51
|
von Steimker J, Tripodi P, Wendenburg R, Tringovska I, Nankar AN, Stoeva V, Pasev G, Klemmer A, Todorova V, Bulut M, Tikunov Y, Bovy A, Gechev T, Kostova D, Fernie AR, Alseekh S. The genetic architecture of the pepper metabolome and the biosynthesis of its signature capsianoside metabolites. Curr Biol 2024; 34:4209-4223.e3. [PMID: 39197460 DOI: 10.1016/j.cub.2024.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome. This genetic analysis provided over 1,000 metabolic quantitative trait loci (mQTL) for over 250 annotated metabolites. We identified 92 candidate genes involved in various mQTLs. Among the identified loci, we described and validated a gene cluster of eleven UDP-glycosyltransferases (UGTs) involved in monomeric capsianoside biosynthesis. We additionally constructed the gene-by-gene-based biosynthetic pathway of pepper capsianoside biosynthesis, including both core and decorative reactions. Given that one of these decorative pathways, namely the glycosylation of acyclic diterpenoid glycosides, contributes to plant resistance, these data provide new insights and breeding resources for pepper. They additionally provide a blueprint for the better understanding of the biosynthesis of species-specific natural compounds in general.
Collapse
Affiliation(s)
- Julia von Steimker
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | - Regina Wendenburg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Amol N Nankar
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Veneta Stoeva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Gancho Pasev
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Velichka Todorova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria; Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., Plovdiv 4000, Bulgaria
| | - Dimitrina Kostova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 32 Brezovsko shosse str., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel, Plovdiv 4023, Bulgaria.
| |
Collapse
|
52
|
Wang Y, Li L, Yan Y, Zhang T, Hu L, Chen J, Zha Y. Integration of texture analysis based on DCE-MRI K trans map and metabolomics of early bone marrow microvascular changes in alloxan-induced diabetic rabbits. BMC Med Imaging 2024; 24:247. [PMID: 39285283 PMCID: PMC11406872 DOI: 10.1186/s12880-024-01416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To evaluate early bone marrow microvascular changes in alloxan-induced diabetic rabbits using IDEAL-IQ fat quantification, texture analysis based on DCE-MRI Ktrans map, and metabolomics. MATERIALS AND METHODS 24 male Japanese rabbits were randomly divided into diabetic (n = 12) and control (n = 12) groups. All rabbits underwent sagittal MRI of the lumbar vertebrae at the 0th,4th, 8th, 12th, and 16th week, respectively. The fat fraction (FF) ratio and quantitative permeability of the lumbar bone marrow was measured. Texture parameters were extracted from DCE-MRI Ktrans map. At 16th week, lumbar vertebrae 5 and 6 were used for histological analysis. Lumbar vertebra 7 was crushed to obtain bone marrow for metabolomics research. RESULTS The FF ratio and Ktrans of the lumbar bone marrow in diabetic group were increased significantly at 16th week (t = 2.226, P = 0.02; Z = -2.721, P < 0.01). Nine texture feature parameters based on DCE-MRI Ktrans map were significantly different between the groups at the 16th week (all P < 0.05). Pathway analysis showed that diabetic bone marrow microvascular changes were mainly related to linoleic acid metabolism. Differential metabolites were correlated with the number of adipocytes, FF ratio, and permeability parameters. CONCLUSION The integration of metabolomics with texture analysis based on DCE-MRI Ktrans map may be used to evaluate diabetic bone marrow microvascular changes at an early stage. It remains to be validated in clinical studies whether the integration of metabolomics with texture analysis based on the DCE-MRI Ktrans map can effectively evaluate diabetic bone marrow.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchen Yan
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lei Hu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jun Chen
- Pharmaceutical Diagnostics, GE healthcare (China), Beijing, 100176, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
53
|
Khan I, Timsina L, Chauhan R, Ingersol C, Wang DR, Rinne E, Muraru R, Mohan G, Minto RE, Van Natta BW, Hassanein AH, Kelley-Patteson C, Sinha M. Oxylipins in Breast Implant-Associated Systemic Symptoms. Aesthet Surg J 2024; 44:NP695-NP710. [PMID: 38857184 PMCID: PMC11403815 DOI: 10.1093/asj/sjae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND A subset of females with breast implants have reported a myriad of nonspecific systemic symptoms collectively termed systemic symptoms associated with breast implants (SSBI). SSBI symptoms are similar to manifestations associated with autoimmune and connective tissue disorders. Breast tissue is rich in adipose cells, comprised of lipids. Insertion of an implant creates an oxidative environment leading to lipid oxidation. Oxylipins can influence immune responses and inflammatory processes. OBJECTIVES In this study we explored the abundance of a spectrum of oxylipins in the periprosthetic tissue surrounding the breast implant. Because oxylipins are immunogenic, we sought to determine if they were associated with the SSBI patients. We have also attempted to determine if the common manifestations exhibited by such patients have any association with oxylipin abundance. METHODS The study included 120 patients divided into 3 cohorts. We analyzed 46 patients with breast implants exhibiting manifestations associated with SSBI; 29 patients with breast implants not exhibiting manifestations associated with SSBI (control cohort I, non-SSBI); and 45 patients without implants (control cohort II, no-implant tissue). Lipid extraction and oxylipin quantification were performed with liquid chromatography mass spectrometry (LC-MS/MS). LC-MS/MS targeted analysis of the breast adipose tissue was performed. RESULTS Of the 15 oxylipins analyzed, 5 exhibited increased abundance in the SSBI cohort when compared to the non-SSBI and no-implant cohorts. CONCLUSIONS The study documents the association of the oxylipins with each manifestation reported by the patient. This study provides an objective assessment of the subjective questionnaire, highlighting which symptoms may be more relevant than the others. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mithun Sinha
- Corresponding Author: Dr Mithun Sinha, Indiana University School of Medicine, 975 W Walnut St, Medical Research Library Building, Suite # 444A, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|
54
|
Wang L, Li F, Hu S, Xu Y, Zhu Z, Qin W, Yu W, Chen Y, Wang T. Decreased plasma docosahexaenoic acid concentration in chronic obstructive pulmonary disease patients with pulmonary Hypertension: Findings from human lipidomics and transcriptomics analysis. Clin Chim Acta 2024; 563:119899. [PMID: 39134219 DOI: 10.1016/j.cca.2024.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Oxylipins derived from polyunsaturated fatty acids (PUFAs) are important endogenous signaling molecules, but are little characterized in pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD). In this study, we identified novel plasma oxylipins associated with PH risk in COPD patients. The plasma oxylipin profiles of COPD patients without PH (COPD-noPH) or with PH (COPD-PH) were obtained from discovery and validation cohort, using the process of LC-MS/MS analysis. There was a significant decrease in the plasma levels of both free docosahexaenoic acid (DHA) and DHA-derived oxylipins in the COPD-PH group. The multivariable logistic regression model identified DHA and four DHA-derived oxylipins (13-HDHA, 10-HDHA, 8-HDHA and 16-HDHA) exhibited significant differences between the two groups after adjusting for sex, BMI, FEV1% predicted, and smoking status. The diagnostic value of these metabolites was further evaluated through ROC curve analysis. The transcriptome profiles in peripheral blood mononuclear cells (PBMCs) of COPD-PH patients and COPD-PH patients were detected through high-throughput sequencing. The enrichment analysis revealed that the upregulated differentially expressed genes (DEGs) were highly enriched in the interferon signaling pathway. In addition, DHA supplementation proved that DHA may inhibit the development of pH by reducing the secretion of interferons derived from PBMCs. This conjecture was further confirmed by the higher level of serum interferon-γ and interferon-α2 of COPD-PH patients than that of COPD-noPH patients. The present study highlights that decreased DHA and DHA-derived oxylipins levels are suggestive of a higher risk of pH development in COPD cases.
Collapse
Affiliation(s)
- Lu Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajiu Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shunlian Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyang Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Wei Qin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Wei Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
55
|
D'Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals (Basel) 2024; 17:1185. [PMID: 39338347 PMCID: PMC11434829 DOI: 10.3390/ph17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people, with over 2000 mutations in the CFTR gene. Although highly effective modulators have been developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the inflammatory response is widely recognized, less is known about their impact on immunomodulation and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid processing, worsening the chronic airway inflammation, and compromising the immune responses to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are being investigated as a promising approach to balance the inflammatory response while mitigating disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open innovative avenues for designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Simona D'Orazio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
56
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
57
|
Kelling M, Dimza M, Bartlett A, Traktuev DO, Duarte JD, Keeley EC. Omega-3 fatty acids in the treatment of heart failure. Curr Probl Cardiol 2024; 49:102730. [PMID: 38950721 DOI: 10.1016/j.cpcardiol.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) have garnered increased attention as a therapeutic option in cardiovascular disease. Most of the research to date has focused on their lipid altering effects and clinical benefits in patients with coronary artery disease, however, there are data supporting their use in the treatment of heart failure. We review the mechanisms through which Ω-3 PUFAs exert their positive effects on the cardiovascular system and highlight the observational and treatment studies that assessed their effects in patients with heart failure.
