51
|
Haslwanter D, Blaas D, Heinz FX, Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog 2017; 13:e1006643. [PMID: 28915259 PMCID: PMC5617232 DOI: 10.1371/journal.ppat.1006643] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement of viral infection is a well-described phenomenon that is based on the cellular uptake of infectious virus-antibody complexes following their interaction with Fcγ receptors expressed on myeloid cells. Here we describe a novel mechanism of antibody-mediated enhancement of infection by a flavivirus (tick-borne encephalitis virus) in transformed and primary human cells, which is independent of the presence of Fcγ receptors. Using chemical cross-linking and immunoassays, we demonstrate that the monoclonal antibody (mab) A5, recognizing an epitope at the interface of the dimeric envelope protein E, causes dimer dissociation and leads to the exposure of the fusion loop (FL). Under normal conditions of infection, this process is triggered only after virus uptake by the acidic pH in endosomes, resulting in the initiation of membrane fusion through the interaction of the FL with the endosomal membrane. Analysis of virus binding and cellular infection, together with inhibition by the FL-specific mab 4G2, indicated that the FL, exposed after mab A5- induced dimer-dissociation, mediated attachment of the virus to the plasma membrane also at neutral pH, thereby increasing viral infectivity. Since antibody-induced enhancement of binding was not only observed with cells but also with liposomes, it is likely that increased infection was due to FL-lipid interactions and not to interactions with cellular plasma membrane proteins. The novel mechanism of antibody-induced infection enhancement adds a new facet to the complexity of antibody interactions with flaviviruses and may have implications for yet unresolved effects of polyclonal antibody responses on biological properties of these viruses.
Collapse
Affiliation(s)
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
52
|
Lim XX, Chandramohan A, Lim XYE, Crowe JE, Lok SM, Anand GS. Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure 2017; 25:1391-1402.e3. [PMID: 28823471 DOI: 10.1016/j.str.2017.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Uncovering mechanisms of antibody-mediated neutralization for viral infections requires epitope and paratope mapping in the context of whole viral particle interactions with the antibody in solution. In this study, we use amide hydrogen/deuterium exchange mass spectrometry to describe the interface of a dengue virus-neutralizing antibody, 2D22, with its target epitope. 2D22 binds specifically to DENV2, a serotype showing strain-specific structural expansion at human host physiological temperatures of 37°C. Our results identify the heavy chain of 2D22 to be the primary determinant for binding DENV2. Temperature-mediated expansion alters the mode of interaction of 2D22 binding. Importantly, 2D22 interferes with the viral expansion process and offers a basis for its neutralization mechanism. The relative magnitude of deuterium exchange protection upon antibody binding across the various epitope loci allows a deconstruction of the antibody-viral interface in host-specific environments and offers a robust approach for targeted antibody engineering.
Collapse
Affiliation(s)
- Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Xin-Ying Elisa Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232-0417, USA
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
53
|
Tsai WY, Lin HE, Wang WK. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development. Front Microbiol 2017; 8:1372. [PMID: 28775720 PMCID: PMC5517401 DOI: 10.3389/fmicb.2017.01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.
Collapse
Affiliation(s)
- Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Hong-En Lin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| |
Collapse
|
54
|
Chaudhury S, Gromowski GD, Ripoll DR, Khavrutskii IV, Desai V, Wallqvist A. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus. PLoS Negl Trop Dis 2017; 11:e0005395. [PMID: 28222130 PMCID: PMC5336305 DOI: 10.1371/journal.pntd.0005395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/03/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background A majority infections caused by dengue virus (DENV) are asymptomatic, but a higher incidence of severe illness, such as dengue hemorrhagic fever, is associated with secondary infections, suggesting that pre-existing immunity plays a central role in dengue pathogenesis. Primary infections are typically associated with a largely serotype-specific antibody response, while secondary infections show a shift to a broadly cross-reactive antibody response. Methods/Principal findings We hypothesized that the basis for the shift in serotype-specificity between primary and secondary infections can be found in a change in the antibody fine-specificity. To investigate the link between epitope- and serotype-specificity, we assembled the Dengue Virus Antibody Database, an online repository containing over 400 DENV-specific mAbs, each annotated with information on 1) its origin, including the immunogen, host immune history, and selection methods, 2) binding/neutralization data against all four DENV serotypes, and 3) epitope mapping at the domain or residue level to the DENV E protein. We combined epitope mapping and activity information to determine a residue-level index of epitope propensity and cross-reactivity and generated detailed composite epitope maps of primary and secondary antibody responses. We found differing patterns of epitope-specificity between primary and secondary infections, where secondary responses target a distinct subset of epitopes found in the primary response. We found that secondary infections were marked with an enhanced response to cross-reactive epitopes, such as the fusion-loop and E-dimer region, as well as increased cross-reactivity in what are typically more serotype-specific epitope regions, such as the domain I-II interface and domain III. Conclusions/Significance Our results support the theory that pre-existing cross-reactive memory B cells form the basis for the secondary antibody response, resulting in a broadening of the response in terms of cross-reactivity, and a focusing of the response to a subset of epitopes, including some, such as the fusion-loop region, that are implicated in poor neutralization and antibody-dependent enhancement of infection. Dengue virus (DENV) infections are typically asymptomatic, but severe and potentially lethal disease symptoms, such as dengue hemorrhagic fever, are associated with secondary infections. This suggests that pre-existing immunity from primary infection plays a central role in DENV pathogenesis. In order to characterize the antibody response in primary and secondary infections, we assembled the Dengue Virus Antibody Database, a freely accessible online repository (http://denvabdb.bhsai.org) storing over 400 unique monoclonal dengue-specific antibodies annotated by their 1) origin and host immune history, 2) activity information against all four dengue serotypes, and 3) epitope mapping information. Here we demonstrate the utility of the database by carrying out a large-scale analysis to characterize shifts in epitope fine-specificity and serotype cross-reactivity in primary and secondary infections. In particular, we show how the antibody response in secondary infections displays a systematic shift towards increased serotype cross-reactivity by focusing on a subset of cross-reactive epitopes on the dengue E protein. Our findings suggest a mechanistic basis for this shift in epitope and serotype specificity and demonstrate how a detailed understanding of the antibody response can provide insight into the mechanisms of dengue pathogenesis.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel R. Ripoll
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Ilja V. Khavrutskii
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Valmik Desai
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Anders Wallqvist
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
55
|
Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother 2017; 13:1059-1072. [PMID: 28281864 DOI: 10.1080/21645515.2016.1261770] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.
