51
|
Zheng L, Zhang W, Li A, Liu Y, Yi B, Nakhoul F, Zhang H. PTPN2 Downregulation Is Associated with Albuminuria and Vitamin D Receptor Deficiency in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:3984797. [PMID: 30246029 PMCID: PMC6136551 DOI: 10.1155/2018/3984797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/06/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation plays a major role in albuminuria in type 2 diabetes mellitus (T2DM). Our previous studies have shown that the expression of vitamin D receptor (VDR) is downregulated in T2DM which is closely associated with the severity of albuminuria. In this study, we investigated the expression of anti-inflammatory cytokine protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in T2DM and explored its relationship to albuminuria and VDR. METHODS 101 T2DM patients were divided into three groups based on urinary albumin-to-creatinine ratio (uACR): normal albuminuria (uACR < 30 mg/g, n = 29), microalbuminuria (30 mg/g ≤ uACR < 300 mg/g, n = 34), and macroalbuminuria (uACR ≥ 300 mg/g, n = 38). Thirty healthy individuals were included as controls. Serum was analyzed for PTPN2 and IL-6 expression, and peripheral blood mononuclear cells (PBMCs) were analyzed for PTPN2 and VDR expression. THP-1 cells were incubated with high glucose and further treated with or without paricalcitol, a vitamin D analog. The levels of PTPN2, VDR, IL-6, TNFα, and MCP-1 were analyzed. In addition, anti-inflammatory activities of PTPN2 were further explored in THP-1 cells stimulated with high glucose after PTPN2 silencing or overexpression. RESULTS PTPN2 expression was downregulated in T2DM with the lowest level observed in macroalbuminuria patients. PTPN2 level positively correlated with VDR but negatively correlated with uACR and IL-6. When stimulated with high glucose, there was an increase in inflammatory factors and a decrease in PTPN2 expression. Treatment with paricalcitol reversed these effects. However, paricalcitol failed to exert anti-inflammatory effects in the setting of PTPN2 knockdown. Thus, low levels of PTPN2 aggravated glucose-stimulated inflammation, while high levels of PTPN2 reduced it. CONCLUSION PTPN2, an anti-inflammatory factor regulated by VDR, was reduced in T2DM CKD stages 1-2. Taken together, our results suggest that therapeutic strategies that enhance PTPN2 may be beneficial for controlling inflammation in T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/blood
- Albuminuria/diagnosis
- Albuminuria/etiology
- Albuminuria/urine
- Biomarkers/blood
- Biomarkers/urine
- Case-Control Studies
- Chemokine CCL2/metabolism
- Creatinine/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/urine
- Down-Regulation
- Female
- Humans
- Inflammation/blood
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/urine
- Interleukin-6/blood
- Male
- Middle Aged
- Monocytes/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/blood
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Receptors, Calcitriol/blood
- Receptors, Calcitriol/deficiency
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/urine
- THP-1 Cells
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Li Zheng
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Farid Nakhoul
- Diabetic Nephropathy Lab, Baruch Padeh Poriya Medical Center Affiliated to the Faculty of Medicine in Galilee, 15208 Lower Galilee, Israel
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| |
Collapse
|
52
|
Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017; 6:e162. [PMID: 29333267 PMCID: PMC5750451 DOI: 10.1038/cti.2017.51] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed in this review.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
53
|
Stanley WJ, Trivedi PM, Sutherland AP, Thomas HE, Gurzov EN. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells. J Mol Endocrinol 2017; 59:325-337. [PMID: 28827413 DOI: 10.1530/jme-17-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing β-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1β are released in the islet during the autoimmune assault and signal in β-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually β-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in β-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced β-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of β-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects β-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in β-cells in autoimmune diabetes.
Collapse
Affiliation(s)
- William J Stanley
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Prerak M Trivedi
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | | | - Helen E Thomas
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Esteban N Gurzov
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
- ULB Center for Diabetes ResearchUniversite Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
54
|
Chou HY, Chueh FS, Ma YS, Wu RSC, Liao CL, Chu YL, Fan MJ, Huang WW, Chung JG. Bufalin induced apoptosis in SCC‑4 human tongue cancer cells by decreasing Bcl‑2 and increasing Bax expression via the mitochondria‑dependent pathway. Mol Med Rep 2017; 16:7959-7966. [PMID: 28983595 PMCID: PMC5779878 DOI: 10.3892/mmr.2017.7651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxic effects of bufalin on SCC-4 human tongue cancer cells. Cell morphological changes and viability were examined using phase contrast microscopy and flow cytometry, respectively. The results indicated that bufalin induced morphological changes and reduced total viable cells. Apoptotic cell death was analyzed by DAPI staining and DNA gel electrophoresis; the results revealed that bufalin induced cell apoptosis. Levels of reactive oxygen species (ROS), Ca2+, nitric oxide (NO) and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry, and bufalin was observed to increase Ca2+ and NO production, decrease the ΔΨm and reduce ROS production in SCC-4 cells. In addition, western blotting was performed to detect apoptosis-associated protein expression. The results demonstrated that bufalin reduced the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and increased the expression of the pro-apoptotic protein, Bcl-2-associated X protein. However, bufalin treatment also increased the expression of other apoptosis-associated proteins such as apoptosis-inducing factor and endonuclease G in SCC-4 cells. Based on these findings, bufalin may induce apoptotic cell death via mitochondria-dependent pathways in human tongue cancer SCC-4 cells.
Collapse
Affiliation(s)
- Han-Yu Chou
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Yi-Shih Ma
- School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post‑Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yung-Lin Chu
- Department of Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
55
|
Duarte GCK, Assmann TS, Dieter C, de Souza BM, Crispim D. GLIS3 rs7020673 and rs10758593 polymorphisms interact in the susceptibility for type 1 diabetes mellitus. Acta Diabetol 2017; 54:813-821. [PMID: 28597135 DOI: 10.1007/s00592-017-1009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022]
Abstract
AIMS The transcription factor Gli-similar 3 (GLIS3) plays a key role in the development and maintenance of pancreatic beta cells as well as in the regulation of Insulin gene expression in adults. Accordingly, genome-wide association studies identified GLIS3 as a susceptibility locus for type 1 diabetes mellitus (T1DM) and glucose metabolism traits. Therefore, the aim of this study was to replicate the association of the rs10758593 and rs7020673 single nucleotide polymorphisms (SNPs) in the GLIS3 gene with T1DM in a Brazilian population. METHODS Frequencies of the rs7020673 (G/C) and rs10758593 (A/G) SNPs were analyzed in 503 T1DM patients (cases) and in 442 non-diabetic subjects (controls). Haplotypes constructed from the combination of these SNPs were inferred using a Bayesian statistical method. RESULTS Genotype and allele frequencies of rs7020673 and rs10758593 SNPs did not differ significantly between case and control groups. However, the frequency of ≥3 minor alleles of the analyzed SNPs in haplotypes was higher in T1DM patients compared to non-diabetic subjects (6.2 vs. 1.6%; P = 0.001). The presence of ≥3 minor alleles remained independently associated with risk of T1DM after adjustment for T1DM high-risk HLA DR/DQ haplotypes, age and ethnicity (OR = 3.684 95% CI 1.220-11.124). Moreover, levels of glycated hemoglobin seem to be higher in T1DM patients with rs10758593 A/A genotype than patients carrying the G allele of this SNP (P = 0.038), although this association was not kept after Bonferroni correction. CONCLUSIONS Our results indicate that individually the rs7020673 and rs10758593 SNPs are not significantly associated with T1DM but seem to interact in the predisposition for this disease.