Collapse
Affiliation(s)
- Matthew Kelling
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Michelle Dimza
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Alec Bartlett
- Department of Medicine, University of Arizona, Phoenix, Arizona, United States
| | - Dmitry O Traktuev
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Pulmonary, Critical care and Sleep Medicine, University of Florida
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - Ellen C Keeley
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
58
|
Azizpor P, Okakpu OK, Parks SC, Chavez D, Eyabi F, Martinez-Beltran S, Nguyen S, Dillman AR. Polyunsaturated fatty acids stimulate immunity and eicosanoid production in Drosophila melanogaster. J Lipid Res 2024; 65:100608. [PMID: 39069231 PMCID: PMC11386307 DOI: 10.1016/j.jlr.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems, including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors, such as linoleic acid (LA), to produce downstream eicosanoids. In this study, we show that introduction of arachidonic acid (AA) stimulates production of cyclooxygenase, lipoxygenase, and cytochrome P450-derived eicosanoids. Downstream immune readouts showed that LA stimulates phagocytosis by hemocytes, while both LA and AA stimulate increased antimicrobial peptide production when D. melanogaster is exposed to a heat-killed bacterial pathogen. In totality, this work identifies PUFAs that are involved in insect immunity and adds evidence to the notion that Drosophila utilizes immunostimulatory lipid signaling to mitigate bacterial infections. Our understanding of immune signaling in the fly and its analogies to mammalian systems will increase the power and value of Drosophila as a model organism in immune studies.
Collapse
Affiliation(s)
- Pakeeza Azizpor
- Department of Nematology, University of California, Riverside, CA, USA
| | - Ogadinma K Okakpu
- Department of Nematology, University of California, Riverside, CA, USA
| | - Sophia C Parks
- Department of Nematology, University of California, Riverside, CA, USA
| | - Diego Chavez
- Department of Nematology, University of California, Riverside, CA, USA
| | - Fayez Eyabi
- Department of Nematology, University of California, Riverside, CA, USA
| | | | - Susan Nguyen
- Department of Nematology, University of California, Riverside, CA, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA, USA.
| |
Collapse
|
59
|
Liput KP, Lepczyński A, Poławska E, Ogłuszka M, Starzyński R, Urbański P, Nawrocka A, Jończy A, Pierzchała D, Pareek CS, Gołyński M, Woźniakowski G, Czarnik U, Pierzchała M. Murine hepatic proteome adaptation to high-fat diets with different contents of saturated fatty acids and linoleic acid : α-linolenic acid polyunsaturated fatty acid ratios. J Vet Res 2024; 68:427-441. [PMID: 39318514 PMCID: PMC11418388 DOI: 10.2478/jvetres-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Some health disorders, such as obesity and type 2 diabetes, are associated with a poor diet and low quality of the fat in it. The type and duration of the diet have an impact on the liver. This investigation uses the proteomic approach to identify changes in the mouse liver protein profile in adaptation to high-fat diets with different saturated fatty acid contents and linoleic acid (18:2n-6) to α-linolenic acid (18:3n-3) fatty acid ratios. Material and Methods Four groups of male mice were fed different diets: one standard diet and three high-fat diets were investigated. After six months on these diets, the animals were sacrificed for liver dissection. Two-dimensional electrophoresis was used to separate the complex liver protein mixture, which enabled the separation of proteins against a wide, 3-10 range of pH and molecular weights of 15-250 kDa. Protein profiles were analysed in the PDQuest Advanced 8.0.1 program. Differentially expressed spots were identified using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry and peptide mass fingerprinting. The levels of identified proteins were validated using Western blotting. Transcript levels were evaluated using a real-time quantitative PCR. Results The analysis of mouse liver protein profiles enabled the identification of 32 protein spots differing between nutritional groups. Conclusion A diet high in polyunsaturated fatty acids modulated the levels of liver proteins involved in critical metabolic pathways, including amino acid metabolism, carbohydrate metabolism and cellular response to oxidative stress.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106Warsaw, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270Szczecin, Poland
| | - Ewa Poławska
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Magdalena Ogłuszka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Rafał Starzyński
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Paweł Urbański
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Agata Nawrocka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Aneta Jończy
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Dorota Pierzchała
- Maria Skłodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland
| | - Chandra S. Pareek
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Marcin Gołyński
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Mariusz Pierzchała
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| |
Collapse
|
60
|
Sule RO, Morisseau C, Yang J, Hammock BD, Gomes AV. Triazine herbicide prometryn alters epoxide hydrolase activity and increases cytochrome P450 metabolites in murine livers via lipidomic profiling. Sci Rep 2024; 14:19135. [PMID: 39160161 PMCID: PMC11333623 DOI: 10.1038/s41598-024-69557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.
Collapse
Affiliation(s)
- Rasheed O Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
61
|
Serefko A, Jach ME, Pietraszuk M, Świąder M, Świąder K, Szopa A. Omega-3 Polyunsaturated Fatty Acids in Depression. Int J Mol Sci 2024; 25:8675. [PMID: 39201362 PMCID: PMC11354246 DOI: 10.3390/ijms25168675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids have received considerable attention in the field of mental health, in particular regarding the treatment of depression. This review presents an overview of current research on the role of omega-3 fatty acids in the prevention and treatment of depressive disorders. The existing body of evidence demonstrates that omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant effects that can be attributed to their modulation of neuroinflammation, neurotransmitter function, and neuroplasticity. Nevertheless, clinical trials of omega-3 supplementation have yielded inconsistent results. Some studies have demonstrated significant reductions in depressive symptoms following omega-3 treatment, whereas others have shown minimal to no beneficial impact. A range of factors, encompassing dosage, the ratio of EPA to DHA, and baseline nutritional status, have been identified as having a potential impact on the noted results. Furthermore, it has been suggested that omega-3 fatty acids may act as an adjunctive treatment for those undergoing antidepressant treatment. Notwithstanding these encouraging findings, discrepancies in study designs and variability in individual responses underscore the necessity of further research in order to establish uniform, standardized guidelines for the use of omega-3 fatty acids in the management of depressive disorders.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| | - Marlena Pietraszuk
- Student Scientific Club, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Małgorzata Świąder
- Student Scientific Club, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
- Student Scientific Club, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8b Jaczewskiego, 20-090 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| |
Collapse
|
62
|
Li T, Dou Y, Ji J, Chen H, Zhu S, Wang M, Xiong Y, Wang Z, Shan J, Qian K, An L, Lin L, Wang S, Dai Q. Lipidomics reveals the serum profiles of pediatric allergic rhinitis and its severity. Biomed Chromatogr 2024; 38:e5927. [PMID: 38866427 DOI: 10.1002/bmc.5927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Allergic rhinitis (AR) is a prevalent upper airway chronic inflammatory disease in children worldwide. The role of bioactive lipids in the regulation of AR has been recognized, but the underlying serum lipidomic basis of its pathology remains unclear. We utilized ultra-performance liquid chromatography (UPLC)-Q-Exactive Orbitrap/mass spectrometry (MS) to investigate the serum lipidomic profiles of children with AR. The lipidomic analysis identified 42 lipids that were differentially expressed (p < 0.05, fold change > 2) between the AR (n = 75) and normal control groups (n = 44). Specifically, the serum levels of diacylglycerol (DG), triacylglycerol (TG), fatty acid (FA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine, phosphatidyl-ethanolamine, and cardiolipins were significantly higher in the AR group. The diagnostic potential of the identified lipids was further evaluated using receiver operating characteristic curve analysis. The analysis revealed that five lipids, including FA 30:7, LPC O-18:1, LPC 18:0, LPC 16:0, and DG 34:0, had area under the curve values greater than 0.9 (p < 0.05). Furthermore, serum levels of IgE and IL-33, markers of AR severity, were found to have a significant positive correlation (p < 0.05) with DGs, LPCs, TGs, and FAs in AR patients. This study revealed the lipid disorders associated with AR and its severity, providing new insights into the pathological process of AR.
