51
|
Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis 2021; 8:385-400. [PMID: 33521210 PMCID: PMC7836435 DOI: 10.1016/j.gendis.2020.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged and is responsible for the Coronavirus Disease 2019 global pandemic. Coronaviruses, including SARS-CoV-2, are strongly associated with respiratory symptoms during infection, but gastrointestinal symptoms, such as diarrhea, vomiting, nausea, and abdominal pain, have been identified in subsets of COVID-19 patients. This article focuses on gastrointestinal symptoms and pathophysiology in COVID-19 disease. Evidence suggests that the gastrointestinal tract could be a viral target for SARS-CoV-2 infection. Not only is the SARS-CoV-2 receptor ACE2 highly expressed in the GI tract and is associated with digestive symptoms, but bleeding and inflammation are observed in the intestine of COVID-19 patients. We further systemically summarize the correlation between COVID-19 disease, gastrointestinal symptoms and intestinal microbiota. The potential oral-fecal transmission of COVID-19 was supported by viral RNA and live virus detection in the feces of COVID-19 patients. Additionally, the viral balance in the GI tract could be disordered during SARS-CoV-2 infection which could further impact the homeostasis of the gut microbial flora. Finally, we discuss the clinical and ongoing trials of treatments/therapies, including antiviral drugs, plasma transfusion and immunoglobulins, and diet supplementations for COVID-19. By reviewing the pathogenesis of SARS-CoV-2 virus, and understanding the correlation among COVID-19, inflammation, intestinal microbiota, and lung microbiota, we provide perspective in prevention and control, as well as diagnosis and treatment of the COVID-19 disease.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
52
|
Kim YJ, Bae JY, Bae S, Hwang S, Kwon KT, Chang HH, Lee WK, Cui C, Lee GE, Kim SW, Park MS. Neutralizing Antibody Responses to SARS-CoV-2 in Korean Patients Who Have Recovered from COVID-19. Yonsei Med J 2021; 62:584-592. [PMID: 34164955 PMCID: PMC8236344 DOI: 10.3349/ymj.2021.62.7.584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neutralizing antibodies (NAbs) have been considered effective in preventing and treating viral infections. However, until now, the duration and clinical implications of antibody-mediated nature immunity in Koreans have remained unknown. Therefore, we examined NAbs levels and clinical characteristics in recovered coronavirus disease 2019 (COVID-19) patients. MATERIALS AND METHODS Blood samples were collected from 143 adult patients who had been diagnosed with and had recovered from COVID-19 from February to March in 2020 at a tertiary-care university-affiliated hospital in Daegu, Korea. A plaque reduction neutralization test was conducted to analyze NAb titers. Individualized questionnaires were used to identify patient clinical information. RESULTS The median number of days from symptom onset to the blood collection date was 109.0 (104.0; 115.0). The NAb titers ranged from 10 to 2560. The median NAb titer value was 40. Of the 143 patients, 68 (47.6%) patients had NAb titers ≥80, and 31 (21.7%) patients had NAb titers ≥160. The higher the age or disease severity, the higher the NAb titer. In univariate logistic regression, statistically significant predictors of high NAb titers (≥80) were age, myalgia, nausea or vomiting, dyspnea, and disease severity (p<0.05). Multivariable logistic regression showed that age ≥50 years (p=0.013) and moderate or higher disease severity (p<0.001) were factors associated with high NAb titers (≥80). None of the patients had reinfection of COVID-19. CONCLUSION All recovered patients were found to have NAbs regardless of the NAb titers maintained by natural immunity. Age and disease severity during COVID-19 infection were associated with high NAb titers.
Collapse
Affiliation(s)
- Yoon Jung Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Joon Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Sohyun Bae
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Soyoon Hwang
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Ha Chang
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Won Kee Lee
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chunguang Cui
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Gee Eun Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Shin Woo Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Man Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|
53
|
Keikha M, Karbalaei M. Convalescent plasma therapy as a conventional trick for treating COVID-19: a systematic review and meta-analysis study. New Microbes New Infect 2021; 42:100901. [PMID: 34026229 PMCID: PMC8129993 DOI: 10.1016/j.nmni.2021.100901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023] Open
Abstract
Convalescent plasma therapy (CPT) is one of the well-known therapeutic protocols for treating infectious diseases that do not have special treatment or vaccine. Several documents confirm the clinical efficacy of this therapy for treating bacterial and viral infections. A comprehensive systematic search was conducted by August 2020 using global databases including PubMed, Scopus, Embase, Cochrane library, Google scholar, medRxiv and bioRxiv. The Joanna Briggs Institute critical appraisal checklist was used to evaluate the included studies. Using the Comprehensive Meta-Analysis software version 2.2 (Biostat, Englewood, NJ, USA), the pooled data analysis process was performed. A total of 15 eligible articles were enrolled in the current quantitative synthesis. The statistical analysis showed that clinical improvement in the group of patients who had received convalescent plasma was significantly increased compared with the control group (OR: 2.23; 1.12-4.45 with 95% CIs; p value: 0.022; Q-value: 6.11; I2 : 83.64; Eggers p value: 0.064; Beggs p value: 0.093). Furthermore, the rate of hospital discharge had increased in patients receiving CPT (OR: 2.92; 1.48-5.77 with 95% CIs; p value: 0.002; Q-Value: 4.32; I2 : 53.80; Eggers p value: 0.32; Beggs p value: 0.50). Because there is currently no fully effective antiviral drug against the virus and it will take time to confirm the effectiveness of new drugs, CPT can be used as an alternative treatment strategy to improve the severe clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- M. Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
54
|
Lyubavina N, Saltsev S, Menkov N, Tyurikova L, Plastinina S, Shonia M, Tulichev A, Milyutina M, Makarova E. Immunological Approaches to the Treatment of New Coronavirus Infection (Review). Sovrem Tekhnologii Med 2021; 13:81-99. [PMID: 34603758 PMCID: PMC8482822 DOI: 10.17691/stm2021.13.3.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 01/08/2023] Open
Abstract
The pandemic of the new coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus has spread all over the world. The large amount of information that appears every day requires comprehension and systematization. The immunological aspects of the virus-host interaction are the core issues in the effective treatment and prevention of COVID-19' development. The review analyzes the known pathways of the viral invasion and evasion, the mechanisms of the cytokine storm, endothelial damage, and hypercoagulability associated with SARS-CoV-2 infection. Clinical data from previous SARS and MERS epidemics is discussed here. We also address the therapeutic approaches based on the basic knowledge of immune response and the blood cells' immune functions, as well as the ways to reduce their hyperactivation. The use of interferon therapy, anti-inflammatory therapy, anti-cytokine therapy, neutralizing antibodies, convalescent plasma, and mesenchymal stem cells, as well as prophylactic vaccines, is discussed.
Collapse
Affiliation(s)
- N.A. Lyubavina
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S.G. Saltsev
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N.V. Menkov
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L.V. Tyurikova
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S.S. Plastinina
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.L. Shonia
- Associate Professor, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.A. Tulichev
- Assistant, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.Yu. Milyutina
- Assistant, Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.V. Makarova
- Associate Professor, Head of the Department of Propedeutics of Internal Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
55
|
Sattarzadeh Bardsiri M, Kouhbananinejad SM, Vahidi R, Soleimany S, Moghadari M, Derakhshani A, Kashani B, Farsinejad A. Ubiquitous convalescent plasma: An artificial universal plasma for COVID-19 patients. Transfus Apher Sci 2021; 60:103188. [PMID: 34144875 PMCID: PMC8191286 DOI: 10.1016/j.transci.2021.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
Objectives and background In December 2019, the first case of COVID-19 was reported in Wuhan, China. Its causative virus, is a novel strain of RNA viruses with high mortality rate. There is no definitive treatment, but among available approaches the use of recovered patients’ plasma containing specific antibodies can enhance the immune response against coronavirus. However, the dearth of eligible donors and also ABO incompatibility in plasma transfusion, have limited this therapeutic method. Therefore, it is highly desirable to introduce a simple procedure that allows efficient reduction or even removal of natural ABO antibodies. Accordingly, we aimed to evaluate a RBC-mediated adsorption technique that reduces the titer of the mentioned antibodies in plasma. Methods/materials This experimental study was conducted in Kerman University of Medical Sciences, Kerman, Iran. The pre- and post-incubation antibody titers of 168 plasma samples were determined. For incubation, each plasma sample was exposed (60 min) to different percentages of RBCs at room temperature or 4 °C. Results The results evidenced that both the concentration of RBCs and temperature had significant decreasing effects on antibody titer (P < 0.001) and all concentrations significantly reduced titer. Compared to RT, 4 °C further reduced the antibody titer. Overall, the best incubation condition for reducing antibody titer in all blood groups was 4 °C and 2% RBCs concentration. Conclusion The presented adsorption procedure is able to produce universal plasma (we call it Ubiquitous Convalescent Plasma) with a non-immunogenic level of ABO mismatch antibodies which can be used for COVID-19 patients with any type of blood group with desirable simplicity, feasibility, and efficacy.