Collapse
Affiliation(s)
- Guilherme C K Duarte
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4º andar, Zip Code: 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tais S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4º andar, Zip Code: 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4º andar, Zip Code: 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4º andar, Zip Code: 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4º andar, Zip Code: 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
56
|
Fang C, Huang Y, Pei Y, Zhang HH, Chen X, Guo H, Li S, Ji X, Hu J. Genome-wide gene expression profiling reveals that CD274 is up-regulated new-onset type 1 diabetes mellitus. Acta Diabetol 2017; 54:757-767. [PMID: 28577136 DOI: 10.1007/s00592-017-1005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
Abstract
AIMS Early studies have identified type 1 diabetes mellitus (T1DM) as a disease that is caused by the autoimmune destruction of the insulin-producing pancreatic β-cells. Genetics, environment and the immune pathogenesis of T1DM are three major pillars of T1DM research. We try to understand the changes in the gene expression profile during the pathogenesis of T1DM. METHODS We performed a systematic search in the Gene Expression Omnibus (GEO) database for microarray studies of T1DM with samples taken at or before the T1DM onset. RESULTS The results of an integrated analysis of different GEO datasets and a comparison of the gene expression level in T1DM samples taken at the time of appearance of the islet autoantibodies, 1 year before T1DM onset, and at the time of T1DM onset showed that CD274, which encodes PD-L1, was up-regulated in the newly onset T1DM samples. CD274 had a stable expression level in the control samples but showed a gradual up-regulation from the appearance of autoantibodies to the onset of T1DM. CONCLUSIONS These results indicate that CD274 up-regulation in T1DM is correlated with disease pathogenesis. PD-L1 might play a protective role in preventing the pancreatic islets from autoimmune destruction, which may help researchers find strategies for preventing the destruction process of pancreas β-cells in T1DM.
Collapse
Affiliation(s)
- Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yufang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Soochow University, Suzhou, 215003, Jiangsu, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaohong Chen
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215123, Jiangsu, China.
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
57
|
Cunha DA, Cito M, Grieco FA, Cosentino C, Danilova T, Ladrière L, Lindahl M, Domanskyi A, Bugliani M, Marchetti P, Eizirik DL, Cnop M. Pancreatic β-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF). J Biol Chem 2017; 292:14977-14988. [PMID: 28698383 DOI: 10.1074/jbc.m116.769877] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
Cytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic β-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote β-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human β-cells exposed to cytokines or thapsigargin-induced ER stress. THBS1 confers cytoprotection by maintaining expression of mesencephalic astrocyte-derived neutrotrophic factor (MANF) in β-cells and thereby prevents the BH3-only protein BIM (BCL2-interacting mediator of cell death)-dependent triggering of the mitochondrial pathway of apoptosis. Prolonged exposure of β-cells to cytokines or thapsigargin leads to THBS1 and MANF degradation and loss of this prosurvival mechanism. Approaches that sustain intracellular THBS1 and MANF expression in β-cells should be explored as a cytoprotective strategy in type 1 diabetes.
Collapse
Affiliation(s)
- Daniel A Cunha
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Monia Cito
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fabio Arturo Grieco
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Cristina Cosentino
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tatiana Danilova
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Laurence Ladrière
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Lindahl
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Andrii Domanskyi
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marco Bugliani
- the Department of Endocrinology and Metabolism, University of Pisa, 56100 Pisa, Italy, and
| | - Piero Marchetti
- the Department of Endocrinology and Metabolism, University of Pisa, 56100 Pisa, Italy, and
| | - Décio L Eizirik
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium, .,the Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
58
|
Song YO, Kim M, Woo M, Baek JM, Kang KH, Kim SH, Roh SS, Park CH, Jeong KS, Noh JS. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice. Mar Drugs 2017; 15:md15060178. [PMID: 28617322 PMCID: PMC5484128 DOI: 10.3390/md15060178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022] Open
Abstract
The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.
Collapse
Affiliation(s)
- Yeong Ok Song
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Korea.
| | - Mijeong Kim
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Korea.
| | - Minji Woo
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Korea.
| | | | | | - Sang-Ho Kim
- Yeongsan Skate Co. Ltd., Busan 48531, Korea.
| | - Seong-Soo Roh
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea.
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 55365, Korea.
| | - Kap-Seop Jeong
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea.
| | - Jeong-Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea.
| |
Collapse
|
59
|
Lee CH, Shih YL, Lee MH, Au MK, Chen YL, Lu HF, Chung JG. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways. Molecules 2017; 22:molecules22030437. [PMID: 28287444 PMCID: PMC6155407 DOI: 10.3390/molecules22030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Country 356, Taiwan.
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan.
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| |
Collapse
|
60
|
Størling J, Pociot F. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes (Basel) 2017; 8:genes8020072. [PMID: 28212332 PMCID: PMC5333061 DOI: 10.3390/genes8020072] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.
Collapse
Affiliation(s)
- Joachim Størling
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
61
|
Liston A, Todd JA, Lagou V. Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Trends Mol Med 2017; 23:181-194. [DOI: 10.1016/j.molmed.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
62
|
Wiede F, Sacirbegovic F, Leong YA, Yu D, Tiganis T. PTPN2-deficiency exacerbates T follicular helper cell and B cell responses and promotes the development of autoimmunity. J Autoimmun 2016; 76:85-100. [PMID: 27658548 DOI: 10.1016/j.jaut.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Non-coding single nucleotide polymorphisms that repress PTPN2 expression have been linked with the development of type 1 diabetes, rheumatoid arthritis and Crohn's disease. PTPN2 attenuates CD8+ T cell responses to self and prevents overt autoreactivity in the context of T cell homeostasis and antigen cross-presentation. The role of PTPN2 in other immune subsets in the development of autoimmunity remains unclear. Here we show that the inducible deletion of PTPN2 in hematopoietic compartment of adult non-autoimmune prone mice results in systemic inflammation and autoimmunity. PTPN2-deficient mice had increased inflammatory monocytes, B cells and effector T cells in lymphoid and non-lymphoid tissues and exhibited symptoms of dermatitis, glomerulonephritis, pancreatitis and overt liver disease. Autoimmunity was characterised by the formation of germinal centers in the spleen and associated with markedly increased germinal center B cells and T follicular helper (Tfh) cells and circulating anti-nuclear antibodies, inflammatory cytokines and immunoglobulins. CD8+ T cell proliferative responses were enhanced, and interleukin-21-induced STAT-3 signalling in Tfh cells and B cells was increased and accompanied by enhanced B cell proliferation ex vivo. These results indicate that deficiencies in PTPN2 across multiple immune lineages, including naive T cells, Tfh cells and B cells, contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Florian Wiede
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Faruk Sacirbegovic
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Yew Ann Leong
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Di Yu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
63
|
Thrombospondin 1 protects pancreatic β-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ 2016; 23:1995-2006. [PMID: 27588705 DOI: 10.1038/cdd.2016.89] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/21/2022] Open
Abstract
The failure of β-cells has a central role in the pathogenesis of type 2 diabetes, and the identification of novel approaches to improve functional β-cell mass is essential to prevent/revert the disease. Here we show a critical novel role for thrombospondin 1 (THBS1) in β-cell survival during lipotoxic stress in rat, mouse and human models. THBS1 acts from within the endoplasmic reticulum to activate PERK and NRF2 and induce a protective antioxidant defense response against palmitate. Prolonged palmitate exposure causes THBS1 degradation, oxidative stress, activation of JNK and upregulation of PUMA, culminating in β-cell death. These findings shed light on the mechanisms leading to β-cell failure during metabolic stress and point to THBS1 as an interesting therapeutic target to prevent oxidative stress in type 2 diabetes.
