: PMC5064366 DOI: 10.1038/srep35548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.
Collapse
|
99
|
Rani A, Ranjan R, McGee HS, Metwally A, Hajjiri Z, Brennan DC, Finn PW, Perkins DL. A diverse virome in kidney transplant patients contains multiple viral subtypes with distinct polymorphisms. Sci Rep 2016; 6:33327. [PMID: 27633952 PMCID: PMC5025891 DOI: 10.1038/srep33327] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
Recent studies have established that the human urine contains a complex microbiome, including a virome about which little is known. Following immunosuppression in kidney transplant patients, BK polyomavirus (BKV) has been shown to induce nephropathy (BKVN), decreasing graft survival. In this study we investigated the urine virome profile of BKV+ and BKV- kidney transplant recipients. Virus-like particles were stained to confirm the presence of VLP in the urine samples. Metagenomic DNA was purified, and the virome profile was analyzed using metagenomic shotgun sequencing. While the BK virus was predominant in the BKV+ group, it was also found in the BKV- group patients. Additional viruses were also detected in all patients, notably including JC virus (JCV) and Torque teno virus (TTV) and interestingly, we detected multiple subtypes of the BKV, JCV and TTV. Analysis of the BKV subtypes showed that nucleotide polymorphisms were detected in the VP1, VP2 and Large T Antigen proteins, suggesting potential functional effects for enhanced pathogenicity. Our results demonstrate a complex urinary virome in kidney transplant patients with multiple viruses with several distinct subtypes warranting further analysis of virus subtypes in immunosuppressed hosts.
Collapse
Affiliation(s)
- Asha Rani
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Ravi Ranjan
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Halvor S. McGee
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Ahmed Metwally
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60612, USA
| | - Zahraa Hajjiri
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Daniel C. Brennan
- Division of Renal Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patricia W. Finn
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - David L. Perkins
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
100
|
Kobayashi Y, Horie M, Nakano A, Murata K, Itou T, Suzuki Y. Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians. PLoS Pathog 2016; 12:e1005785. [PMID: 27518265 PMCID: PMC4982594 DOI: 10.1371/journal.ppat.1005785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 11/18/2022] Open
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs), the nucleotide sequence elements derived from the nucleoprotein gene of ancient bornavirus-like viruses, have been identified in many animal genomes. Here we show evidence that EBLNs encode functional proteins in their host. Some afrotherian EBLNs were observed to have been maintained for more than 83.3 million years under negative selection. Splice variants were expressed from the genomic loci of EBLNs in elephant, and some were translated into proteins. The EBLN proteins appeared to be localized to the rough endoplasmic reticulum in African elephant cells, in contrast to the nuclear localization of bornavirus N. These observations suggest that afrotherian EBLNs have acquired a novel function in their host. Interestingly, genomic sequences of the first exon and its flanking regions in these EBLN loci were homologous to those of transmembrane protein 106B (TMEM106B). The upstream region of the first exon in the EBLN loci exhibited a promoter activity, suggesting that the ability of these EBLNs to be transcribed in the host cell was gained through capturing a partial duplicate of TMEM106B. In conclusion, our results strongly support for exaptation of EBLNs to encode host proteins in afrotherians. Endogenous retroviruses are representative of endogenous viral elements (EVEs), which are known to have occasionally served as the source of evolutionary innovations of the host. Endogenous bornavirus-like nucleoprotein element (EBLN) was the first EVE identified in mammalian genomes to have been derived from a non-retroviral RNA virus. Here we show evidence that EBLNs that were integrated into afrotherian genomes more than 83.3 million years ago have gained novel protein functions associated with rough endoplasmic reticulum in afrotherians. In the amino acid sequence of EBLN proteins, negative selection appeared to have operated more strongly on hydrophilic regions than on hydrophobic regions, suggesting that EBLN proteins may interact with other molecules in their host cells. In addition, we clarified the mechanism how EBLNs have acquired an ability to be transcribed in the host cell; they captured a partial duplicate of an intrinsic gene, transmembrane protein 106B, which retained an intrinsic promoter activity. Our findings suggest that not only retroviral EVEs but also non-retroviral EVEs may have contributed to the host evolution.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, Japan
- * E-mail: (YK); (YS)
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Ayumi Nakano
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, Japan
| | - Koichi Murata
- Department of Animal Resource Science, College of Bioresource Sciences, Nihon Universitym, Fujisawa, Kanagawa, Japan
| | - Takuya Itou
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi, Japan
- * E-mail: (YK); (YS)
| |
Collapse
|