Collapse
Affiliation(s)
- J Torresi
- a Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity, University of Melbourne , Parkville , Victoria , Australia
| | - G Ebert
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia
| | - M Pellegrini
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia.,c Department of Medical Biology , The University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
56
|
Conformational changes in intact dengue virus reveal serotype-specific expansion. Nat Commun 2017; 8:14339. [PMID: 28186093 PMCID: PMC5309819 DOI: 10.1038/ncomms14339] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. Temperature differences between mosquitoes and humans trigger structural changes in dengue virus 2 (DENV2) particles, but not in other DENV serotypes. Here, using HDXMS, the authors describe serotype-specific expansion of intact viral particles of DENV1 and DENV2 at 28 °C (mosquitoes), 37 °C (humans) and 40 °C (fever).
Collapse
|
57
|
The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiol Mol Biol Rev 2017; 81:81/1/e00055-16. [PMID: 28179396 DOI: 10.1128/mmbr.00055-16] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization.
Collapse
|
58
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
59
|
Goo L, VanBlargan LA, Dowd KA, Diamond MS, Pierson TC. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog 2017; 13:e1006178. [PMID: 28207910 PMCID: PMC5312798 DOI: 10.1371/journal.ppat.1006178] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/11/2017] [Indexed: 01/23/2023] Open
Abstract
The structural flexibility or 'breathing' of the envelope (E) protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.
Collapse
Affiliation(s)
- Leslie Goo
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura A. VanBlargan
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
60
|
Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks. Viruses 2016; 8:v8110306. [PMID: 27834908 PMCID: PMC5127020 DOI: 10.3390/v8110306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/19/2023] Open
Abstract
Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
Collapse
|
61
|
Identification of a New Broadly Cross-reactive Epitope within Domain III of the Duck Tembusu Virus E Protein. Sci Rep 2016; 6:36288. [PMID: 27824100 PMCID: PMC5099753 DOI: 10.1038/srep36288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023] Open
Abstract
In 2010, a pathogenic flavivirus termed duck Tembusu virus (DTMUV) caused widespread outbreak of egg-drop syndrome in domesticated ducks in China. Although the glycoprotein E of DTMUV is an important structural component of the virus, the B-cell epitopes of this protein remains uncharacterized. Using phage display and mutagenesis, we identified a minimal B-cell epitope, 374EXE/DPPFG380, that mediates binding to a nonneutralizing monoclonal antibody. DTMUV-positive duck serum reacted with the epitope, and amino acid substitutions revealed the specific amino acids that are essential for antibody binding. Dot-blot assays of various flavivirus-positive sera indicated that EXE/DPPFG is a cross-reactive epitope in most flaviviruses, including Zika, West Nile, Yellow fever, dengue, and Japanese encephalitis viruses. These findings indicate that the epitope sequence is conserved among many strains of mosquito-borne flavivirus. Protein structure modeling revealed that the epitope is located in domain III of the DTMUV E protein. Together, these results provide new insights on the broad cross-reactivity of a B-cell binding site of the E protein of flaviviruses, which can be exploited as a diagnostic or therapeutic target for identifying, studying, or treating DTMUV and other flavivirus infections.
Collapse
|
62
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
63
|
Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF. Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 2016; 68:783-91. [DOI: 10.1002/iub.1556] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC); Beijing China
| |
Collapse
|
64
|
Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, Fremont DH. Structural Basis of Zika Virus-Specific Antibody Protection. Cell 2016; 166:1016-1027. [PMID: 27475895 PMCID: PMC4983199 DOI: 10.1016/j.cell.2016.07.020] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy has emerged as a global public health problem because of its ability to cause severe congenital disease. Here, we developed six mouse monoclonal antibodies (mAbs) against ZIKV including four (ZV-48, ZV-54, ZV-64, and ZV-67) that were ZIKV specific and neutralized infection of African, Asian, and American strains to varying degrees. X-ray crystallographic and competition binding analyses of Fab fragments and scFvs defined three spatially distinct epitopes in DIII of the envelope protein corresponding to the lateral ridge (ZV-54 and ZV-67), C-C' loop (ZV-48 and ZV-64), and ABDE sheet (ZV-2) regions. In vivo passive transfer studies revealed protective activity of DIII-lateral ridge specific neutralizing mAbs in a mouse model of ZIKV infection. Our results suggest that DIII is targeted by multiple type-specific antibodies with distinct neutralizing activity, which provides a path for developing prophylactic antibodies for use in pregnancy or designing epitope-specific vaccines against ZIKV.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Estefania Fernandez
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott D Speer
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek J Platt
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Matthew J Gorman
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
65
|
Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology 2016; 497:33-40. [PMID: 27420797 DOI: 10.1016/j.virol.2016.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022]
Abstract
Flaviviruses are positive-stranded RNA viruses that incorporate envelope (E) and premembrane (prM) proteins into the virion. Furin-mediated cleavage of prM defines a required maturation step in the flavivirus lifecycle. Inefficient prM cleavage results in structurally heterogeneous virions with unique antigenic and functional characteristics. Recent studies with dengue virus suggest that viruses produced in tissue culture cells are less mature than those produced in primary cells. In this study, we describe a Vero cell line that ectopically expresses high levels of human furin (Vero-furin) for use in the production of more homogenous mature flavivirus populations. Laboratory-adapted and clinical dengue virus isolates grow efficiently in Vero-furin cells. Biochemical and structural techniques demonstrate efficient prM cleavage in Vero-furin derived virus preparations. These virions also were less sensitive to neutralization by antibodies that bind efficiently to immature virions. This furin-expressing cell line will be of considerable utility for flavivirus neutralization and structural studies.