Collapse
|
64
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
65
|
Juan-Mateu J, Villate O, Eizirik DL. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research. Eur J Endocrinol 2016; 174:R225-38. [PMID: 26628584 PMCID: PMC5331159 DOI: 10.1530/eje-15-0916] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Olatz Villate
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Décio L Eizirik
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| |
Collapse
|
66
|
Abstract
Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.
Collapse
Affiliation(s)
- Anne Op de Beeck
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
- Welbio, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| |
Collapse
|
67
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
68
|
Wang J, Hu S, Wang J, Li S, Jiang W. Fucoidan from Acaudina molpadioides protects pancreatic islet against cell apoptosis via inhibition of inflammation in type 2 diabetic mice. Food Sci Biotechnol 2016; 25:293-300. [PMID: 30263270 DOI: 10.1007/s10068-016-0042-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022] Open
Abstract
Inflammation induces pancreatic islet cell apoptosis. Effects of fucoidan from Acaudina molpadioides (Am-FUC) on inhibition of pancreatic islet cell apoptosis and inflammation in type 2 diabetic mice were investigated. Am-FUC repaired pancreatic islet cells, decreased serum C-reactive protein (CRP), macrophage inflammatory protein 1 (MIP-1), interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and increased the IL-10 level. Am-FUC also reduced TNF-α, CRP, MIP-1, IL-1β, and IL-6 mRNA expressions, and increased IL-10 mRNA expression in epididymal adipose tissues. Am-FUC reduced Bid, Bax, cytochrome c, caspase 9, and caspase 3 mRNA expressions, and increased Bcl-2 and Bcl-xL mRNA expressions. Am-FUC down-regulated t-Bid, Bax, cytochrome c, and caspase 9 activities, cleaved caspase 3 proteins, and up-regulated Bcl-2 and Bcl-xL proteins. Thus, an Am-FUCblocked mitochondrial pathway was the suppression mechanism in pancreatic islet cell apoptosis via regulation of inflammatory cytokines providing dietary intervention in type 2 diabetes and inflammation-induced pancreatic islet apoptosis.
Collapse
Affiliation(s)
- Jinhui Wang
- 1Innovation Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Shiwei Hu
- 1Innovation Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China.,2College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Jingfeng Wang
- 2College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Shijie Li
- 1Innovation Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Wei Jiang
- 1Innovation Application Institute, Zhejiang Ocean University, Zhoushan, 316022 China.,2College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
69
|
Aradi B, Kato M, Filkova M, Karouzakis E, Klein K, Scharl M, Kolling C, Michel BA, Gay RE, Buzas EI, Gay S, Jüngel A. Protein tyrosine phosphatase nonreceptor type 2: an important regulator of lnterleukin-6 production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 2016; 67:2624-33. [PMID: 26139109 DOI: 10.1002/art.39256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the role of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in the pathogenesis of rheumatoid arthritis (RA). METHODS Synovial tissue samples from patients with RA and patients with osteoarthritis (OA) were stained for PTPN2. Synovial fibroblasts were stimulated with tumor necrosis factor (TNF) and interleukin-1β (IL-1β), lipopolysaccharide (LPS), TRAIL, or thapsigargin. The expression of PTPN2 in synovial fibroblasts and peripheral blood mononuclear cells (PBMCs) was analyzed by real-time polymerase chain reaction and Western blotting. Cell death, the release of IL-6 and IL-8, and the induction of autophagy were analyzed after PTPN2 silencing. Methylated DNA immunoprecipitation analysis was used to evaluate DNA methylation-regulated gene expression of PTPN2. RESULTS PTPN2 was significantly overexpressed in synovial tissue samples from RA patients compared to OA patients. Patients receiving anti-TNF therapy showed significantly reduced staining for PTPN2 compared with patients treated with nonbiologic agents. PTPN2 expression was higher in RA synovial fibroblasts (RASFs) than in OASFs. This differential expression was not regulated by DNA methylation. PTPN2 was further up-regulated after stimulation with TNF, TNF combined with IL-1β, or LPS. There was no significant difference in basal PTPN2 expression in PBMCs from patients with RA, ankylosing spondylitis, or systemic lupus erythematosus or healthy controls. Most interestingly, PTPN2 silencing in RASFs significantly increased the production of the inflammatory cytokine IL-6 but did not affect levels of IL-8. Moreover, functional analysis showed that high PTPN2 levels contributed to the increased apoptosis resistance of RASFs and increased autophagy. CONCLUSION This is the first study of PTPN2 in RASFs showing that PTPN2 regulates IL-6 production, cell death, and autophagy. Our findings indicate that PTPN2 is linked to the pathogenesis of RA via synovial fibroblasts.
Collapse
Affiliation(s)
- Borbala Aradi
- Center of Experimental Rheumatology, University Hospital Zurich, and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Masaru Kato
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Filkova
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland, and Charles University in Prague, Prague, Czech Republic
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Zurich Center for Integrative Human Physiology and University Hospital Zurich, Zurich, Switzerland
| | | | - Beat A Michel
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Renate E Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
70
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
71
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
72
|
Sharp RC, Abdulrahim M, Naser ES, Naser SA. Genetic Variations of PTPN2 and PTPN22: Role in the Pathogenesis of Type 1 Diabetes and Crohn's Disease. Front Cell Infect Microbiol 2015; 5:95. [PMID: 26734582 PMCID: PMC4689782 DOI: 10.3389/fcimb.2015.00095] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022] Open
Abstract
Genome wide association studies have identified several genes that might be associated with increase susceptibility to Type 1 Diabetes (T1D) and Crohn's disease. Both Crohn's disease and T1D have a profound impact on the lives of patients and it is pivotal to investigate the genetic role in patients acquiring these diseases. Understanding the effect of single nucleotide polymorphisms (SNP's) in key genes in patients suffering from T1D and Crohn's disease is crucial to finding an effective treatment and generating novel therapeutic drugs. This review article is focused on the impact of SNP's in PTPN2 (protein tyrosine phosphatase, non-receptor type 2) and PTPN22 (protein tyrosine phosphatase non-receptor type 22) on the development of Crohn's disease and T1D. The PTPN2 gene mutation in T1D patients play a direct role in the destruction of beta cells while in Crohn's disease patients, it modulates the innate immune responses. The PTPN22 gene mutations also play a role in both diseases by modulating intracellular signaling. Examining the mechanism through which these genes increase the susceptibility to both diseases and gaining a better understanding of their structure and function is of vital importance to understand the etiology and pathogenesis of Type 1 Diabetes and Crohn's disease.
