51
|
Vilela FP, Felice AG, Seribelli AA, Rodrigues DP, Soares SC, Allard MW, Falcão JP. Comparative genomics reveals high genetic similarity among strains of Salmonella enterica serovar Infantis isolated from multiple sources in Brazil. PeerJ 2024; 12:e17306. [PMID: 38784399 PMCID: PMC11114117 DOI: 10.7717/peerj.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Background Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.
Collapse
Affiliation(s)
- Felipe P. Vilela
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analyses, Toxicology and Food Science, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andrei G. Felice
- Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Amanda A. Seribelli
- Medical School of Ribeirão Preto, Department of Cellular and Molecular Biology, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dália P. Rodrigues
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Siomar C. Soares
- Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Juliana P. Falcão
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analyses, Toxicology and Food Science, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
52
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
53
|
Cardamone C, Castello A, Oliveri G, Costa A, Sciortino S, Nia Y, Hennekinne JA, Romano A, Zuccon F, Decastelli L. Staphylococcal food poisoning outbreaks occurred in Sicily (Italy) from 2009 to 2016. Ital J Food Saf 2024; 13:11667. [PMID: 38807740 PMCID: PMC11128976 DOI: 10.4081/ijfs.2024.11667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/11/2023] [Indexed: 05/30/2024] Open
Abstract
Notification of foodborne outbreaks has been mandatory in Europe since 2005, and surveillance is carried out along the entire food chain. Here we report the results obtained from laboratory investigations about four cases of foodborne outbreaks that occurred in Sicily between 2009 and 2016, deemed to be related to staphylococcal enterotoxins (SEs) and coagulase-positive Staphylococci (CPS) by the Local Public Health Authority. Primosale cheese samples were processed by culture methods for enumeration of CPS and immunoenzymatic assays for detection and differentiation of the SEs possibly contained in food samples. In all cases, the mistrusted foods were found to be contaminated by CPS at bacterial loads between 5 and 8 log CFU/g and contained SE type C (SEC). The reported data confirm the risk of staphylococcal food poisoning associated with the consumption of raw milk cheese. SEC is the most commonly occurring SE in goat milk and dairy products and the most represented enterotoxin in Sicilian dairy products. Our results highlighted the need for improving the current monitoring efficiency and implementing the available laboratory methods to collect more faithful epidemiological data on the current prevalence of staphylococcal toxins in the food chain, including SEs currently not detectable by validated analytical methods.
Collapse
Affiliation(s)
- Cinzia Cardamone
- Food Microbiology Area, Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Annamaria Castello
- Food Microbiology Area, Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Giuseppa Oliveri
- Food Microbiology Area, Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Antonella Costa
- Food Microbiology Area, Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Sonia Sciortino
- Food Microbiology Area, Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety, Paris-Est University, Maisons-Alfort, France
| | - Jacques Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety, Paris-Est University, Maisons-Alfort, France
| | - Angelo Romano
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Experimental Zooprophylactic Institute of Piemonte, Liguria and Valle d’Aosta, Torino, Italy
| | - Fabio Zuccon
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Experimental Zooprophylactic Institute of Piemonte, Liguria and Valle d’Aosta, Torino, Italy
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Experimental Zooprophylactic Institute of Piemonte, Liguria and Valle d’Aosta, Torino, Italy
| |
Collapse
|
54
|
Hodges LM, Cooper A, Koziol A, Carrillo CD. Characterization of MLST-99 Salmonella Typhimurium and the monophasic variant I:4,[5],12:i:- isolated from Canadian Atlantic coast shellfish. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001456. [PMID: 38753417 PMCID: PMC11256474 DOI: 10.1099/mic.0.001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Salmonella enterica subsp. enterica Typhimurium and its monophasic variant I 1;4,[5],12:i:- (MVST) are responsible for thousands of reported cases of salmonellosis each year in Canada, and countries worldwide. We investigated S. Typhimurium and MVST isolates recovered from raw shellfish harvested in Atlantic Canada by the Canadian Food Inspection Agency (CFIA) over the past decade, to assess the potential impact of these isolates on human illness and to explore possible routes of shellfish contamination. Whole-genome sequence analysis was performed on 210 isolates of S. Typhimurium and MVST recovered from various food sources, including shellfish. The objective was to identify genetic markers linked to ST-99, a sequence type specifically associated with shellfish, which could explain their high prevalence in shellfish. We also investigated the genetic similarity amongst CFIA ST-99 isolates recovered in different years and geographical locations. Finally, the study aimed to enhance the molecular serotyping of ST-99 isolates, as they are serologically classified as MVST but are frequently misidentified as S. Typhimurium through sequence analysis. To ensure recovery of ST-99 from shellfish was not due to favourable growth kinetics, we measured the growth rates of these isolates relative to other Salmonella and determined that ST-99 did not have a faster growth rate and/or shorter lag phase than other Salmonella evaluated. The CFIA ST-99 isolates from shellfish were highly clonal, with up to 81 high-quality single nucleotide variants amongst isolates. ST-99 isolates both within the CFIA collection and those isolated globally carried numerous unique deletions, insertions and mutations in genes, including some considered important for virulence, such as gene deletions in the type VI secretion system. Interestingly, several of these genetic characteristics appear to be unique to North America. Most notably was a large genomic region showing a high prevalence in genomes from Canadian isolates compared to those from the USA. Although the functions of the majority of the proteins encoded within this region remain unknown, the genes umuC and umuD, known to be protective against UV light damage, were present. While this study did not specifically examine the effects of mutations and insertions, results indicate that these isolates may be adapted to survive in specific environments, such as ocean water, where wild birds and/or animals serve as the natural hosts. Our hypothesis is reinforced by a global phylogenetic analysis, which indicates that isolates obtained from North American shellfish and wild birds are infrequently connected to isolates from human sources. These findings suggest a distinct ecological niche for ST-99, potentially indicating their specialization and adaptation to non-human hosts and environments, such as oceanic habitats.
Collapse
Affiliation(s)
| | | | - Adam Koziol
- Canadian Food Inspection Agency, Ottawa, Canada
| | | |
Collapse
|
55
|
Bester C, Käsbohrer A, Wilkins N, Correia Carreira G, Marschik T. Identification of cost-effective biosecurity measures to reduce Salmonella along the pork production chain. Front Vet Sci 2024; 11:1380029. [PMID: 38562917 PMCID: PMC10983795 DOI: 10.3389/fvets.2024.1380029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The continued occurrence of salmonellosis cases in Europe attributed to the consumption of pork products highlights the importance of identifying cost-effective interventions. Certain biosecurity measures (BSMs) may be effective in reducing the prevalence of specific pathogens along the pork production chain and their presence in food products. The objective of this study was to identify pathogen-specific, cost-effective BSMs to reduce Salmonella at different stages of the pork production chain in two European countries - Austria (AT) and the United Kingdom (UK). For this purpose, a cost-benefit analysis was conducted based on the epidemiological output of an established quantitative microbiological risk assessment that simulated the implementation effect of the BSMs based on their risk ratios. For each of the BSMs, the associated costs and benefits were assessed individually and country-specifically. For both AT and UK, nine different BSMs were evaluated assuming a countrywide implementation rate of 100%. The results showed that four BSMs were cost-effective (benefit-cost ratio > 1) for AT and five for the UK. The uncertainty regarding the cost-effectiveness of the BSMs resulted from the variability of individual risk ratios, and the variability of benefits associated with the implementation of the BSMs. The low number of cost-effective BSMs highlights the need for holistic risk-based models and economic assessments. To increase the willingness to implement BSMs and maximize the benefits for stakeholders, who carry the majority of the implementation costs, epidemiological assessments of BSM effectiveness should consider the impact on several relevant pathogens simultaneously.
Collapse
Affiliation(s)
- Clara Bester
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| | - Annemarie Käsbohrer
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
- Unit Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Neil Wilkins
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Guido Correia Carreira
- Unit Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tatiana Marschik
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
56
|
Buytaers FE, Verhaegen B, Van Nieuwenhuysen T, Roosens NHC, Vanneste K, Marchal K, De Keersmaecker SCJ. Strain-level characterization of foodborne pathogens without culture enrichment for outbreak investigation using shotgun metagenomics facilitated with nanopore adaptive sampling. Front Microbiol 2024; 15:1330814. [PMID: 38495515 PMCID: PMC10940517 DOI: 10.3389/fmicb.2024.1330814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Shotgun metagenomics has previously proven effective in the investigation of foodborne outbreaks by providing rapid and comprehensive insights into the microbial contaminant. However, culture enrichment of the sample has remained a prerequisite, despite the potential impact on pathogen detection resulting from the growth competition. To circumvent the need for culture enrichment, we explored the use of adaptive sampling using various databases for a targeted nanopore sequencing, compared to shotgun metagenomics alone. Methods The adaptive sampling method was first tested on DNA of mashed potatoes mixed with DNA of a Staphylococcus aureus strain previously associated with a foodborne outbreak. The selective sequencing was used to either deplete the potato sequencing reads or enrich for the pathogen sequencing reads, and compared to a shotgun sequencing. Then, living S. aureus were spiked at 105 CFU into 25 g of mashed potatoes. Three DNA extraction kits were tested, in combination with enrichment using adaptive sampling, following whole genome amplification. After data analysis, the possibility to characterize the contaminant with the different sequencing and extraction methods, without culture enrichment, was assessed. Results Overall, the adaptive sampling outperformed the shotgun sequencing. While the use of a host removal DNA extraction kit and targeted sequencing using a database of foodborne pathogens allowed rapid detection of the pathogen, the most complete characterization was achieved when using solely a database of S. aureus combined with a conventional DNA extraction kit, enabling accurate placement of the strain on a phylogenetic tree alongside outbreak cases. Discussion This method shows great potential for strain-level analysis of foodborne outbreaks without the need for culture enrichment, thereby enabling faster investigations and facilitating precise pathogen characterization. The integration of adaptive sampling with metagenomics presents a valuable strategy for more efficient and targeted analysis of microbial communities in foodborne outbreaks, contributing to improved food safety and public health.