Collapse
Affiliation(s)
- Tao Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuzhu Dou
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaoyun Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Wang
- Department of Traditional Chinese Medicine, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Yingcai Xiong
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Wang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Li An
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qigang Dai
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
63
|
Portier L, Daira P, Fourmaux B, Heinrich S, Becerra M, Fouillade C, Berthault N, Dutreix M, Londoño-Vallejo A, Verrelle P, Bernoud-Hubac N, Favaudon V. Differential Remodeling of the Oxylipin Pool After FLASH Versus Conventional Dose-Rate Irradiation In Vitro and In Vivo. Int J Radiat Oncol Biol Phys 2024; 119:1481-1492. [PMID: 38340776 DOI: 10.1016/j.ijrobp.2024.01.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE The products of lipid peroxidation have been implicated in human diseases and aging. This prompted us to investigate the response to conventional (CONV) versus FLASH irradiation of oxylipins, a family of bioactive lipid metabolites derived from omega-3 or omega-6 polyunsaturated fatty acids through oxygen-dependent non-enzymatic as well as dioxygenase-mediated free radical reactions. METHODS AND MATERIALS Ultrahigh performance liquid chromatography coupled to tandem mass spectrometry was used to quantify the expression of 37 oxylipins derived from eicosatetraenoic, eicosapentaenoic and docosahexaenoic acid in mouse lung and in normal or cancer cells exposed to either radiation modality under precise monitoring of the temperature and oxygenation. Among the 37 isomers assayed, 14-16 were present in high enough amount to enable quantitative analysis. The endpoints were the expression of oxylipins as a function of the dose of radiation, normoxia versus hypoxia, temperature and post-irradiation time. RESULTS In normal, normoxic cells at 37°C radiation elicited destruction and neosynthesis of oxylipins acting antagonistically on a background subject to rapid remodeling by oxygenases. Neosynthesis was observed in the CONV mode only, in such a way that the level of oxylipins at 5 minutes after FLASH irradiation was 20-50% lower than in non-irradiated and CONV-irradiated cells. Hypoxia mitigated the differential CONV versus FLASH response in some oxylipins. These patterns were not reproduced in tumor cells. Depression of specific oxylipins following FLASH irradiation was observed in mouse lung at 5 min following irradiation, with near complete recovery in 24 hours and further remodeling at one week and two months post-irradiation. CONCLUSIONS Down-regulation of oxylipins was a hallmark of FLASH irradiation specific of normal cells. Temperature effects suggest that this process occurs via diffusion-controlled, bimolecular recombination of a primary radical species upstream from peroxyl radical formation and evoke a major role of the membrane composition and fluidity in response to the FLASH modality.
Collapse
Affiliation(s)
- Lucie Portier
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Patricia Daira
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR 5259, Villeurbanne, France
| | | | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Margaux Becerra
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Nathalie Berthault
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Arturo Londoño-Vallejo
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | - Pierre Verrelle
- Institut Curie, Hospital Section, Department of Radiotherapy-Oncology, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, Research Division, Inserm U 1196-CNRS UMR 9187, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France
| | | | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, Paris-Saclay University, PSL Research University, Centre Universitaire CS 90030, Orsay, France.
| |
Collapse
|
64
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
65
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605803. [PMID: 39131270 PMCID: PMC11312534 DOI: 10.1101/2024.07.30.605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
66
|
Albiach-Delgado A, Moreno-Casillas JL, Ten-Doménech I, Cascant-Vilaplana MM, Moreno-Giménez A, Gómez-Ferrer M, Sepúlveda P, Kuligowski J, Quintás G. Oxylipin profile of human milk and human milk-derived extracellular vesicles. Anal Chim Acta 2024; 1313:342759. [PMID: 38862207 DOI: 10.1016/j.aca.2024.342759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 μL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Jose L Moreno-Casillas
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain; Cardiology Service, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain; Department of Pathology, University of Valencia, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
67
|
Harsch BA, Borkowski K, Walker RE, Pedersen TL, Newman JW, Shearer GC. ABCA1 and apoA-I dependent 12-hydroxyeicosatetraenoic acid efflux regulates macrophage inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603001. [PMID: 39026807 PMCID: PMC11257534 DOI: 10.1101/2024.07.11.603001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Aberrant high-density lipoprotein (HDL) function is implicated in inflammation-associated pathologies. While HDL ABCA1-mediated reverse cholesterol and phospholipid transport are well described, the movement of pro-/anti-inflammatory lipids has not been explored. HDL phospholipids are the largest reservoir of circulating arachidonic acid-derived oxylipins. Endotoxin-stimulation activates inflammatory cells leading to hydroxyeicosatetraenoic acid (HETE) production, oxylipins which are involved in inflammatory response coordination. Active signaling in the non-esterified (NE) pool is terminated by sequestration of HETEs as esterified (Es) forms and degradation. We speculate that an ABCA1-apoA-I-dependent efflux of HETEs from stimulated cells could regulate intracellular HETE availability. Here we test this hypothesis both in vitro and in vivo. In endotoxin-stimulated RAW-264.7 macrophages preloaded with d8-arachidonic acid we use compartmental tracer modeling to characterize the formation of HETEs, and their efflux into HDL. We found that in response to endotoxin: I) Cellular NE 12-HETE is positively associated with MCP-1 secretion (p<0.001); II) HETE transfer from NE to Es pools is ABCA1-depedent (p<0.001); III) Cellular Es HETEs are transported into media when both apoA-I and ABCA1 are present (p<0.001); IV) The stimulated efflux of HETEs >> arachidonate (p<0.001). Finally, in endotoxin challenged humans (n=17), we demonstrate that intravenous lipopolysaccharide (0.6 ng/kg body weight) resulted in accumulation of 12-HETE in HDL over a 168-hour follow-up. Therefore, HDL can suppress inflammatory responses in macrophages by regulating intracellular HETE content in an apoA-I/ABCA1 dependent manner. The described mechanism may apply to other oxylipins and explain anti-inflammatory properties of HDL. This newly defined HDL property opens new doors for the study of lipoprotein interactions in metabolic diseases.
Collapse
Affiliation(s)
- Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Kamil Borkowski
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA
| | - Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | | | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis CA
- Department of Nutrition, University of California Davis, Davis CA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
68
|
Daniels M, Margolis LM, Rood JC, Lieberman HR, Pasiakos SM, Karl JP. Comparative analysis of circulating metabolomic profiles identifies shared metabolic alterations across distinct multistressor military training exercises. Physiol Genomics 2024; 56:457-468. [PMID: 38738316 PMCID: PMC11368567 DOI: 10.1152/physiolgenomics.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.
Collapse
Affiliation(s)
- Michael Daniels
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
69
|
Telles-Langdon SM, Arya V, Haasbeek PR, Cheung DY, Eekhoudt CR, Mackic L, Bryson AN, Varghese SS, Austria JA, Thliveris JA, Aukema HM, Ravandi A, Singal PK, Jassal DS. Efficacy of Flaxseed Compared to ACE Inhibition in Treating Anthracycline- and Trastuzumab-Induced Cardiotoxicity. CJC Open 2024; 6:925-937. [PMID: 39026621 PMCID: PMC11252538 DOI: 10.1016/j.cjco.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Although the current combination of surgery, radiation, and chemotherapy is used in the breast-cancer setting, the administration of the anticancer drugs doxorubicin and trastuzumab is associated with an increased risk of developing heart failure. The aim of this study is to determine whether dietary flaxseed is comparable and/or synergistic with the angiotensin-converting enzyme inhibitor perindopril in the treatment of doxorubicin- and trastuzumab-mediated cardiotoxicity. Methods In a chronic in vivo murine model (n = 110), doxorubicin and trastuzumab (8 mg/kg and 3 mg/kg, respectively) were administered weekly for 3 weeks. Following this period, the mice were randomized to daily consumption of a 10% flaxseed supplemented diet, administration of perindopril (3 mg/kg) via oral gavage, or a combination of both flaxseed and perindopril for an additional 3 weeks. Results In mice treated with doxorubicin and trastuzumab, the left ventricular ejection fraction decreased from 74% ± 4% at baseline to 30% ± 2% at week 6. Treatment with either flaxseed or perindopril, or with flaxseed and perindopril improved left ventricular ejection fraction to 52% ± 4%, 54% ± 4%, and 55% ± 3%, respectively (P < 0.05). Although histologic analyses confirmed significant loss of sarcomere integrity and vacuolization in the doxorubicin- and trastuzumab-treated mice, treatment with flaxseed or perindopril, or with flaxseed and perindopril improved myocyte integrity. Finally, the level of Bcl-2 interacting protein 3, high-mobility group box 1 protein expression, and the levels of select oxylipins, were significantly elevated in mice receiving doxorubicin and trastuzumab; these markers were attenuated by treatment with either flaxseed or perindopril, or with flaxseed and perindopril. Conclusions Flaxseed was equivalent to perindopril at improving cardiovascular remodelling by reducing biomarkers of inflammation, mitochondrial damage, and cell death.
