51
|
Raimondo D, Remoli C, Astrologo L, Burla R, La Torre M, Vernì F, Tagliafico E, Corsi A, Del Giudice S, Persichetti A, Giannicola G, Robey PG, Riminucci M, Saggio I. Changes in gene expression in human skeletal stem cells transduced with constitutively active Gsα correlates with hallmark histopathological changes seen in fibrous dysplastic bone. PLoS One 2020; 15:e0227279. [PMID: 31999703 PMCID: PMC6991960 DOI: 10.1371/journal.pone.0227279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Letizia Astrologo
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Enrico Tagliafico
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Del Giudice
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Agnese Persichetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannicola
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Pamela G. Robey
- National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, United States of America
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail: (IS); (MR)
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore
- * E-mail: (IS); (MR)
| |
Collapse
|
52
|
Ke D, Wang Y, Yu Y, Wang Y, Zheng W, Fu X, Han J, Zhang G, Xu J. Curcumin-activated autophagy plays a negative role in its anti-osteoclastogenic effect. Mol Cell Endocrinol 2020; 500:110637. [PMID: 31678610 DOI: 10.1016/j.mce.2019.110637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE It remains unclear what role curcumin plays in the autophagy of osteoclast precursors (OCPs) during osteoclastogenesis, since some researchers found that curcumin has the ability to inhibit osteoclastogenesis. While others have considered it as an autophagy activator. This study aimed to determine the effect of curcumin-regulated autophagy on osteoclastogenesis. RESULTS The results revealed that direct administration of curcumin enhanced the OCP autophagy response in bone marrow-derived macrophages (BMMs). Curcumin could also abate RANKL's stimulatory effect on OCP autophagy and osteoclastogenesis. Autophagic suppression related to pharmacological inhibitors or gene silencing could further enhance the inhibitory effect of curcumin on osteoclastogenesis. As expected, curcumin ameliorated ovariectomy (OVX)-induced bone loss and its effect could be promoted by an autophagy inhibitor (chloroquine). CONCLUSIONS In conclusion, curcumin can directly enhance the autophagic activity of OCPs, which inhibits its anti-osteoclastogeneic effects. Autophagy inhibition-based drugs are expected to enhance curcumin's efficacy in treating osteoporosis.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen, Jiangmen, 529000, Guangdong, China; Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China.
| | - Yu Wang
- Department of Orthopaedics, Chifeng Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yunlong Yu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, 350003, Fujian, China
| | - Yongxuan Wang
- Department of Endocrine, Sanming First Hosptial, The Affiliated Sanming First Hospital of Fujian Medical University, Sanming, 365000, Fujian, China
| | - Wang Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, 20010, DC, USA
| | - Xiaomin Fu
- Division of Metabolism and Endocrinology, John Hopkins University, Baltimore, 21218, Maryland, USA
| | - Junyong Han
- Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, 350003, Fujian, China
| | - Guoyou Zhang
- Department of Orthopaedics, Tongliao City Hospital, Tongliao, 028000, Inner Mongolia, China
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, 350003, Fujian, China.
| |
Collapse
|
53
|
Kawano T, Sugawara A, Ohashi T, Ogawa S, Matsumoto N, Nakanishi-Matsui M, Tamura S. Synthesis and Biological Evaluation of New Curcumin Analogs Inhibiting Osteoclastogenesis. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Murillo Ortiz BO, Fuentes Preciado AR, Ramírez Emiliano J, Martínez Garza S, Ramos Rodríguez E, de Alba Macías LA. Recovery Of Bone And Muscle Mass In Patients With Chronic Kidney Disease And Iron Overload On Hemodialysis And Taking Combined Supplementation With Curcumin And Resveratrol. Clin Interv Aging 2019; 14:2055-2062. [PMID: 31819387 PMCID: PMC6873966 DOI: 10.2147/cia.s223805] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/22/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction Malnutrition is common in haemodialysis patients and closely related to morbidity and mortality. We evaluated the effect of twelve weeks of supplementation with resveratrol and curcumin on recovery of bone and muscle mass and protein oxidation, lipid peroxidation on patients with chronic kidney disease and iron overload undergoing hemodialysis, we performed a randomized, double-blind, placebo-controlled trial. Methods We included a total of 40 patients, were randomly assigned to two groups, 20 to the group with antioxidant supplementation (Resveratrol + Curcumin) (Group A), treated with a daily oral dose of 500 mg of Resveratrol and 500 mg of Curcumin, and 20 to the control group treated with placebo (Group B). Results Significant differences were found in the body composition of the patients between both groups. There was a significant difference in Body Mass Index (BMI) values (p = 0.002), fat percentage (p = 0.007), muscle mass (p = 0.01) bone mass (p = 0.01), as well as in the score of the subjective global evaluation (p = 0.03). Also differences were found between the basal and final serum levels of Triglycerides (TG) (p = 0.01), VLDL (p = 0.003). A significant decrease in the levels of serum ferritin (2003.69 ± 518.73 vs 1795.65 ± 519.00 ng/mL; p = 0.04). Nor were significant differences observed between the baseline and the final Thiobarbituric Acid Reactive Substances (TBARS) values (70.45 ± 69.21 vs 50.19 ± 32.62, p = 0.24). The same results was obtained for carbonyl values (2.67 ± 0.75 vs 2.50 ± 0.85; p = 0.50). Discussion The present study is the first assay on patients with chronic kidney disease and iron overload that demonstrates the beneficial effects of combined supplementation with Curcumin and Resveratrol on muscle and bone mass. There was a significant decrease in circulating levels of ferritin, to finding that remarkably novel.