Collapse
Affiliation(s)
- Florence E. Buytaers
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Tom Van Nieuwenhuysen
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDlab, IMEC, Ghent University, Ghent, Belgium
| | | |
Collapse
|
57
|
Rampacci E, Diaferia M, Lucentini L, Brustenga L, Capasso M, Girardi S, Gizzi I, Primavilla S, Veronesi F, Passamonti F. Detection of zoonotic enteropathogens in captive large felids in Italy. Zoonoses Public Health 2024; 71:200-209. [PMID: 38017609 DOI: 10.1111/zph.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/07/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
AIMS Within the One Health paradigm, infectious disease surveillance have been developed for domestic and wild animals, leaving the role of captive non-domestic populations, especially felids in zoos and circuses, less explored. This study addresses the proximity of these captive animals to urban areas, necessitating focused monitoring for potential zoonotic enteropathogens. The present work aimed to investigate the presence of such zoonotic enteropathogens in faecal samples from captive large felid populations. METHODS AND RESULTS A total of 108 faecal samples were collected in three circuses, five zoos and one rescue centre across Italy. Salmonella spp. isolation, serotyping and antimicrobial susceptibility testing were conducted on all samples. Additionally, 60 samples were also examined for gastrointestinal parasites using standard coprological techniques. Giardia spp. detection employed direct immunofluorescent staining and specific PCR, while Toxoplasma gondii was detected using PCR targeting B1 gene. A total of 51 Salmonella enterica subsp. enterica were isolated, with predominant serovariants including Infantis (43.1%), Coeln (11.8%) and Newport (11.8%). The captive felids likely act as asymptomatic carriers of foodborne Salmonella, with notable resistance ampicillin and trimethoprim-sulfamethoxazole, no resistance to enrofloxacin was noted. Microscopic analysis revealed Toxascaris leonina eggs in 11 faecal samples (18.3%) and Giardia duodenalis cysts in one animal (1.7%). CONCLUSIONS Captive animals in public settings may act as sources of Salmonella infection and enteroparasitosis for both occupational and general exposure. The study emphasizes the role of captive animals in antimicrobial resistance dynamics, highlighting the need for routine pathogen screening in the management practices of zoological structures.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Manuela Diaferia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Leonardo Brustenga
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Michele Capasso
- Department of Veterinary Medicine & Animal Production, University of Naples 'Federico II', Naples, Italy
| | - Stefano Girardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Gizzi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Fabrizia Veronesi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
58
|
Dincer E. Detection of Listeria Species by Conventional Culture-Dependent and Alternative Rapid Detection Methods in Retail Ready-to-Eat Foods in Turkey. J Microbiol Biotechnol 2024; 34:349-357. [PMID: 38073362 PMCID: PMC10940737 DOI: 10.4014/jmb.2308.08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 03/01/2024]
Abstract
Foodborne pathogens, like Listeria monocytogenes, continue to inflict substantial financial losses on the food industry. Various methods for detecting Listeria in food have been developed and numerous studies have been conducted to compare the different methods. But, in recent years, new Listeria species have been identified, and currently the genus comprises 26 species. Therefore, it would be a more accurate approach to re-evaluate existing detection methods by considering new species. The present investigation involved the analysis of 42 ready-to-eat (RTE) foods, encompassing a variety of food categories, such as mezes, salads, dairy products, and meat products, with the aim of ascertaining the presence of Listeria. Among the traditional culture-dependent reference methods, the ISO 11290 method was preferred. The process of strain identification was conducted with the API Identification System. Furthermore, to ascertain the existence of L. monocytogenes and Listeria spp., the samples underwent additional analysis employing the VIDAS Immunoassay System, ELISA, and RT-PCR methodologies. Thus, four alternative approaches were employed in this study to compare not only the different methods used to determine Listeria while taking into account the newly identified Listeria species, but also to assess the compliance of retail RTE food items with microbiological criteria pertaining to the genus Listeria. Based on the conducted analyses, L. monocytogenes was conclusively determined to be present in one sample. The presence of Listeria spp. was detected in 30.9% of the samples, specifically in Turkish cig kofte, sliced salami, and salads.
Collapse
Affiliation(s)
- Emine Dincer
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
59
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
60
|
Zarske M, Luu HQ, Deneke C, Knüver MT, Thieck M, Hoang HTT, Bretschneider N, Pham NT, Huber I, Stingl K. Identification of knowledge gaps in whole-genome sequence analysis of multi-resistant thermotolerant Campylobacter spp. BMC Genomics 2024; 25:156. [PMID: 38331708 PMCID: PMC10851486 DOI: 10.1186/s12864-024-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Campylobacter spp. is the most frequent cause of bacterial food-borne gastroenteritis and a high priority antibiotic resistant bacterium according to the World Health Organization (WHO). European monitoring of thermotolerant Campylobacter spp. does not reflect the global burden of resistances already circulating within the bacterial population worldwide. METHODS We systematically compared whole genome sequencing with comprehensive phenotypic antimicrobial susceptibility, analyzing 494 thermotolerant Campylobacter poultry isolates from Vietnam and Germany. Any discrepancy was checked by repeating the wet lab and improving the dry lab part. Selected isolates were additionally analyzed via long-read Oxford Nanopore technology, leading to closed chromosomes and plasmids. RESULTS Overall, 22 different resistance genes and gene variants (e. g. erm(B), aph(3')-IIIa, aph(2'')-If, catA, lnu(C), blaOXA, sat4) and point mutations in three distinct genes (gyrA, 23S rRNA, rpsL) associated with AMR were present in the Campylobacter isolates. Two AMR genes were missing in the database and one falsely associated with resistance. Bioinformatic analysis based on short-read data partly failed to identify tet(O) and aadE, when the genes were present as duplicate or homologous gene variants. Intriguingly, isolates also contained different determinants, redundantly conferring resistance to chloramphenicol, gentamicin, kanamycin, lincomycin and streptomycin. We found a novel tet(W) in tetracycline sensitive strains, harboring point mutations. Furthermore, analysis based on assemblies from short-read data was impaired to identify full length phase variable aad9, due to variations of the poly-C tract within the gene. The genetic determinant responsible for gentamicin resistance of one isolate from Germany could not be identified. GyrT86I, presenting the main determinant for (fluoro-)quinolone resistance led to a rare atypical phenotype of ciprofloxacin resistance but nalidixic acid sensitivity. Long-read sequencing predicted AMR genes were mainly located on the chromosome, and rarely on plasmids. Predictions from long- and short-read sequencing, respectively, often differed. AMR genes were often organized in multidrug resistance islands (MDRI) and partially located in proximity to transposase genes, suggesting main mobilization of resistance determinants is via natural transformation and transposition in Campylobacter. CONCLUSIONS The results of this study suggest that there is frequent resistance gene duplication, mosaicism, and mutation leading to gene variation and truncation in Campylobacter strains that have not been reported in previous studies and are missing from databases. Furthermore, there is a need for deciphering yet unknown resistance mechanisms and resistance spread in thermotolerant Campylobacter spp. that may pose a challenge to global food safety.
Collapse
Affiliation(s)
- Michael Zarske
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Huong Quynh Luu
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Carlus Deneke
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Marie-Theres Knüver
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Maja Thieck
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Ha Thi Thu Hoang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin Street, Hanoi, Trung District, Vietnam
| | - Nancy Bretschneider
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Ngoc Thi Pham
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Ingrid Huber
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Kerstin Stingl
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany.
| |
Collapse
|
61
|
Psomatakis M, Papadimitriou K, Souliotis A, Drosinos EH, Papadopoulos G. Food Safety and Management System Audits in Food Retail Chain Stores in Greece. Foods 2024; 13:457. [PMID: 38338591 PMCID: PMC10855910 DOI: 10.3390/foods13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The present study aimed to assess the performance of food safety management systems in food retail stores via audits to reveal potential areas of improvement and to find out possible corrective actions to suggest to the top management. Two cycles of on-site audits took place in 106 stores to assess the requirements and hygiene conditions. After the first cycle of audits, improvements were suggested to the top management, and a second cycle of audits took place after a reasonable time. In the checklist, we recorded the temperatures of retail refrigerators and the scores from the inspection of hygiene and HACCP documentation. In the A' audit, the percentage of stores that had higher temperatures than the critical limits was equal to 51%, and those temperatures occurred in the refrigerators for salads, followed by the refrigerators for deli meat, yogurts and desserts. In the B' audit, only the refrigerators for salads exhibited percentages that were statistically significant lower (p-value < 0.05), and the stores were improved after the audit. High percentages of high-scoring stores were observed in the A' and B' audit in the inspection of HACCP documentation, although there was not a statistically significant improvement observed (p-value > 0.05). In the hygiene inspection, statistically significant improvement with 95% confidence appeared for "Refrigerator's products appearance", "Storage cleanliness", and "Grocery shelf cleanliness". The highest number of non-conformities without statistically significant improvement was found for "Checking temperatures of the receiving products" and "Labeling of fruit store products", with the percentages being lower than 15% in both of the audit cycles. Many employees of the stores did not check and record the temperatures of receiving products from suppliers. In addition, the storage of spoiled products beneath fresh products for selling in the same refrigerator is not a good practice. Greater efforts must be made by top management and employees to maintain and distribute food products in the best and safest possible hygiene conditions.
Collapse
Affiliation(s)
- Michalis Psomatakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.P.); (E.H.D.)
| | - Konstantinos Papadimitriou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.P.); (E.H.D.)
| | - Andreas Souliotis
- Department of Nutrition and Dietetics, Harokopio University of Athens, 17676 Athens, Greece;
| | - Eleftherios H. Drosinos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.P.); (E.H.D.)
| | - Georgios Papadopoulos
- Institute for Design and Analysis of Experiments, University Research Center, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
62
|
Zhu Q, Qi S, Guo D, Li C, Su M, Wang J, Li Z, Yang D, Sun H, Wang X, Wang M, Wu H, Yu S, Bai W, Zhang Y, Yang X, Jiang L, Liu J, Zhao Y, Xing X, Shi D, Feng L, Sun D. A survey of fecal virome and bacterial community of the diarrhea-affected cattle in northeast China reveals novel disease-associated ecological risk factors. mSystems 2024; 9:e0084223. [PMID: 38108282 PMCID: PMC10804951 DOI: 10.1128/msystems.00842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Limited information on the virome and bacterial community hampers our ability to discern systemic ecological risk factors that cause cattle diarrhea, which has become a pressing issue in the control of disease. A total of 110 viruses, 1,011 bacterial genera, and 322 complete viral genomes were identified from 70 sequencing samples mixed with 1,120 fecal samples from 58 farms in northeast China. For the diarrheic samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, and geographic distribution in relation to different disease-associated ecological factors; the abundance of identified viruses and bacteria was significantly correlated with the host factors of clinical status, cattle type, and age, and with environmental factors such as aquaculture model and geographical location (P < 0.05); a significant interaction occurred between viruses and viruses, bacteria and bacteria, as well as between bacteria and viruses (P < 0.05). The abundance of SMB53, Butyrivibrio, Facklamia, Trichococcus, and Turicibacter was significantly correlated with the health status of cattle (P < 0.05). The proportion of BRV, BCoV, BKV, BToV, BoNoV, BoNeV, BoAstV, BEV, BoPV, and BVDV in 1,120 fecal samples varied from 1.61% to 12.05%. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. A genome-based phylogenetic analysis revealed high variability of 10 bovine enteric viruses. The bovine hungarovirus was initially identified in both dairy and beef cattle in China. This study elucidates the fecal virome and bacterial community signatures of cattle affected by diarrhea, and reveals novel disease-associated ecological risk factors, including cattle type, cattle age, aquaculture model, and geographical location.IMPORTANCEThe lack of data on the virome and bacterial community restricts our capability to recognize ecological risk factors for bovine diarrhea disease, thereby hindering our overall comprehension of the disease's cause. In this study, we found that, for the diarrheal samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, configuration, and geographic distribution in relation to different disease-associated ecological factors. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. Our study aims to uncover novel ecological risk factors of bovine diarrheal disease by examining the pathogenic microorganism-host-environment disease ecology, thereby providing a new perspective on the control of bovine diarrheal diseases.