Collapse
|
66
|
Calvert AE, Dixon KL, Piper J, Bennett SL, Thibodeaux BA, Barrett ADT, Roehrig JT, Blair CD. A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 in vitro but does not protect a mouse model from disease. Antiviral Res 2016; 131:92-9. [PMID: 27126613 PMCID: PMC4899248 DOI: 10.1016/j.antiviral.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 01/29/2023]
Abstract
The yellow fever virus (YFV) vaccine 17D-204 is considered safe and effective, yet rare severe adverse events (SAEs), some resulting in death, have been documented following vaccination. Individuals exhibiting post-vaccinal SAEs are ideal candidates for antiviral monoclonal antibody (MAb) therapy; the time until appearance of clinical signs post-exposure is usually short and patients are quickly hospitalized. We previously developed a murine-human chimeric monoclonal antibody (cMAb), 2C9-cIgG, reactive with both virulent YFV and 17D-204, and demonstrated its ability to prevent and treat YF disease in both AG129 mouse and hamster models of infection. To counteract possible selection of 17D-204 variants that escape neutralization by treatment with a single MAb (2C9-cIgG), we developed a second cMAb, 864-cIgG, for use in combination with 2C9-cIgG in post-vaccinal therapy. MAb 864-cIgG recognizes/neutralizes only YFV 17D-204 vaccine substrain and binds to domain III (DIII) of the viral envelope protein, which is different from the YFV type-specific binding site of 2C9-cIgG in DII. Although it neutralized 17D-204 in vitro, administration of 864-cIgG had no protective capacity in the interferon receptor-deficient AG129 mouse model of 17D-204 infection. The data presented here show that although DIII-specific 864-cIgG neutralizes virus infectivity in vitro, it does not have the ability to abrogate disease in vivo. Therefore, combination of 864-cIgG with 2C9-cIgG for treatment of YF vaccination SAEs does not appear to provide an improvement on 2C9-cIgG therapy alone.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Disease Models, Animal
- Humans
- Immunization, Passive
- Mice
- Neutralization Tests
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Yellow Fever/immunology
- Yellow Fever/prevention & control
- Yellow Fever/therapy
- Yellow Fever Vaccine/adverse effects
- Yellow Fever Vaccine/immunology
- Yellow fever virus/immunology
Collapse
Affiliation(s)
- Amanda E Calvert
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Kandice L Dixon
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Joseph Piper
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1692, USA
| | - Susan L Bennett
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1692, USA
| | - Brett A Thibodeaux
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1692, USA
| | - Alan D T Barrett
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas-Medical Branch, Galveston, TX, 77555, USA
| | - John T Roehrig
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1692, USA.
| |
Collapse
|
67
|
Paul A, Vibhuti A, Raj S. Molecular docking NS4B of DENV 1-4 with known bioactive phyto-chemicals. Bioinformation 2016; 12:140-148. [PMID: 28149049 PMCID: PMC5267958 DOI: 10.6026/97320630012140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023] Open
Abstract
Dengue disease is a global disease that has no effective treatment. The dengue virus (DENV) NS4B is a target for designing specific antivirals due to its importance in viral replication. Medicinal plants have been a savior for dengue virus as they consist of a class of phytochemicals having anti-viral activity and can pose a new approach ofstrong drug against viruses. The present study analyzes the activity of compounds against NS4B of DENV (1-4) serotypes. In this study Catechin, Cianidanol, Epicatechin, Eupatoretin, Glabranin, Laurifolin, DL-Catechin, astherapeutic agents were filtered by using Lipinski rule's five and the drug-likeness property of these agents were used for assessment of pharmacological properties. The molecular docking results presented the 2-D structures of bioactive complex, which interacted with especially conserved residues of target domains. Interestingly, we find the Catechin, Laurifolin, Cianidanol have highest binding energy against NS4B in DENV-1,2,4 which is evident by the formation of more hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results revealed that the bioactive compound, especially Catechin has significant anti-dengue activities. In addition, this study may be helpful in further experimental investigations.
Collapse
Affiliation(s)
- Anubrata Paul
- Department of Biotechnology, Centre for Drug Design Discovery and Development (C-4D), SRM University, Delhi NCR, Sonepat, Haryana, India
| | - Arpana Vibhuti
- Department of Biotechnology, Centre for Drug Design Discovery and Development (C-4D), SRM University, Delhi NCR, Sonepat, Haryana, India
| | - Samuel Raj
- Department of Biotechnology, Centre for Drug Design Discovery and Development (C-4D), SRM University, Delhi NCR, Sonepat, Haryana, India
| |
Collapse
|
68
|
The development of therapeutic antibodies against dengue virus. Antiviral Res 2016; 128:7-19. [PMID: 26794397 DOI: 10.1016/j.antiviral.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Dengue virus, a positive-sense RNA virus, is one of the major human pathogens transmitted by mosquitoes. However, no fully effective licensed dengue vaccines or therapeutics are currently available. Several potent neutralizing antibodies against DENV have been isolated from mice and humans, and the characterization of their properties by biochemical and biophysical methods have revealed important insights for development of therapeutic antibodies. In this review, we summarize recently reported antibody-antigen complex structures, their likely neutralization mechanisms and enhancement propensities, as well as their prophylactic and therapeutic capabilities in mouse models. This article forms part of a symposium on flavivirus drug discovery in the journal Antiviral Research.
Collapse
|
69
|
Lok SM. The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. Trends Microbiol 2015; 24:284-293. [PMID: 26747581 DOI: 10.1016/j.tim.2015.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
Dengue virus (DENV) infects ∼400 million people annually, and there is no available vaccine or therapeutics. It is not clear why candidate vaccines provide only modest protection. In addition to the presence of four different dengue serotypes, there is also structural heterogeneity in DENV infectious particles, even within a strain. This severely complicates the development of vaccines and therapeutics. The currently known different morphologies of DENV are: immature, partially mature, compact mature, and expanded mature forms of the virus. In this review I describe these forms of the virus, their infectivity, and how antibodies could recognize these morphologies. I also discuss possible vaccine and antibody therapeutic formulations to protect against all morphologies.
Collapse
Affiliation(s)
- Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
70
|
Acosta EG, Bartenschlager R. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 2015; 15:467-82. [PMID: 26577689 DOI: 10.1586/14760584.2016.1121814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.