Collapse
Affiliation(s)
- Sara M. Telles-Langdon
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vibhuti Arya
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paris R. Haasbeek
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Y.C. Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cameron R. Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lana Mackic
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashley N. Bryson
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sonu S. Varghese
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J. Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A. Thliveris
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Department of Food and Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
70
|
Parchem K, Letsiou S, Petan T, Oskolkova O, Medina I, Kuda O, O'Donnell VB, Nicolaou A, Fedorova M, Bochkov V, Gladine C. Oxylipin profiling for clinical research: Current status and future perspectives. Prog Lipid Res 2024; 95:101276. [PMID: 38697517 DOI: 10.1016/j.plipres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Ag. Spiridonos St. Egaleo, 12243 Athens, Greece.
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Anna Nicolaou
- School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
71
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
72
|
Higueras C, Sainz Á, García-Sancho M, Rodríguez-Franco F, Rey AI. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:1825. [PMID: 38929444 PMCID: PMC11201139 DOI: 10.3390/ani14121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) are classified based on treatment trials, and new methods are being sought for earlier differentiation and characterization. Giardia infection (GIA) is one of the first differential diagnoses and may be present in CIE-affected dogs. The aim of this study was to evaluate the faecal characteristics and faecal fatty acid profile (short, medium, long, and branched-chain fatty acids) in dogs with food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE), and dogs infected with Giardia compared to healthy control (HC) animals as a potential non-invasive indicator of intestinal health that helps in the differentiation of CIEs. The C16:1n-7 percentage (p = 0.0001) and C16:1n-7/C16:0 ratio (p = 0.0001) served to differentiate between HC, FRE, and IRE. IRE dogs presented lower levels of short-chain fatty acids (∑SCFAs) (p = 0.0008) and acetic acid (C2) (p = 0.0007) compared to the other three groups and lower propionic acid (C3) (p = 0.0022) compared to HCs. IRE and GIA presented higher faecal fat content (p = 0.0080) and ratio of iso/anteiso branched-chain fatty acids (BCFAs) compared to HC and FRE. Correlations between some fatty acids and desaturation indices with the canine inflammatory bowel disease activity index and faecal characteristics were observed, suggesting that these compounds could play an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Cristina Higueras
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Ana I. Rey
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
73
|
Cardona E, Segret E, Heraud C, Roy J, Vigor C, Gros V, Reversat G, Sancho-Zubeldia B, Oger C, Durbec A, Bertrand-Michel J, Surget A, Galano JM, Corraze G, Cachelou Y, Marchand Y, Durand T, Cachelou F, Skiba-Cassy S. Adverse effects of excessive dietary arachidonic acid on survival, PUFA-derived enzymatic and non-enzymatic oxylipins, stress response in rainbow trout fry. Sci Rep 2024; 14:12376. [PMID: 38811794 PMCID: PMC11137042 DOI: 10.1038/s41598-024-63173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.
Collapse
Affiliation(s)
- Emilie Cardona
- Viviers de Rébénacq, 64260, Rébénacq, France.
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France.
| | | | - Cécile Heraud
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jerome Roy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Anaelle Durbec
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Justine Bertrand-Michel
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Anne Surget
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | | | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| |
Collapse
|
74
|
Bi X, Wang Y, Lin Y, Wang M, Li X. Genetic Evidence for Causal Relationships between Plasma Eicosanoid Levels and Cardiovascular Disease. Metabolites 2024; 14:294. [PMID: 38921429 PMCID: PMC11206149 DOI: 10.3390/metabo14060294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular diseases are the most common causes of mortality and disability worldwide. Eicosanoids are a group of bioactive metabolites that are mainly oxidized by arachidonic acid. Eicosanoids play a diverse role in cardiovascular diseases, with some exerting beneficial effects while others have detrimental consequences. However, a causal relationship between eicosanoid levels and cardiovascular disease remains unclear. Six single nucleotide polymorphisms (SNPs) with strong associations with plasma eicosanoid levels were selected. Summary-level data for cardiovascular disease were obtained from publicly available genome-wide association studies. A two-sample MR analysis identified that plasma eicosanoid levels were inversely correlated with unstable angina pectoris (OR 1.06; 95% CI 1-1.12; p = 0.04), myocardial infarction (OR 1.05; 95% CI 1.02-1.09; p = 0.005), ischemia stroke (OR 1.05; 95% CI 1-1.11; p = 0.047), transient ischemic attack (OR 1.03; 95% CI 1-1.07; p = 0.042), heart failure (OR 1.03; 95% CI 1.01-1.05; p = 0.011), and pulmonary embolism (OR 1.08; 95% CI 1.02-1.14; p = 1.69 × 10-6). In conclusion, our data strongly suggest a genetic causal link between high plasma eicosanoid levels and an increased cardiovascular disease risk. This study provides genetic evidence for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yiran Wang
- Department of Nursing, No. 906 Hospital of People’s Liberation Army, Ningbo 315000, China
| | - Yangjun Lin
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoting Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
75
|
Dhillon J, Pandey S, Newman JW, Fiehn O, Ortiz RM. Metabolic Responses to an Acute Glucose Challenge: The Differential Effects of Eight Weeks of Almond vs. Cracker Consumption in Young Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.19.24307571. [PMID: 38826341 PMCID: PMC11142291 DOI: 10.1101/2024.05.19.24307571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study investigated the dynamic responses to an acute glucose challenge following chronic almond versus cracker consumption for 8 weeks (clinicaltrials.gov ID: NCT03084003). Seventy-three young adults (age: 18-19 years, BMI: 18-41 kg/m2) participated in an 8-week randomized, controlled, parallel-arm intervention and were randomly assigned to consume either almonds (2 oz/d, n=38) or an isocaloric control snack of graham crackers (325 kcal/d, n=35) daily for 8 weeks. Twenty participants from each group underwent a 2-hour oral glucose tolerance test (oGTT) at the end of the 8-week intervention. Metabolite abundances in the oGTT serum samples were quantified using untargeted metabolomics, and targeted analyses for free PUFAs, total fatty acids, oxylipins, and endocannabinoids. Multivariate, univariate, and chemical enrichment analyses were conducted to identify significant metabolic shifts. Findings exhibit a biphasic lipid response distinguished by higher levels of unsaturated triglycerides in the earlier periods of the oGTT followed by lower levels in the latter period in the almond versus cracker group (p-value<0.05, chemical enrichment analyses). Almond (vs. cracker) consumption was also associated with higher AUC120 min of aminomalonate, and oxylipins (p-value<0.05), but lower AUC120 min of L-cystine, N-acetylmannosamine, and isoheptadecanoic acid (p-value<0.05). Additionally, the Matsuda Index in the almond group correlated with AUC120 min of CE 22:6 (r=-0.46; p-value<0.05) and 12,13 DiHOME (r=0.45; p-value<0.05). Almond consumption for 8 weeks leads to dynamic, differential shifts in response to an acute glucose challenge, marked by alterations in lipid and amino acid mediators involved in metabolic and physiological pathways.
Collapse
Affiliation(s)
- Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia
- Department of Molecular and Cell Biology, University of California, Merced
| | - Saurabh Pandey
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia
- Jaypee University of Information Technology, Waknaghat, India
| | - John W. Newman
- West Coast Metabolomics Center, University of California, Davis
- Department of Nutrition, University of California, Davis
- Obesity and Metabolism Research Unit, USDA Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis
| | - Rudy M. Ortiz
- Department of Molecular and Cell Biology, University of California, Merced
| |
Collapse
|
76
|
Gretschel J, El Hage R, Wang R, Chen Y, Pietzner A, Loew A, Leineweber CG, Wördemann J, Rohwer N, Weylandt KH, Schmöcker C. Harnessing Oxylipins and Inflammation Modulation for Prevention and Treatment of Colorectal Cancer. Int J Mol Sci 2024; 25:5408. [PMID: 38791445 PMCID: PMC11121665 DOI: 10.3390/ijms25105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, ranking as the third most malignant. The incidence of CRC has been increasing with time, and it is reported that Westernized diet and lifestyle play a significant role in its higher incidence and rapid progression. The intake of high amounts of omega-6 (n - 6) PUFAs and low levels of omega-3 (n - 3) PUFAs has an important role in chronic inflammation and cancer progression, which could be associated with the increase in CRC prevalence. Oxylipins generated from PUFAs are bioactive lipid mediators and have various functions, especially in inflammation and proliferation. Carcinogenesis is often a consequence of chronic inflammation, and evidence has shown the particular involvement of n - 6 PUFA arachidonic acid-derived oxylipins in CRC, which is further described in this review. A deeper understanding of the role and metabolism of PUFAs by their modifying enzymes, their pathways, and the corresponding oxylipins may allow us to identify new approaches to employ oxylipin-associated immunomodulation to enhance immunotherapy in cancer. This paper summarizes oxylipins identified in the context of the initiation, development, and metastasis of CRC. We further explore CRC chemo-prevention strategies that involve oxylipins as potential therapeutics.