Collapse
Affiliation(s)
- Qinghe Zhu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Qi
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Donghua Guo
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunqiu Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingjun Su
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zijian Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dan Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haibo Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoran Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Meijiao Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haoyang Wu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shiping Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenfei Bai
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongchen Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Limin Jiang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaying Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingying Zhao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoxu Xing
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongbo Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People’s Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
63
|
Mancusi A, Egidio M, Marrone R, Scotti L, Paludi D, Dini I, Proroga YTR. The In Vitro Antibacterial Activity of Argirium SUNc against Most Common Pathogenic and Spoilage Food Bacteria. Antibiotics (Basel) 2024; 13:109. [PMID: 38275338 PMCID: PMC10812583 DOI: 10.3390/antibiotics13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Foodborne diseases are one of the main issues for human health, and antibacterial packaging plays a major role in food security assurance. Silver ultra nanoparticles (Argirium SUNc) are antimicrobial agents that have a wide spectrum of action, including against pathogenic bacteria and spoilage fungi. The aim of the present study was to evaluate the antibacterial activity of Argirium SUNc on the bacteria most commonly found in food: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. In this regard, an in vitro study was carried out by assessing the Argirium SUNc effectiveness on different concentrations of each tested microbial strain and at different time intervals. The data showed that the antimicrobial activity of Argirium SUNc was directly related to the microbial concentration and varied depending on the microbial species. Moreover, a greater effectiveness against Gram-negative bacteria than Gram-positive bacteria was observed. These preliminary results provided important information on the silver nanoparticles spectrum of action, and this is an aspect that appears particularly promising for obtaining a viable alternative to traditional antimicrobials to be used against the pathogens and spoilage agents most commonly found in the food chain, harmful both to health and quality aspects.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Safety Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (A.M.); (Y.T.R.P.)
| | - Marica Egidio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy; (M.E.); (R.M.)
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy; (M.E.); (R.M.)
| | - Luca Scotti
- Department of Medical, Oral, and Biotechnological Sciences, “G. d’Annunzio” University of Chieti–Pescara, 66100 Chieti, Italy
| | - Domenico Paludi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Yolande Thérèse Rose Proroga
- Department of Food Safety Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (A.M.); (Y.T.R.P.)
| |
Collapse
|
64
|
Nolte T, Spieß F, Jacobs AK, Kemper N, Visscher C. Process Hygiene Criterion for Campylobacter and Number of Campylobacter Enteritis Cases in Northwest Germany. Foods 2024; 13:281. [PMID: 38254584 PMCID: PMC10815233 DOI: 10.3390/foods13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis is the most commonly reported bacterial foodborne disease in the European Union. Its transmission is often associated with the consumption of poultry meat. In 2018, Regulation (EC) No. 2017/1495 introduced a process hygiene criterion and with this, the testing requirements for Campylobacter. The results of microbiological testing for Campylobacter of chicken carcass neck skin samples from several slaughter lines in Northwest Germany collected by the food business operators and contamination levels (cfu/g Campylobacter) of these samples were analysed from 2018 to 2021. Classification into three different categories was made based on contamination levels. The proportion of highly contaminated (category three) neck samples (>1000 cfu/g) decreased from 2018 to 2021. Our analysis showed a relationship between the number of neck samples with high Campylobacter contamination levels (>1000 cfu/g) and human cases in Northwest Germany. Spearman's rank test (p < 0.01) showed a higher correlation in 2018 (0.66) and 2019 (0.58) compared to 2020 and 2021. Campylobacter enteritis cases in Northwest Germany stayed at a low level in 2020 and 2021. It remains unclear whether the decrease in reported Campylobacter enteritis cases is related to a decrease in Campylobacter levels on chicken carcasses or due to other reasons like underreporting during the COVID-19 pandemic, and therefore must be investigated in further analyses.
Collapse
Affiliation(s)
- Tobias Nolte
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Fabian Spieß
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| | - Anne-Katrin Jacobs
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Nicole Kemper
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - Christian Visscher
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| |
Collapse
|
65
|
Ahmed NA, Gulhan T. Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. MICROBIOME 2024; 12:8. [PMID: 38191447 PMCID: PMC10773086 DOI: 10.1186/s40168-023-01729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.
Collapse
Affiliation(s)
- Nejash A Ahmed
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Daro Lebu District Agriculture Office, Mechara-Micheta, Ethiopia.
| | - Timur Gulhan
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
66
|
Cribb DM, Moffatt CRM, Wallace RL, McLure AT, Bulach D, Jennison AV, French N, Valcanis M, Glass K, Kirk MD. Genomic and clinical characteristics of campylobacteriosis in Australia. Microb Genom 2024; 10:001174. [PMID: 38214338 PMCID: PMC10868609 DOI: 10.1099/mgen.0.001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Campylobacter spp. are a common cause of bacterial gastroenteritis in Australia, primarily acquired from contaminated meat. We investigated the relationship between genomic virulence characteristics and the severity of campylobacteriosis, hospitalisation, and other host factors.We recruited 571 campylobacteriosis cases from three Australian states and territories (2018-2019). We collected demographic, health status, risk factors, and self-reported disease data. We whole genome sequenced 422 C. jejuni and 84 C. coli case isolates along with 616 retail meat isolates. We classified case illness severity using a modified Vesikari scoring system, performed phylogenomic analysis, and explored risk factors for hospitalisation and illness severity.On average, cases experienced a 7.5 day diarrhoeal illness with additional symptoms including stomach cramps (87.1 %), fever (75.6 %), and nausea (72.0 %). Cases aged ≥75 years had milder symptoms, lower Vesikari scores, and higher odds of hospitalisation compared to younger cases. Chronic gastrointestinal illnesses also increased odds of hospitalisation. We observed significant diversity among isolates, with 65 C. jejuni and 21 C. coli sequence types. Antimicrobial resistance genes were detected in 20.4 % of isolates, but multidrug resistance was rare (0.04 %). Key virulence genes such as cdtABC (C. jejuni) and cadF were prevalent (>90 % presence) but did not correlate with disease severity or hospitalisation. However, certain genes (e.g. fliK, Cj1136, and Cj1138) appeared to distinguish human C. jejuni cases from food source isolates.Campylobacteriosis generally presents similarly across cases, though some are more severe. Genotypic virulence factors identified in the literature to-date do not predict disease severity but may differentiate human C. jejuni cases from food source isolates. Host factors like age and comorbidities have a greater influence on health outcomes than virulence factors.
Collapse
Affiliation(s)
- Danielle M. Cribb
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Cameron R. M. Moffatt
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Rhiannon L. Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Angus T. McLure
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Nigel French
- Tāwharau Ora|School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| |
Collapse
|
67
|
Mu W, van Asselt E, van Wagenberg C, van der Fels-Klerx HJ. Building a resilient pork supply chain to Salmonella spp. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:12-23. [PMID: 37029470 DOI: 10.1111/risa.14141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Salmonella spp. control in pork supply chains has always been a challenging issue and insufficient control can lead to high social and economic consequences. Conventional risk management and risk management approaches and models are not sufficient to address potential food safety shocks caused by Salmonella spp., as they mainly focus on assessing measures to reduce Salmonella spp. risks instead of developing the resilience capability (e.g., flexibility to adapt to sudden changes in the risks). Our study is the first that incorporated the resilience concept to the quantitative modeling of Salmonella spp. spread in the pork supply chain. The objective of this study was to explore the resilience performance of the pork supply chain under different food safety shocks caused by Salmonella spp., and to investigate the effectiveness of interventions on reducing the impact of these shocks on the resilience performance of the chain. Scenario analysis indicated that the effectiveness of the investigated resilience strategies or interventions depended on the risk profile (i.e., default, minimum, maximum level of Salmonella spp. contamination) of the pork supply chain. For pork supply chains with minimum and default risk profiles, more attention should be paid to increasing resilience of pigs towards Salmonella spp. infection. For supply chains with maximum risk profile, the focus should be on improving the performance of the slaughterhouse, such as careful evisceration, logistic slaughtering. To conclude, enhancing resilience performance of the pork supply chain can contribute to a safe pork supply.