Collapse
Affiliation(s)
- Blanca Olivia Murillo Ortiz
- Clinical Epidemiology Research Unit, UMAE No. 1 Bajio, Mexican Institute Social Security, León, Guanajuato, Mexico
| | | | | | - Sandra Martínez Garza
- Clinical Epidemiology Research Unit, UMAE No. 1 Bajio, Mexican Institute Social Security, León, Guanajuato, Mexico
| | - Edna Ramos Rodríguez
- Regional General Hospital No. 58, Mexican Institute Social Security, León, Guanajuato, Mexico
| | | |
Collapse
|
55
|
Pojero F, Poma P, Spanò V, Montalbano A, Barraja P, Notarbartolo M. Targeting multiple myeloma with natural polyphenols. Eur J Med Chem 2019; 180:465-485. [DOI: 10.1016/j.ejmech.2019.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
|
56
|
Hanikoglu A, Kucuksayan E, Hanikoglu F, Ozben T, Menounou G, Sansone A, Chatgilialoglu C, Di Bella G, Ferreri C. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can J Physiol Pharmacol 2019; 98:131-138. [PMID: 31545905 DOI: 10.1139/cjpp-2019-0352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is a worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several treatment options. Extensive literature is available demonstrating polyphenols as phytopharmaceutical anticancer agents. Among the polyphenols, quercetin and curcumin have been reported to have a strong potential against breast cancer. However, so far, no comprehensive study has been performed to demonstrate the anticarcinogenic effects of curcumin, quercetin, and their combinations with somatostatin on the fatty acid profile of breast cancer cell membranes. We used MCF-7 and MDA-MB231 breast cancer cells incubated with curcumin and quercetin for 24 h, in the absence and presence of somatostatin, at their EC50 concentrations to evaluate membrane fatty acid based functional lipidomics together with the followup of EGFR and MAPK signaling pathways. The two cell lines gave different membrane free fatty acid reorganization. In MCF-7 cells, the following changes were observed: an increase of ω6 linoleic acid in the cells incubated with somatostatin + quercetin and quercetin and a decrease of ω3 acids in the cells incubated with somatostatin + curcumin compared to somatostatin and significant increases of monounsaturated fatty acid (MUFA), mono-trans arachidonic acid levels and docosapentaenoic acid for the cells incubated with somatostatin + quercetin compared to the control cells. In MDA-MB231 cells, incubations with curcumin, quercetin, and somatostatin + quercetin induced the most significant membrane remodeling with the increase of stearic acid, diminution of ω6 linoleic, arachidonic acids, and ω3 (docosapentaenoic and docosahexaenoic acids). Distinct signaling pathway changes were found for these cell lines. In MCF-7 cells, separate or combined incubations with somatostatin and quercetin, significantly decreased EGFR and incubation with curcumin decreased MAPK signaling. In MDA-MB231 cells, incubation with curcumin decreased AKT1 and p-AKT1 (Thr308) levels. Incubation with curcumin and quercetin decreased the EGFR levels. Our results showed that cytostatic and antioxidant treatments can be combined to induce membrane fatty acid changes, including lipid isomerization as specific free radical driven process, and to influence signaling pathways. This study aimed to contribute to the literature on these antioxidants in the treatment of breast cancer to clarify the effects and mechanisms in combination with somatostatin.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Ertan Kucuksayan
- Department of Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ferhat Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Georgia Menounou
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chrys Chatgilialoglu
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
57
|
Li J, Feng W, Lu H, Wei Y, Ma S, Wei L, Liu Q, Zhao J, Wei Q, Yao J. Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation. J Cell Physiol 2019; 234:12663-12675. [PMID: 30536376 DOI: 10.1002/jcp.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
In addition to being used to treat malaria, artemisinin (Art) can be used as an anti-inflammatory and antitumor agent. In this study, we evaluated the effects of Art on osteoclast formation and activation and on the development of breast cancer cells in bone. To evaluate the effect of Art on osteoclast differentiation in vitro, we treated bone marrow-derived macrophages (BMMs) with various concentrations of Art and evaluated the expression of genes and proteins involved in osteoclast formation. We also performed cell counting kit-8 assays to evaluate the toxicity of Art in BMMs and MDA-MB-231 cells. We also performed Transwell assays, wound-healing assays, colony formation assays, and cell apoptosis assays to evaluate the effect of Art in MDA-MB-231 