Collapse
Affiliation(s)
- Mahla Sattarzadeh Bardsiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mehrnaz Kouhbananinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Vahidi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Soleimany
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoud Moghadari
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Kashani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
56
|
Abdel-Moneim AS, Abdelwhab EM, Memish ZA. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021; 558:1-12. [PMID: 33691216 PMCID: PMC7898979 DOI: 10.1016/j.virol.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 is a novel coronavirus, spread among humans, and to date, more than 100 million of laboratory-confirmed cases have been reported worldwide. The virus demonstrates 96% similarity to a coronavirus from a horseshoe bat and most probably emerged from a spill over from bats or wild animal(s) to humans. Currently, two variants are circulating in the UK and South Africa and spread to many countries around the world. The impact of mutations on virus replication, virulence and transmissibility should be monitored carefully. Current data suggest recurrent infection with SARS-CoV-2 correlated to the level of neutralising antibodies and with sustained memory responses following infection. Recently, remdesivir was FDA approved for treatment of COVID-19, however many potential antivirals are currently in different clinical trials. Clinical data and experimental studies indicated that licenced vaccines are helpful in controlling the disease. However, the current vaccines should be evaluated against the emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ziad A Memish
- Research & Innovation Center, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
57
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
58
|
Thabrani A, Hadi WS, Thobari JA, Novianti Z, Kurniyanto, Juliana I, Suharto A, Danaswari AN, Septiani I, Rhatomy S. Convalescent plasma as a treatment modality for Coronavirus Disease 2019 in Indonesia: A case reports. Ann Med Surg (Lond) 2021; 66:102444. [PMID: 34094533 PMCID: PMC8165043 DOI: 10.1016/j.amsu.2021.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction and importance Coronavirus Disease 2019 (COVID-19) has become a pandemic since the beginning of 2020. COVID-19 is also spreading very rapidly in Indonesia and so far, no definitive therapy has been found. Case presentation We report two cases of confirmed COVID-19 with moderate pneumonia, who received 400 ml of convalescent plasma and showed improvements in clinical, laboratory and radiological examinations. Clinical discussion Passive immunotherapy is generally more effective when given early. Plasma transfusion is more beneficial when given before clinical conditions become severe. Some studies have shown that therapy with convalescent plasma can contribute to a longer survival and a lower length of stay. Conclusion Convalescent plasma can be used as an adjunctive therapy option for patients with moderate COVID-19.
Collapse
Affiliation(s)
- Achmad Thabrani
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wahid Syamsul Hadi
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Zakiah Novianti
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kurniyanto
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Indah Juliana
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agus Suharto
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Atik Nuriyah Danaswari
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Septiani
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sholahuddin Rhatomy
- Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
59
|
Kombe Kombe AJ, Zahid A, Mohammed A, Shi R, Jin T. Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therapeutics Against SARS-CoV-2 Infection. Front Mol Biosci 2021; 8:670815. [PMID: 34136533 PMCID: PMC8201996 DOI: 10.3389/fmolb.2021.670815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
The 2019-2020 winter was marked by the emergence of a new coronavirus (SARS-CoV-2) related disease (COVID-19), which started in Wuhan, China. Its high human-to-human transmission ability led to a worldwide spread within few weeks and has caused substantial human loss. Mechanical antiviral control approach, drug repositioning, and use of COVID-19 convalescent plasmas (CPs) were the first line strategies utilized to mitigate the viral spread, yet insufficient. The urgent need to contain this deadly pandemic has led searchers and pharmaceutical companies to develop vaccines. However, not all vaccines manufactured are safe. Besides, an alternative and effective treatment option for such an infectious disease would include pure anti-viral neutralizing monoclonal antibodies (NmAbs), which can block the virus at specific molecular targets from entering cells by inhibiting virus-cell structural complex formation, with more safety and efficiency than the CP. Indeed, there is a lot of molecular evidence about the protector effect and the use of molecular feature-based NmAbs as promising therapeutics to contain COVID-19. Thus, from the scientific publication database screening, we here retrieved antibody-related papers and summarized the repertory of characterized NmAbs against SARS-CoV-2, their molecular neutralization mechanisms, and their immunotherapeutic pros and cons. About 500 anti-SARS-CoV-2 NmAbs, characterized through competitive binding assays and neutralization efficacy, were reported at the writing time (January 2021). All NmAbs bind respectively to SARS-CoV-2 S and exhibit high molecular neutralizing effects against wild-type and/or pseudotyped virus. Overall, we defined six NmAb groups blocking SARS-CoV-2 through different molecular neutralization mechanisms, from which five potential neutralization sites on SARS-CoV-2 S protein are described. Therefore, more efforts are needed to develop NmAbs-based cocktails to mitigate COVID-19.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ahmed Mohammed
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
60
|
Clinical Management of COVID-19: A Review of Pharmacological Treatment Options. Pharmaceuticals (Basel) 2021; 14:ph14060520. [PMID: 34071185 PMCID: PMC8229327 DOI: 10.3390/ph14060520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Since the outbreak and subsequent declaration of COVID-19 as a global pandemic in March 2020, concerted efforts have been applied by the scientific community to curtail the spread of the disease and find a cure. While vaccines constitute a vital part of the public health strategy to reduce the burden of COVID-19, the management of this disease will continue to rely heavily on pharmacotherapy. This study aims to provide an updated review of pharmacological agents that have been developed and/or repurposed for the treatment of COVID-19. To this end, a comprehensive literature search was conducted using the PubMed, Google Scholar, and LitCovid databases. Relevant clinical studies on drugs used in the management of COVID-19 were identified and evaluated in terms of evidence of efficacy and safety. To date, the FDA has approved three therapies for the treatment of COVID-19 Emergency Use Authorization: convalescent plasma, remdesivir, and casirivimab/imdevimab (REGN-COV2). Drugs such as lopinavir/ritonavir, umifenovir, favipiravir, anakinra, chloroquine, hydroxychloroquine, tocilizumab, interferons, tissue plasminogen activator, intravenous immunoglobulins, and nafamosat have been used off-label with mixed therapeutic results. Adjunctive administration of corticosteroids is also very common. The clinical experience with these approved and repurposed drugs is limited, and data on efficacy for the new indication are not strong. Overall, the response of the global scientific community to the COVID-19 pandemic has been impressive, as evident from the volume of scientific literature elucidating the molecular biology and pathophysiology of SARS-CoV-2 and the approval of three new drugs for clinical management. Reviewed studies have shown mixed data on efficacy and safety of the currently utilized drugs. The lack of standard treatment for COVID-19 has made it difficult to interpret results from most of the published studies due to the risk of attribution error. The long-term effects of drugs can only be assessed after several years of clinical experience; therefore, the efficacy and safety of current COVID-19 therapeutics should continue to be rigorously monitored as part of post-marketing studies.
Collapse
|
61
|
Saleh R, Rahimi H, Dehghan A, Sadeghizadeh A, Gheisari A, Saeidi S, Pourmoghaddas Z. Successful treatment of plasmapheresis followed by interferon beta-1a in a child with severe COVID-19. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:30. [PMID: 34345241 PMCID: PMC8305773 DOI: 10.4103/jrms.jrms_756_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/13/2020] [Accepted: 12/22/2020] [Indexed: 11/04/2022]
Abstract
COVID-19 outbreak has become a global health concern due to challenges in treatment and high mortality rate; therefore, its therapeutic approaches play an important role in reducing the mortality rate and resolving this concern. Different therapies have been introduced, including interferon beta-1a and purification methods, for instance, plasmapheresis. In this article, we reported a child with severe COVID-19 who fully recovered after receiving plasmapheresis and interferon beta-1a.
Collapse
Affiliation(s)
- Rana Saleh
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rahimi
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Dehghan
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Sadeghizadeh
- Department of Pediatric Intensive Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alaleh Gheisari
- Department of Pediatric Nephrology Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Saeidi
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Pourmoghaddas
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
62
|
Piechotta V, Iannizzi C, Chai KL, Valk SJ, Kimber C, Dorando E, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2021; 5:CD013600. [PMID: 34013969 PMCID: PMC8135693 DOI: 10.1002/14651858.cd013600.pub4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required. OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone. Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences. We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence). Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group. We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence). A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline). Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence). We identified no study reporting quality of life. Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. AUTHORS' CONCLUSIONS We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Elena Dorando
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
63
|
Kim SB, Yeom JS. Current advances in pharmacological treatments for patients with COVID-19. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.5.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) outbreak, more than 150 million people in over 200 countries have been infected, with over 3 million people dying due to it, as of May 1, 2021. Many researchers are working continuously to find effective drug treatments for COVID-19; however, the optimal treatment approach remains unclear. In this article, current advances in pharmacological treatments for patients with COVID-19 are discussed. Data obtained from recent studies indicate a mortality benefit with the administration of dexamethasone or adjunctive tocilizumab and potential clinical benefits with remdesivir (with or without baricitinib). Several monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 have been developed. The US Food and Drug Administration issued two emergency use authorizations: one for bamlanivimab/etesevimab and another for casirivimab/imdevimab for patients with mild to moderate COVID-19, at high risk of progression to severe disease and/or hospitalization. The pathogenesis of COVID-19 indicates that antiviral treatments would be most beneficial in the early phase of the infection that is primarily driven by replication of severe acute respiratory syndrome coronavirus 2, whereas immunosuppressive/anti-inflammatory therapies are likely to be more beneficial during the late phase of the infection, when the disease is driven by an exaggerated immune/inflammatory response to the virus that causes tissue damage.
Collapse
|
64
|
León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura Á, Gómez A, Solano G, Corrales-Aguilar E, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gutiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 2021; 11:9825. [PMID: 33972631 PMCID: PMC8110969 DOI: 10.1038/s41598-021-89242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Guillermo León
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | - Mauricio Arguedas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kenneth Risner
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Mauren Villalta
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Hernández
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos Méndez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ana Cecilia Castillo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
65
|
Kanj S, Al-Omari B. Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses 2021; 13:849. [PMID: 34066932 PMCID: PMC8148438 DOI: 10.3390/v13050849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
More than one year into the novel coronavirus disease 2019 (COVID-19) pandemic, healthcare systems across the world continue to be overwhelmed with soaring daily cases. The treatment spectrum primarily includes ventilation support augmented with repurposed drugs and/or convalescent plasma transfusion (CPT) from recovered COVID-19 patients. Despite vaccine variants being recently developed and administered in several countries, challenges in global supply chain logistics limit their timely availability to the wider world population, particularly in developing countries. Given the measured success of conventional CPT in treating several infections over the past decade, recent studies have reported its effectiveness in decreasing the duration and severity of COVID-19 symptoms. In this review, we conduct a literature search of published studies investigating the use of CPT to treat COVID-19 patients from January 2020 to January 2021. The literature search identified 181 records of which 39 were included in this review. A random-effects model was used to aggregate data across studies, and mortality rates of 17 vs. 32% were estimated for the CPT and control patient groups, respectively, with an odds ratio (OR) of 0.49. The findings indicate that CPT shows potential in reducing the severity and duration of COVID-19 symptoms. However, early intervention (preferably within 3 days), recruitment of donors, and plasma potency introduce major challenges for its scaled-up implementation. Given the low number of existing randomized clinical trials (RCTs, four with a total of 319 patients), unanticipated risks to CPT recipients are highlighted and discussed. Nevertheless, CPT remains a promising COVID-19 therapeutic option that merits internationally coordinated RCTs to achieve a scientific risk-benefit consensus.