Collapse
Affiliation(s)
- Wenjuan Mu
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Esther van Asselt
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Coen van Wagenberg
- Wageningen Economic Research, Wageningen University and Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
68
|
Rodrigues IC, Cristal AP, Ribeiro-Almeida M, Silveira L, Prata JC, Simões R, Vaz-Pires P, Pista Â, Martins da Costa P. Gulls in Porto Coastline as Reservoirs for Salmonella spp.: Findings from 2008 and 2023. Microorganisms 2023; 12:59. [PMID: 38257887 PMCID: PMC10819206 DOI: 10.3390/microorganisms12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Gulls act as intermediaries in the exchange of microorganisms between the environment and human settlements, including Salmonella spp. This study assessed the antimicrobial resistance and molecular profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto, Portugal, in 2008 and 2023 and from water samples in 2023. Antimicrobial susceptibility profiling revealed an improvement in the prevalence (71% to 17%) and antimicrobial resistance between the two collection dates. Two isolate collections from both 2008 and 2023 underwent serotyping and whole-genome sequencing, revealing genotypic changes, including an increased frequency in the monophasic variant of S. Typhimurium. qacE was identified in 2008 and 2023 in both water and fecal samples, with most isolates exhibiting an MDR profile. The most frequently observed plasmid types were IncF in 2008 (23%), while IncQ1 predominated in 2023 (43%). Findings suggest that Salmonella spp. circulate between humans, animals, and the environment. However, the genetic heterogeneity among the isolates from the gulls' feces and the surface water may indicate a complex ecological and evolutionary dynamic shaped by changing conditions. The observed improvements are likely due to measures to reduce biological contamination and antimicrobial resistance. Nevertheless, additional strategies must be implemented to reduce the public health risk modeled by the dissemination of pathogens by gulls.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Paula Cristal
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Marisa Ribeiro-Almeida
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Leonor Silveira
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Joana C. Prata
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Roméo Simões
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Paulo Vaz-Pires
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ângela Pista
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Paulo Martins da Costa
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
69
|
Primavilla S, Roila R, Rocchegiani E, Blasi G, Petruzzelli A, Gabucci C, Ottaviani D, Di Lullo S, Branciari R, Ranucci D, Valiani A. Assessment of the Microbiological Safety and Hygiene of Raw and Thermally Treated Milk Cheeses Marketed in Central Italy between 2013 and 2020. Life (Basel) 2023; 13:2324. [PMID: 38137925 PMCID: PMC10744727 DOI: 10.3390/life13122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A profile of the microbial safety and hygiene of cheese in central Italy was defined based on an analysis of 1373 cheeses sampled under the Italian National Control Plan for Food Safety spanning the years 2013 to 2020 and tested according to Commission Regulation (EC) No. 2073/2005 (as amended). A total of 97.4% of cheese samples were assessed as being satisfactory for food safety criteria and 80.5% for process hygiene criteria. Staphylococcal enterotoxin was found in 2/414 samples, while Salmonella spp. and Listeria monocytogenes were detected in 15 samples out of 373 and 437, respectively. Escherichia coli and coagulase-positive staphylococci counts were found unsatisfactory in 12/61 and 17/88 cheese samples, respectively. The impact of milking species, milk thermal treatment, and cheese hardness category was considered. A statistically significant association (p < 0.05) was found between milk thermal treatment and the prevalence of coagulase-positive staphylococci and Listeria monocytogenes and between hardness and unsatisfactory levels of Escherichia coli. The data depict a contained public health risk associated with these products and confirm, at the same time, the importance of strict compliance with good hygiene practices during milk and cheese production. These results can assist in bolstering risk analysis and providing insights for food safety decision making.
Collapse
Affiliation(s)
- Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - Elena Rocchegiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Stefania Di Lullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| |
Collapse
|
70
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J 2023; 21:e8442. [PMID: 38089471 PMCID: PMC10714251 DOI: 10.2903/j.efsa.2023.8442] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of the zoonoses monitoring and surveillance activities carried out in 2022 in 27 Member States (MSs), the United Kingdom (Northern Ireland) and 11 non-MSs. Key statistics on zoonoses and zoonotic agents in humans, food, animals and feed are provided and interpreted historically. In 2022, the first and second most reported zoonoses in humans were campylobacteriosis and salmonellosis, respectively. The number of cases of campylobacteriosis and salmonellosis remained stable in comparison with 2021. Nineteen MSs and the United Kingdom (Northern Ireland) achieved all the established targets in poultry populations for the reduction of Salmonella prevalence for the relevant serovars. Salmonella samples from carcases of various animal species, and samples for Campylobacter quantification from broiler carcases, were more frequently positive when performed by the competent authorities than when own checks were conducted. Yersiniosis was the third most reported zoonosis in humans, followed by Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes infections. L. monocytogenes and West Nile virus infections were the most severe zoonotic diseases, with the most hospitalisations and highest case fatality rates. In 2022, reporting showed an increase of more than 600% compared with 2021 in locally acquired cases of human West Nile virus infection, which is a mosquito-borne disease. In the EU, the number of reported foodborne outbreaks and cases, hospitalisations and deaths was higher in 2022 than in 2021. The number of deaths from outbreaks was the highest ever reported in the EU in the last 10 years, mainly caused by L. monocytogenes and to a lesser degree by Salmonella. Salmonella and in particular S. Enteritidis remained the most frequently reported causative agent for foodborne outbreaks. Norovirus (and other calicivirus) was the agent associated with the highest number of outbreak human cases. This report also provides updates on brucellosis, Coxiella burnetii (Q fever), echinococcosis, rabies, toxoplasmosis, trichinellosis, infection with Mycobacterium tuberculosis complex (focusing on Mycobacterium bovis and Mycobacterium caprae) and tularaemia.
Collapse
|
71
|
Gharbi M, Abbas MAS, Hamrouni S, Maaroufi A. First Report of aac(6')-Ib and aac(6')-Ib-cr Variant Genes Associated with Mutations in gyrA Encoded Fluoroquinolone Resistance in Avian Campylobacter coli Strains Collected in Tunisia. Int J Mol Sci 2023; 24:16116. [PMID: 38003307 PMCID: PMC10671610 DOI: 10.3390/ijms242216116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The aac(6')-Ib gene is the most widespread gene encoding aminoglycoside-modifying enzyme and conferring resistance to tobramycin, streptomycin and kanamycin. The variant aac(6')-Ib-cr gene confers resistance to both aminoglycosides and fluoroquinolones (FQ). A total of 132 Campylobacter isolates, including 91 C. jejuni and 41 C. coli, were selected from broiler hens isolates. The aac(6')-Ib gene was amplified using PCR and was subsequently digested with the BtsCI restriction enzyme to identify aac(6')-Ib-cr. Among these isolates, 31 out of 41 C. coli (75.6%) and 1 (0.98%) C. jejuni were positive for the aac(6')-Ib gene, which was identified as the aac(6')-Ib-cr variant in 10 (32.25%) C. coli isolates. This variant was correlated with mutations in gyrA (Thr-86-Ile), as well as resistance to FQs. This study is the first report in Tunisia on Campylobacter coli strains harboring both the aac(6')-Ib and aac(6')-Ib-cr variants. These genes were present in Campylobacter isolates exhibiting resistance to multiple antibiotics, which restricts the range of available treatments.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (S.H.); (A.M.)
| | - Mohammed Abdo Saghir Abbas
- Unit of Vector Ecology, Pasteur Institute of Tunis, Tunis 1002, Tunisia;
- University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Safa Hamrouni
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (S.H.); (A.M.)
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (S.H.); (A.M.)
| |
Collapse
|
72
|
Awad A, Yeh HY, Ramadan H, Rothrock MJ. Genotypic characterization, antimicrobial susceptibility and virulence determinants of Campylobacter jejuni and Campylobacter coli isolated from pastured poultry farms. Front Microbiol 2023; 14:1271551. [PMID: 38029099 PMCID: PMC10668334 DOI: 10.3389/fmicb.2023.1271551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Campylobacter is the leading bacterial pathogen that causes foodborne illnesses worldwide. Pasture farming is regarded as an important source of agricultural production for small farming communities. Consumer preference for pasture-raised animal products has increased; however, there is a paucity of information on the microbiological quality of pasture-raised poultry products. The purpose of this study was to explore genetic relatedness of thermophilic Campylobacter isolates, to assess antibiotic resistance phenotypically and genotypically, and to screen the presence of virulence determinants of Campylobacter isolates from pasture-raised poultry farms from southeastern United States. Methods Ninety-seven Campylobacter isolates previously identified by Q7 BAX® System Real-Time PCR were genotyped by multilocus sequence typing (MLST). Campylobacter isolates were then evaluated for their phenotypic antimicrobial susceptibility against nine antimicrobial agents using Sensititre plates. Additionally, Campylobacter isolates were tested for the presence of antimicrobial resistance-associated elements. Furthermore, Campylobacter isolates were screened for the presence of 13 genes encoding putative virulence factors by PCR. These included genes involved in motility (flaA and flhA), adhesion and colonization (cadF, docC, racR, and virB11), toxin production (cdtA, cdtB, cdtC, wlaN, and ceuE) and invasion (ciaB and iamA). Results Among 97 Campylobacter isolates, Campylobacter jejuni (n = 79) and Campylobacter coli (n = 18) were identified. By MLST, C. jejuni isolates were assigned to seven clonal complexes. Among them, ST-353, ST-607 and ST-21 were the most common STs recognized. All C. coli (n = 18) isolates were included in CC-828. Interestingly, eight STs identified were not belonging any previous identified clonal complex. Campylobacter isolates displayed a high resistance rate against tetracycline (81.4%), while a low rate of resistance was observed against macrolides (azithromycin and erythromycin), quinolones and fluoroquinolones (nalidixic acid and ciprofloxacin), aminoglycosides (gentamicin), ketolide (telithromycin), amphenicol (florfenicol) and lincomycin (clindamycin). Thirteen isolates (13.54%) were pan-susceptible to all tested antibiotics, while nine isolates were multi-antimicrobial resistant (MAR; resist to three or more antimicrobial classes). Interestingly, there were no isolates resistant to all antimicrobial classes. Thr86Ile mutation was identified in all quinolones resistant strains. Erythromycin encoding gene (ermB) was identified in 75% of erythromycin resistant isolates. The A2075 mutation was detected in one erythromycin resistant strain, while A2074 could not be identified. The tetO gene was identified in 93.7% of tetracycline resistant isolates and six tetracycline susceptible isolates. In conclusion, the results of this study revealed that Campylobacter isolates from pasture-raised poultry farms showed the ST relatedness to Campylobacter isolates commonly associated with humans, indicating pasture-raised broiler flocks, similar to conventionally-reared broiler flocks, as a potential vector for antibiotic-resistant and pathogenic strains of thermophilic Campylobacter to humans.