Collapse
Affiliation(s)
- Eliana G Acosta
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Ralf Bartenschlager
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,b German Center for Infection Research , Heidelberg University , Heidelberg , Germany
| |
Collapse
|
71
|
Genotypic Differences in Dengue Virus Neutralization Are Explained by a Single Amino Acid Mutation That Modulates Virus Breathing. mBio 2015; 6:e01559-15. [PMID: 26530385 PMCID: PMC4631804 DOI: 10.1128/mbio.01559-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses sample an ensemble of virion conformations resulting from the conformational flexibility of their structural proteins. To investigate how sequence variation among strains impacts virus breathing, we performed studies with the monoclonal antibody (MAb) E111, which binds an inaccessible domain III envelope (E) protein epitope of dengue virus serotype 1 (DENV1). Prior studies indicated that an observed ~200-fold difference in neutralization between the DENV1 strains Western Pacific-74 (West Pac-74) and 16007 could not be explained by differences in the affinity of MAb E111 for each strain. Through neutralization studies with wild-type and variant viruses carrying genes encoding reciprocal mutations at all 13 amino acid differences between the E proteins of West Pac-74 and 16007, we found that E111 neutralization susceptibility mapped solely to the presence of a lysine or arginine at E domain II residue 204, located distally from the E111 epitope. This same residue correlated with neutralization differences observed for MAbs specific for epitopes distinct from E111, suggesting that this amino acid dictates changes in the conformational ensembles sampled by the virus. Furthermore, an observed twofold difference in the stability of infectious West Pac-74 versus 16007 in solution also mapped to E residue 204. Our results demonstrate that neutralization susceptibility can be altered in an epitope-independent manner by natural strain variation that influences the structures sampled by DENV. That different conformational ensembles of flaviviruses may affect the landscape available for antibody binding, as well as virus stability, has important implications for functional studies of antibody potency, a critical aspect of vaccine development. The global burden of dengue virus (DENV) is growing, with recent estimates of ~390 million human infections each year. Antibodies play a crucial role in protection from DENV infection, and vaccines that elicit a robust antibody response are being actively pursued. We report here the identification of a single amino acid residue in the envelope protein of DENV serotype 1 that results in global changes to virus structure and stability when it is changed. Our results indicate that naturally occurring variation at this particular site among virus strains impacts the ensemble of structures sampled by the virus, a process referred to as virus breathing. The finding that such limited and conservative sequence changes can modulate the landscape available for antibody binding has important implications for both vaccine development and the study of DENV-reactive antibodies.
Collapse
|
72
|
Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. J Virol 2015; 89:12084-95. [PMID: 26401034 DOI: 10.1128/jvi.02189-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs. IMPORTANCE Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.
Collapse
|
73
|
Frei JC, Kielian M, Lai JR. Comprehensive mapping of functional epitopes on dengue virus glycoprotein E DIII for binding to broadly neutralizing antibodies 4E11 and 4E5A by phage display. Virology 2015; 485:371-82. [PMID: 26339794 DOI: 10.1016/j.virol.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022]
Abstract
Here we investigated the binding of Dengue virus envelope glycoprotein domain III (DIII) by two broadly neutralizing antibodies (bNAbs), 4E11 and 4E5A. There are four serotypes of Dengue virus (DENV-1 to -4), whose DIII sequences vary by up to 49%. We used combinatorial alanine scanning mutagenesis, a phage display approach, to map functional epitopes (those residues that contribute most significantly to the energetics of antibody-antigen interaction) on these four serotypes. Our results showed that 4E11, which binds strongly to DENV-1, -2, and -3, and moderately to DENV-4, recognized a common conserved core functional epitope involving DIII residues K310, L/I387, L389, and W391. There were also unique recognition features for each serotype, suggesting that 4E11 has flexible recognition requirements. Similar scanning studies for the related bNAb 4E5A, which binds more tightly to DENV-4, identified broader functional epitopes on DENV-1. These results provide useful information for immunogen and therapeutic antibody design.
Collapse
Affiliation(s)
- Julia C Frei
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States.
| |
Collapse
|
74
|
Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen. J Virol 2015; 89:7970-8. [PMID: 26018152 DOI: 10.1128/jvi.00938-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The antibody response to proteins may be modulated by the presence of preexisting antigen-specific antibodies and the formation of immune complexes (ICs). Effects such as a general increase or decrease of the response as well as epitope-specific phenomena have been described. In this study, we investigated influences of IC immunization on the fine specificity of antibody responses in a structurally well-defined system, using the envelope (E) protein of tick-borne encephalitis (TBE) virus as an immunogen. TBE virus occurs in Europe and Asia and-together with the yellow fever, dengue, West Nile, and Japanese encephalitis viruses-represents one of the major human-pathogenic flaviviruses. Mice were immunized with a dimeric soluble form of E (sE) alone or in complex with monoclonal antibodies specific for each of the three domains of E, and the antibody response induced by these ICs was compared to that seen after immunization with sE alone. Immunoassays using recombinant domains and domain combinations of TBE virus sE as well as the distantly related West Nile virus sE allowed the dissection and quantification of antibody subsets present in postimmunization sera, thus generating fine-specificity patterns of the polyclonal responses. There were substantially different responses with two of the ICs, and the differences could be mechanistically related to (i) epitope shielding and (ii) antibody-mediated structural changes leading to dissociation of the sE dimer. The phenomena described may also be relevant for polyclonal responses upon secondary infections and/or booster immunizations and may affect antibody responses in an individual-specific way. IMPORTANCE Infections with flaviviruses such as yellow fever, dengue, Japanese encephalitis, West Nile, and tick-borne encephalitis (TBE) viruses pose substantial public health problems in different parts of the world. Antibodies to viral envelope protein E induced by natural infection or vaccination were shown to confer protection from disease. Such antibodies can target different epitopes in E protein, and the fine specificities of polyclonal responses can differ between individuals. We conducted a mouse immunization study with TBE E protein alone or complexed to monoclonal antibodies specific for each of the three protein domains. We demonstrated that phenomena such as epitope shielding and antibody-induced structural changes can profoundly influence the fine specificity of antibody responses to the same immunogen. The study thus provided important new information on the potential immunomodulatory role of preexisting antibodies in a flavivirus system that can be relevant for understanding individual-specific factors influencing antibody responses in sequential flavivirus infections and/or immunizations.