Collapse
Affiliation(s)
| | - Basem Al-Omari
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| |
Collapse
|
66
|
Coronavirus Disease 2019: An Overview of the Complications and Management. Pharmacol Ther 2021. [DOI: 10.36922/itps.v4i1.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Since the first report of COVID-19 emerging in Wuhan, China, authorities in 216 countries and territories have reported about 47.3 million COVID-19 cases and 1.2 million deaths. The WHO guidelines for the management of COVID-19 are very limited to recommendations for managing symptoms and advice on careful management of pediatric patients, pregnant women, and patients with underlying comorbidities. There is no approved treatment for COVID-19 and guidelines vary between countries. In this review, first, a brief overview is provided on the basic knowledge about the virus, clinical features of the disease, and different diagnostic methods. Then, the relationship between COVID-19, various body systems, and other complications is discussed. Finallly, different management strategies are discussed, including those drawn on computational chemistry analyses, pre-clinical investigations, and clinical trials which involve pharmacological and non-pharmacological interventions. In conclusion, despite the recent approval of different vaccine candidates, more virological characteristics of SARS-CoV-2 are required to be explored, which may result in the discovery of more potential therapeutic targets leading to safer and more effective treatment to COVID-19.
Collapse
|
67
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
68
|
Klassen SA, Senefeld JW, Johnson PW, Carter RE, Wiggins CC, Shoham S, Grossman BJ, Henderson JP, Musser J, Salazar E, Hartman WR, Bouvier NM, Liu STH, Pirofski LA, Baker SE, van Helmond N, Wright RS, Fairweather D, Bruno KA, Wang Z, Paneth NS, Casadevall A, Joyner MJ. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin Proc 2021; 96:1262-1275. [PMID: 33958057 PMCID: PMC7888247 DOI: 10.1016/j.mayocp.2021.02.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials, 20 matched control studies, 2 dose-response studies, and 96 case reports or case series. Studies published between January 1, 2020, and January 16, 2021, were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of randomized clinical trials and matched control data demonstrated that patients with COVID-19 transfused with convalescent plasma exhibited a lower mortality rate compared with patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W Johnson
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brenda J Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Center for Molecular and Translational Human Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole M Bouvier
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sean T H Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Noud van Helmond
- Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ
| | - R Scott Wright
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Director, Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Zhen Wang
- Evidence-Based Practice Center, Robert D. and Patricia E. Kern Center for Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Nigel S Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing; Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
69
|
Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021; 20:88. [PMID: 33888152 PMCID: PMC8061467 DOI: 10.1186/s12934-021-01576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is a novel β-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Laura Cobos-Marín
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil N° 2950, Valparaíso, Chile
| | - Carlos G Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Luis F Cofas-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Enrique W Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Ricardo A González-Hernández
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Pablo Hernández-Peralta
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Paola A Ortega-Portilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Patricio Zelada-Cordero
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| |
Collapse
|
70
|
Ali FEM, Mohammedsaleh ZM, Ali MM, Ghogar OM. Impact of cytokine storm and systemic inflammation on liver impairment patients infected by SARS-CoV-2: Prospective therapeutic challenges. World J Gastroenterol 2021; 27:1531-1552. [PMID: 33958841 PMCID: PMC8058655 DOI: 10.3748/wjg.v27.i15.1531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating worldwide pandemic infection caused by a severe acute respiratory syndrome namely coronavirus 2 (SARS-CoV-2) that is associated with a high spreading and mortality rate. On the date this review was written, SARS-CoV-2 infected about 96 million people and killed about 2 million people. Several arguments disclosed the high mortality of COVID-19 due to acute respiratory distress syndrome or change in the amount of angiotensin-converting enzyme 2 (ACE2) receptor expression or cytokine storm strength production. In a similar pattern, hepatic impairment patients co-infected with SARS-CoV-2 exhibited overexpression of ACE2 receptors and cytokine storm overwhelming, which worsens the hepatic impairment and increases the mortality rate. In this review, the impact of SARS-CoV-2 on hepatic impairment conditions we overviewed. Besides, we focused on the recent studies that indicated cytokine storm as well as ACE2 as the main factors for high COVID-19 spreading and mortality while hinting at the potential therapeutic strategies.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mahmoud M Ali
- Pre-graduated students, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Pre-graduated students, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
71
|
Khaire NS, Jindal N, Yaddanapudi LN, Sachdev S, Hans R, Sachdeva N, Singh MP, Agarwal A, Mukherjee A, Kumar G, Sharma RR, Suri V, Puri GD, Malhotra P. Use of convalescent plasma for COVID-19 in India: A review & practical guidelines. Indian J Med Res 2021; 153:64-85. [PMID: 33818467 PMCID: PMC8184072 DOI: 10.4103/ijmr.ijmr_3092_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
Convalescent plasma (CP) therapy is one of the promising therapies being tried for COVID-19 patients. This passive immunity mode involves separating preformed antibodies against SARS-CoV-2 from a recently recovered COVID-19 patient and infusing it into a patient with active disease or an exposed individual for prophylaxis. Its advantages include ease of production, rapid deployment, specificity against the target infectious agent, and scalability. In the current pandemic, it has been used on a large scale across the globe and also in India. However, unequivocal proof of efficacy and effectiveness in COVID-19 is still not available. Various CP therapy parameters such as donor selection, antibody quantification, timing of use, and dosing need to be considered before its use. The current review attempts to summarize the available evidence and provide recommendations for setting up CP protocols in clinical and research settings.
Collapse
Affiliation(s)
- Niranjan Shiwaji Khaire
- Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Nishant Jindal
- Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Lakshmi Narayana Yaddanapudi
- Department of Anaesthesia & Intensive Care, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Suchet Sachdev
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rekha Hans
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Mini P. Singh
- Department of Virology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anup Agarwal
- Clinical Trial & Health System Research Unit, Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Aparna Mukherjee
- Clinical Trial & Health System Research Unit, Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Gunjan Kumar
- Clinical Trial & Health System Research Unit, Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Ratti Ram Sharma
- Department of Transfusion Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Vikas Suri
- Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Goverdhan Dutt Puri
- Department of Anaesthesia & Intensive Care, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
72
|
Chvatal-Medina M, Mendez-Cortina Y, Patiño PJ, Velilla PA, Rugeles MT. Antibody Responses in COVID-19: A Review. Front Immunol 2021; 12:633184. [PMID: 33936045 PMCID: PMC8081880 DOI: 10.3389/fimmu.2021.633184] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic. Although its seroprevalence is highly variable among territories, it has been reported at around 10%, but higher in health workers. Evidence regarding cross-neutralizing response between SARS-CoV and SARS-CoV-2 is still controversial. However, other previous coronaviruses may interfere with SARS-CoV-2 infection, since they are phylogenetically related and share the same target receptor. Further, the seroconversion of IgM and IgG occurs at around 12 days post onset of symptoms and most patients have neutralizing titers on days 14-20, with great titer variability. Neutralizing antibodies correlate positively with age, male sex, and severity of the disease. Moreover, the use of convalescent plasma has shown controversial results in terms of safety and efficacy, and due to the variable immune response among individuals, measuring antibody titers before transfusion is mostly required. Similarly, cellular immunity seems to be crucial in the resolution of the infection, as SARS-CoV-2-specific CD4+ and CD8+ T cells circulate to some extent in recovered patients. Of note, the duration of the antibody response has not been well established yet.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Pablo J. Patiño
- Grupo Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
73
|
Levi-Schaffer F, de Marco A. Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review: 31. Br J Pharmacol 2021; 178:3359-3372. [PMID: 33401333 DOI: 10.1111/bph.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic stimulated both the scientific community and healthcare companies to undertake an unprecedented effort with the aim of understanding the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing effective therapeutic solutions. The peculiar immune response triggered by this virus, which seems to last only few months, led to a search for alternatives such as passive immunization in addition to conventional vaccinations. Convalescent sera, monoclonal antibodies selected from the most potent neutralizing binders induced by the virus infection, recombinant human single-domain antibodies, and binders of variable scaffold and different origin have been tested alone or in combination exploiting monovalent, multivalent and multispecific formats. In this review, we analyse the state of the research in this field and present a summary of the ongoing projects finalized to identify suitable molecules for therapies based on passive immunization.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, School of Pharmacy, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