Collapse
Affiliation(s)
- Robert C Sharp
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Muna Abdulrahim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Ebraheem S Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| |
Collapse
|
73
|
Fukaya M, Brorsson CA, Meyerovich K, Catrysse L, Delaroche D, Vanzela EC, Ortis F, Beyaert R, Nielsen LB, Andersen ML, Mortensen HB, Pociot F, van Loo G, Størling J, Cardozo AK. A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes. Mol Endocrinol 2015; 30:48-61. [PMID: 26652732 DOI: 10.1210/me.2015-1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to β-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in β-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the β-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in β-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual β-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of β-cell survival and unveil novel mechanisms by which A20 controls β-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.
Collapse
Affiliation(s)
- Makiko Fukaya
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Caroline A Brorsson
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Kira Meyerovich
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Leen Catrysse
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Diane Delaroche
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Emerielle C Vanzela
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Fernanda Ortis
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Rudi Beyaert
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Lotte B Nielsen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Marie L Andersen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Henrik B Mortensen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Flemming Pociot
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Geert van Loo
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Joachim Størling
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Alessandra K Cardozo
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| |
Collapse
|
74
|
Abstract
Type 1 diabetes (T1D) is a metabolic disease that results from the autoimmune attack against insulin-producing β-cells in the pancreatic islets of Langerhans. Currently, there is no treatment to restore endogenous insulin secretion in patients with autoimmune diabetes. In the last years, the development of new therapies to induce long-term tolerance has been an important medical health challenge. Apoptosis is a physiological mechanism that contributes to the maintenance of immune tolerance. Apoptotic cells are a source of autoantigens that induce tolerance after their removal by antigen presenting cells (APCs) through a process called efferocytosis. Efferocytosis will not cause maturation in dendritic cells, one of the most powerful APCs, and this process could induce tolerance rather than autoimmunity. However, failure of this mechanism due to an increase in the rate of β-cells apoptosis and/or defects in efferocytosis results in activation of APCs, contributing to inflammation and to the loss of tolerance to self. In fact, T1D and other autoimmune diseases are associated to enhanced apoptosis of target cells and defective apoptotic cell clearance. Although further research is needed, the clinical relevance of immunotherapies based on apoptosis could prove to be very important, as it has translational potential in situations that require the reestablishment of immunological tolerance, such as autoimmune diseases. This review summarizes the effects of apoptosis of β-cells towards autoimmunity or tolerance and its application in the field of emerging immunotherapies.
Collapse
|
75
|
Abstract
Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene regulators will also be addressed.
Collapse
Affiliation(s)
- Tina Fløyel
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Flemming Pociot
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| |
Collapse
|
76
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
77
|
Peng H, Li J, Chen X, Zhou X, Zhu W, Li F. Genetic Variants of PTPN2 Gene in Chinese Children with Type 1 Diabetes Mellitus. Med Sci Monit 2015; 21:2653-8. [PMID: 26344020 PMCID: PMC4566944 DOI: 10.12659/msm.893607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Several studies have reported the association of PTPN2 gene with type 1 diabetes mellitus (T1DM) in many populations but not in the Chinese Han population. Therefore, the goal of our study was to replicate the reported association between 2 single-nucleotide polymorphisms (SNPs; rs478582 and rs2542151) in the PTPN2 gene and T1DM in Chinese Han children. Material/Methods This case-control study included 141 Chinese Han children with T1DM and 282 healthy controls. Genetic variants of rs478582 and rs2542151 in PTPN2 gene were performed by PCR amplification followed by restriction fragment length polymorphism method. Results No difference was observed in association of rs478582 in The PTPN2 gene and T1DM. The distribution of allele frequency of rs2542151 differed significantly between T1DM patients and healthy controls (OR, 0.6; 95%CI: 0.44 to 0.95; and P=0.024). Dominant model of rs254215 also was associated with T1DM (OR, 0.6; 95%CI: 0.40 to 0.96; and P=0.032). Younger age at onset in G carriers appeared to increase the risk for T1DM (P=0.030). Conclusions The findings suggested that rs2542151 SNP in The PTPN2 gene was associated with T1DM in Chinese Han children. Further studies with larger sample sizes involving gene-gene interactions are urgently needed.
Collapse
Affiliation(s)
- Hui Peng
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Jiamei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoyun Chen
- Department of Pediatrics, Taian Central Hospital, Taian, Shandong, China (mainland)
| | - Xiao Zhou
- Department of pediatrics, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China (mainland)
| | - Weiwei Zhu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Feng Li
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
78
|
Hou S, Li C, Huan Y, Liu S, Liu Q, Sun S, Jiang Q, Jia C, Shen Z. Effects of E2HSA, a Long-Acting Glucagon Like Peptide-1 Receptor Agonist, on Glycemic Control and Beta Cell Function in Spontaneous Diabetic db/db Mice. J Diabetes Res 2015; 2015:817839. [PMID: 26351642 PMCID: PMC4553314 DOI: 10.1155/2015/817839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Glucagon like peptide-1 (GLP-1) receptor agonists such as exendin-4 have been widely used but their short half-life limits their therapeutic value. The recombinant protein, E2HSA, is a novel, long-acting GLP-1 receptor agonist generated by the fusion of exendin-4 with human serum albumin. In mouse pancreatic NIT-1 cells, E2HSA activated GLP-1 receptor with similar efficacy as exendin-4. After single-dose administration in ICR mice, E2HSA showed prolonged glucose lowering effects which lasted up to four days and extended inhibition on gastric emptying for at least 72 hours. Chronic E2HSA treatment in db/db mice significantly improved glucose tolerance, reduced elevated nonfasting and fasting plasma glucose levels, and also decreased HbA1c levels. E2HSA also increased insulin secretion and decreased body weight and appetite. Furthermore, immunofluorescence analysis showed that E2HSA increased β-cell area, improved islet morphology, and reduced β-cell apoptosis. In accordance with the promotion of β-cell function and survival, E2HSA upregulated genes such as Irs2, Pdx-1, Nkx6.1, and MafA and downregulated the expression levels of FoxO1 and proapoptotic Bcl-2 family proteins. In conclusion, with prolonged glucose lowering effects and promoting β-cell function and survival, the fusion protein, E2HSA, is a promising new therapeutic for once weekly treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Shaocong Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chunming Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
79
|
Stanley WJ, Litwak SA, Quah HS, Tan SM, Kay TWH, Tiganis T, de Haan JB, Thomas HE, Gurzov EN. Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets. Diabetes 2015; 64:2489-96. [PMID: 25732191 DOI: 10.2337/db14-1575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/22/2015] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) is the result of an autoimmune assault against the insulin-producing pancreatic β-cells, where chronic local inflammation (insulitis) leads to β-cell destruction. T cells and macrophages infiltrate into islets early in T1D pathogenesis. These immune cells secrete cytokines that lead to the production of reactive oxygen species (ROS) and T-cell invasion and activation. Cytokine-signaling pathways are very tightly regulated by protein tyrosine phosphatases (PTPs) to prevent excessive activation. Here, we demonstrate that pancreata from NOD mice with islet infiltration have enhanced oxidation/inactivation of PTPs and STAT1 signaling compared with NOD mice that do not have insulitis. Inactivation of PTPs with sodium orthovanadate in human and rodent islets and β-cells leads to increased activation of interferon signaling and chemokine production mediated by STAT1 phosphorylation. Furthermore, this exacerbated STAT1 activation-induced cell death in islets was prevented by overexpression of the suppressor of cytokine signaling-1 or inactivation of the BH3-only protein Bim. Together our data provide a mechanism by which PTP inactivation induces signaling in pancreatic islets that results in increased expression of inflammatory genes and exacerbated insulitis.