Collapse
Affiliation(s)
- Julius Gretschel
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Racha El Hage
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Department of Vascular Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany
| | - Ruirui Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Yifang Chen
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Andreas Loew
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Can G. Leineweber
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Jonas Wördemann
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Karsten H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Christoph Schmöcker
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
77
|
Chen TB, Yang CC, Tsai IJ, Yang HW, Hsu YC, Chang CM, Yang CP. Neuroimmunological effects of omega-3 fatty acids on migraine: a review. Front Neurol 2024; 15:1366372. [PMID: 38770523 PMCID: PMC11103013 DOI: 10.3389/fneur.2024.1366372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Migraine is a highly prevalent disease worldwide, imposing enormous clinical and economic burdens on individuals and societies. Current treatments exhibit limited efficacy and acceptability, highlighting the need for more effective and safety prophylactic approaches, including the use of nutraceuticals for migraine treatment. Migraine involves interactions within the central and peripheral nervous systems, with significant activation and sensitization of the trigeminovascular system (TVS) in pain generation and transmission. The condition is influenced by genetic predispositions and environmental factors, leading to altered sensory processing. The neuroinflammatory response is increasingly recognized as a key event underpinning the pathophysiology of migraine, involving a complex neuro-glio-vascular interplay. This interplay is partially mediated by neuropeptides such as calcitonin gene receptor peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP) and/or cortical spreading depression (CSD) and involves oxidative stress, mitochondrial dysfunction, nucleotide-binding domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome formation, activated microglia, and reactive astrocytes. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), crucial for the nervous system, mediate various physiological functions. Omega-3 PUFAs offer cardiovascular, neurological, and psychiatric benefits due to their potent anti-inflammatory, anti-nociceptive, antioxidant, and neuromodulatory properties, which modulate neuroinflammation, neurogenic inflammation, pain transmission, enhance mitochondrial stability, and mood regulation. Moreover, specialized pro-resolving mediators (SPMs), a class of PUFA-derived lipid mediators, regulate pro-inflammatory and resolution pathways, playing significant anti-inflammatory and neurological roles, which in turn may be beneficial in alleviating the symptomatology of migraine. Omega-3 PUFAs impact various neurobiological pathways and have demonstrated a lack of major adverse events, underscoring their multifaceted approach and safety in migraine management. Although not all omega-3 PUFAs trials have shown beneficial in reducing the symptomatology of migraine, further research is needed to fully establish their clinical efficacy and understand the precise molecular mechanisms underlying the effects of omega-3 PUFAs and PUFA-derived lipid mediators, SPMs on migraine pathophysiology and progression. This review highlights their potential in modulating brain functions, such as neuroimmunological effects, and suggests their promise as candidates for effective migraine prophylaxis.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yung-Chu Hsu
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Chistian Hospital, Chiayi, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
78
|
Liu X, Wang W, Li Z, Xu L, Lan D, Wang Y. Lipidomics analysis unveils the dynamic alterations of lipid degradation in rice bran during storage. Food Res Int 2024; 184:114243. [PMID: 38609222 DOI: 10.1016/j.foodres.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
79
|
Ross RB, Gadwa J, Yu J, Darragh LB, Knitz MW, Nguyen D, Olimpo NA, Abdelazeem KN, Nguyen A, Corbo S, Van Court B, Beynor J, Neupert B, Saviola AJ, D'Alessandro A, Karam SD. PPARα Agonism Enhances Immune Response to Radiotherapy While Dietary Oleic Acid Results in Counteraction. Clin Cancer Res 2024; 30:1916-1933. [PMID: 38363297 PMCID: PMC11061609 DOI: 10.1158/1078-0432.ccr-23-3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.
Collapse
Affiliation(s)
- Richard Blake Ross
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Justin Yu
- Department of Otolaryngology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jessica Beynor
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
- Department of Immunology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
80
|
Hong L, Zahradka P, Taylor CG. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/ fa Zucker Rats. Nutrients 2024; 16:1311. [PMID: 38732558 PMCID: PMC11085824 DOI: 10.3390/nu16091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.
Collapse
Affiliation(s)
- Lena Hong
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
81
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
82
|
Dang L, Dong Y, Zhang C, Su B, Ning N, Zhou S, Zhang M, Huang Q, Li Y, Wang S. Zishen Yutai pills restore fertility in premature ovarian failure through regulating arachidonic acid metabolism and the ATK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117782. [PMID: 38272104 DOI: 10.1016/j.jep.2024.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Zishen Yutai pills (ZYP), a Chinese medicinal formulation derived from the Qing Dynasty prescription "Shou Tai pills", have been documented to exhibit beneficial effects in clinical observations treating premature ovarian failure (POF). However, the anti-POF effects and its comprehensive systemic mechanism have not yet been clarified. AIM OF THE REVIEW Therapeutic effects and systemic mechanism of ZYP in POF were evaluated. MATERIALS AND METHODS After pulverization, sieving, and stirring, ZYP was administered intragastrically to cisplatin-induced POF mice at a dose of 1.95 mg/kg/d for 14 days. The anti-POF effects of ZYP were investigated by assessing the number of ovarian follicles at different developmental stages, as well as measuring serum estradiol (E2) levels and ovarian-expressed anti-Müllerian hormone (AMH). Reproductive performance and offspring health were evaluated to predict fertility restoration. Furthermore, a combination of proteomic and metabolomic profiling was employed to elucidate the underlying molecular mechanism of ZYP in treating POF. Western blot (WB) analyses and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to explore the mechanisms through which ZYP exerted its anti-POF effects. RESULTS We have demonstrated that oral administration of ZYP reversed the reduction in follicles at different developmental stages and stimulated the expressions of serum E2 and ovarian-expressed AMH in a cisplatin-induced POF model. Additionally, ZYP ameliorated follicle apoptosis in ovaries affected by cisplatin-induced POF. Furthermore, treatment with ZYP restored the quantity and quality of oocytes, as well as enhanced fertility. Our results revealed 62 differentially expressed proteins (DEPs) through proteomic analyses and identified 26 differentially expressed metabolites (DEMs) through metabolomic analyses. Both DEPs and DEMs were highly enriched in the arachidonic acid (AA) metabolism pathway. ZYP treatment effectively upregulated the protein and mRNA expression of critical targets in AA metabolism and the AKT pathway, including CYP17α1, HSD3β1, LHR, STAR, and AKT, in cisplatin-induced POF mice. CONCLUSIONS These results indicated that ZYP exerted protective effects against POF and restored fertility from cisplatin-induced apoptosis. ZYP could be a satisfying alternative treating POF.
Collapse
Affiliation(s)
- Lei Dang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China; Postdoctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd., Guangzhou, China
| | - Yingying Dong
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunbo Zhang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China; Postdoctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd., Guangzhou, China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Su Zhou
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minli Zhang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Yan Li
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
83
|
Koch E, Löwen A, Schebb NH. Do meals contain a relevant amount of oxylipins? LC-MS-based analysis of oxidized fatty acids in food. Food Chem 2024; 438:137941. [PMID: 37995581 DOI: 10.1016/j.foodchem.2023.137941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Several oxylipins are potent lipid mediators and are discussed to be absorbed after oral intake. However, information about their concentrations in oils and processed foods are scarce. Here, we analyzed the concentrations of mono-, di- and multihydroxy- as well as epoxy-PUFA in virgin and refined oils as well as in different foods/meals. Oil refining causes hydrolysis of epoxy-PUFA and thus high dihydroxy-PUFA concentrations (e.g. 15,16-DiHODE 290 µg/g in refined vs. 15 µg/g in virgin rapeseed oil), making the epoxy-to-diol ratio a potential marker for refined oils. Low oxylipin levels were found in foods with high amounts of saturated fatty acids such as Hamburger patties (around 30 µg/g). High concentrations (up to 1200 µg/g, 80 mg per serving) and high oxylipin/precursor-PUFA ratios were found in fried falafel and processed foods such as vegetarian sausage/fish fingers. Our study provides first insights in the oxylipin concentrations of our daily food, indicating a relevant intake.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Ariane Löwen
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany.
| |
Collapse
|
84
|
Ohno R, Mainka M, Kirchhoff R, Hartung NM, Schebb NH. Sterol Derivatives Specifically Increase Anti-Inflammatory Oxylipin Formation in M2-like Macrophages by LXR-Mediated Induction of 15-LOX. Molecules 2024; 29:1745. [PMID: 38675565 PMCID: PMC11052137 DOI: 10.3390/molecules29081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.