74
|
Bansal V, Mahapure KS, Mehra I, Bhurwal A, Tekin A, Singh R, Gupta I, Rathore SS, Khan H, Deshpande S, Gulati S, Armaly P, Sheraton M, Kashyap R. Mortality Benefit of Convalescent Plasma in COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:624924. [PMID: 33898477 PMCID: PMC8062901 DOI: 10.3389/fmed.2021.624924] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Importance/Background: With a scarcity of high-grade evidence for COVID-19 treatment, researchers and health care providers across the world have resorted to classical and historical interventions. Immunotherapy with convalescent plasma (CPT) is one such therapeutic option. Methods: A systematized search was conducted for articles published between December 2019 and 18th January 2021 focusing on convalescent plasma efficacy and safety in COVID-19. The primary outcomes were defined as mortality benefit in patients treated with convalescent plasma compared to standard therapy/placebo. The secondary outcome was pooled mortality rate and the adverse event rate in convalescent plasma-treated patients. Results: A total of 27,706 patients were included in the qualitative analysis, and a total of 3,262 (2,127 in convalescent plasma-treated patients and 1,135 in the non-convalescent plasma/control group) patients died. The quantitative synthesis in 23 studies showed that the odds of mortality in patients who received plasma therapy were significantly lower than those in patients who did not receive plasma therapy [odds ratio (OR) 0.65, 95% confidence interval (CI) 0.53-0.80, p < 0.0001, I 2 = 15%). The mortality benefit remains the same even for 14 trials/prospective studies (OR 0.59, 95% CI 0.43-0.81, p = 0.001, I 2 = 22%) as well as for nine case series/retrospective observational studies (OR 0.78, 95% CI 0.65-0.94, p = 0.01, I 2 = 0%). However, in a subgroup analysis for 10 randomized controlled trials (RCTs), there was no statistically significant reduction in mortality between the CPT group compared to the non-CPT group (OR 0.76, 95% CI 0.53-1.08, p = 0.13, I 2 = 7%). Furthermore, the sensitivity analysis of 10 RCTs, excluding the study with the highest statistical weight, displayed a lower mortality rate compared to that of non-CPT COVID-19 patients (OR 0.64, 95% CI 0.42-0.97, p = 0.04, I 2 = 0%). The observed pooled mortality rate was 12.9% (95% CI 9.7-16.9%), and the pooled adverse event rate was 6.1% (95% CI 3.2-11.6), with significant heterogeneity. Conclusions and Relevance: Our systemic review and meta-analysis suggests that CPT could be an effective therapeutic option with promising evidence on the safety and reduced mortality in concomitant treatment for COVID-19 along with antiviral/antimicrobial drugs, steroids, and other supportive care. Future exploratory studies could benefit from more standardized reporting, especially in terms of the timing of interventions and clinically relevant outcomes, like days until discharge from the hospital and improvement of clinical symptoms.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Anaesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kiran S. Mahapure
- Senior Resident, Department of Plastic Surgery, KAHER J. N. Medical College, Belgaum, India
| | - Ishita Mehra
- Department of Internal Medicine, North Alabama Medical Center, Florence, AL, United States
| | - Abhishek Bhurwal
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| | - Aysun Tekin
- Department of Anaesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Romil Singh
- Department of Internal Medicine, Metropolitan Hospital, Jaipur, India
| | - Ishita Gupta
- Department of Internal Medicine, Dr. Rajendra Prasad Government Medical College, Tanda, India
| | - Sawai Singh Rathore
- Department of Internal Medicine, Dr. Sampurnanand Medical College, Jodhpur, India
| | - Hira Khan
- Department of Internal Medicine, Riphah International University Islamic International Medical College, Rawalpindi, Pakistan
| | - Sohiel Deshpande
- Department of Internal Medicine, Maharashtra Institute of Medical Education and Research, Pune, India
| | - Shivam Gulati
- Department of Internal Medicine, Adesh Institute of Medical Sciences and Research, Bathinda, India
| | - Paige Armaly
- Department of Internal Medicine, University of the West Indies, Nassau, Bahamas
| | - Mack Sheraton
- Department of Emergency Medicine, Trinity West Medical Center MSOPTI EM Program, Steubenville, OH, United States
| | - Rahul Kashyap
- Department of Anaesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
75
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
76
|
Madariaga MLL, Guthmiller JJ, Schrantz S, Jansen MO, Christensen C, Kumar M, Prochaska M, Wool G, Durkin‐Celauro A, Oh WH, Trockman L, Vigneswaran J, Keskey R, Shaw DG, Dugan H, Zheng N, Cobb M, Utset H, Wang J, Stovicek O, Bethel C, Matushek S, Giurcanu M, Beavis KG, di Sabato D, Meltzer D, Ferguson MK, Kress JP, Shanmugarajah K, Matthews JB, Fung JF, Wilson PC, Alverdy JC, Donington JS. Clinical predictors of donor antibody titre and correlation with recipient antibody response in a COVID-19 convalescent plasma clinical trial. J Intern Med 2021; 289:559-573. [PMID: 33034095 PMCID: PMC7675325 DOI: 10.1111/joim.13185] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Convalescent plasma therapy for COVID-19 relies on transfer of anti-viral antibody from donors to recipients via plasma transfusion. The relationship between clinical characteristics and antibody response to COVID-19 is not well defined. We investigated predictors of convalescent antibody production and quantified recipient antibody response in a convalescent plasma therapy clinical trial. METHODS Multivariable analysis of clinical and serological parameters in 103 confirmed COVID-19 convalescent plasma donors 28 days or more following symptom resolution was performed. Mixed-effects regression models with piecewise linear trends were used to characterize serial antibody responses in 10 convalescent plasma recipients with severe COVID-19. RESULTS Donor antibody titres ranged from 0 to 1 : 3892 (anti-receptor binding domain (RBD)) and 0 to 1 : 3289 (anti-spike). Higher anti-RBD and anti-spike titres were associated with increased age, hospitalization for COVID-19, fever and absence of myalgia (all P < 0.05). Fatigue was significantly associated with anti-RBD (P = 0.03). In pairwise comparison amongst ABO blood types, AB donors had higher anti-RBD and anti-spike than O donors (P < 0.05). No toxicity was associated with plasma transfusion. Non-ECMO recipient anti-RBD antibody titre increased on average 31% per day during the first three days post-transfusion (P = 0.01) and anti-spike antibody titre by 40.3% (P = 0.02). CONCLUSION Advanced age, fever, absence of myalgia, fatigue, blood type and hospitalization were associated with higher convalescent antibody titre to COVID-19. Despite variability in donor titre, 80% of convalescent plasma recipients showed significant increase in antibody levels post-transfusion. A more complete understanding of the dose-response effect of plasma transfusion amongst COVID-19-infected patients is needed.
Collapse
Affiliation(s)
| | | | - S. Schrantz
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. O. Jansen
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | - M. Kumar
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. Prochaska
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - G. Wool
- Department ofPathologyUniversity of ChicagoChicagoILUSA
| | | | - W. H. Oh
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - L. Trockman
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | | | - R. Keskey
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - D. G. Shaw
- Committee on ImmunologyUniversity of ChicagoChicagoILUSA
| | - H. Dugan
- Committee on ImmunologyUniversity of ChicagoChicagoILUSA
| | - N.‐Y. Zheng
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. Cobb
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - H. Utset
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - J. Wang
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - O. Stovicek
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - C. Bethel
- Clinical Microbiology and Immunology LaboratoryUniversity of ChicagoChicagoILUSA
| | - S. Matushek
- Clinical Microbiology and Immunology LaboratoryUniversity of ChicagoChicagoILUSA
| | - M. Giurcanu
- Department of Public Health SciencesUniversity of ChicagoChicagoILUSA
| | - K. G. Beavis
- Biological Sciences DivisionDepartment of PathologyUniversity of ChicagoChicagoILUSA
| | - D. di Sabato
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - D. Meltzer
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | - J. P. Kress
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | | | - J. F. Fung
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - P. C. Wilson
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - J. C. Alverdy
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | | |
Collapse
|
77
|
Allahyari A, Seddigh-Shamsi M, Mahmoudi M, Amel Jamehdar S, Amini M, Mozdourian M, Javidarabshahi Z, Eslami Hasan Abadi S, Amini S, Sedaghat A, Emadzadeh M, Moeini Nodeh M, Rahimi H, Bari A, Mozaheb Z, Kamandi M, Ataei Azimi S, Abrishami M, Akbarian A, Ataei P, Allahyari N, Hasanzadeh S, Saeedian N. Efficacy and safety of convalescent plasma therapy in severe COVID-19 patients with acute respiratory distress syndrome. Int Immunopharmacol 2021; 93:107239. [PMID: 33582019 PMCID: PMC7709614 DOI: 10.1016/j.intimp.2020.107239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022]
Abstract
Since SARS-CoV-2 infection is rapidly spreading all around the world, affecting many people and exhausting health care resources, therapeutic options must be quickly investigated in order to develop a safe and effective treatment. The present study was designed to evaluate the safety and efficacy of convalescent plasma (CP) for treating severe cases of COVID-19 who developed acute respiratory distress syndrome (ARDS). Among 64 confirmed cases of severe COVID-19 with ARDS in this study, 32 patients received CP besides first line treatment. Their clinical response and outcome in regard to disease severity and mortality rate were evaluated and compared with the other 32 patients in the control group who were historically matched while randomly chosen from previous patients with the same conditions except for receiving CP therapy. Analysis of the data was performed using SPSS software. Patients with plasma therapy showed improvements in their clinical outcomes including a reduction in disease severity in terms of SOFA and APACHE II scores, the length of ICU stay, need for noninvasive ventilation and intubation and also showed an increase in oxygenation. They also showed reduction in mortality which was statistically significant in less severe cases with mild or moderate ARDS. Early administration of the convalescent plasma could successfully contribute to the treatment of severe COVID-19 patients with mild or moderate ARDS at risk of progressing to critical state.