Collapse
Affiliation(s)
- William J Stanley
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hong Sheng Quah
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sih Min Tan
- Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Thomas W H Kay
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen E Thomas
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Esteban N Gurzov
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
80
|
Fucosylated chondroitin sulfate from sea cucumber inhibited islets of langerhans apoptosis via inactivation of the mitochondrial pathway in insulin resistant mice. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0141-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
81
|
Lempainen J, Laine AP, Hammais A, Toppari J, Simell O, Veijola R, Knip M, Ilonen J. Non-HLA gene effects on the disease process of type 1 diabetes: From HLA susceptibility to overt disease. J Autoimmun 2015; 61:45-53. [PMID: 26074154 DOI: 10.1016/j.jaut.2015.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 01/19/2023]
Abstract
In addition to the HLA region numerous other gene loci have shown association with type 1 diabetes. How these polymorphisms exert their function has not been comprehensively described, however. We assessed the effect of 39 single nucleotide polymorphisms (SNP) on the development of autoantibody positivity, on progression from autoantibody positivity to clinical disease and on the specificity of the antibody initiating the autoimmune process in 521 autoantibody-positive and 989 control children from a follow-up study starting from birth. Interestingly, PTPN2 rs45450798 gene polymorphism was observed to strongly affect the progression rate of beta-cell destruction after the appearance of humoral beta-cell autoimmunity. Moreover, primary autoantigen dependent associations were also observed as effect of the IKZF4-ERBB3 region on the progression rate of β-cell destruction was restricted to children with GAD antibodies as their first autoantibody whereas the effect of the INS rs 689 polymorphism was observed among subjects with insulin as the primary autoantigen. In the whole study cohort, INS rs689, PTPN22 rs2476601 and IFIH1 rs1990760 polymorphisms were associated with the appearance of beta-cell autoantibodies. These findings provide new insights into the role of genetic factors implicated in the pathogenesis of type 1 diabetes. The effect of some of the gene variants is restricted to control the initiation of β-cell autoimmunity whereas others modify the destruction rate of the β-cells. Furthermore, signs of primary autoantigen-related pathways were detected.
Collapse
Affiliation(s)
- Johanna Lempainen
- Immunogenetics Laboratory, University of Turku, Turku, Finland; Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.
| | | | - Anna Hammais
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, University of Oulu, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
82
|
Brozzi F, Gerlo S, Grieco FA, Nardelli TR, Lievens S, Gysemans C, Marselli L, Marchetti P, Mathieu C, Tavernier J, Eizirik DL. A combined "omics" approach identifies N-Myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-Jun N-terminal kinase in pancreatic beta cells. J Biol Chem 2015; 289:20677-93. [PMID: 24936061 DOI: 10.1074/jbc.m114.568808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from "physiological" to "pathological" UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell "adaptation," "stress response," or "apoptosis" remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells
Collapse
|
83
|
Betz RC, Petukhova L, Ripke S, Huang H, Menelaou A, Redler S, Becker T, Heilmann S, Yamany T, Duvic M, Hordinsky M, Norris D, Price VH, Mackay-Wiggan J, de Jong A, DeStefano GM, Moebus S, Böhm M, Blume-Peytavi U, Wolff H, Lutz G, Kruse R, Bian L, Amos CI, Lee A, Gregersen PK, Blaumeiser B, Altshuler D, Clynes R, de Bakker PIW, Nöthen MM, Daly MJ, Christiano AM. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun 2015; 6:5966. [PMID: 25608926 PMCID: PMC4451186 DOI: 10.1038/ncomms6966] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022] Open
Abstract
Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.
Collapse
Affiliation(s)
- Regina C Betz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Lynn Petukhova
- Department of Dermatology, Columbia University, NY, NY.,Department of Epidemiology, Columbia University, NY, NY
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Androniki Menelaou
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Silke Redler
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Tim Becker
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn
| | - Stefanie Heilmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life&Brain Center, University Bonn, Bonn, Germany
| | - Tarek Yamany
- Department of Dermatology, Columbia University, NY, NY
| | - Madeliene Duvic
- Department of Dermatology, MD Anderson Cancer Center, Houston,TX
| | - Maria Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, MN
| | - David Norris
- Department of Dermatology, University of Colorado, Denver, CO, US
| | - Vera H Price
- Department of Dermatology, University of California, San Francisco, San Francisco CA
| | | | | | - Gina M DeStefano
- Department of Genetics & Development, Columbia University, NY, NY
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry, and Epidemiology, University Duisburg-Essen, Essen, Germany
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Wolff
- Department of Dermatology, University of Munich, Munich, Germany
| | - Gerhard Lutz
- Dermatological Practice, Hair and Nail, Wesseling, Germany
| | | | - Li Bian
- Department of Dermatology, Columbia University, NY, NY
| | - Christopher I Amos
- Community and Family Medicine and Genetics, Dartmouth College, Hanover, NH, US
| | - Annette Lee
- The Feinstein Institute for Medical Research, Manhasset NY
| | | | | | - David Altshuler
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raphael Clynes
- Department of Dermatology, Columbia University, NY, NY.,Department of Medicine Columbia University, NY, NY
| | - Paul I W de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life&Brain Center, University Bonn, Bonn, Germany
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Angela M Christiano
- Department of Dermatology, Columbia University, NY, NY.,Department of Genetics & Development, Columbia University, NY, NY
| |
Collapse
|
84
|
Patel D, Ythier D, Brozzi F, Eizirik DL, Thorens B. Clic4, a novel protein that sensitizes β-cells to apoptosis. Mol Metab 2015; 4:253-64. [PMID: 25830089 PMCID: PMC4354924 DOI: 10.1016/j.molmet.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 01/09/2023] Open
Abstract
Objectives Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. Methods We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. Results We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. Conclusions Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.