Collapse
|
75
|
Ye Q, Xu YP, Zhang Y, Li XF, Wang HJ, Liu ZY, Li SH, Liu L, Zhao H, Nian QG, Deng YQ, Qin ED, Qin CF. Genotype-specific neutralization determinants in envelope protein: implications for the improvement of Japanese encephalitis vaccine. J Gen Virol 2015; 96:2165-2175. [PMID: 25908779 DOI: 10.1099/vir.0.000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis remains the leading cause of viral encephalitis in children in Asia and is expanding its geographical range to larger areas in Asia and Australasia. Five genotypes of Japanese encephalitis virus (JEV) co-circulate in the geographically affected areas. In particular, the emergence of genotype I (GI) JEV has displaced genotype III (GIII) as the dominant circulating genotype in many Asian regions. However, all approved vaccine products are derived from GIII strains. In the present study, bioinformatic analysis revealed that GI and GIII JEV strains shared two distinct amino acid residues within the envelope (E) protein (E222 and E327). By using reverse genetics approaches, A222S and S327T mutations were demonstrated to decrease live-attenuated vaccine (LAV) SA14-14-2-induced neutralizing antibodies in humans, without altering viral replication. A222S or S327T mutations were then rationally engineered into the infectious clone of SA14-14-2, and the resulting mutant strains retained the same genetic stability and attenuation characteristics as the parent strain. More importantly, immunization of mice with LAV-A222S or LAV-S327T elicited increased neutralizing antibodies against GI strains. Together, these results demonstrated that E222 and E327 are potential genotype-related neutralization determinants and are critical in determining the protective efficacy of live Japanese encephalitis vaccine SA14-14-2 against circulating GI strains. Our findings will aid in the rational design of the next generation of Japanese encephalitis LAVs capable of providing broad protection against all JEV strains belonging to different genotypes.
Collapse
Affiliation(s)
- Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yan-Peng Xu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yu Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Hong-Jiang Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shi-Hua Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Long Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,Graduate School, Anhui Medical University, Hefei 230032, PR China
| | - Hui Zhao
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Qing-Gong Nian
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yong-Qiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - E-De Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Cheng-Feng Qin
- Graduate School, Anhui Medical University, Hefei 230032, PR China.,Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| |
Collapse
|
76
|
Kuhn RJ, Dowd KA, Beth Post C, Pierson TC. Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology 2015; 479-480:508-17. [PMID: 25835729 DOI: 10.1016/j.virol.2015.03.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022]
Abstract
Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses.
Collapse
Affiliation(s)
- Richard J Kuhn
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carol Beth Post
- Departments of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
77
|
Abstract
Dengue viruses have spread rapidly within countries and across regions in the past few decades, resulting in an increased frequency of epidemics and severe dengue disease, hyperendemicity of multiple dengue virus serotypes in many tropical countries, and autochthonous transmission in Europe and the USA. Today, dengue is regarded as the most prevalent and rapidly spreading mosquito-borne viral disease of human beings. Importantly, the past decade has also seen an upsurge in research on dengue virology, pathogenesis, and immunology and in development of antivirals, vaccines, and new vector-control strategies that can positively impact dengue control and prevention.
Collapse
Affiliation(s)
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
78
|
Pierson TC, Diamond MS. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:141-66. [PMID: 25595803 DOI: 10.1016/bs.pmbts.2014.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The humoral response contributes to the protection against viral pathogens. Although antibodies have the potential to inhibit viral infections via several mechanisms, an ability to neutralize viruses directly may be particularly important. Neutralizing antibody titers are commonly used as predictors of protection from infection, especially in the context of vaccine responses and immunity. Despite the simplicity of the concept, how antibody binding results in virus inactivation is incompletely understood despite decades of research. Flaviviruses have been an attractive system in which to seek a structural and quantitative understanding of how antibody interactions with virions modulate infection because of the contribution of antibodies to both protection and pathogenesis. This review will present a stoichiometric model of antibody-mediated neutralization of flaviviruses and discuss how these concepts can inform the development of vaccines and antibody-based therapeutics.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
79
|
Zanluca C, Mazzarotto GACA, Bordignon J, Duarte dos Santos CN. Development, characterization and application of monoclonal antibodies against Brazilian Dengue virus isolates. PLoS One 2014; 9:e110620. [PMID: 25412181 PMCID: PMC4239016 DOI: 10.1371/journal.pone.0110620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3) and dengue serotype-specific (DENV-2 or -3). Additionally, some mAbs cross-reacted with yellow fever virus (YFV), West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV). None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV). Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA) for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research.
Collapse
Affiliation(s)
- Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz/PR), Curitiba, Paraná, Brasil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz/PR), Curitiba, Paraná, Brasil
| | | |
Collapse
|
80
|
Ye Q, Li XF, Zhao H, Deng YQ, Xu YP, Wang HY, Liang GD, Qin CF. Reduction of neutralization antibody against heterologous circulating strains in adults immunized with Japanese encephalitis live vaccine. Hum Vaccin Immunother 2014; 10:2704-5. [DOI: 10.4161/hv.29509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
81
|
Lisova O, Belkadi L, Bedouelle H. Direct and indirect interactions in the recognition between a cross-neutralizing antibody and the four serotypes of dengue virus. J Mol Recognit 2014; 27:205-14. [PMID: 24591178 DOI: 10.1002/jmr.2352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/11/2022]
Abstract
Dengue fever is the most important vector-borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain-III (ED3) of the viral envelope (E) protein. To better understand the cross-reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water-mediated interactions. The doubly-indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L-CDR3) of mAb4E11 does not contact ED3. The structures and double-mutant thermodynamic cycles showed that the effects of (hyper)-mutations in L-CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross-reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses.
Collapse
Affiliation(s)
- Olesia Lisova
- Institut Pasteur, Unit of Molecular Prevention and Therapy of Human Diseases, Department of Infection and Epidemiology, rue du Dr. Roux, F-75015, Paris, France; CNRS, URA3012, rue du Dr. Roux, F-75015, Paris, France
| | | | | |
Collapse
|
82
|
Abstract
UNLABELLED Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted "open" fusogenic trimer. IMPORTANCE The structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an "open" conformation, which is distinct from the "closed" conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from "zipping" together the three E proteins along the domain II boundaries into the "closed" postfusion conformation, thus inhibiting fusion.