Collapse
Affiliation(s)
- Abolghasem Allahyari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Seddigh-Shamsi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Mahmoudi
- Immunology research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Amini
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Sleep Medicine, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Mozdourian
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Javidarabshahi
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Eslami Hasan Abadi
- Department of Medical Information, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Amini
- Faculty of Critical Care medicine, Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedaghat
- Faculty of Critical Care medicine, Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moeini Nodeh
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rahimi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mozaheb
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Kamandi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Ataei Azimi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Akbarian
- Department of Obstetrics and Gynecology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Ataei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Allahyari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Hasanzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saeedian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
78
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
79
|
Smail SW, Saeed M, Twana Alkasalias, Khudhur ZO, Younus DA, Rajab MF, Abdulahad WH, Hussain HI, Niaz K, Safdar M. Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food Chem Toxicol 2021; 150:112087. [PMID: 33640537 PMCID: PMC7905385 DOI: 10.1016/j.fct.2021.112087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a fast-spreading potential worldwide, which leads to high mortality regardless of lows death rates. Now some vaccines or a specific drug are approved but not available for every country for disease prevention and/or treatment. Therefore, it is a high demand to identify the known drugs and test them as a possible therapeutic approach. In this critical situation, one or more of these drugs may represent the only option to treat or reduce the severity of the disease, until some specific drugs or vaccines will be developed and/or approved for everyone in this pandemic. In this updated review, the available repurpose immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between the immune system and SARS-CoV-2. Despite the reasonable data availability, the effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and validations aiming for a better clinical outcome.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Twana Alkasalias
- Department of Pathological Analysis, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq; General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | - Delan Ameen Younus
- General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq
| | - Mustafa Fahmi Rajab
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Wayel Habib Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Hafiz Iftikhar Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Kamal Niaz
- Department of Pharmacology & Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Muhammad Safdar
- Department of Breeding and Genetics, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan.
| |
Collapse
|
80
|
Saha S, Kadam S. Convalescent plasma therapy - a silver lining for COVID-19 management? Hematol Transfus Cell Ther 2021; 43:201-211. [PMID: 33903854 PMCID: PMC8059940 DOI: 10.1016/j.htct.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has pushed the world towards social, economic, and medical challenges. Scientific research in medicine is the only means to overcome novel and complex diseases like COVID-19. To sum up the therapeutic wild-goose chase, many available antivirals and repurposed drugs have failed to show successful clinical evidence in patient recovery, several vaccine candidates are still waiting in the trial pipelines and a few have become available to the common public for administration in record time. However, with upcoming evidence of coronavirus mutations, available vaccines may thrive on the spirit of doubt about efficacy and effectiveness towards these new strains of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV2). In all these collective uncertainties, plasma therapy has shown a ray of hope for critically ill patients. To date, with very few published case studies of convalescent plasma in COVID-19, there are two school of thought process in the scientific community regarding plasma therapy efficiency and this leads to confusion due to the lack of optimal randomized and controlled studies. Without undertaking any robust scientific studies, evidence or caution, accepting any therapy unanimously may cause more harm than good, but with a clearer understanding of SARS-CoV2 immunopathology and drug response, plasma therapy might be the silver lining against COVID-19 for the global community.
Collapse
|
81
|
Sheervalilou R, Shirvaliloo M, Sargazi S, Bahari S, Saravani R, Shahraki J, Shirvalilou S, Shahraki O, Nazarlou Z, Shams Z, Ghaznavi H. Convalescent Blood: Current Perspective on the Efficacy of a Legacy Approach in COVID-19 Treatment. Blood Purif 2021; 51:1-14. [PMID: 33789273 PMCID: PMC8089443 DOI: 10.1159/000513164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Since early 2020, COVID-19 has wreaked havoc in many societies around the world. As of the present, the SARS-CoV-2-borne disease is propagating in almost all countries, affecting hundreds of thousands of people in an unprecedented way. As the name suggests, the novel coronavirus, widely known as SARS-CoV-2, is a new emerging human pathogen. A novel disease of relatively unknown origin, COVID-19 does not seem to be amenable to the currently available medicines since there is no specific cure for the disease. In the absence of any vaccine or effective antiviral medication, we have no tools at our disposal, but the method of quarantine, be it domestic or institutional, to hinder any further progression of this outbreak. However, there is a record of physicians in the past who practiced convalescent blood transfusion. To their awe, the method seemed to be useful. It is anticipated that these contemporary methods will outdo any other vaccination process in the time being, as blood transfusion is instead a cost-effective and time-friendly technique. Following a successful trial, this new approach of contemporary nature to a viral disease may serve as an emergency intervention to intercept infectious outbreaks and prevent an impending epidemic/pandemic. In this review, we document the most recent evidence regarding the efficiency of convalescent plasma and serum therapy on SARS, MERS, and particularly COVID-19, while discussing potential advantages and possible risks of such practice.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soraiya Bahari
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Jafar Shahraki
- Department of Toxicology and Pharmacology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul, Turkey
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
82
|
Ye C, Qi L, Wang J, Zheng S. COVID-19 Pandemic: Advances in Diagnosis, Treatment, Organoid Applications and Impacts on Cancer Patient Management. Front Med (Lausanne) 2021; 8:606755. [PMID: 33855032 PMCID: PMC8039300 DOI: 10.3389/fmed.2021.606755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally and rapidly developed into a worldwide pandemic. The sudden outburst and rapid dissemination of SARS-CoV-2, with overwhelming public health and economic burdens, highlight an urgent need to develop effective strategies for the diagnosis and treatment of infected patients. In this review, we focus on the current advances in the diagnostics and treatment for SARS-CoV-2 infection. Notably, we also summarize some antineoplastic drugs repurposed for COVID-19 treatment and address the diagnostic and therapeutic challenges for oncologists to manage cancer patients in this COVID-19 era. In addition, we emphasize the importance of organoid technology as a valuable experimental virology platform to better understand the pathogenesis of COVID-19 and assist rapid screening of drugs against COVID-19.
Collapse
Affiliation(s)
- Chenyang Ye
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lina Qi
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ji Wang
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Surgical Oncology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
83
|
Joo EJ, Ko JH, Kim SE, Kang SJ, Baek JH, Heo EY, Shi HJ, Eom JS, Choe PG, Bae S, Ra SH, Kim DY, Kim BN, Kang YM, Kim JY, Chung JW, Chang HH, Bae S, Cheon S, Park Y, Choi H, Lee E, Lee BY, Park JW, Sohn Y, Heo JY, Kim SH, Peck KR. Clinical and Virologic Effectiveness of Remdesivir Treatment for Severe Coronavirus Disease 2019 (COVID-19) in Korea: a Nationwide Multicenter Retrospective Cohort Study. J Korean Med Sci 2021; 36:e83. [PMID: 33754512 PMCID: PMC7985289 DOI: 10.3346/jkms.2021.36.e83] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Remdesivir is widely used for the treatment of coronavirus disease 2019 (COVID-19), but controversies regarding its efficacy still remain. METHODS A retrospective cohort study was conducted to evaluate the effect of remdesivir on clinical and virologic outcomes of severe COVID-19 patients from June to July 2020. Primary clinical endpoints included clinical recovery, additional mechanical ventilator (MV) support, and duration of oxygen or MV support. Viral load reduction by hospital day (HD) 15 was evaluated by calculating changes in cycle threshold (Ct) values. RESULTS A total of 86 severe COVID-19 patients were evaluated including 48 remdesivir-treated patients. Baseline characteristics were not significantly different between the two groups. Remdesivir was administered an average of 7.42 days from symptom onset. The proportions of clinical recovery of the remdesivir and supportive care group at HD 14 (56.3% and 39.5%) and HD 28 (87.5% and 78.9%) were not statistically different. The proportion of patients requiring MV support by HD 28 was significantly lower in the remdesivir group than in the supportive care group (22.9% vs. 44.7%, P = 0.032), and MV duration was significantly shorter in the remdesivir group (average, 1.97 vs. 5.37 days; P = 0.017). Analysis of upper respiratory tract specimens demonstrated that increases of Ct value from HD 1-5 to 11-15 were significantly greater in the remdesivir group than the supportive care group (average, 10.19 vs. 5.36; P = 0.007), and the slope of the Ct value increase was also significantly steeper in the remdesivir group (average, 5.10 vs. 2.68; P = 0.007). CONCLUSION The remdesivir group showed clinical and virologic benefit in terms of MV requirement and viral load reduction, supporting remdesivir treatment for severe COVID-19.
Collapse
Affiliation(s)
- Eun Jeong Joo
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Eun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Seung Ji Kang
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Ji Hyeon Baek
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hye Jin Shi
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Joong Sik Eom
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyun Ra
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Da Young Kim
- Department of Internal Medicine, School of Medicine, Chosun University, Gwangju, Korea
| | - Baek Nam Kim
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Yu Min Kang
- Department of Infectious Diseases, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Ji Yeon Kim
- Division of Infectious Disease, Department of Medicine, Seongnam Citizens Medical Center, Seongnam, Korea
| | - Jin Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyun Ha Chang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sohyun Bae
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Shinhyea Cheon
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yoonseon Park
- Department of Infectious Diseases, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Heun Choi
- Department of Infectious Diseases, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Eunjung Lee
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Bo Young Lee
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jung Wan Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yujin Sohn
- Division of Infectious Disease, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Korea
| | - Sung Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
84
|
Donato ML, Park S, Baker M, Korngold R, Morawski A, Geng X, Tan M, Ip A, Goldberg S, Rowley S, Chow K, Brown E, Zenreich J, McKiernan P, Buttner K, Ullrich A, Long L, Feinman R, Ricourt A, Kemp M, Vendivil M, Suh H, Balani B, Cicogna C, Sebti R, Al-Khan A, Sperber S, Desai S, Fanning S, Arad D, Go R, Tam E, Rose K, Sadikot S, Siegel D, Gutierrez M, Feldman T, Goy A, Pecora A, Biran N, Leslie L, Gillio A, Timmapuri S, Boonstra M, Singer S, Kaur S, Richards E, Perlin DS. Clinical and laboratory evaluation of patients with SARS-CoV-2 pneumonia treated with high-titer convalescent plasma. JCI Insight 2021; 6:143196. [PMID: 33571168 PMCID: PMC8026191 DOI: 10.1172/jci.insight.143196] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
Here, we report on a phase IIa study to determine the intubation rate, survival, viral clearance, and development of endogenous Abs in patients with COVID-19 pneumonia treated with convalescent plasma (CCP) containing high levels of neutralizing anti-SARS-CoV-2 Abs. Radiographic and laboratory evaluation confirmed all 51 treated patients had COVID-19 pneumonia. Fresh or frozen CCP from donors with high titers of neutralizing Abs was administered. The nonmechanically ventilated patients (n = 36) had an intubation rate of 13.9% and a 30-day survival rate of 88.9%, and the overall survival rate for a comparative group based on network data was 72.5% (1625/2241). Patients had negative nasopharyngeal swab rates of 43.8% and 73.0% on days 10 and 30, respectively. Patients mechanically ventilated had a day-30 mortality rate of 46.7%; the mortality rate for a comparative group based on network data was 71.0% (369/520). All evaluable patients were found to have neutralizing Abs on day 3 (n = 47), and all but 1 patient had Abs on days 30 and 60. The only adverse event was a mild rash. In this study on patients with COVID-19 disease, we show therapeutic use of CCP was safe and conferred transfer of Abs, while preserving endogenous immune response.