Collapse
Affiliation(s)
- Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hung-Yueh Yeh
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Hazem Ramadan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Michael J. Rothrock
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| |
Collapse
|
73
|
Menck-Costa MF, Baptista AAS, Sanches MS, dos Santos BQ, Cicero CE, Kitagawa HY, Justino L, Medeiros LP, de Souza M, Rocha SPD, Nakazato G, Kobayashi RKT. Resistance and Virulence Surveillance in Escherichia coli Isolated from Commercial Meat Samples: A One Health Approach. Microorganisms 2023; 11:2712. [PMID: 38004724 PMCID: PMC10672981 DOI: 10.3390/microorganisms11112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Escherichia coli is a key indicator of food hygiene, and its monitoring in meat samples points to the potential presence of antimicrobial-resistant strains capable of causing infections in humans, encompassing resistance profiles categorized as serious threats by the Centers for Disease Control and Prevention (CDC), such as Extended-Spectrum Beta-Lactamase (ESBL)-a problem with consequences for animal, human, and environmental health. The objective of the present work was to isolate and characterize ESBL-producing E. coli strains from poultry, pork, and beef meat samples, with a characterization of their virulence and antimicrobial resistance profiles. A total of 450 meat samples (150 chicken, 150 beef, and 150 pork) were obtained from supermarkets and subsequently cultured in medium supplemented with cefotaxime. The isolated colonies were characterized biochemically, followed by antibiogram testing using the disk diffusion technique. Further classification involved biofilm formation and the presence of antimicrobial resistance genes (blaCTX-M, AmpC-type, mcr-1, and fosA3), and virulence genes (eaeA, st, bfpA, lt, stx1, stx2, aggR, iss, ompT, hlyF, iutA, iroN, fyuA, cvaC, and hylA). Statistical analysis was performed via the likelihood-ratio test. In total, 168 strains were obtained, with 73% originating from chicken, 22% from pork, and 17% from beef samples. Notably, strains exhibited greater resistance to tetracycline (51%), ciprofloxacin (46%), and fosfomycin (38%), apart from β-lactams. The detection of antimicrobial resistance in food-isolated strains is noteworthy, underscoring the significance of antimicrobial resistance as a global concern. More than 90% of the strains were biofilm producers, and strains carrying many ExPEC genes were more likely to be biofilm formers (OR 2.42), which increases the problem since the microorganisms have a greater chance of environment persistence and genetic exchange. Regarding molecular characterization, bovine samples showed a higher prevalence of blaCTX-M-1 (OR 6.52), while chicken strains were more likely to carry the fosA3 gene (OR 2.43, CI 1.17-5.05) and presented between 6 to 8 ExPEC genes (OR 2.5, CI 1.33-5.01) compared to other meat samples. Concerning diarrheagenic E. coli genes, two strains harbored eae. It is important to highlight these strains, as they exhibited both biofilm-forming capacities and multidrug resistance (MDR), potentially enabling colonization in diverse environments and causing infections. In conclusion, this study underscores the presence of β-lactamase-producing E. coli strains, mainly in poultry samples, compared to beef and pork samples. Furthermore, all meat sample strains exhibited many virulence-associated extraintestinal genes, with some strains harboring diarrheagenic E. coli (DEC) genes.
Collapse
Affiliation(s)
- Maísa Fabiana Menck-Costa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Ana Angelita Sampaio Baptista
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Matheus Silva Sanches
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Beatriz Queiroz dos Santos
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Claudinéia Emidio Cicero
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Hellen Yukari Kitagawa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Larissa Justino
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Leonardo Pinto Medeiros
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Marielen de Souza
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Sergio Paulo Dejato Rocha
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Gerson Nakazato
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| |
Collapse
|
74
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
75
|
Saint Martin C, Caccia N, Darsonval M, Gregoire M, Combeau A, Jubelin G, Dubois-Brissonnet F, Leroy S, Briandet R, Desvaux M. Spatially localised expression of the glutamate decarboxylase gadB in Escherichia coli O157:H7 microcolonies in hydrogel matrices. NPJ Sci Food 2023; 7:55. [PMID: 37838796 PMCID: PMC10576782 DOI: 10.1038/s41538-023-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Functional diversity within isogenic spatially organised bacterial populations has been shown to trigger emergent community properties such as stress tolerance. Considering gadB gene encoding a key glutamate decarboxylase involved in E. coli tolerance to acidic conditions, we investigated its expression in hydrogels mimicking the texture of some structured food matrices (such as minced meat or soft cheese). Taking advantage of confocal laser scanning microscopy combined with a genetically-engineered dual fluorescent reporter system, it was possible to visualise the spatial patterns of bacterial gene expression from in-gel microcolonies. In E. coli O157:H7 microcolonies, gadB showed radically different expression patterns between neutral (pH 7) or acidic (pH 5) hydrogels. Differential spatial expression was determined in acidic hydrogels with a strong expression of gadB at the microcolony periphery. Strikingly, very similar spatial patterns of gadB expression were further observed for E. coli O157:H7 grown in the presence of L. lactis. Considering the ingestion of contaminated foodstuff, survival of E. coli O157:H7 to acidic stomachal stress (pH 2) was significantly increased for bacterial cells grown in microcolonies in acidic hydrogels compared to planktonic cells. These findings have significant implications for risk assessment and public health as they highlight inherent differences in bacterial physiology and virulence between liquid and structured food products. The contrasting characteristics observed underscore the need to consider the distinct challenges posed by these food types, thereby emphasising the importance of tailored risk mitigation strategies.
Collapse
Affiliation(s)
- Cédric Saint Martin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Maud Darsonval
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | - Marina Gregoire
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | - Arthur Combeau
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | | | | | - Sabine Leroy
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
76
|
Buder C, Meemken D, Fürstenberg R, Langforth S, Kirse A, Langkabel N. Drinking Pipes and Nipple Drinkers in Pig Abattoir Lairage Pens-A Source of Zoonotic Pathogens as a Hazard to Meat Safety. Microorganisms 2023; 11:2554. [PMID: 37894212 PMCID: PMC10609512 DOI: 10.3390/microorganisms11102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The water distribution system in the lairage pens of abattoirs could act as a route of contamination for produced meat. In this study, biofilm formation and the occurrence of specific pathogens in drinking equipment was investigated in different lairage pens in a German commercial pig abattoir. Samples of the water and the drinkers in different locations were microbiologically cultivated and examined. After new drinking equipment had been installed for one month, three months and five years, biofilm formation was detectable, and retrograde growth from the nipple drinkers was seen up to the connection with the main water distribution system. In particular, Enterobacteriaceae and Pseudomonas spp. were found in all samplings of the nipple drinkers. Zoonotic pathogens, Salmonella, pathogenic Yersinia enterocolitica and methicillin-resistant Staphylococcus aureus, were also isolated from the nipple drinkers, while Listeria monocytogenes was not detected via microbial cultivation methods in any of the samples. Since the pigs take the contaminated nipple drinkers into their mouths to drink, or drink contaminated water containing the pathogens, transmission and even infection of the pigs in the lairage can be assumed. This could consequently lead to contamination or cross-contamination of the meat during slaughter and processing and to a public health risk.
Collapse
Affiliation(s)
- Celine Buder
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Diana Meemken
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Roland Fürstenberg
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Susann Langforth
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Alina Kirse
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Nina Langkabel
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
77
|
Brangsch H, Horstkotte MA, Melzer F. Genotypic peculiarities of a human brucellosis case caused by Brucella suis biovar 5. Sci Rep 2023; 13:16586. [PMID: 37789135 PMCID: PMC10547717 DOI: 10.1038/s41598-023-43570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
Human brucellosis cases are rare in non-endemic countries, such as Germany, where infections are predominantly caused by Brucella melitensis. The German National Reference Laboratory for Bovine, Porcine, Ovine and Caprine Brucellosis received a suspected Brucella sp. isolate from a patient for identification. Bacteriological tests and PCR-based diagnostics showed the isolate to be B. suis, but did not yield cohesive results regarding the biovar. Whole genome sequencing and subsequent genotyping was employed for a detailed characterization of the isolate and elucidating the reason for failure of the diagnostic PCR to correctly identify the biovar. The isolate was found to be B. suis bv. 5, a rare biovar with limited geographical distribution primarily found in the Northern Caucasus. Due to a deletion in one of the target regions of the diagnostic PCR, the isolate could not be correctly typed. Based on in silico genotyping it could be excluded that the isolate was identical to one of the B. suis bv. 5 reference strains. Here, we report a rare case of a B. suis bv. 5 field isolate. Furthermore, by reporting this finding, we want to make practitioners aware of possible misinterpretation of PCR results, as it cannot be excluded that the detected deletion is common among the B. suis bv. 5 community, as there is currently a lack of field isolates.
Collapse
Affiliation(s)
- Hanka Brangsch
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany.
| | | | - Falk Melzer
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| |
Collapse
|
78
|
Chalka A, Dallman TJ, Vohra P, Stevens MP, Gally DL. The advantage of intergenic regions as genomic features for machine-learning-based host attribution of Salmonella Typhimurium from the USA. Microb Genom 2023; 9:001116. [PMID: 37843883 PMCID: PMC10634445 DOI: 10.1099/mgen.0.001116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Salmonella enterica is a taxonomically diverse pathogen with over 2600 serovars associated with a wide variety of animal hosts including humans, other mammals, birds and reptiles. Some serovars are host-specific or host-restricted and cause disease in distinct host species, while others, such as serovar S. Typhimurium (STm), are generalists and have the potential to colonize a wide variety of species. However, even within generalist serovars such as STm it is becoming clear that pathovariants exist that differ in tropism and virulence. Identifying the genetic factors underlying host specificity is complex, but the availability of thousands of genome sequences and advances in machine learning have made it possible to build specific host prediction models to aid outbreak control and predict the human pathogenic potential of isolates from animals and other reservoirs. We have advanced this area by building host-association prediction models trained on a wide range of genomic features and compared them with predictions based on nearest-neighbour phylogeny. SNPs, protein variants (PVs), antimicrobial resistance (AMR) profiles and intergenic regions (IGRs) were extracted from 3883 high-quality STm assemblies collected from humans, swine, bovine and poultry in the USA, and used to construct Random Forest (RF) machine learning models. An additional 244 recent STm assemblies from farm animals were used as a test set for further validation. The models based on PVs and IGRs had the best performance in terms of predicting the host of origin of isolates and outperformed nearest-neighbour phylogenetic host prediction as well as models based on SNPs or AMR data. However, the models did not yield reliable predictions when tested with isolates that were phylogenetically distinct from the training set. The IGR and PV models were often able to differentiate human isolates in clusters where the majority of isolates were from a single animal source. Notably, IGRs were the feature with the best performance across multiple models which may be due to IGRs acting as both a representation of their flanking genes, equivalent to PVs, while also capturing genomic regulatory variation, such as altered promoter regions. The IGR and PV models predict that ~45 % of the human infections with STm in the USA originate from bovine, ~40 % from poultry and ~14.5 % from swine, although sequences of isolates from other sources were not used for training. In summary, the research demonstrates a significant gain in accuracy for models with IGRs and PVs as features compared to SNP-based and core genome phylogeny predictions when applied within the existing population structure. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Antonia Chalka
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Tim J. Dallman
- Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Heidelberglaan, Utrecht, Netherlands
| | - Prerna Vohra
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Mark P. Stevens
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - David L. Gally
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
79
|
Bourli P, Eslahi AV, Tzoraki O, Karanis P. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks - an update 2017-2022. JOURNAL OF WATER AND HEALTH 2023; 21:1421-1447. [PMID: 37902200 PMCID: wh_2023_094 DOI: 10.2166/wh.2023.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The current study presents a comprehensive review of worldwide waterborne parasitic protozoan outbreaks reported between 2017 and 2022. In total, 416 outbreaks were attributed to the waterborne transmission of parasitic protozoa. Cryptosporidium accounted for 77.4% (322) of outbreaks, while Giardia was identified as the etiological agent in 17.1% (71). Toxoplasma gondii and Naegleria fowleri were the primary causes in 1.4% (6) and 1% (4) of outbreaks, respectively. Blastocystis hominis, Cyclospora cayetanensis, and Dientamoeba fragilis were independently identified in 0.72% (3) of outbreaks. Moreover, Acanthamoeba spp., Entamoeba histolytica, Vittaforma corneae, and Enterocytozoon bieneusi were independently the causal agents in 0.24% (1) of the total outbreaks. The majority of the outbreaks (195, 47%) were reported in North America. The suspected sources for 313 (75.2%) waterborne parasitic outbreaks were recreational water and/or swimming pools, accounting for 92% of the total Cryptosporidium outbreaks. Furthermore, 25.3% of the outbreaks caused by Giardia were associated with recreational water and/or swimming pools. Developing countries are most likely to be impacted by such outbreaks due to the lack of reliable monitoring strategies and water treatment processes. There is still a need for international surveillance and reporting systems concerning both waterborne diseases and water contamination with parasitic protozoa.