Collapse
Affiliation(s)
- Dhaval Patel
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - Damien Ythier
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - Flora Brozzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
85
|
Diaz-Ganete A, Baena-Nieto G, Lomas-Romero IM, Lopez-Acosta JF, Cozar-Castellano I, Medina F, Segundo C, Lechuga-Sancho AM. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int J Endocrinol 2015; 2015:235727. [PMID: 26257781 PMCID: PMC4519548 DOI: 10.1155/2015/235727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.
Collapse
Affiliation(s)
| | - Gloria Baena-Nieto
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Endocrinology and Nutrition, Jerez de la Frontera General Hospital, 11407 Jerez de la Frontera, Spain
| | - Isabel M. Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, 41092 Sevilla, Spain
| | - Jose Francisco Lopez-Acosta
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Irene Cozar-Castellano
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Francisco Medina
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- *Carmen Segundo: and
| | - Alfonso M. Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Maternal and Pediatric Medicine and Radiology, Pediatrics Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- *Alfonso M. Lechuga-Sancho:
| |
Collapse
|
86
|
Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab 2015; 26:30-9. [PMID: 25432462 DOI: 10.1016/j.tem.2014.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.
Collapse
|
87
|
Xi Y, Liu S, Bettaieb A, Matsuo K, Matsuo I, Hosein E, Chahed S, Wiede F, Zhang S, Zhang ZY, Kulkarni RN, Tiganis T, Haj FG. Pancreatic T cell protein-tyrosine phosphatase deficiency affects beta cell function in mice. Diabetologia 2015; 58:122-31. [PMID: 25338551 PMCID: PMC4258175 DOI: 10.1007/s00125-014-3413-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS T cell protein tyrosine phosphatase (TCPTP, encoded by PTPN2) regulates cytokine-induced pancreatic beta cell apoptosis and may contribute to the pathogenesis of type 1 diabetes. However, the role of TCPTP in pancreatic endocrine function and insulin secretion remains largely unknown. METHODS To investigate the endocrine role of pancreatic TCPTP we generated mice with pancreas Ptpn2/TCPTP deletion (panc-TCPTP KO). RESULTS When fed regular chow, panc-TCPTP KO and control mice exhibited comparable glucose tolerance. However, when challenged with prolonged high fat feeding panc-TCPTP KO mice exhibited impaired glucose tolerance and attenuated glucose-stimulated insulin secretion (GSIS). The defect in GSIS was recapitulated in primary islets ex vivo and after TCPTP pharmacological inhibition or lentiviral-mediated TCPTP knockdown in the glucose-responsive MIN6 beta cells, consistent with this being cell autonomous. Reconstitution of TCPTP in knockdown cells reversed the defect in GSIS demonstrating that the defect was a direct consequence of TCPTP deficiency. The reduced insulin secretion in TCPTP knockdown MIN6 beta cells was associated with decreased insulin content and glucose sensing. Furthermore, TCPTP deficiency led to enhanced tyrosyl phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT 1/3), and substrate trapping studies in MIN6 beta cells identified STAT 1/3 as TCPTP substrates. STAT3 pharmacological inhibition and small interfering RNA-mediated STAT3 knockdown in TCPTP deficient cells restored GSIS to control levels, indicating that the effects of TCPTP deficiency were mediated, at least in part, through enhanced STAT3 phosphorylation and signalling. CONCLUSIONS/INTERPRETATION These studies identify a novel role for TCPTP in insulin secretion and uncover STAT3 as a physiologically relevant target for TCPTP in the endocrine pancreas.
Collapse
Affiliation(s)
- Yannan Xi
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Siming Liu
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Kosuke Matsuo
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Izumi Matsuo
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Ellen Hosein
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Samah Chahed
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Sheng Zhang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Fawaz G. Haj
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, Davis, CA 95616, USA. Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California Davis, Sacramento, CA, USA. Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
88
|
Liu SS, Ji-Quan L, Ye D. PTPN2, a potential therapeutic target for type 1 diabetes? ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2014; 58:978-979. [PMID: 25627060 DOI: 10.1590/0004-2730000003561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Shan-Shan Liu
- Department of Health Evaluation, Shanghai Pudong Institute for Health Development, Shanghai, PR China
| | - Lou Ji-Quan
- Department of Health Evaluation, Shanghai Pudong Institute for Health Development, Shanghai, PR China
| | - Ding Ye
- Department of Health Evaluation, Shanghai Pudong Institute for Health Development, Shanghai, PR China
| |
Collapse
|
89
|
Wang X, Welsh N. Bcl-2 maintains the mitochondrial membrane potential, but fails to affect production of reactive oxygen species and endoplasmic reticulum stress, in sodium palmitate-induced β-cell death. Ups J Med Sci 2014; 119:306-15. [PMID: 25266628 PMCID: PMC4248070 DOI: 10.3109/03009734.2014.962714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Sodium palmitate causes apoptosis of β-cells, and the anti-apoptotic protein Bcl-2 has been shown to counteract this event. However, the exact mechanisms that underlie palmitate-induced pancreatic β-cell apoptosis and through which pathway Bcl-2 executes the protective effect are still unclear. METHODS A stable Bcl-2-overexpressing RINm5F cell clone (BMG) and its negative control (B45) were exposed to palmitate for up to 8 h, and cell viability, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, and NF-κB activation were studied in time course experiments. RESULTS Palmitate exposure for 8 h resulted in increased cell death rates, and this event was partially counteracted by Bcl-2. Bcl-2 overexpression promoted in parallel also a delayed induction of GADD153/CHOP and a weaker phosphorylation of BimEL in palmitate-exposed cells. At earlier time points (2-4 h) palmitate exposure resulted in increased generation of ROS, a decrease in mitochondrial membrane potential (Δψm), and a modest increase in the phosphorylation of eIF2α and IRE1α. BMG cells produced similar amounts of ROS and displayed the same eIF2α and IRE1α phosphorylation rates as B45 cells. However, the palmitate-induced dissipation of Δψm was partially counteracted by Bcl-2. In addition, basal NF-κB activity was increased in BMG cells. CONCLUSIONS Our results indicate that Bcl-2 counteracts palmitate-induced β-cell death by maintaining mitochondrial membrane integrity and augmenting NF-κB activity, but not by affecting ROS production and ER stress.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
90
|
Abstract
Irs2-deficient mice develop type 2-like diabetes due to a reduction in β-cell mass and a failure of pancreatic islets to undergo compensatory hyperplasia in response to insulin resistance. In order to define the molecular mechanisms, we knocked down Irs2 gene expression in mouse MIN6 insulinoma cells. Insulin receptor substrate 2 (IRS2) suppression induced apoptotic cell death, which was associated with an increase in expression of the BH3-only molecule Bim. Knockdown (KD) of Bim reduced apoptotic β-cell death induced by IRS2 suppression. In Irs2-deficient mice, Bim ablation restored β-cell mass, decreased the number of TUNEL-positive cells, and restored normal glucose tolerance after glucose challenge. FoxO1 mediates Bim upregulation induced by IRS2 suppression, and FoxO1 KD partially inhibits β-cell death induced by IRS2 suppression. These results suggest that Bim plays an important role in mediating the increase in β-cell apoptosis and the reduction in β-cell mass that occurs in IRS2-deficient diabetes.