Collapse
Affiliation(s)
- Michele L Donato
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Steven Park
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Melissa Baker
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Robert Korngold
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Alison Morawski
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Xue Geng
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Ming Tan
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Andrew Ip
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Stuart Goldberg
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Scott Rowley
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Emily Brown
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Joshua Zenreich
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Phyllis McKiernan
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Kathryn Buttner
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Anna Ullrich
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Laura Long
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Rena Feinman
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Andrea Ricourt
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Marlo Kemp
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Mariefel Vendivil
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Hyung Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Bindu Balani
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Cristina Cicogna
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Rani Sebti
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Abdulla Al-Khan
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Steven Sperber
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Samit Desai
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Stacey Fanning
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Danit Arad
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Ronaldo Go
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Elizabeth Tam
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Keith Rose
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sean Sadikot
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - David Siegel
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Martin Gutierrez
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Tatyana Feldman
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Andre Goy
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Andrew Pecora
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Noa Biran
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Lori Leslie
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Alfred Gillio
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sarah Timmapuri
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Michele Boonstra
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sam Singer
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sukhdeep Kaur
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Ernest Richards
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - David S Perlin
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| |
Collapse
|
85
|
Dhiman Y, Coshic P, Pandey HC, Khatiwada B, Singh J, Mehta V, Gupta S. Deterrents in recruitment of COVID-19 convalescent plasma donors: Experience from a hospital-based blood centre in India. Transfus Med 2021; 31:149-154. [PMID: 33749020 PMCID: PMC8251325 DOI: 10.1111/tme.12768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recruitment of Covid-19 convalescent plasma (CCP) donors may present as a challenge due to inexperience and differences in donor profile as compared to whole blood donation. Present study highlights the deterrents to recruiting CCP donors at a hospital based blood centre. MATERIALS AND METHODS Potential CCP donors were contacted individually by telephone and a group approach through camp organisers from May to July 2020. Recruitment challenges were noted and deferrals of these recruited donors during screening and medical examination was obtained and analysed. RESULTS Total 1165 potential CCP donors were contacted. Around 47% donors were lost due to challenges related to information storage and retrieval. Fear of health, family pressure, and fear of a new procedure were major reason (27.2%) for unwillingness to donate. The main reasons for deferral among potential donors were multiparity (38%) and being overage/underage (31.6%). Finally, 468 donors were recruited including 408 by individual approach and 60 by a group approach. From these absence of detectable COVID-19 antibodies were found in 15.4%. Few donors (9.0%) were deferred as they had not completed 28 days post recovery. CONCLUSION The process of CCP donor recruitment differs from that of whole blood donation and requires an individualised approach with involvement of clinicians in the initial phases of the pandemic. A group approach targeting specific organisations could be adopted for a successful CCP collection program. There is a need to relook into some aspects of donor selection such as consideration of multiparous female donors and overage/underage donors after reviewing scientific evidence.
Collapse
Affiliation(s)
| | - Poonam Coshic
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| | | | | | - Jasmeet Singh
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| | - Vikas Mehta
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| | - Sanjay Gupta
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| |
Collapse
|
86
|
Issa H, Eid AH, Berry B, Takhviji V, Khosravi A, Mantash S, Nehme R, Hallal R, Karaki H, Dhayni K, Faour WH, Kobeissy F, Nehme A, Zibara K. Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19. Front Med (Lausanne) 2021; 8:620990. [PMID: 33816521 PMCID: PMC8012486 DOI: 10.3389/fmed.2021.620990] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response.
Collapse
Affiliation(s)
- Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- College of Public Health, Phoenicia University, Zahrani, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Bassam Berry
- Institut Pasteur, Paris 6 University, Paris, France
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Nehme
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Hallal
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Hussein Karaki
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Kawthar Dhayni
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- EA7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
| | - Wissam H. Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Nehme
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
87
|
Maeda K, Higashi-Kuwata N, Kinoshita N, Kutsuna S, Tsuchiya K, Hattori SI, Matsuda K, Takamatsu Y, Gatanaga H, Oka S, Sugiyama H, Ohmagari N, Mitsuya H. Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Sci Rep 2021; 11:5563. [PMID: 33692457 PMCID: PMC7946899 DOI: 10.1038/s41598-021-84733-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
While there are various attempts to administer COVID-19-convalescent plasmas to SARS-CoV-2-infected patients, neither appropriate approach nor clinical utility has been established. We examined the presence and temporal changes of the neutralizing activity of IgG fractions from 43 COVID-19-convalescent plasmas using cell-based assays with multiple endpoints. IgG fractions from 27 cases (62.8%) had significant neutralizing activity and moderately to potently inhibited SARS-CoV-2 infection in cell-based assays; however, no detectable neutralizing activity was found in 16 cases (37.2%). Approximately half of the patients (~ 41%), who had significant neutralizing activity, lost the neutralization activity within ~ 1 month. Despite the rapid decline of neutralizing activity in plasmas, good amounts of SARS-CoV-2-S1-binding antibodies were persistently seen. The longer exposure of COVID-19 patients to greater amounts of SARS-CoV-2 elicits potent immune response to SARS-CoV-2, producing greater neutralization activity and SARS-CoV-2-S1-binding antibody amounts. The dilution of highly-neutralizing plasmas with poorly-neutralizing plasmas relatively readily reduced neutralizing activity. The presence of good amounts of SARS-CoV-2-S1-binding antibodies does not serve as a surrogate ensuring the presence of good neutralizing activity. In selecting good COVID-19-convalescent plasmas, quantification of neutralizing activity in each plasma sample before collection and use is required.
Collapse
Affiliation(s)
- Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan.
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan
| | | | - Satoshi Kutsuna
- Disease Control and Prevention Center (DCC), NCGM, Tokyo, Japan
| | | | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan
| | | | | | | | - Norio Ohmagari
- Disease Control and Prevention Center (DCC), NCGM, Tokyo, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan.
| |
Collapse
|
88
|
Indari O, Jakhmola S, Manivannan E, Jha HC. An Update on Antiviral Therapy Against SARS-CoV-2: How Far Have We Come? Front Pharmacol 2021; 12:632677. [PMID: 33762954 PMCID: PMC7982669 DOI: 10.3389/fphar.2021.632677] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 pandemic has spread worldwide at an exponential rate affecting millions of people instantaneously. Currently, various drugs are under investigation to treat an enormously increasing number of COVID-19 patients. This dreadful situation clearly demands an efficient strategy to quickly identify drugs for the successful treatment of COVID-19. Hence, drug repurposing is an effective approach for the rapid discovery of frontline arsenals to fight against COVID-19. Successful application of this approach has resulted in the repurposing of some clinically approved drugs as potential anti-SARS-CoV-2 candidates. Several of these drugs are either antimalarials, antivirals, antibiotics or corticosteroids and they have been repurposed based on their potential to negate virus or reduce lung inflammation. Large numbers of clinical trials have been registered to evaluate the effectiveness and clinical safety of these drugs. Till date, a few clinical studies are complete and the results are primary. WHO also conducted an international, multi-country, open-label, randomized trials-a solidarity trial for four antiviral drugs. However, solidarity trials have few limitations like no placebos were used, additionally any drug may show effectiveness for a particular population in a region which may get neglected in solidarity trial analysis. The ongoing randomized clinical trials can provide reliable long-term follow-up results that will establish both clinical safety and clinical efficacy of these drugs with respect to different regions, populations and may aid up to worldwide COVID-19 treatment research. This review presents a comprehensive update on majorly repurposed drugs namely chloroquine, hydroxychloroquine, remdesivir, lopinavir-ritonavir, favipiravir, ribavirin, azithromycin, umifenovir, oseltamivir as well as convalescent plasma therapy used against SARS-CoV-2. The review also summarizes the data recorded on the mechanism of anti-SARS-CoV-2 activity of these repurposed drugs along with the preclinical and clinical findings, therapeutic regimens, pharmacokinetics, and drug-drug interactions.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
89
|
Kim SB, Ryoo S, Huh K, Joo EJ, Kim YJ, Choi WS, Kim YJ, Yoon YK, Heo JY, Seo YB, Jeong SJ, Park DA, Yu SY, Lee HJ, Kim J, Jin Y, Park J, Peck KR, Choi M, Yeom JS. Revised Korean Society of Infectious Diseases/National Evidence-based Healthcarea Collaborating Agency Guidelines on the Treatment of Patients with COVID-19. Infect Chemother 2021; 53:166-219. [PMID: 34409790 PMCID: PMC8032920 DOI: 10.3947/ic.2021.0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the global effort to mitigate the spread, coronavirus disease 2019 (COVID-19) has become a pandemic that took more than 2 million lives. There are numerous ongoing clinical studies aiming to find treatment options and many are being published daily. Some effective treatment options, albeit of variable efficacy, have been discovered. Therefore, it is necessary to develop an evidence-based methodology, to continuously check for new evidence, and to update recommendations accordingly. Here we provide guidelines on pharmaceutical treatment for COVID-19 based on the latest evidence.