Collapse
|
83
|
Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J Virol 2014; 88:11726-37. [PMID: 25078693 DOI: 10.1128/jvi.01140-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses are thought to sample an ensemble of structures at equilibrium. One consequence of a structurally dynamic virion is the observed time-dependent increases in neutralization sensitivity that can occur after prolonged incubation with antibody. Differences in how virus strains "breathe" may affect epitope exposure and contribute to the underlying mechanisms of strain-dependent neutralization sensitivity. Beyond the contribution of structural dynamics, flaviviruses exist as a structurally heterogeneous population due to an inefficient virion maturation process. Here, we investigate the interplay between virion maturation and structural dynamics that contributes to antibody-mediated neutralization. Using West Nile (WNV) and dengue (DENV) viruses produced under conditions that modify the extent of virion maturation, we investigated time-dependent changes in neutralization sensitivity associated with structural dynamics. Our results identify distinct patterns of neutralization against viruses that vary markedly with respect to the extent of virion maturation. Reducing the efficiency of virion maturation resulted in greater time-dependent changes in neutralization potency and a marked reduction in the stability of the particle at 37°C compared to more mature virus. The fact that the neutralization sensitivity of WNV and DENV did not increase after prolonged incubation in the absence of antibody, regardless of virion maturation, suggests that the dynamic processes that govern epitope accessibility on infectious viruses are reversible. Against the backdrop of heterogeneous flavivirus structures, differences in the pathways by which viruses "breathe" represent an additional layer of complexity in understanding maturation state-dependent patterns of antibody recognition. Importance: Flaviviruses exist as a group of related structures at equilibrium that arise from the dynamic motion of E proteins that comprise the antigenic surface of the mature virion. This process has been characterized for numerous viruses and is referred to as viral "breathing." Additionally, flaviviruses are structurally heterogeneous due to an inefficient maturation process responsible for cleaving prM on the virion surface. Both of these mechanisms vary the exposure of antigenic sites available for antibody binding and impact the ability of antibodies to neutralize infection. We demonstrate that virions with inefficient prM cleavage "breathe" differently than their more mature counterparts, resulting in distinct patterns of neutralization sensitivity. Additionally, the maturation state was found to impact virus stability in solution. Our findings provide insight into the complex flavivirus structures that contribute to infection with the potential to impact antibody recognition.
Collapse
|
84
|
Pierson TC, Diamond MS. Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough? Annu Rev Virol 2014; 1:375-98. [PMID: 26958727 DOI: 10.1146/annurev-virology-031413-085453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is a mosquito-transmitted RNA virus responsible for 390 million infections each year and significant morbidity and mortality throughout tropical and subtropical regions of the world. Efforts to develop a DENV vaccine span 70 years and include the work of luminaries of the virus vaccine field. Although vaccines have been used to reduce the global health burden of other flaviviruses, the unique requirement for a single vaccine to protect against four different groups of dengue viruses, and the link between secondary infections and DENV disease pathogenesis, has limited success to date. In this review, we discuss several promising DENV vaccine candidates in clinical trials and assess how recent advances in understanding of DENV biology and immunity may expedite efforts toward the development of safe and effective vaccines.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
85
|
Cassetti MC, Halstead SB. Consultation on dengue vaccines: progress in understanding protection, 26-28 June 2013, Rockville, Maryland. Vaccine 2014; 32:3115-21. [PMID: 24768502 DOI: 10.1016/j.vaccine.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
There is an unmet need for a dengue vaccine to further prevent the spread of this disease and contain the growing pandemic. To this end several vaccine companies and academic groups are actively pursuing the development of a tetravalent vaccine to prevent dengue. In the last few years progress has been made in this area, including the first results of a vaccine efficacy trial and improved understanding of the immune responses to the infection. Despite this progress, development of dengue vaccines faces important challenges including the need for a vaccine that induces balanced immune responses against all dengue strains and an incomplete understanding of the mechanism(s) of protection against infection and disease. This is a summary of a Consultation on dengue vaccines held in June 26-28, 2013 by the National Institute of Allergy and Infectious Diseases (part of the US National Institutes of Health) and the Dengue Vaccine Initiative (part of the International Vaccine Institute). The primary goal of this consultation was to review the progress in dengue vaccine development, evaluate the known mechanism of protection of dengue vaccines and discuss avenues for future research.
Collapse
Affiliation(s)
- M Cristina Cassetti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott B Halstead
- Dengue Vaccine Initiative, International Vaccine Institute, Seoul, South Korea.
| |
Collapse
|
86
|
Edeling MA, Austin SK, Shrestha B, Dowd KA, Mukherjee S, Nelson CA, Johnson S, Mabila MN, Christian EA, Rucker J, Pierson TC, Diamond MS, Fremont DH. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement. PLoS Pathog 2014; 10:e1004072. [PMID: 24743696 PMCID: PMC3990716 DOI: 10.1371/journal.ppat.1004072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/03/2014] [Indexed: 01/07/2023] Open
Abstract
We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bimmi Shrestha
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Rockville, Maryland, United States of America
| | - Manu N. Mabila
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | | | - Joseph Rucker
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
87
|
B cell response and mechanisms of antibody protection to West Nile virus. Viruses 2014; 6:1015-36. [PMID: 24594676 PMCID: PMC3970136 DOI: 10.3390/v6031015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 01/03/2023] Open
Abstract
West Nile virus (WNV) has become the principal cause of viral encephalitis in North America since its introduction in New York in 1999. This emerging virus is transmitted to humans via the bite of an infected mosquito. While there have been several candidates in clinical trials, there are no approved vaccines or WNV-specific therapies for the treatment of WNV disease in humans. From studies with small animal models and convalescent human patients, a great deal has been learned concerning the immune response to infection with WNV. Here, we provide an overview of a subset of that information regarding the humoral and antibody response generated during WNV infection.