Collapse
Affiliation(s)
| | | | | | | | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
85
|
Seidel U, Eberhardt K, Wiebel M, Luersen K, Ipharraguerre IR, Haegele FA, Winterhalter P, Bosy-Westphal A, Schebb NH, Rimbach G. Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured hepatocytes. Front Nutr 2024; 11:1359958. [PMID: 38974810 PMCID: PMC11225816 DOI: 10.3389/fnut.2024.1359958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism. Objective To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells). Methods In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA. Results Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro. SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively. Conclusion The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.
Collapse
Affiliation(s)
- Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Michelle Wiebel
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kai Luersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Franziska A. Haegele
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
86
|
Slotkowski R, VanOrmer M, Akbar A, Hahka T, Thompson M, Rapoza R, Ulu A, Thoene M, Lyden E, Mukherjee M, Yuil-Valdes A, Natarajan SK, Nordgren T, Hanson C, Berry AA. Bioactive metabolites of OMEGA-6 and OMEGA-3 fatty acids are associated with inflammatory cytokine concentrations in maternal and infant plasma at the time of delivery. Clin Nutr ESPEN 2024; 60:223-233. [PMID: 38479914 DOI: 10.1016/j.clnesp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS Inflammation is necessary for a healthy pregnancy. However, unregulated or excessive inflammation during pregnancy is associated with severe maternal and infant morbidities, such as pre-eclampsia, abnormal infant neurodevelopment, or preterm birth. Inflammation is regulated in part by the bioactive metabolites of omega-6 (n-6) and omega-3 (n-3) fatty acids (FAs). N-6 FAs have been shown to promote pro-inflammatory cytokine environments in adults, while n-3 FAs have been shown to contribute to the resolution of inflammation; however, how these metabolites affect maternal and infant inflammation is still uncertain. The objective of this study was to predict the influence of n-6 and n-3 FA metabolites on inflammatory biomarkers in maternal and umbilical cord plasma at the time of delivery. METHODS Inflammatory biomarkers (IL-1β, IL-2, IL-6, IL-8, IL-10, and TNFα) for maternal and umbilical cord plasma samples in 39 maternal-infant dyads were analyzed via multi-analyte bead array. Metabolites of n-6 FAs (arachidonic acid and linoleic acid) and n-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) were assayed via liquid chromatography-mass spectrometry. Linear regression models assessed relationships between maternal and infant inflammatory markers and metabolite plasma concentrations. RESULTS Increased plasma concentrations of maternal n-6 metabolites were predictive of elevated pro-inflammatory cytokine concentrations in mothers; similarly, higher plasma concentrations of umbilical cord n-6 FA metabolites were predictive of elevated pro-inflammatory cytokine concentrations in infants. Higher plasma concentrations of maternal n-6 FA metabolites were also predictive of elevated pro-inflammatory cytokines in infants, suggesting that maternal n-6 FA status has an intergenerational impact on the inflammatory status of the infant. In contrast, maternal and cord plasma concentrations of n-3 FA metabolites had a mixed effect on inflammatory status in mothers and infants, which may be due to the inadequate maternal dietary intake of n-3 FAs in our study population. CONCLUSIONS Our results reveal that maternal FA status may have an intergenerational impact on the inflammatory status of the infant. Additional research is needed to identify how dietary interventions that modify maternal FA intake prior to or during pregnancy may impact maternal and infant inflammatory status and associated long-term health outcomes.
Collapse
Affiliation(s)
- Rebecca Slotkowski
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA.
| | - Matthew VanOrmer
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Taija Hahka
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Maranda Thompson
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Rebekah Rapoza
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Melissa Thoene
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| | - Elizabeth Lyden
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maheswari Mukherjee
- Diagnostic Cytology Program, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Tara Nordgren
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Corrine Hanson
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ann Anderson Berry
- Department of Pediatrics, University of Nebraska Medical Center, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA
| |
Collapse
|
87
|
Gutierrez V, Kim-Vasquez D, Shum M, Yang Q, Dikeman D, Louie SG, Shirihai OS, Tsukamoto H, Liesa M. The mitochondrial biliverdin exporter ABCB10 in hepatocytes mitigates neutrophilic inflammation in alcoholic hepatitis. Redox Biol 2024; 70:103052. [PMID: 38290384 PMCID: PMC10844117 DOI: 10.1016/j.redox.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Acute liver failure caused by alcoholic hepatitis (AH) is only effectively treated with liver transplantation. Livers of patients with AH show a unique molecular signature characterized by defective hepatocellular redox metabolism, concurrent to hepatic infiltration of neutrophils that express myeloperoxidase (MPO) and form neutrophil extracellular traps (NETs). Exacerbated NET formation and MPO activity contribute to liver damage in mice with AH and predicts poor prognosis in AH patients. The identification of pathways that maladaptively exacerbate neutrophilic activity in liver could inform of novel therapeutic approaches to treat AH. Whether the redox defects of hepatocytes in AH directly exacerbate neutrophilic inflammation and NET formation is unclear. Here we identify that the protein content of the mitochondrial biliverdin exporter ABCB10, which increases hepatocyte-autonomous synthesis of the ROS-scavenger bilirubin, is decreased in livers from humans and mice with AH. Increasing ABCB10 expression selectively in hepatocytes of mice with AH is sufficient to decrease MPO gene expression and histone H3 citrullination, a specific marker of NET formation. These anti-inflammatory effects can be explained by ABCB10 function reducing ROS-mediated actions in liver. Accordingly, ABCB10 gain-of-function selectively increased the mitochondrial GSH/GSSG ratio and decreased hepatic 4-HNE protein adducts, without elevating mitochondrial fat expenditure capacity, nor mitigating steatosis and hepatocyte death. Thus, our study supports that ABCB10 function regulating ROS-mediated actions within surviving hepatocytes mitigates the maladaptive activation of infiltrated neutrophils in AH. Consequently, ABCB10 gain-of-function in human hepatocytes could potentially decrease acute liver failure by decreasing the inflammatory flare caused by excessive neutrophil activity.
Collapse
Affiliation(s)
- Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular and Cellular Integrative Physiology, Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Doyeon Kim-Vasquez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qihong Yang
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dante Dikeman
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Stan G Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Orian S Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular and Cellular Integrative Physiology, Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Marc Liesa
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
88
|
Cayer LGJ, Surendran A, Karakach T, Aukema HM, Ravandi A. Valvular Prostaglandins Are Elevated in Severe Human Aortic Valve Stenosis. Arterioscler Thromb Vasc Biol 2024; 44:e131-e144. [PMID: 38357817 DOI: 10.1161/atvbaha.123.320001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Aortic valve stenosis (AVS) is the most common valvular disease in the developed world. AVS involves the progressive fibrocalcific remodeling of the aortic valve (AV), which impairs function and can ultimately lead to heart failure. Due to gaps in our understanding of the underlying mechanisms of AVS, there are no pharmacological treatments or dietary interventions known to slow AVS progression. Recent studies have begun to suggest oxylipins-a class of bioactive lipids-may be dysregulated in the valves of patients with AVS. METHODS We utilized high-performance liquid chromatography-tandem mass spectrometry to conduct a targeted oxylipin analysis on human AV tissue and plasma from a cohort of 110 patients undergoing AV surgery. RESULTS We identified 36 oxylipins in human AV tissue with all showing significant increase in patients with severe AVS. A multivariate model including patient characteristics and valvular oxylipins identified the arachidonic acid-COX (cyclooxygenase) pathway-derived prostanoids to be the most associated with AVS severity. Plasma oxylipin levels were measured in a subset of AV surgery patients and compared with a control group of healthy participants, showing distinct oxylipin profiles between control and disease. CONCLUSIONS Our comprehensive analysis of oxylipins in the human AV identified the inflammatory and osteogenic regulating prostanoids to be positively correlated with AVS severity. This elucidation of prostanoid dysregulation warrants further research into COX inhibition to mitigate AVS.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
| | - Arun Surendran
- Physiology and Pathophysiology, Rady Faculty of Health Sciences (A.S.), University of Manitoba, Winnipeg, Canada
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| | - Tobias Karakach
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (T.K.)
| | - Harold M Aukema
- Food and Human Nutritional Sciences (L.G.J.C., T.K., H.M.A.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| | - Amir Ravandi
- Section of Cardiology, Max Rady College of Medicine (A.R.), University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada (L.G.J.C., H.M.A., A.R.)