Collapse
Affiliation(s)
- Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seungeun Ryoo
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jeong Joo
- Division of Infectious Diseases, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung hospital, Seoul, Korea
| | - Youn Jeong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yae Jean Kim
- Division of Infectious Diseases and Immunodeficiency. Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University school of Medicine, Suwon, Korea
| | - Yu Bin Seo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Su Jin Jeong
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Park
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Su Yeon Yu
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Hyeon Jeong Lee
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Jimin Kim
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Yan Jin
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Jungeun Park
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Miyoung Choi
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea.
| | - Joon Sup Yeom
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
90
|
Kumar S, Sharma V, Priya K. Battle against COVID-19: Efficacy of Convalescent Plasma as an emergency therapy. Am J Emerg Med 2021; 41:244-246. [PMID: 32505474 PMCID: PMC7265850 DOI: 10.1016/j.ajem.2020.05.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Saurabh Kumar
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Kanu Priya
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
91
|
Aviani JK, Halim D, Soeroto AY, Achmad TH, Djuwantono T. Current views on the potentials of convalescent plasma therapy (CPT) as Coronavirus disease 2019 (COVID-19) treatment: A systematic review and meta-analysis based on recent studies and previous respiratory pandemics. Rev Med Virol 2021; 31:e2225. [PMID: 33621405 PMCID: PMC8014133 DOI: 10.1002/rmv.2225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Convalescent plasma therapy (CPT) has been investigated as a treatment for COVID-19. This review evaluates CPT in COVID-19 and other viral respiratory diseases, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and influenza. PubMed and Google scholar databases were used to collect eligible publications until 8 December 2020. Meta-analysis used Mantel-Haenszel risk ratio (RR) with 95% confidence interval (CI) and pooled analysis for individual patient data with inverse variance weighted average. The study is registered at PROSPERO with the number of CRD4200270579. Forty-four studies with 36,716 participants were included in the pooled analysis and 20 studies in the meta-analysis. Meta-analysis showed reduction of mortality (RR 0.57, 95% CI [0.43, 0.76], z = 3.86 [p < 0.001], I2 = 44% [p = 0.03]) and higher number of discharged patients (RR 2.53, 95% CI [1.72, 3.72], z = 4.70 [p < 0.001], I2 = 3% [p = 0.39]) in patients receiving CPT compared to standard care alone. A possible mechanism of action is prompt reduction in viral titre. Serious transfusion-related adverse events were reported to be less than 1% of cases, suggesting the overall safety of CPT; nevertheless, the number of patients participating in the studies was still limited. It is also important to notice that in all the studies, the majority of patients were also given other medications, such as antivirals, antibiotics and corticosteroid; furthermore, randomized controlled studies involving more patients and in combination with other treatment modalities are urgently needed.
Collapse
Affiliation(s)
- Jenifer Kiem Aviani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University/Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia.,Bandung Fertility Center, Limijati Mother and Child Hospital, Bandung, West Java, Indonesia
| | - Danny Halim
- Research Center for Medical Genetics, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | - Arto Yuwono Soeroto
- Department of Internal Medicine, Faculty of Medicine, Padjadjaran University / Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Tri Hanggono Achmad
- Research Center for Medical Genetics, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia.,Department of Basic Medical Science, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | - Tono Djuwantono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University/Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia.,Bandung Fertility Center, Limijati Mother and Child Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
92
|
Flieder T, Vollmer T, Müller B, Dreier J, Fischer B, Knabbe C, Birschmann I. Retrospective analysis of 426 donors of a convalescent collective after mild COVID-19. PLoS One 2021; 16:e0247665. [PMID: 33621254 PMCID: PMC7901786 DOI: 10.1371/journal.pone.0247665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread across the world. The aim of our study was to characterize mild courses and to determine the antibody status for these patients. METHODS We initiated an appeal for convalescent plasma donations. 615 people contacted us, and we ultimately included 426 in our analyses, in whom it was possible to assume COVID-19 based on detection of specific SARS-CoV-2 antibodies or virus detection during the disease using RT-PCR. RESULTS The median duration of the disease was 12 days and the most common symptoms were fatigue, cough and olfactory and gustatory dysfunction. Anti-SARS-CoV-2 IgG was detected in 82.4% of the persons and IgA antibodies were found in 73.9%. In 10.8%, no antibodies were detectable despite a positive RT-PCR result during the disease. Nevertheless, of 24 persons with asymptomatic courses of COVID-19, antibodies against SARS-CoV-2 could be detected in 23 (96%). Furthermore, there was a correlation between the duration of the disease and the detection of IgG antibodies. In addition, a correlation between the determined IgG antibodies and neutralizing antibodies was shown. CONCLUSION In this study, we were able to describe mild COVID-19 courses and determine antibody statuses for them. It could be shown that, despite SARS-CoV-2 detection during the disease, not all individuals developed antibodies or their level of antibodies had dropped below the detection limit shortly after the end of the disease. The extent to which immunity to re-infection is given in persons with undetectable antibodies (IgG, IgA) needs to be investigated in future studies.
Collapse
Affiliation(s)
- Tobias Flieder
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Tanja Vollmer
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Benjamin Müller
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Jens Dreier
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| | - Ingvild Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bad Oeynhausen, Germany
| |
Collapse
|
93
|
Yoon HA, Bartash R, Gendlina I, Rivera J, Nakouzi A, Bortz RH, Wirchnianski AS, Paroder M, Fehn K, Serrano-Rahman L, Babb R, Sarwar UN, Haslwanter D, Laudermilch E, Florez C, Dieterle ME, Jangra RK, Fels JM, Tong K, Mariano MC, Vergnolle O, Georgiev GI, Herrera NG, Malonis RJ, Quiroz JA, Morano NC, Krause GJ, Sweeney JM, Cowman K, Allen S, Annam J, Applebaum A, Barboto D, Khokhar A, Lally BJ, Lee A, Lee M, Malaviya A, Sample R, Yang XA, Li Y, Ruiz R, Thota R, Barnhill J, Goldstein DY, Uehlinger J, Garforth SJ, Almo SC, Lai JR, Gil MR, Fox AS, Chandran K, Wang T, Daily JP, Pirofski LA. Treatment of severe COVID-19 with convalescent plasma in Bronx, NYC. JCI Insight 2021; 6:142270. [PMID: 33476300 PMCID: PMC7934933 DOI: 10.1172/jci.insight.142270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.
Collapse
Affiliation(s)
- Hyun ah Yoon
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Rachel Bartash
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Inessa Gendlina
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Johanna Rivera
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Antonio Nakouzi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | | | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology and
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Karen Fehn
- Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | - Rachelle Babb
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Uzma N. Sarwar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | | | - Catalina Florez
- Department of Microbiology and Immunology and
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, USA
| | | | | | | | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margarette C. Mariano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - George I. Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jose A. Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gregory J. Krause
- Department of Developmental & Molecular Biology
- Institute for Aging Research, and
| | - Joseph M. Sweeney
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelsie Cowman
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | | | | | - Daniel Barboto
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ahmed Khokhar
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Audrey Lee
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Max Lee
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Reise Sample
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiuyi A. Yang
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yang Li
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rafael Ruiz
- Network Performance Group, Montefiore Medical Center, Bronx, New York, USA
- Division of Hospital Medicine, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raja Thota
- Network Performance Group, Montefiore Medical Center, Bronx, New York, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, USA
| | | | | | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Johanna P. Daily
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| |
Collapse
|
94
|
Pharmacological mechanism of immunomodulatory agents for the treatment of severe cases of COVID-19 infection. Inflamm Res 2021; 70:389-405. [PMID: 33608746 PMCID: PMC7894237 DOI: 10.1007/s00011-021-01445-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is a world-wide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, treatment of severe COVID-19 is far from clear. Therefore, it is urgent to develop an effective option for the treatment of patients with COVID-19. Most patients with severe COVID-19 exhibit markedly increased serum levels of pro-inflammatory cytokines, including interferon (IFN)-α, IFN-γ, and interleukin (IL)-1β. Immunotherapeutic strategies have an important role in the suppression of cytokine storm and respiratory failure in patients with COVID-19. METHODS A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, as well as Google Scholar preprint database using all available MeSH terms for Coronavirus, SARS-CoV-2, anti-rheumatoid agents, COVID-19, cytokine storm, immunotherapeutic drugs, IFN, interleukin, JAK/STAT inhibitors, MCP, MIP, TNF. RESULTS Here, we first review common complications of COVID-19 patients, particularly neurological symptoms. We next explain host immune responses against COVID-19 particles. Finally, we summarize the existing experimental and clinical immunotherapeutic strategies, particularly anti-rheumatoid agents and also plasma (with a high level of gamma globulin) therapy for severe COVID-19 patients. We discuss both their therapeutic effects and side effects that should be taken into consideration for their clinical application. CONCLUSION It is suggested that immunosuppressants, such as anti-rheumatoid drugs, could be considered as a potential approach for the treatment of cytokine storm in severe cases of COVID-19. One possible limitation of immunosuppressant therapy is their inhibitory effects on host anti-viral immune response. So, the appropriate timing of administration should be carefully considered.