Collapse
Affiliation(s)
- Pavlina Bourli
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece E-mail:
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ourania Tzoraki
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
80
|
Rodríguez EC, Saavedra SY, Montaño LA, Sossa DP, Correa FP, Vaca JA, Duarte C. Characterization of extended spectrum β-lactamases in Colombian clinical isolates of non-typhoidal Salmonella enterica between 1997 and 2022. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:374-384. [PMID: 37871566 PMCID: PMC10637434 DOI: 10.7705/biomedica.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/11/2023] [Indexed: 10/25/2023]
Abstract
Introduction. Salmonella spp. is a zoonotic pathogen transmitted to humans through contaminated water or food. The presence of extended-spectrum β-lactamases is a growing public health problem because these enzymes are resistant to third and fourth generation cephalosporins. Objective. To characterize extended-spectrum β-lactamases in Salmonella spp. isolates received by the acute diarrheal disease/foodborne disease surveillance program of the Grupo de Microbiología of the Instituto Nacional de Salud. Materials and methods. A total of 444 Salmonella spp. isolates, resistant to at least one of the cephalosporins, were obtained between January 1997 and June 2022. The extendedspectrum β-lactamases phenotype was identified by the double disk test. DNA extraction was carried out by the boiling method, and the blaCTX-M, blaSHV, and blaTEM genes were amplified by PCR. Results. All the isolates were positive for the extended-spectrum β-lactamases test. The genes identified were: blaCTX-M + blaTEM (n=200), blaCTX-M (n=177), blaSHV (n=16), blaSHV + blaCTX-M (n=6), blaTEM (n=13) and blaSHV + blaCTX-M + blaTEM (n=3). Twenty-six isolates were negative for the evaluated genes. Positive extended-spectrum β-lactamases isolates were identified in Bogotá and 21 departments: Chocó, Magdalena, Meta, Bolívar, Casanare, Cesar, Córdoba, Quindío, Atlántico, Tolima, Cauca, Cundinamarca, Huila, Boyacá, Caldas, Norte de Santander, Risaralda, Antioquia, Nariño, Santander y Valle del Cauca. Conclusion. Resistance to third generation cephalosporins in Salmonella spp. isolates was mainly caused by blaCTX-M. Isolates were resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole (44 %; 197/444). The most frequent extended-spectrum β-lactamases-expressing serotypes were Salmonella Typhimurium and Salmonella Infantis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
81
|
Buddhasiri S, Sukjoi C, Tantibhadrasapa A, Mongkolkarvin P, Boonpan P, Pattanadecha T, Onton N, Laisiriroengrai T, Coratat S, Khantawa B, Tepaamorndech S, Duangsonk K, Thiennimitr P. Clinical Characteristics, Antimicrobial Resistance, Virulence Genes and Multi-Locus Sequence Typing of Non-Typhoidal Salmonella Serovar Typhimurium and Enteritidis Strains Isolated from Patients in Chiang Mai, Thailand. Microorganisms 2023; 11:2425. [PMID: 37894083 PMCID: PMC10609586 DOI: 10.3390/microorganisms11102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-typhoidal salmonellosis (NTS) caused by ingesting Salmonella enterica contaminated food or drink remains a major bacterial foodborne disease. Clinical outcomes of NTS range from self-limited gastroenteritis to life-threatening invasive NTS (iNTS). In this study, we isolated Salmonella spp. from the stool and blood of patients hospitalized at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, between 2016-2021 (a total of 395 cases). Then, serovar Typhimurium and Enteritidis were identified and further characterized by multiplex PCR, and multi-locus sequence typing. Our data show that multidrug resistance (MDR) sequence type 34 (ST34) and ST11 are the predominant sequence types for serovars Typhimurium and Enteritidis, respectively. Most S. Typhimurium ST34 lacks spvB, and most S. Enteritidis ST11 harbor sseI, sodCI, rpoS and spvB genes. NTS can be found in a wide range of ages, and anemia could be a significant factor for S. Typhimurium infection (86.3%). Both S. Typhimurium (6.7%) and S. Enteritidis (25.0%) can cause iNTS in immunocompromised patients. S. Typhimurium conferred MDR phenotype higher than S. Enteritidis with multiple antibiotic resistance indexes of 0.22 and 0.04, respectively. Here, we characterized the important S. Typhimurium, S. Enteritidis, and human clinical factors of NTS within the region.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanakorn Pattanadecha
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattamon Onton
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touch Laisiriroengrai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunatcha Coratat
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
82
|
Konyali D, Guzel M, Soyer Y. Genomic Characterization of Salmonella enterica Resistant to Cephalosporin, Quinolones, And Macrolides. Curr Microbiol 2023; 80:344. [PMID: 37725171 DOI: 10.1007/s00284-023-03458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella enterica subsp. enterica (Salmonella), one of the most common causes of bacterial foodborne infections, causes salmonellosis, which is usually self-limiting. However, immunocompromised individuals and children often require antimicrobial therapy. The first line of treatment includes fluoroquinolones, to which Salmonella has emerging resistance worldwide. In fact, the WHO classified fluoroquinolone-resistant Salmonella as a high-priority pathogen. Salmonella carrying genes such as blaCTX and blaCMY can show resistance to cephalosporins which are also regularly used for treatment. This study focused on determining the antimicrobial resistance of 373 Salmonella isolates, collected from various foods, humans, and animals, as well as the environmental sludge between 2005 and 2020 in Türkiye. Phenotypic analysis of the resistance was determined by disk diffusion method. Isolates resistant to any of the following: ciprofloxacin, pefloxacin, azithromycin, and ceftriaxone were tested for the presence of quinolone, beta-lactamase, and/or macrolide resistance genes by PCR and gel electrophoresis. Five multi-drug-resistant isolates were then further whole genome sequenced and analyzed. More than 32% (n = 120) of the isolates showed resistance to fluoroquinolones by disc diffusion. A significant number of quinolone-resistant isolates are presented with mutated parC and gyrA. Furthermore, 42% (n = 106) of the isolates were resistant to azithromycin and 10% of them harbored mphA gene. On the bright side, only eight isolates showed resistance to ceftriaxone. Overall, we observed an increase in the number of isolates showing resistance to fluoroquinolones and azithromycin over the years and low resistance to ceftriaxone.
Collapse
Affiliation(s)
- Diala Konyali
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye
- Department of Food Engineering, Hitit University, Corum, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye.
- Faculty of Engineering, Department of Food Engineering, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
83
|
Wang H, Gu Y, He L, Sun L, Zhou G, Chen X, Zhang X, Shao Z, Zhang J, Zhang M. Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing. Microorganisms 2023; 11:2278. [PMID: 37764121 PMCID: PMC10534318 DOI: 10.3390/microorganisms11092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide. Most reported Campylobacter infections are caused by C. jejuni and C. coli. However, other emerging Campylobacter pathogens have been recognized as important pathogens in humans and animals. A novel bacterial strain, PS10T, was isolated from the gastric mucous of pigs in 2022 in Beijing, China. The cell was Gram-negative, microaerobic, motile, and negative for catalase, oxidase, and urease. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene and core genome indicated that this isolate belongs to the genus Campylobacter. There were low dDDH relatedness and ANI values shared within this strain and its closest species C. mucosalis below the cut-off values generally recognized for isolates of the same species. The draft genome size of PS10T is 2,240,910 bp in length with a percentage of DNA G+C contents of 37.72%. Comparing the phenotypic and phylogenetic features among this isolate and its related organisms, strain PS10T represents a novel species within the genus Campylobacter, for which the name Campylobacter gastrosuis sp. nov. (Type strain PS10T = GDMCC 1.3686T = JCM 35849T) is proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
84
|
Petrin S, Orsini M, Massaro A, Olsen JE, Barco L, Losasso C. Phenotypic and genotypic antimicrobial resistance correlation and plasmid characterization in Salmonella spp. isolates from Italy reveal high heterogeneity among serovars. Front Public Health 2023; 11:1221351. [PMID: 37744490 PMCID: PMC10513437 DOI: 10.3389/fpubh.2023.1221351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Andrea Massaro
- Applied Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| |
Collapse
|
85
|
Romano A, Carrella S, Rezza S, Nia Y, Hennekinne JA, Bianchi DM, Martucci F, Zuccon F, Gulino M, Di Mari C, Zaccaria T, Decastelli L. First Report of Food Poisoning Due to Staphylococcal Enterotoxin Type B in Döner Kebab (Italy). Pathogens 2023; 12:1139. [PMID: 37764947 PMCID: PMC10535471 DOI: 10.3390/pathogens12091139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Staphylococcal food poisoning results from the consumption of food contaminated by staphylococcal enterotoxins. In July 2022, the Turin local health board was notified of a suspected foodborne outbreak involving six children who had consumed döner kebab purchased from a takeaway restaurant. The symptoms (vomiting and nausea) were observed 2-3 h later. A microbiological analysis of the food samples revealed high levels (1.5 × 107 CFU/g) of coagulase-positive staphylococci (CPS). The immunoassay detected a contamination with staphylococcal enterotoxins type B (SEB). The whole genome sequencing of isolates from the food matrix confirmed the staphylococcal enterotoxin genes encoding for type B, which was in line with the SEB detected in the food. This toxin is rarely reported in staphylococcal food poisoning, however, because there is no specific commercial method of detection. The involvement of enterotoxin type P (SEP) was not confirmed, though the corresponding gene (sep) was detected in the isolates. Nasal swabs from the restaurant food handlers tested positive for CPS, linking them to the likely source of the food contamination.