- Precision Cardiovascular Medicine Group, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada (A.S., H.M.A., A.R.)
| |
Collapse
|
89
|
Chistyakov DV, Azbukina NV, Lopachev AV, Goriainov SV, Astakhova AA, Ptitsyna EV, Klimenko AS, Poleshuk VV, Kazanskaya RB, Fedorova TN, Sergeeva MG. Plasma oxylipin profiles reflect Parkinson's disease stage. Prostaglandins Other Lipid Mediat 2024; 171:106788. [PMID: 37866654 DOI: 10.1016/j.prostaglandins.2023.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Derivatives of polyunsaturated fatty acids (PUFAs), also known as oxylipins, are key participants in regulating inflammation. Neuroinflammation is involved in many neurodegenerative diseases, including Parkinson's disease. The development of ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) facilitated the study of oxylipins on a system level, i.e., the analysis of oxylipin profiles. We analyzed oxylipin profiles in the blood plasma of 36 healthy volunteers (HC) and 73 patients with Parkinson's disease (PD), divided into early (L\M, 29 patients) or advanced (H, 44 patients) stages based on the Hoehn and Yahr scale. Among the 40 oxylipins detected, we observed a decrease in the concentration of arachidonic acid (AA) and AA derivatives, including anandamide (AEA) and Leukotriene E4 (LTE4), and an increase in the concentration of hydroxyeicosatetraenoic acids 19-HETE and 12-HETE (PD vs HC). Correlation analysis of gender, age of PD onset, and disease stages revealed 20 compounds the concentration of which changed depending on disease stage. Comparison of the acquired oxylipin profiles to openly available PD patient brain transcriptome datasets showed that plasma oxylipins do not appear to directly reflect changes in brain metabolism at different disease stages. However, both the L\M and H stages are characterized by their own oxylipin profiles - in patients with the H stage oxylipin synthesis is increased, while in patients with L\M stages oxylipin synthesis decreases compared to HC. This suggests that different therapeutic approaches may be more effective for patients at early versus late stages of PD.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezhda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, 119234 Moscow, Russia
| | - Alexander V Lopachev
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., St. Peters-burg 199034, Russia
| | | | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Elena V Ptitsyna
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna S Klimenko
- Peoples' Friendship University of Russia, Moscow 117198 Russia
| | - Vsevolod V Poleshuk
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Rogneda B Kazanskaya
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St Petersburg, Russia
| | - Tatiana N Fedorova
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
90
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
91
|
Huneault HE, Chen CY, Cohen CC, Liu X, Jarrell ZR, He Z, DeSantos KE, Welsh JA, Maner-Smith KM, Ortlund EA, Schwimmer JB, Vos MB. Lipidome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys with Metabolic Dysfunction-Associated Steatotic Liver Disease. Metabolites 2024; 14:191. [PMID: 38668319 PMCID: PMC11052520 DOI: 10.3390/metabo14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Little is known about lipid changes that occur in the setting of metabolic-dysfunction-associated steatotic liver disease (MASLD) regression. We previously reported improvements in hepatic steatosis, de novo lipogenesis (DNL), and metabolomic profiles associated with oxidative stress, inflammation, and selected lipid metabolism in 40 adolescent boys (11-16 y) with hepatic steatosis ≥5% (98% meeting the definition of MASLD). Participants were randomized to a low-free-sugar diet (LFSD) (n = 20) or usual diet (n = 20) for 8 weeks. Here, we employed untargeted/targeted lipidomics to examine lipid adaptations associated with the LFSD and improvement of hepatic steatosis. Our LC-MS/MS analysis revealed decreased triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) species with the diet intervention (p < 0.05). Network analysis demonstrated significantly lower levels of palmitate-enriched TG species post-intervention, mirroring the previously shown reduction in DNL in response to the LFSD. Targeted oxylipins analysis revealed a decrease in the abundance of 8-isoprostane and 14,15-DiHET and an increase in 8,9-DiHET (p < 0.05). Overall, we observed reductions in TGs, DGs, ChE, PC, and LPC species among participants in the LFSD group. These same lipids have been associated with MASLD progression; therefore, our findings may indicate normalization of key biological processes, including lipid metabolism, insulin resistance, and lipotoxicity. Additionally, our targeted oxylipins assay revealed novel changes in eicosanoids, suggesting improvements in oxidative stress. Future studies are needed to elucidate the mechanisms of these findings and prospects of these lipids as biomarkers of MASLD regression.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
| | - Chih-Yu Chen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Catherine C. Cohen
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Xueyun Liu
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Zachery R. Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Zhulin He
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Karla E. DeSantos
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
92
|
Carbuhn AF, D'Silva LJ. Red blood cell omega-3 fatty acid content is negatively associated with purposeful gameplay header frequencies in collegiate women soccer players: Implications for diet and brain health. Nutr Health 2024; 30:27-33. [PMID: 37248567 DOI: 10.1177/02601060231178333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Background: Frequent soccer heading negatively affects brain health. Omega-3 fatty acids are neuroprotective against head impacts. A biomarker of omega-3 tissue status, red blood cell (RBC) omega-3 content is reduced during soccer activity. However, whether these changes are associated with frequent heading impacts is unknown. Aim: Explore the association between soccer heading frequencies and RBC omega-3 status. Methods: A prospective cohort study in collegiate women soccer players (n = 16). Players' RBC omega-3 status, Omega-3 Index, and self-reported gameplay header frequencies collected during a competitive season. Results: Mean Omega-3 Index (i.e., pre/postseason) was low (3.95 ± 0.44%). Postseason Omega-3 Index negatively correlated (r = -0.545, p = 0.029) with heading frequencies. Change in Omega-3 Index negatively correlated (r = -0.663, p = 0.005) with average headers per game. Conclusion: RBC omega-3 status is negatively influenced by frequent soccer heading throughout a competitive season which may have concerning implications for player brain health.
Collapse
Affiliation(s)
- Aaron F Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Linda J D'Silva
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
93
|
Mazi TA, Shibata NM, Sarode GV, Medici V. Hepatic oxylipin profiles in mouse models of Wilson disease: New insights into early hepatic manifestations. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159446. [PMID: 38072238 PMCID: PMC11224028 DOI: 10.1016/j.bbalip.2023.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.
Collapse
Affiliation(s)
- Tagreed A Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Gaurav V Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
94
|
Evans WA, Eccles-Miller JA, Anderson E, Farrell H, Baldwin WS. 9-HODE and 9-HOTrE alter mitochondrial metabolism, increase triglycerides, and perturb fatty acid uptake and synthesis associated gene expression in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102635. [PMID: 39142221 PMCID: PMC11404490 DOI: 10.1016/j.plefa.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.
Collapse
Affiliation(s)
- William A Evans
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | | | | - Hannah Farrell
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | |
Collapse
|
95
|
Jurado-Fasoli L, Sanchez-Delgado G, Di X, Yang W, Kohler I, Villarroya F, Aguilera CM, Hankemeier T, Ruiz JR, Martinez-Tellez B. Cold-induced changes in plasma signaling lipids are associated with a healthier cardiometabolic profile independently of brown adipose tissue. Cell Rep Med 2024; 5:101387. [PMID: 38262411 PMCID: PMC10897514 DOI: 10.1016/j.xcrm.2023.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Cold exposure activates brown adipose tissue (BAT) and potentially improves cardiometabolic health through the secretion of signaling lipids by BAT. Here, we show that 2 h of cold exposure in young adults increases the levels of omega-6 and omega-3 oxylipins, the endocannabinoids (eCBs) anandamide and docosahexaenoylethanolamine, and lysophospholipids containing polyunsaturated fatty acids. Contrarily, it decreases the levels of the eCBs 1-LG and 2-LG and 1-OG and 2-OG, lysophosphatidic acids, and lysophosphatidylethanolamines. Participants overweight or obese show smaller increases in omega-6 and omega-3 oxylipins levels compared to normal weight. We observe that only a small proportion (∼4% on average) of the cold-induced changes in the plasma signaling lipids are slightly correlated with BAT volume. However, cold-induced changes in omega-6 and omega-3 oxylipins are negatively correlated with adiposity, glucose homeostasis, lipid profile, and liver parameters. Lastly, a 24-week exercise-based randomized controlled trial does not modify plasma signaling lipid response to cold exposure.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Xinyu Di
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Wei Yang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Francesc Villarroya
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Concepcion M Aguilera
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain; Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain.