Collapse
|
95
|
Piec I, English E, Thomas MA, Dervisevic S, Fraser WD, John WG. Performance of SARS-CoV-2 serology tests: Are they good enough? PLoS One 2021; 16:e0245914. [PMID: 33596236 PMCID: PMC7888604 DOI: 10.1371/journal.pone.0245914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/09/2021] [Indexed: 12/28/2022] Open
Abstract
In the emergency of the SARS-CoV-2 pandemic, great efforts were made to quickly provide serology testing to the medical community however, these methods have been introduced into clinical practice without the complete validation usually required by the regulatory organizations. SARS-CoV-2 patient samples (n = 43) were analyzed alongside pre-pandemic control specimen (n = 50), confirmed respiratory infections (n = 50), inflammatory polyarthritis (n = 22) and positive for thyroid stimulating immunoglobulin (n = 30). Imprecision, diagnostic sensitivity and specificity and concordance were evaluated on IgG serologic assays from EuroImmun, Epitope Diagnostics (EDI), Abbott Diagnostics and DiaSorin and a rapid IgG/IgM test from Healgen. EDI and EuroImmun imprecision was 0.02-14.0% CV. Abbott and DiaSorin imprecision (CV) ranged from 5.2%-8.1% and 8.2%-9.6% respectively. Diagnostic sensitivity of the assays was 100% (CI: 80-100%) for Abbott, EDI and EuroImmun and 95% (CI: 73-100%) for DiaSorin at ≥14 days post PCR. Only the Abbott assay had a diagnostic specificity of 100% (CI: 91-100%). EuroImmun cross-reacted in 3 non-SARS-CoV-2 respiratory infections and 2 controls. The DiaSorin displayed more false negative results and cross-reacted in six cases across all conditions tested. EDI had one cross-reactive sample. The Healgen rapid test showed excellent sensitivity and specificity. Overall, concordance of the assays ranged from 76.1% to 97.9%. Serological tests for SARS-CoV-2 showed good analytical performance. The head-to-head analysis of samples revealed differences in results that may be linked to the use of nucleocapsid or spike proteins. The point of care device tested demonstrated adequate performance for antibody detection.
Collapse
Affiliation(s)
- Isabelle Piec
- BioAnalytical Facility, Faculty of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Emma English
- Faculty of Medicine and Health, University of East Anglia, Norwich, United Kingdom
| | | | - Samir Dervisevic
- Virology Department, Norfolk and Norwich University Hospitals, Norwich, United Kingdom
| | - William D. Fraser
- BioAnalytical Facility, Faculty of Medicine, University of East Anglia, Norwich, United Kingdom
- Clinical Biochemistry Department, Norfolk and Norwich University Hospitals, Norwich, United Kingdom
| | - William Garry John
- Faculty of Medicine and Health, University of East Anglia, Norwich, United Kingdom
- Clinical Biochemistry Department, Norfolk and Norwich University Hospitals, Norwich, United Kingdom
| |
Collapse
|
96
|
Oguntuyo KY, Stevens CS, Hung CT, Ikegame S, Acklin JA, Kowdle SS, Carmichael JC, Chiu HP, Azarm KD, Haas GD, Amanat F, Klingler J, Baine I, Arinsburg S, Bandres JC, Siddiquey MNA, Schilke RM, Woolard MD, Zhang H, Duty AJ, Kraus TA, Moran TM, Tortorella D, Lim JK, Gamarnik AV, Hioe CE, Zolla-Pazner S, Ivanov SS, Kamil JP, Krammer F, Lee B. Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. mBio 2021; 12:e02492-20. [PMID: 33593976 PMCID: PMC8545089 DOI: 10.1128/mbio.02492-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.
Collapse
Affiliation(s)
- Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chuan Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Ian Baine
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Suzanne Arinsburg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan C Bandres
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Hongbo Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Andrew J Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A Kraus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea V Gamarnik
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- COVIDAR Argentina Consortium, Buenos Aires, Argentina
| | - Catarina E Hioe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Susan Zolla-Pazner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
97
|
Langarizadeh MA, Ranjbar Tavakoli M, Abiri A, Ghasempour A, Rezaei M, Ameri A. A review on function and side effects of systemic corticosteroids used in high-grade COVID-19 to prevent cytokine storms. EXCLI JOURNAL 2021; 20:339-365. [PMID: 33746666 PMCID: PMC7975631 DOI: 10.17179/excli2020-3196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
In December 2019, a cluster of pneumonia caused by a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, Hubei province, China. Cytokine storm is an uncontrolled systemic inflammatory response resulting from the release of large amounts of pro-inflammatory cytokines and chemokines that occurs at phase 3 of viral infection. Such emergence led to the development of many clinical trials to discover efficient drugs and therapeutic protocols to fight with this single-stranded RNA virus. Corticosteroids suppress inflammation of the lungs during the cytokine storm, weaken immune responses, and inhibit the elimination of pathogen. For this reason, in COVID-19 corticosteroid therapy, systemic inhibition of inflammation is observed with a wide range of side effects. The present review discusses the effectiveness of the corticosteroid application in COVID-19 infection and the related side effects of these agents. In summary, a number of corticosteroids, including and especially methylprednisolone and dexamethasone, have demonstrated remarkable efficacy, particularly for COVID-19 patients who underwent mechanical ventilation.
Collapse
Affiliation(s)
- Mohammad Amin Langarizadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ardavan Abiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Ghasempour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
98
|
Zuo Z, Wu T, Pan L, Zuo C, Hu Y, Luo X, Jiang L, Xia Z, Xiao X, Liu J, Ye M, Deng M. Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Front Pharmacol 2021; 11:583914. [PMID: 33643033 PMCID: PMC7908061 DOI: 10.3389/fphar.2020.583914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly throughout the world. Although COVID-19 has a relatively low case severity rate compared to SARS and Middle East Respiratory syndrome it is a major public concern because of its rapid spread and devastating impact on the global economy. Scientists and clinicians are urgently trying to identify drugs to combat the virus with hundreds of clinical trials underway. Current treatments could be divided into two major part: anti-viral agents and host system modulatory agents. On one hand, anti-viral agents focus on virus infection process. Umifenovir blocks virus recognizing host and entry. Remdesivir inhibits virus replication. Chloroquine and hydroxychloroquine involve preventing the whole infection process, including virus transcription and release. On the other hand, host system modulatory agents are associated with regulating the imbalanced inflammatory reaction and biased immune system. Corticosteroid is believed to be commonly used for repressing hyper-inflammation, which is one of the major pathologic mechanisms of COVID-19. Convalescent plasma and neutralizing antibodies provide essential elements for host immune system and create passive immunization. Thrombotic events are at high incidence in COVID-19 patients, thus anti-platelet and anti-coagulation are crucial, as well. Here, we summarized these current or reproposed agents to better understand the mechanisms of agents and give an update of present research situation.
Collapse
Affiliation(s)
- Zhihong Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Chenzhe Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingchuo Hu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
99
|
Klassen SA, Senefeld J, Johnson PW, Carter RE, Wiggins CC, Shoham S, Grossman BJ, Henderson JP, Musser JM, Salazar E, Hartman WR, Bouvier NM, Liu STH, Pirofski LA, Baker SE, Van Helmond N, Wright RS, Fairweather D, Bruno KA, Paneth NS, Casadevall A, Joyner MJ. The Effect of Convalescent Plasma Therapy on COVID-19 Patient Mortality: Systematic Review and Meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33140056 DOI: 10.1101/2020.07.29.20162917] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials (RCT), 20 matched-control studies, two dose-response studies, and 96 case-reports or case series. Studies published between January 1, 2020 to January 16, 2021 were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of RCT and matched-control data demonstrated that COVID-19 patients transfused with convalescent plasma exhibited a lower mortality rate compared to patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized COVID-19 patients.
Collapse
|
100
|
von Rhein C, Scholz T, Henss L, Kronstein-Wiedemann R, Schwarz T, Rodionov RN, Corman VM, Tonn T, Schnierle BS. Comparison of potency assays to assess SARS-CoV-2 neutralizing antibody capacity in COVID-19 convalescent plasma. J Virol Methods 2021; 288:114031. [PMID: 33275926 PMCID: PMC7707675 DOI: 10.1016/j.jviromet.2020.114031] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022]
Abstract
Convalescent plasma is plasma collected from individuals after resolution of an infection and the development of antibodies. Passive antibody administration by transfusion of convalescent plasma is currently in clinical evaluations to treat COVID-19 patients. The level of neutralizing antibodies vary among convalescent patients and fast and simple methods to identify suitable plasma donations are needed. We compared three methods to determine the SARS-CoV-2 neutralizing activity of human convalescent plasma: life virus neutralization by plaque reduction assay, a lentiviral vector based pseudotype neutralization assay and a competition ELISA-based surrogate virus neutralization assay (sVNT). Neutralization activity correlated among the different assays; however the sVNT assay was overvaluing the low neutralizing plasma. On the other hand, the sVNT assay required the lowest biosafety level, is fast and is sufficient to identify highly neutralizing plasma samples. Though weakly neutralizing samples were more reliable detected by the more challenging lentiviral vector based assays or virus neutralization assays. Spike receptor binding competition assays are suitable to identify highly neutralizing plasma samples under low biosafety requirements. Detailed analysis of in vitro neutralization activity requires more sophisticated methods that have to be performed under higher biosafety levels.
Collapse
Affiliation(s)
- Christine von Rhein
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Tatjana Scholz
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Lisa Henss
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Romy Kronstein-Wiedemann
- Experimentelle Transfusionsmedizin, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charite - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117 Berlin, Germany; German Centre for Infection Research, Berlin, Germany
| | - Roman N Rodionov
- Department of Medicine III, University Hospital Carl-Gustav, Dresden, Germany
| | - Victor M Corman
- Institute of Virology, Charite - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117 Berlin, Germany; German Centre for Infection Research, Berlin, Germany
| | - Torsten Tonn
- Experimentelle Transfusionsmedizin, Medical Faculty Carl Gustav Carus, TU Dresden and Institute for Transfusion Medicine Dresden, DRK Blutspendedienst Nord-Ost, Dresden, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany.
| |
Collapse
|