Collapse
Affiliation(s)
- Angelo Romano
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Simona Carrella
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Sara Rezza
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Jacques Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Daniela Manila Bianchi
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Francesca Martucci
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Fabio Zuccon
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| | - Margherita Gulino
- Azienda Sanitaria Locale TO5 di Chieri, Carmagnola, Moncalieri e Nichelino—Dipartimento di Prevenzione SC Igiene degli Alimenti e della Nutrizione, 10042 Nichelino, Italy
| | - Carmela Di Mari
- Azienda Sanitaria Locale TO5 di Chieri, Carmagnola, Moncalieri e Nichelino—Dipartimento di Prevenzione SC Igiene degli Alimenti e della Nutrizione, 10042 Nichelino, Italy
| | - Teresa Zaccaria
- SC Microbiologia e Virologia Azienda Ospedaliero-Universitaria, Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10148 Turin, Italy
| |
Collapse
|
86
|
Oh H, Yoon Y, Yoon JW, Oh SW, Lee S, Lee H. Quantitative risk assessment of foodborne Salmonella illness by estimating cooking effect on eggs from retail markets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1024-1039. [PMID: 37969349 PMCID: PMC10640929 DOI: 10.5187/jast.2023.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 11/17/2023]
Abstract
In this study, we performed a quantitative microbial risk assessment (QMRA) of Salmonella through intake of egg consumption after cooking (dry-heat, moist-heat, and raw consumption). Egg samples (n = 201) from retail markets were analyzed for the presence of Salmonella. In addition, temperature and time were investigated during egg transit, storage, and display. A predictive model was developed to characterize the kinetic behavior of Salmonella in eggs, and data on egg consumption and frequency were collected. Eventually, the data was simulated to estimate egg-related foodborne illnesses. Salmonella was not found in any of the 201 egg samples. Thus, the estimated initial contamination level was -4.0 Log CFU/g. With R2 values of 0.898 and 0.922, the constructed predictive models were adequate for describing the fate of Salmonella in eggs throughout distribution and storage. Eggs were consumed raw (1.5%, 39.2 g), dry-heated (57.5%, 43.0 g), and moist-heated (41%, 36.1 g). The probability of foodborne Salmonella illness from the consumption of cooked eggs was evaluated to be 6.8×10-10. Additionally, the probability of foodborne illness not applied cooking methods was 1.9×10-7, indicating that Salmonella can be reduced by cooking. Therefore, the risk of Salmonella infection through consumption of eggs after cooking might be low in S. Korea.
Collapse
Affiliation(s)
- Hyemin Oh
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Yohan Yoon
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine &
Institute of Veterinary Science, Kangwon National University,
Chuncheon 24341, Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin
University, Seoul 02703, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Heeyoung Lee
- Food Standard Research Center, Korean Food
Research Institute, Wanju 55365, Korea
| |
Collapse
|
87
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Gmeiner A, Aarestrup FM. An Overview of Antimicrobial Resistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata. Foodborne Pathog Dis 2023; 20:405-413. [PMID: 37540138 PMCID: PMC10510693 DOI: 10.1089/fpd.2022.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Salmonella enterica (S. enterica) is a commensal organism or pathogen causing diseases in animals and humans, as well as widespread in the environment. Antimicrobial resistance (AMR) has increasingly affected both animal and human health and continues to raise public health concerns. A decade ago, it was estimated that the increased use of whole genome sequencing (WGS) combined with sharing of public data would drastically change and improve the surveillance and understanding of Salmonella epidemiology and AMR. This study aimed to evaluate the current usefulness of public WGS data for Salmonella surveillance and to investigate the associations between serovars, antibiotic resistance genes (ARGs), and metadata. Out of 191,306 Salmonella genomes deposited in European Nucleotide Archive and NCBI databases, 47,452 WGS with sufficient minimum metadata (country, year, and source) of S. enterica were retrieved from 116 countries and isolated between 1905 and 2020. For in silico analysis of the WGS data, KmerFinder, SISTR, and ResFinder were used for species, serovars, and AMR identification, respectively. The results showed that the five common isolation sources of S. enterica are human (29.10%), avian (22.50%), environment (11.89%), water (9.33%), and swine (6.62%). The most common ARG profiles for each class of antimicrobials are β-lactam (blaTEM-1B; 6.78%), fluoroquinolone [(parC[T57S], qnrB19); 0.87%], folate pathway antagonist (sul2; 8.35%), macrolide [mph(A); 0.39%], phenicol (floR; 5.94%), polymyxin B (mcr-1.1; 0.09%), and tetracycline [tet(A); 12.95%]. Our study reports the first overview of ARG profiles in publicly available Salmonella genomes from online databases. All data sets from this study can be searched at Microreact.
Collapse
Affiliation(s)
- Narong Nuanmuang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
88
|
Lentsch V, Aslani S, Echtermann T, Preet S, Cappio Barazzone E, Hoces D, Moresi C, Kümmerlen D, Slack E. "EvoVax" - A rationally designed inactivated Salmonella Typhimurium vaccine induces strong and long-lasting immune responses in pigs. Vaccine 2023; 41:5545-5552. [PMID: 37517910 DOI: 10.1016/j.vaccine.2023.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm) poses a considerable threat to public health due to its zoonotic potential. Human infections are mostly foodborne, and pork and pork products are ranked among the top culprits for transmission. In addition, the high percentage of antibiotic resistance, especially in monophasic S.Tm, limits treatment options when needed. Better S.Tm control would therefore be of benefit both for farm animals and for safety of the human food chain. A promising pre-harvest intervention is vaccination. In this study we tested safety and immunogenicity of an oral inactivated S.Tm vaccine, which has been recently shown to generate an "evolutionary trap" and to massively reduce S.Tm colonization and transmission in mice. We show that this vaccine is highly immunogenic and safe in post-weaning pigs and that administration of a single oral dose results in a strong and long-lasting serum IgG response. This has several advantages over existing - mainly live - vaccines against S.Tm, both in improved seroconversion and reduced risk of vaccine-strain persistence and reversion to virulence.
Collapse
Affiliation(s)
- Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Selma Aslani
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Thomas Echtermann
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Swapan Preet
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Daniel Hoces
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Claudia Moresi
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Dolf Kümmerlen
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
89
|
Jurinović L, Duvnjak S, Humski A, Ječmenica B, Taylor LT, Šimpraga B, Krstulović F, Zelenika TA, Kompes G. Genetic Diversity and Resistome Analysis of Campylobacter lari Isolated from Gulls in Croatia. Antibiotics (Basel) 2023; 12:1310. [PMID: 37627730 PMCID: PMC10451273 DOI: 10.3390/antibiotics12081310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Campylobacter lari is a thermotolerant bacterium that sporadically causes gastrointestinal diseases in humans and can be found in wildlife and the environment. C. lari is an understudied species, especially in wild birds such as gulls. Gulls are potentially good carriers of pathogens due to their opportunistic behavior and tendency to gather in large flocks. During winter and their breeding period, 1753 gulls were captured, and cloacal swabs were taken to be tested for the presence of C. lari. From isolated bacteria, the DNA was sequenced, and sequence types (ST) were determined. Sixty-four swabs were positive for C. lari, and from those, forty-three different STs were determined, of which thirty-one were newly described. The whole genome was sequenced for 43 random isolates, and the same isolates were tested for antimicrobial susceptibility using the broth microdilution method to compare them to WGS-derived antimicrobial-resistant isolates. All the tested strains were susceptible to erythromycin, gentamicin, and chloramphenicol, and all were resistant to ciprofloxacin. Resistance to ciprofloxacin was attributed to a gyrA_2 T86V mutation. Genes connected to possible beta-lactam resistance (blaOXA genes) were also detected.
Collapse
Affiliation(s)
- Luka Jurinović
- Laboratory for Bacteriology, Croatian Veterinary Institute, Poultry Centre, 10000 Zagreb, Croatia; (L.J.); (B.Š.); (F.K.); (T.A.Z.)
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Andrea Humski
- Laboratory for Food Microbiology, Department for Veterinary Public Health, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Biljana Ječmenica
- Laboratory for Bacteriology, Croatian Veterinary Institute, Poultry Centre, 10000 Zagreb, Croatia; (L.J.); (B.Š.); (F.K.); (T.A.Z.)
| | | | - Borka Šimpraga
- Laboratory for Bacteriology, Croatian Veterinary Institute, Poultry Centre, 10000 Zagreb, Croatia; (L.J.); (B.Š.); (F.K.); (T.A.Z.)
| | - Fani Krstulović
- Laboratory for Bacteriology, Croatian Veterinary Institute, Poultry Centre, 10000 Zagreb, Croatia; (L.J.); (B.Š.); (F.K.); (T.A.Z.)
| | - Tajana Amšel Zelenika
- Laboratory for Bacteriology, Croatian Veterinary Institute, Poultry Centre, 10000 Zagreb, Croatia; (L.J.); (B.Š.); (F.K.); (T.A.Z.)
| | - Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
90
|
Münster P, Pöppel L, Antakli A, Müller-Doblies D, Radko D, Kemper N. The Detection of Salmonella Enteritidis on German Layer Farms after Cleaning and Disinfection. Animals (Basel) 2023; 13:2588. [PMID: 37627379 PMCID: PMC10451266 DOI: 10.3390/ani13162588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The presence of Salmonella Enteritidis in poultry houses after cleaning and disinfection can pose a potential risk to public health, as Salmonella remains one of the most important causes of foodborne diseases. This study focused on ten German layer farms (including floor-reared and free-range systems) with a recent history of Salmonella Enteritidis, and samples were collected from July 2018 to March 2021 after the cleaning and disinfection process. A total of 244 swab samples were tested for the presence of Salmonella using real-time PCR, followed by a culture of positive samples. Results revealed that 61 out of the 244 swab samples tested positive for Salmonella, indicating a prevalence of 25% in the samples examined. Among the Salmonella-positive swab samples identified with the PCR assay, 65.6% (40 out of 61) were confirmed by the culture. Of the 40 isolates obtained from the culture, 36 were identified as Salmonella Enteritidis, while 4 were categorized as rough Salmonella strains. This study emphasizes the importance of both the surrounding area of the poultry houses in terms of infection carry-over and the meticulous implementation of cleaning and disinfection procedures to eliminate any remaining infection within the houses. To mitigate the risk of further Salmonella spread on layer farms, additional investigations are recommended to focus on the existing transmission pathways of Salmonella and their genetic diversity.