Collapse
|
88
|
Fibriansah G, Tan JL, Smith SA, de Alwis AR, Ng TS, Kostyuchenko VA, Ibarra KD, Wang J, Harris E, de Silva A, Crowe JE, Lok SM. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol Med 2014; 6:358-71. [PMID: 24421336 PMCID: PMC3958310 DOI: 10.1002/emmm.201303404] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400 million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6 Å resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore City, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Detection of serotype-specific antibodies to the four dengue viruses using an immune complex binding (ICB) ELISA. PLoS Negl Trop Dis 2013; 7:e2580. [PMID: 24386498 PMCID: PMC3873247 DOI: 10.1371/journal.pntd.0002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/29/2013] [Indexed: 02/02/2023] Open
Abstract
Background Dengue virus (DENV) infections are preferentially diagnosed by detection of specific IgM antibodies, DENV NS1 antigen assays or by amplification of viral RNA in serum samples of the patients. The type-specific immunity to the four worldwide circulating DENV serotypes can be determined by neutralization assays. An alternative to the complicated neutralization assays would be helpful to study the serotype-specific immune response in people in DENV hyperendemic areas but also in subjects upon DENV vaccination. Methods In consecutive samples of patients with DENV-1- 4 infection type-specific antibodies were detected using an immune complex binding (ICB) ELISA. During incubation of serum samples and enzyme- labeled recombinant envelope domain III (EDIII) antigens immune complexes (ICs) are formed, which are simultaneously bound to a solid phase coated with an Fc–receptor (CD32). After a single washing procedure the bound labeled ICs can be determined. To further improve type-specific reactions high concentrations of competing heterologous unlabeled ED III proteins were added to the labeled antigens. Results Follow-up serum samples of 64 patients with RT-PCR confirmed primary DENV-1, -2, -3 or -4 infections were tested against four enzyme-labeled recombinant DENV EDIII antigens. Antibodies to the EDIII antigens were found in 55 patients (sensitivity 86%). A complete agreement between the serotype detected by PCR in early samples and the serotype-specific antibody in later samples was found. Type-specific anti-EDIII antibodies were first detected 9–20 days after onset of the disease. In 21% of the samples collected from people in Vietnam secondary infections with antibodies to two serotypes could be identified. Conclusions The data obtained with the ICB-ELISA show that after primary DENV infection the corresponding type-specific antibodies are detected in almost all samples collected at least two weeks after onset of the disease. The method will be of value to determine the distribution of the various type-specific anti–DENV antibodies in DENV endemic areas. Infections with four different dengue viruses are threatening 2.5 billion people in tropical countries. Since most antibodies to these four viruses are cross-reacting, a type-specific ELISA would be valuable to study the immune response to the circulating viruses in patients but also in healthy subjects in endemic counties. Therefore a novel DENV immune complex binding (ICB) ELISA was developed to detect serotype-specific antibodies to all four dengue virus serotypes in human serum samples. The tests use labeled recombinant EDIII antigens of the four DENV strains. Numerous samples of patients with RT-PCR confirmed dengue fever were assessed by the new method. In samples of 55 patients with primary dengue fever full agreement between the serotype detected by RT-PCR and the serotype-specific antibody based on the ICB ELISA was obtained. The type-specific antibodies were not observed before the second week of illness. Our data suggest that using the ICB ELISA in healthy adult subjects in an endemic region (Vietnam) both primary and secondary infections can be identified. The method may help to analyze the distribution of the four dengue viruses in the tropics.
Collapse
|
90
|
VanBlargan LA, Mukherjee S, Dowd KA, Durbin AP, Whitehead SS, Pierson TC. The type-specific neutralizing antibody response elicited by a dengue vaccine candidate is focused on two amino acids of the envelope protein. PLoS Pathog 2013; 9:e1003761. [PMID: 24348242 PMCID: PMC3857832 DOI: 10.1371/journal.ppat.1003761] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type-specific component of the DENV1 neutralizing antibody response to vaccination is strikingly focused on just two amino acids of the E protein. This study provides an important step towards deconvoluting the functional complexity of DENV serology following vaccination.
Collapse
Affiliation(s)
- Laura A. VanBlargan
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
91
|
Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 2013; 426:1148-60. [PMID: 24316047 DOI: 10.1016/j.jmb.2013.11.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/β (IFN-α/β), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/β. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses.
Collapse
Affiliation(s)
- Angela M Green
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Alexandros Hadjilaou
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
92
|
Smith SA, de Alwis AR, Kose N, Harris E, Ibarra KD, Kahle KM, Pfaff JM, Xiang X, Doranz BJ, de Silva AM, Austin SK, Sukupolvi-Petty S, Diamond MS, Crowe JE. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. mBio 2013; 4:e00873-13. [PMID: 24255124 PMCID: PMC3870244 DOI: 10.1128/mbio.00873-13] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Following natural dengue virus (DENV) infection, humans produce some antibodies that recognize only the serotype of infection (type specific) and others that cross-react with all four serotypes (cross-reactive). Recent studies with human antibodies indicate that type-specific antibodies at high concentrations are often strongly neutralizing in vitro and protective in animal models. In general, cross-reactive antibodies are poorly neutralizing and can enhance the ability of DENV to infect Fc receptor-bearing cells under some conditions. Type-specific antibodies at low concentrations also may enhance infection. There is an urgent need to determine whether there are conserved antigenic sites that can be recognized by cross-reactive potently neutralizing antibodies. Here, we describe the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) directed to the DENV domain II fusion loop (FL) envelope protein region from subjects following vaccination or natural infection. Most of the FL-specific antibodies exhibited a conventional phenotype, characterized by low-potency neutralizing function and antibody-dependent enhancing activity. One clone, however, recognized the bc loop of domain II adjacent to the FL and exhibited a unique phenotype of ultrahigh potency, neutralizing all four serotypes better than any other previously described MAb recognizing this region. This antibody not only neutralized DENV effectively but also competed for binding against the more prevalent poor-quality antibodies whose binding was focused on the FL. The 1C19 human antibody could be a promising component of a preventative or therapeutic intervention. Furthermore, the unique epitope revealed by 1C19 suggests a focus for rational vaccine design based on novel immunogens presenting cross-reactive neutralizing determinants. IMPORTANCE With no effective vaccine available, the incidence of dengue virus (DENV) infections worldwide continues to rise, with more than 390 million infections estimated to occur each year. Due to the unique roles that antibodies are postulated to play in the pathogenesis of DENV infection and disease, there is consensus that a successful DENV vaccine must protect against all four serotypes. If conserved epitopes recognized by naturally occurring potently cross-neutralizing human antibodies could be identified, monovalent subunit vaccine preparations might be developed. We characterized 30 DENV cross-neutralizing human monoclonal antibodies (MAbs) and identified one (1C19) that recognized a novel conserved site, known as the bc loop. This antibody has several desirable features, as it neutralizes DENV effectively and competes for binding against the more common low-potency fusion loop (FL) antibodies, which are believed to contribute to antibody-mediated disease. To our knowledge, this is the first description of a potent serotype cross-neutralizing human antibody to DENV.
Collapse
Affiliation(s)
| | - A. Ruklanthi de Alwis
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kristie D. Ibarra
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Xiaoxiao Xiang
- Integral Molecular Inc., Philadelphia, Pennsylvania, USA
| | | | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - S. Kyle Austin
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
93
|
Atomic-level functional model of dengue virus Envelope protein infectivity. Proc Natl Acad Sci U S A 2013; 110:18662-7. [PMID: 24158478 DOI: 10.1073/pnas.1310962110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A number of structures have been solved for the Envelope (E) protein from dengue virus and closely related flaviviruses, providing detailed pictures of the conformational states of the protein at different stages of infectivity. However, the key functional residues responsible for mediating the dynamic changes between these structures remain largely unknown. Using a comprehensive library of functional point mutations covering all 390 residues of the dengue virus E protein ectodomain, we identified residues that are critical for virus infectivity, but that do not affect E protein expression, folding, virion assembly, or budding. The locations and atomic interactions of these critical residues within different structures representing distinct fusogenic conformations help to explain how E protein (i) regulates fusion-loop exposure by shielding, tethering, and triggering its release; (ii) enables hinge movements between E domain interfaces during triggered structural transformations; and (iii) drives membrane fusion through late-stage zipper contacts with stem. These results provide structural targets for drug and vaccine development and integrate the findings from structural studies and isolated mutagenesis efforts into a cohesive model that explains how specific residues in this class II viral fusion protein enable virus infectivity.