Collapse
Affiliation(s)
- Decheng Ren
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Juan Sun
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Liqun Mao
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Honggang Ye
- Department of Medicine, The University of Chicago, Chicago, IL
| | | |
Collapse
|
91
|
Marroquí L, Santin I, Dos Santos RS, Marselli L, Marchetti P, Eizirik DL. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 2014; 63:2516-27. [PMID: 24608439 DOI: 10.2337/db13-1443] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by specific destruction of pancreatic β-cells by the immune system. Linkage and genome-wide association studies have identified more than 50 loci across the human genome associated with risk of type 1 diabetes. Recently, basic leucine zipper transcription factor 2 (BACH2) has been associated with genetic risk to develop type 1 diabetes, in an effect ascribed to the immune system. We evaluated whether BACH2 may also play a role in immune-mediated pancreatic β-cell apoptosis. BACH2 inhibition exacerbated cytokine-induced β-cell apoptosis in human and rodent β-cells by the mitochondrial pathway of cell death, whereas BACH2 overexpression had protective effects. BACH2 silencing and exposure to proinflammatory cytokines increased phosphorylation of the proapoptotic protein JNK1 by upregulation of mitogen-activated protein kinase kinase 7 (MKK7) and downregulation of PTPN2. JNK1 increased phosphorylation of the proapoptotic protein BIM, and both JNK1 and BIM knockdown protected β-cells against cytokine-induced apoptosis in BACH2-silenced cells. The present findings suggest that the type 1 diabetes candidate gene BACH2 regulates proinflammatory cytokine-induced apoptotic pathways in pancreatic β-cells by crosstalk with another candidate gene, PTPN2, and activation of JNK1 and BIM. This clarifies an unexpected and relevant mechanism by which BACH2 may contribute to diabetes.
Collapse
Affiliation(s)
- Laura Marroquí
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, BelgiumEndocrinology and Diabetes Research Group, BioCruces Health Research Institute and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barakaldo, Spain
| | - Reinaldo Sousa Dos Santos
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
92
|
CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A 2014; 111:10305-10. [PMID: 24982147 DOI: 10.1073/pnas.1402571111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over 40 susceptibility loci have been identified for type 1 diabetes (T1D). Little is known about how these variants modify disease risk and progression. Here, we combined in vitro and in vivo experiments with clinical studies to determine how genetic variation of the candidate gene cathepsin H (CTSH) affects disease mechanisms and progression in T1D. The T allele of rs3825932 was associated with lower CTSH expression in human lymphoblastoid cell lines and pancreatic tissue. Proinflammatory cytokines decreased the expression of CTSH in human islets and primary rat β-cells, and overexpression of CTSH protected insulin-secreting cells against cytokine-induced apoptosis. Mechanistic studies indicated that CTSH exerts its antiapoptotic effects through decreased JNK and p38 signaling and reduced expression of the proapoptotic factors Bim, DP5, and c-Myc. CTSH overexpression also up-regulated Ins2 expression and increased insulin secretion. Additionally, islets from Ctsh(-/-) mice contained less insulin than islets from WT mice. Importantly, the TT genotype was associated with higher daily insulin dose and faster disease progression in newly diagnosed T1D patients, indicating agreement between the experimental and clinical data. In line with these observations, healthy human subjects carrying the T allele have lower β-cell function, which was evaluated by glucose tolerance testing. The data provide strong evidence that CTSH is an important regulator of β-cell function during progression of T1D and reinforce the concept that candidate genes for T1D may affect disease progression by modulating survival and function of pancreatic β-cells, the target cells of the autoimmune assault.
Collapse
|
93
|
Rheinheimer J, Oliveira FDSD, Canani LH, Crispim D. The rs1893217 (T/C) polymorphism in PTPN2 gene is not associated with type 1 diabetes mellitus in subjects from Southern Brazil. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2014; 58:382-8. [PMID: 24936733 DOI: 10.1590/0004-2730000003050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/28/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the association of the PTPN2 rs1893217 polymorphism with T1DM and/or its clinical and laboratory characteristics in a Caucasian population from Southern Brazil. SUBJECTS AND METHODS Four hundred and eighty six patients with T1DM and 484 non-diabetic subjects were included in the study. Genotyping of the PTPN2 rs1893217 was performed by real-time PCR. RESULTS Genotype frequencies did not differ between T1DM patients and non-diabetic subjects (P = 0.265). The C allele was observed in 14.5% of the T1DM sample and 12.2% of the non-diabetic group (P = 0.152). Moreover, the frequencies of this variant did not differ statistically between T1DM patients and non-diabetic subjects when assuming recessive, dominant, or additive inheritance models. The clinical and laboratory characteristics of T1DM patients did not differ significantly among the three genotypes of the rs1893217 polymorphism, either. CONCLUSION The PTPN2 rs1893217 polymorphism is not significantly associated with T1DM in Caucasian subjects from Southern Brazil.
Collapse
Affiliation(s)
- Jakeline Rheinheimer
- Laboratory of Biology of Human Pancreatic Islets, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda dos Santos de Oliveira
- Laboratory of Biology of Human Pancreatic Islets, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Daisy Crispim
- Laboratory of Biology of Human Pancreatic Islets, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
94
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
95
|
Merry TL, Tran M, Stathopoulos M, Wiede F, Fam BC, Dodd GT, Clarke I, Watt MJ, Andrikopoulos S, Tiganis T. High-fat-fed obese glutathione peroxidase 1-deficient mice exhibit defective insulin secretion but protection from hepatic steatosis and liver damage. Antioxid Redox Signal 2014; 20:2114-29. [PMID: 24252128 DOI: 10.1089/ars.2013.5428] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Reactive oxygen species (ROS) such as H2O2 can promote signaling through the inactivation of protein tyrosine phosphatases (PTPs). However, in obesity, the generation of ROS exceeds the antioxidant reserve and can contribute to the promotion of insulin resistance. Glutathione peroxidase 1 (Gpx1) is an antioxidant enzyme that eliminates H2O2. Here, we have used Gpx1(-/-) mice to assess the impact of oxidative stress on glucose homeostasis in the context of obesity. RESULTS Gpx1(-/-) mice fed an obesogenic high-fat diet for 12 weeks exhibited systemic oxidative stress and hyperglycemia, but had unaltered whole-body insulin sensitivity, improved hepatic insulin signaling, and decreased whole-body glucose production. High-fat-fed Gpx1(-/-) mice also exhibited decreased hepatic steatosis and liver damage accompanied by decreased plasma insulin and decreased glucose-induced insulin secretion. The decreased insulin secretion was associated with reduced islet β cell pancreatic and duodenal homeobox-1 (Pdx1) and insulin content, elevated pancreatic PTP oxidation (including PTPN2 oxidation), and elevated signal transducer and activator of transcription 1 (STAT1) Y701 phosphorylation. INNOVATION AND CONCLUSION Taken together, these results are consistent with H2O2 inactivating pancreatic PTPs (such as the STAT1 phosphatase PTPN2) for the promotion of STAT-1 signaling to suppress Pdx1 expression and differentiation and, consequently, reduce β cell insulin secretion. We propose that the decreased insulin secretion, in turn, results in decreased hepatic lipogenesis and steatosis, attenuates liver damage, and improves hepatic insulin signaling to suppress hepatic glucose production. Limiting insulin secretion may help combat the development of hepatic steatosis and liver damage in diet-induced obesity.