Collapse
Affiliation(s)
- Pia Münster
- Elanco Deutschland GmbH, Rathausplatz 12, 61348 Bad Homburg, Germany; (P.M.); (A.A.); (D.R.)
| | - Lars Pöppel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviors, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
- Praxis Pöppel GmbH, Drubbelstraße 2, 33129 Delbrück, Germany
| | - Ali Antakli
- Elanco Deutschland GmbH, Rathausplatz 12, 61348 Bad Homburg, Germany; (P.M.); (A.A.); (D.R.)
| | - Doris Müller-Doblies
- Elanco Austria GmbH, Quartier Belvedere Central, Gertrude Froehlich Sandner Str. 3, 1100 Vienna, Austria;
| | - Dmytro Radko
- Elanco Deutschland GmbH, Rathausplatz 12, 61348 Bad Homburg, Germany; (P.M.); (A.A.); (D.R.)
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviors, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| |
Collapse
|
91
|
Pas C, Latka A, Fieseler L, Briers Y. Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. Virol J 2023; 20:174. [PMID: 37550759 PMCID: PMC10408124 DOI: 10.1186/s12985-023-02138-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.
Collapse
Affiliation(s)
- Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Lars Fieseler
- Centre for Food Safety and Quality Management, ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
92
|
Ortega-Sanz I, García M, Bocigas C, Megías G, Melero B, Rovira J. Genomic Characterization of Campylobacter jejuni Associated with Perimyocarditis: A Family Case Report. Foodborne Pathog Dis 2023; 20:368-373. [PMID: 37366876 DOI: 10.1089/fpd.2023.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Campylobacter spp. is the leading cause of foodborne gastrointestinal infections in humans worldwide. This study reports the first case of four family members who had contact with the same source of Campylobacter jejuni contamination with different results. Only the little siblings were infected by the same C. jejuni strain, but with different symptoms. Whereas the daughter was slightly affected with mild enteritis, the son suffered a longer campylobacteriosis followed with a perimyocarditis. This is the first case of the youngest patient affected by C. jejuni-related perimyocarditis published to date. The genomes of both strains were characterized by whole-genome sequencing and compared with the C. jejuni NCTC 11168 genome to gain insights into the molecular features that may be associated with perimyocarditis. Various comparison tools were used for the comparative genomics analysis, including the identification of virulence and antimicrobial resistance genes, phase variable (PV) genes, and single nucleotide polymorphisms (SNPs) identification. Comparisons of the strains identified 16 SNPs between them, which constituted small but significant changes mainly affecting the ON/OFF state of PV genes after passing through both hosts. These results suggest that PV occurs during human colonization, which modulates bacteria virulence through human host adaptation, which ultimately is related to complications after a campylobacteriosis episode depending on the host status. The findings highlight the importance of the relation between host and pathogen in severe complications of Campylobacter infections.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Marcial García
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Carolina Bocigas
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Gregoria Megías
- Microbiology Department of the University Hospital of Burgos (HUBU), Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| |
Collapse
|
93
|
Lacroix-Lamandé S, Bernardi O, Pezier T, Barilleau E, Burlaud-Gaillard J, Gagneux A, Velge P, Wiedemann A. Differential Salmonella Typhimurium intracellular replication and host cell responses in caecal and ileal organoids derived from chicken. Vet Res 2023; 54:63. [PMID: 37525204 PMCID: PMC10391861 DOI: 10.1186/s13567-023-01189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.
Collapse
Affiliation(s)
| | | | - Tiffany Pezier
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Électronique, Université de Tours et CHRU de Tours, Tours, France
| | - Anissa Gagneux
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Philippe Velge
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France.
- IRSD, Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
94
|
Pérez-Rodríguez M, López Cabo M, Balsa-Canto E, García MR. Mechanisms of Listeria monocytogenes Disinfection with Benzalkonium Chloride: From Molecular Dynamics to Kinetics of Time-Kill Curves. Int J Mol Sci 2023; 24:12132. [PMID: 37569507 PMCID: PMC10418441 DOI: 10.3390/ijms241512132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.
Collapse
Affiliation(s)
- Martín Pérez-Rodríguez
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
- CINBIO, Applied Physics Department, University of Vigo, 36310 Vigo, Spain
| | - Marta López Cabo
- Microbiology Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain;
| | - Eva Balsa-Canto
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
| | - Míriam R. García
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
| |
Collapse
|
95
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
96
|
Nouws S, Verhaegen B, Denayer S, Crombé F, Piérard D, Bogaerts B, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Transforming Shiga toxin-producing Escherichia coli surveillance through whole genome sequencing in food safety practices. Front Microbiol 2023; 14:1204630. [PMID: 37520372 PMCID: PMC10381951 DOI: 10.3389/fmicb.2023.1204630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a gastrointestinal pathogen causing foodborne outbreaks. Whole Genome Sequencing (WGS) in STEC surveillance holds promise in outbreak prevention and confinement, in broadening STEC epidemiology and in contributing to risk assessment and source attribution. However, despite international recommendations, WGS is often restricted to assist outbreak investigation and is not yet fully implemented in food safety surveillance across all European countries, in contrast to for example in the United States. Methods In this study, WGS was retrospectively applied to isolates collected within the context of Belgian food safety surveillance and combined with data from clinical isolates to evaluate its benefits. A cross-sector WGS-based collection of 754 strains from 1998 to 2020 was analyzed. Results We confirmed that WGS in food safety surveillance allows accurate detection of genomic relationships between human cases and strains isolated from food samples, including those dispersed over time and geographical locations. Identifying these links can reveal new insights into outbreaks and direct epidemiological investigations to facilitate outbreak management. Complete WGS-based isolate characterization enabled expanding epidemiological insights related to circulating serotypes, virulence genes and antimicrobial resistance across different reservoirs. Moreover, associations between virulence genes and severe disease were determined by incorporating human metadata into the data analysis. Gaps in the surveillance system were identified and suggestions for optimization related to sample centralization, harmonizing isolation methods, and expanding sampling strategies were formulated. Discussion This study contributes to developing a representative WGS-based collection of circulating STEC strains and by illustrating its benefits, it aims to incite policymakers to support WGS uptake in food safety surveillance.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Florence Crombé
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Piérard
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
97
|
Liao S, Tian L, Qi Q, Hu L, Wang M, Gao C, Cui H, Gai Z, Gong G. Transcriptome Analysis of Protocatechualdehyde against Listeria monocytogenes and Its Effect on Chicken Quality Characteristics. Foods 2023; 12:2625. [PMID: 37444363 DOI: 10.3390/foods12132625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.
Collapse
Affiliation(s)
- Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lemei Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyue Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhongchao Gai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
98
|
Montoro-Dasi L, Lorenzo-Rebenaque L, Marco-Fuertes A, Vega S, Marin C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023; 11:1765. [PMID: 37512937 PMCID: PMC10386103 DOI: 10.3390/microorganisms11071765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
99
|
Brauge T, Leleu G, Hanin A, Capitaine K, Felix B, Midelet G. Genetic population structure of Listeria monocytogenes strains isolated from salmon and trout sectors in France. Heliyon 2023; 9:e18154. [PMID: 37483814 PMCID: PMC10362350 DOI: 10.1016/j.heliyon.2023.e18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Smoked salmon and smoked trout are ready-to-eat and potentially contaminated with the pathogenic bacterium Listeria monocytogenes making them high risk for the consumer. This raises questions about the presence of hypervirulent or persistent strains in the salmon and trout industries. Knowledge of the genetic diversity of circulating strains in these sectors is essential to evaluate the risk associated with this pathogen and improve food safety. We analyzed the genetic structure of 698 strains of L. monocytogenes isolated from 2006 to 2017 in France, based on their serogroup, lineage and clonal complexes (CCs) determined by Multilocus sequence typing (MLST). Most of the CCs were identified by mapping the strains PFGE profiles and a novel high-throughput real-time PCR method for CC identification. We identified thirteen CCs and one sequence type (ST) with variable distribution in salmon and trout samples (food, environment). The three most prevalent CCs were CC121, CC26 and CC204. Strains from ST191 and CC54 were detected for the first time in these sectors, while less than 0.6% of the isolates belonged to the hyper-virulent CC1, CC6 and CC20. No CC was exclusively associated with the salmon sector. This project allowed us to assess the population diversity of CCs of L. monocytogenes in the salmon and trout industries.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, 62200, Boulogne sur Mer, France
| | - Guylaine Leleu
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, 62200, Boulogne sur Mer, France
| | | | - Karine Capitaine
- ANSES, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, 94700, Maisons-Alfort, France
| | - Benjamin Felix
- ANSES, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, 94700, Maisons-Alfort, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, 62200, Boulogne sur Mer, France
| |
Collapse
|
100
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. The rare Salmonella enterica serovar Isangi: genomic characterization of the antimicrobial resistance, virulence potential and epidemiology of Brazilian strains in comparison to global isolates. J Med Microbiol 2023; 72. [PMID: 37462464 DOI: 10.1099/jmm.0.001736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Introduction. Salmonella enterica serovar Isangi (S. Isangi) is a rare non-typhoidal serovar, related to invasive nosocomial infections in various countries and to increasing antimicrobial resistance rates.Gap statement. Despite existing reports on S. Isangi, there is a lack of information of specific traits regarding this serovar, which could be improved through genomic analyses.Aim. Our goals were to characterize the antimicrobial resistance, virulence potential and genomic relatedness of 11 S. Isangi strains from Brazil in comparison to 185 genomes of global isolates using whole-genome sequencing (WGS) data.Methodology. Phenotypic resistance was determined by disc-diffusion. The search for resistance genes, plasmids, prophages, Salmonella pathogenicity islands (SPIs) and virulence genes, plus multi-locus sequence typing (MLST) and core-genome MLST (cgMLST) were performed using WGS.Results. Brazilian S. Isangi strains showed phenotypic resistance to nalidixic acid, ciprofloxacin and streptomycin, and harboured antimicrobial resistance [qnrB19, aac(6')-Iaa, mdsAB] and heavy metal tolerance (arsD, golST) genes. Col(pHAD28) and IncFII(S) plasmids, virulence genes related to adherence, macrophage induction, magnesium uptake, regulation and type III secretion systems, 12 SPIs and eight prophages were detected. The 185 additional global genomes analysed harboured resistance genes against 11 classes of antimicrobial compounds, 22 types of plasmids, 32 prophages, 14 SPIs, and additional virulence genes related to serum resistance, stress adaptation and toxins. Sequence type (ST)216 was assigned to genomes from Brazil and other countries, while ST335 was the most frequent ST, especially among South African genomes. cgMLST showed that Brazilian genomes were more closely related to genomes from European and African countries, the USA and Taiwan, while the majority of South African genomes were more closely related among each other.Conclusion. The presence of S. Isangi strains from Brazil and different countries showing a close genomic correlation, antimicrobial resistance profiles to drugs used in human therapy and a large number of virulence determinants reinforced the need for stronger initiatives to monitor rare non-typhoidal Salmonella serovars such as S. Isangi in order to prevent its dissemination among human and non-human sources.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|