| |
Collapse
|
96
|
Sherratt SCR, Mason RP, Libby P, Steg PG, Bhatt DL. Do patients benefit from omega-3 fatty acids? Cardiovasc Res 2024; 119:2884-2901. [PMID: 38252923 PMCID: PMC10874279 DOI: 10.1093/cvr/cvad188] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 01/24/2024] Open
Abstract
Omega-3 fatty acids (O3FAs) possess beneficial properties for cardiovascular (CV) health and elevated O3FA levels are associated with lower incident risk for CV disease (CVD.) Yet, treatment of at-risk patients with various O3FA formulations has produced disparate results in large, well-controlled and well-conducted clinical trials. Prescription formulations and fish oil supplements containing low-dose mixtures of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have routinely failed to prevent CV events in primary and secondary prevention settings when added to contemporary care, as shown most recently in the STRENGTH and OMEMI trials. However, as observed in JELIS, REDUCE-IT, and RESPECT-EPA, EPA-only formulations significantly reduce CVD events in high-risk patients. The CV mechanism of action of EPA, while certainly multifaceted, does not depend solely on reductions of circulating lipids, including triglycerides (TG) and LDL, and event reduction appears related to achieved EPA levels suggesting that the particular chemical and biological properties of EPA, as compared to DHA and other O3FAs, may contribute to its distinct clinical efficacy. In vitro and in vivo studies have shown different effects of EPA compared with DHA alone or EPA/DHA combination treatments, on atherosclerotic plaque morphology, LDL and membrane oxidation, cholesterol distribution, membrane lipid dynamics, glucose homeostasis, endothelial function, and downstream lipid metabolite function. These findings indicate that prescription-grade, EPA-only formulations provide greater benefit than other O3FAs formulations tested. This review summarizes the clinical findings associated with various O3FA formulations, their efficacy in treating CV disease, and their underlying mechanisms of action.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Elucida Research LLC, Beverly, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ph Gabriel Steg
- Université Paris-Cité, INSERM_UMR1148/LVTS, FACT (French Alliance for Cardiovascular Trials), Assistance Publique–Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, NewYork 10029-5674, NY, USA
| |
Collapse
|
97
|
O'Neil LJ, Anaparti V, Winter T, Smolik I, Meng X, Aukema HM, El-Gabalawy H. Lipoxygenase-derived oxylipins are enriched in anti-citrullinated protein antibody (ACPA)-positive individuals at risk for developing rheumatoid arthritis. Arthritis Res Ther 2024; 26:51. [PMID: 38360827 PMCID: PMC10868017 DOI: 10.1186/s13075-024-03274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is typically preceded by an extended preclinical period where circulating autoantibodies, particularly anti-citrullinated protein antibodies (ACPA), are detectable in the absence of clinical arthritis. Increased dietary intake of anti-inflammatory omega-3 (ω3) polyunsaturated fatty acids (PUFA) has been shown to be associated with a lower the risk of developing incident RA in large epidemiological studies. It is currently not known how changes in fatty acid (FA) metabolism may impact on the progression towards RA in at-risk individuals. To begin to address this question, we profiled serum FAs and oxylipins in an established cohort of at-risk ACPA-positive first-degree relatives (FDR) of RA patients (N = 31), some of whom developed RA (N = 4), and compared their profile to ACPA-negative FDR from the same population (N = 10). METHODS Gas chromatography (GC) was used for FA quantitation. Oxylipins were extracted and quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). RESULTS Although we did not detect any meaningful differences in overall FA content between ACPA + and ACPA - FDR, the levels of oxylipins derived from FA metabolism demonstrated significant differences between the two groups, with the ACPA + group demonstrating enrichment in circulating arachidonic acid- and eicosapentaenoic acid-derived molecules. Compared with the ACPA - FDR group, the ACPA + FDR, including those who progressed into inflammatory arthritis, displayed higher levels of LOX-derived oxylipins. CONCLUSION ACPA seropositivity in otherwise unaffected individuals at-risk for developing future RA based on family history (FDR) is associated with alterations in the serum oxylipin profile that suggests dysregulated LOX activity.
Collapse
Affiliation(s)
- Liam J O'Neil
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | - Vidyanand Anaparti
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Irene Smolik
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xiaobo Meng
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Hani El-Gabalawy
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
98
|
Wang W, Chen H, Zhang W, Fan D, Deng J, Yang H. Ginsenoside Rk3 Ameliorates Obesity-Induced Colitis by Modulating Lipid Metabolism in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2997-3007. [PMID: 38300824 DOI: 10.1021/acs.jafc.3c08253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Lipid metabolism is closely related to obesity and its complications. Our previous study found that ginsenoside Rk3 (Rk3), a natural bioactive substance derived from ginseng, can effectively alleviate obesity-induced colitis, while its impact on the improvement of the lipid metabolism disorder remains unclear. Here, we demonstrated that Rk3 significantly alleviated inflammation, oxidative stress, and lipid dysregulation in high-fat diet-induced colitis C57BL/6 mice. The potential mechanism by which Rk3 mitigated colon inflammation in the context of obesity may involve the modulation of polyunsaturated fatty acid metabolism with specific attention to n-6 fatty acids, linoleic acid, and arachidonic acid. Rk3 intervention markedly reduced the production of pro-inflammatory factors (PGE2, PGD2, TXB2, HETE, and HODE) by inhibiting cyclooxygenase and lipoxygenase pathways, while enhancing the production of anti-inflammatory factors (EET and diHOME) via cytochrome P450 pathways. Our findings suggest that Rk3 is a potential anti-inflammatory natural drug that can improve obesity-induced intestinal inflammation by regulating lipid metabolism.
Collapse
Affiliation(s)
- Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongwei Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
99
|
Menzel R, Zhang X, Pietrucik T, Bathelt A, Ruess L. Omega-3 PUFA and the fitness and cognition of the nematode Caenorhabditis elegans under different environmental conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110925. [PMID: 38040326 DOI: 10.1016/j.cbpb.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Many invertebrate species possess the metabolic ability to synthesize long-chain ω3 polyunsaturated fatty acids (PUFA) de novo. Due to their diverse effects on membrane architecture, neuroplasticity, growth and reproduction, PUFA have a high potential to positively influence the fitness of an organism. But how and when do these supposed advantages actually come into play? Other species, that are often closely related, pass natural selection without this special metabolic ability. The ω3-PUFA rich model organism Caenorhabditis elegans (Nematoda) and its mutant fat-1(wa9), lacking these PUFA, are a suitable test system. We analyzed potential impairments in reproduction and growth in a soil assay. Further, chemotaxis after aversive olfactory, associative learning and integration of a second sensory signal were assessed on agar plates. Moreover, we analyzed the phospholipid pattern of both C. elegans strains and further free-living nematodes species at different temperatures. While the phenotypic effects were rather small under standard conditions, lowering the temperature to 15 or even 10 °C or reducing the soil moisture, led to significant limitations, with the investigated parameters for neuroplasticity being most impaired. The ω3-PUFA free C. elegans mutant strain fat-1 did not adapt the fatty acid composition of its phospholipids to a decreasing temperature, while ω3-PUFA containing nematodes proportionally increased this PUFA group. In contrats, other ω3-PUFA free nematode species produced significantly more ω6-PUFA. Thus, the ability to synthesize long-chain ω3-PUFA de novo likely is fundamental for an increase in neuroplasticity and an efficient way for regulating membrane fluidity to maintain their functionality.
Collapse
Affiliation(s)
- Ralph Menzel
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| | - Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Tamara Pietrucik
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Antonia Bathelt
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
100
|
Cofán M, Checa A, Serra-Mir M, Roth I, Valls-Pedret C, Lopez-Illamola A, Doménech M, Rajaram S, Lázaro I, Sabaté J, Ros E, Wheelock CE, Sala-Vila A. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. J Nutr 2024; 154:395-402. [PMID: 38081585 DOI: 10.1016/j.tjnut.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01634841.
Collapse
Affiliation(s)
- Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - I Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Anna Lopez-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Monica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Iolanda Lázaro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden.
| | - Aleix Sala-Vila
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain; The Fatty Acid Research Institute, Sioux Falls, SD, United States.
| |
Collapse
|