Collapse
Affiliation(s)
- Troy L Merry
- 1 Department of Biochemistry and Molecular Biology, Monash University , Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Cunha DA, Gurzov EN, Naamane N, Ortis F, Cardozo AK, Bugliani M, Marchetti P, Eizirik DL, Cnop M. JunB protects β-cells from lipotoxicity via the XBP1-AKT pathway. Cell Death Differ 2014; 21:1313-24. [PMID: 24786832 DOI: 10.1038/cdd.2014.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Diets rich in saturated fats may contribute to the loss of pancreatic β-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes β-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated β-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to β-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient β-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic β-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to β-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to β-cell apoptosis. In conclusion, JunB modulates the β-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic β-cell death. These findings elucidate novel β-cell-protective signal transduction in type 2 diabetes.
Collapse
Affiliation(s)
- D A Cunha
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - E N Gurzov
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - N Naamane
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - F Ortis
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - A K Cardozo
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - P Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - D L Eizirik
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Cnop
- 1] Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium [2] Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
97
|
Hakonen E, Ustinov J, Eizirik DL, Sariola H, Miettinen PJ, Otonkoski T. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia 2014; 57:970-9. [PMID: 24493201 DOI: 10.1007/s00125-014-3175-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS EGF receptor (EGFR) signalling is required for normal beta cell development and postnatal beta cell proliferation. We tested whether beta cell proliferation can be triggered by EGFR activation at any age and whether this can protect beta cells against apoptosis induced by diabetogenic insults in a mouse model. METHODS We generated transgenic mice with doxycycline-inducible expression of constitutively active EGFR (L858R) (CA-EGFR) under the insulin promoter. Mice were given doxycycline at various ages for different time periods, and beta cell proliferation and mass were analysed. Mice were also challenged with streptozotocin and isolated islets exposed to cytokines. RESULTS Expression of EGFR (L858R) led to increased phosphorylation of EGFR and Akt in pancreatic islets. CA-EGFR expression during pancreatic development (embryonic day [E]12.5 to postnatal day [P]1) increased beta cell proliferation and mass in newborn mice. However, CA-EGFR expression in adult mice did not affect beta cell mass. Expression of the transgene improved glycaemia and markedly inhibited beta cell apoptosis after a single high dose, as well as after multiple low doses of streptozotocin. In vitro mechanistic studies showed that CA-EGFR protected isolated islets from cytokine-mediated beta cell death, possibly by repressing the proapoptotic protein BCL2-like 11 (BIM). CONCLUSIONS/INTERPRETATION Our findings show that the expression of CA-EGFR in the developing, but not in the adult pancreas stimulates beta cell replication and leads to increased beta cell mass. Importantly, CA-EGFR protects beta cells against streptozotocin- and cytokine-induced death.
Collapse
Affiliation(s)
- Elina Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), 00014, Helsinki, Finland,
| | | | | | | | | | | |
Collapse
|
98
|
The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis 2014; 5:e1124. [PMID: 24625983 PMCID: PMC3973197 DOI: 10.1038/cddis.2014.88] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/09/2023]
Abstract
Apoptosis of pancreatic beta cells is a feature of type 2 diabetes and its prevention may have therapeutic benefit. High glucose concentrations induce apoptosis of islet cells, and this requires the proapoptotic Bcl-2 homology domain 3 (BH3)-only proteins Bim and Puma. We studied the stress pathways induced by glucotoxicity in beta cells that result in apoptosis. High concentrations of glucose or ribose increased expression of the transcription factor CHOP (C/EBP homologous protein) but not endoplasmic reticulum (ER) chaperones, indicating activation of proapoptotic ER stress signaling. Inhibition of ER stress prevented ribose-induced upregulation of Chop and Puma mRNA, and partially protected islets from glucotoxicity. Loss of Bim or Puma partially protected islets from the canonical ER stressor thapsigargin. The antioxidant N-acetyl-cysteine also partially protected islets from glucotoxicity. Islets deficient in both Bim and Puma, but not Bim or Puma alone, were significantly protected from killing induced by the mitochondrial reactive oxygen species donor rotenone. Our data demonstrate that high concentrations of glucose induce ER and oxidative stress, which causes cell death mediated by Bim and Puma. We observed significantly higher Bim and Puma mRNA in islets of human donors with type 2 diabetes. This indicates that inhibition of Bim and Puma, or their inducers, may prevent beta-cell destruction in type 2 diabetes.
Collapse
|
99
|
Bettaieb A, Xi Y, Hosein E, Coggins N, Bachaalany S, Wiede F, Perez S, Griffey SM, Sastre J, Tiganis T, Haj FG. Pancreatic T cell protein-tyrosine phosphatase deficiency ameliorates cerulein-induced acute pancreatitis. Cell Commun Signal 2014; 12:13. [PMID: 24606867 PMCID: PMC4016516 DOI: 10.1186/1478-811x-12-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/20/2014] [Indexed: 12/19/2022] Open
Abstract
Background Acute pancreatitis (AP) is a common clinical problem whose incidence has been progressively increasing in recent years. Onset of the disease is trigged by intra-acinar cell activation of digestive enzyme zymogens that induce autodigestion, release of pro-inflammatory cytokines and acinar cell injury. T-cell protein tyrosine phosphatase (TCPTP) is implicated in inflammatory signaling but its significance in AP remains unclear. Results In this study we assessed the role of pancreatic TCPTP in cerulein-induced AP. TCPTP expression was increased at the protein and messenger RNA levels in the early phase of AP in mice and rats. To directly determine whether TCPTP may have a causal role in AP we generated mice with pancreatic TCPTP deletion (panc-TCPTP KO) by crossing TCPTP floxed mice with Pdx1-Cre transgenic mice. Amylase and lipase levels were lower in cerulein-treated panc-TCPTP KO mice compared with controls. In addition, pancreatic mRNA and serum concentrations of the inflammatory cytokines TNFα and IL-6 were lower in panc-TCPTP KO mice. At the molecular level, panc-TCPTP KO mice exhibited enhanced cerulein-induced STAT3 Tyr705 phosphorylation accompanied by a decreased cerulein-induced NF-κB inflammatory response, and decreased ER stress and cell death. Conclusion These findings revealed a novel role for pancreatic TCPTP in the progression of cerulein-induced AP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, 3135 Meyer Hall, Davis, CA 95616, USA.
| |
Collapse
|
100
|
Hu S, Wang J, Xu H, Wang Y, Li Z, Xue C. Fucosylated chondroitin sulphate from sea cucumber inhibits high-fat-sucrose diet-induced apoptosis in mouse pancreatic islets via down-regulating mitochondrial signaling pathway. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|