Collapse
|
94
|
Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838491. [PMID: 24058915 PMCID: PMC3766601 DOI: 10.1155/2013/838491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
Collapse
|
95
|
Zidane N, Dussart P, Bremand L, Bedouelle H. Cross-reactivities between human IgMs and the four serotypes of dengue virus as probed with artificial homodimers of domain-III from the envelope proteins. BMC Infect Dis 2013; 13:302. [PMID: 23815496 PMCID: PMC3701519 DOI: 10.1186/1471-2334-13-302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/26/2013] [Indexed: 12/23/2022] Open
Abstract
Background Dengue fever is the most important vector-borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Infection by one serotype elicits long-lasting immunity to that serotype but not the other three. Subsequent infection by a different serotype is a risk factor for severe dengue. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by neutralizing antibodies. We determined the serotype specificity and cross-reactivity of human IgMs directed against ED3 by using a well-characterized collection of 90 DENV-infected and 89 DENV-uninfected human serums. Methods The recognitions between the four serotypes of ED3 and the serums were assayed with an IgM antibody-capture ELISA (MAC-ELISA) and artificial homodimeric antigens. The results were analyzed with Receiving Operator Characteristic (ROC) curves. Results The DENV-infected serums contained IgMs that reacted with one or several ED3 serotypes. The discrimination by ED3 between serums infected by the homotypic DENV and uninfected serums varied with the serotype in the decreasing order DENV1 > DENV2 > DENV3 > DENV4. The ED3 domain of DENV1 gave the highest discrimination between DENV-infected and DENV-uninfected serums, whatever the infecting serotype, and thus behaved like a universal ED3 domain for the detection of IgMs against DENV. Some ED3 serotypes discriminated between IgMs directed against the homotypic and heterotypic DENVs. The patterns of cross-reactivities and discriminations varied with the serotype. Conclusions The results should help better understand the IgM immune response and protection against DENV since ED3 is widely used as an antigen in diagnostic assays and an immunogen in vaccine candidates.
Collapse
Affiliation(s)
- Nora Zidane
- Unit of Molecular Prevention and Therapy of Human Diseases, Department of Infection and Epidemiology, Institut Pasteur, Rue du Docteur Roux, F-75015 Paris, France
| | | | | | | |
Collapse
|
96
|
Vratskikh O, Stiasny K, Zlatkovic J, Tsouchnikas G, Jarmer J, Karrer U, Roggendorf M, Roggendorf H, Allwinn R, Heinz FX. Dissection of antibody specificities induced by yellow fever vaccination. PLoS Pathog 2013; 9:e1003458. [PMID: 23818856 PMCID: PMC3688551 DOI: 10.1371/journal.ppat.1003458] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/11/2013] [Indexed: 12/30/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors on immunodominance in humoral immune responses. The live-attenuated yellow fever vaccine has been administered to more than 600 million people worldwide and is considered to be one of the most successful viral vaccines ever produced. Following injection, the apathogenic vaccine virus replicates in the vaccinee and induces antibodies that mediate virus neutralization and subsequent protection from disease. In principle, many different antibodies are induced by viral antigens, but it is becoming increasingly clear that only a subset of them is capable of inactivating the virus, and some antibody populations appear to dominate the immune response. However, to date there has been very little information on individual-specific variations of immunodominance and how such variations can affect the functionality of antibody responses. In our study, we addressed these issues and analyzed the fine specificities of antibodies induced by YF vaccination as well as the contribution of different antibody subsets to virus neutralization in 51 vaccinees. We demonstrate an extensive degree of individual variation with respect to immunodominance of antibody populations and their contribution to virus neutralization. Such variations can have an impact on vaccine-mediated protection, and thus insight into this phenomenon can provide leads for novel strategies in modern vaccine design.
Collapse
Affiliation(s)
- Oksana Vratskikh
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Zlatkovic
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | | | - Johanna Jarmer
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Urs Karrer
- Division of Infectious Diseases, University Hospital of Zurich, Zurich, Switzerland
| | | | - Hedwig Roggendorf
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Regina Allwinn
- Institute for Medical Virology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Franz X. Heinz
- Department of Virology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
97
|
Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 2013; 87:8826-42. [PMID: 23785205 DOI: 10.1128/jvi.01314-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Dengue is one of the most rapidly spreading vector-borne diseases in the world, with the incidence increasing 30-fold in the past 50 years. There are currently no licensed treatments or vaccines for dengue. This review covers the recent advances in our understanding of dengue pathogenesis, including host and viral determinants. RECENT FINDINGS The pathogenesis of severe dengue is thought to be immune-mediated due to the timing of the clinical manifestations and higher incidence in secondary infections with a heterologous serotype. Recent evidence has provided further information of neutralizing versus enhancing monoclonal antibodies and their target epitopes on the dengue virion, which has major implications for vaccine design. The role of T-cell immunopathology has also been advanced with recent evidence of cross-reactive high pro-inflammatory cytokine producing T cells predominating in severe dengue. Recent large genome-wide association studies have identified specific susceptibility loci associated with severe disease. Epidemiological studies have served to define certain at-risk groups and specific viral virulence factors have recently been described. SUMMARY The pathogenesis of dengue is likely to be a complex interplay of host immunity and genetic predisposition combined with certain viral virulence factors. Better understanding of the underlying mechanisms leading to severe dengue is crucial if we are to develop prognostic markers, novel diagnostics and therapeutics and ultimately a balanced and safe vaccine.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | | | |
Collapse
|
99
|
Protection by immunoglobulin dual-affinity retargeting antibodies against dengue virus. J Virol 2013; 87:7747-53. [PMID: 23658441 DOI: 10.1128/jvi.00327-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and ∼3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.
Collapse
|
100
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|