cells. We also evaluated the effect of Art in an in vivo osteoclast bone resorption assay using a nude mouse model. We demonstrated that Art inhibits the differentiation and establishment of osteoclasts even though Art is not toxic to osteoclasts. In addition, Art reduced expression of genes involved in osteoclast formation and inhibited osteoclast bone resorption in a concentration-dependent manner. Based on our data, we believe that Art can inhibit proliferation of breast cancer cells by activating apoptosis pathways, and inhibit osteoclast formation and differentiation by inhibiting activation of cathepsin K, ATPase H+ transporting V0 subunit D2, nuclear factor of activated T cells 1, calcitonin receptor, and tartrate-resistant acid phosphatase and by inhibiting nuclear factor-κB activation.
Collapse
Affiliation(s)
- Jia Li
- Department of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wenyu Feng
- Department of Orthopaedic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Huiping Lu
- Department of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yan Wei
- Department of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shiting Ma
- Department of Orthopaedic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Linfeng Wei
- Department of Orthopaedic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Qian Liu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Jinmin Zhao
- Department of Orthopaedic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
- Bone and Joint Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Qingjun Wei
- Department of Orthopaedic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Jun Yao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, People's Republic of China
- Bone and Joint Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
58
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
59
|
Yang J, Tang R, Yi J, Chen Y, Li X, Yu T, Fei J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J 2019; 33:7261-7273. [PMID: 30857415 PMCID: PMC6554198 DOI: 10.1096/fj.201802172r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal homeostasis is closely effectuated by the regulation of bone formation and bone resorption. Osteoclasts are multinuclear giant cells responsible for bone resorption. Overactivated osteoclasts and excessive bone resorption result in various lytic bone diseases, such as osteoporosis, osteoarthritis, periprosthetic infection, and inflammatory aseptic loosening of orthopedic implants. In consideration of the severe side effects caused by the currently available drugs, exploitation of novel drugs has gradually attracted attention. Because of its anti-inflammatory, antioxidant, and antitumor capacities, diallyl disulfide (DADS), a major oil-soluble organosulfur ingredient compound derived from garlic, has been widely researched. However, the effects of DADS on osteoclasts and lytic bone diseases are still unknown. In this study, we investigated the effects of DADS on receptor activator of NF-κB ligand (RANKL)- and LPS-mediated osteoclastogenesis, LPS-stimulated proinflammatory cytokines related to osteoclasts, and LPS-induced inflammatory osteolysis. The results showed that DADS significantly inhibited RANKL-mediated osteoclast formation, fusion, and bone resorption in a dose-dependent manner via inhibiting the NF-κB and signal transducer and activator of transcription 3 signaling and restraining the interaction of NF-κB p65 with nuclear factor of activated T cells cytoplasmic 1. Furthermore, DADS also markedly suppressed LPS-induced osteoclastogenesis and reduced the production of proinflammatory cytokines with LPS stimulation to indirectly mediate osteoclast formation. Consistent with the in vitro results, DADS prevented the LPS-induced severe bone loss by blocking the osteoclastogenesis. All of the results indicate that DADS may be a potential and exploitable drug used for preventing and impeding osteolytic lesions.-Yang, J., Tang, R., Yi, J., Chen, Y., Li, X., Yu, T., Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Jing Yang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ruohui Tang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Xianghe Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Jun Fei
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
60
|
Cheng M, Liang XH, Wang QW, Deng YT, Zhao ZX, Liu XY. Ursolic Acid Prevents Retinoic Acid-Induced Bone Loss in Rats. Chin J Integr Med 2019; 25:210-215. [PMID: 30159645 DOI: 10.1007/s11655-018-3050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To examine the effects of ursolic acid (UA) on mitigating retinoic acid (RA)-induced osteoporosis in rats. METHODS Fifty female Sprague-Dawley rats were randomly divided into the control group (n=10) and the osteoporosis group (n=40). The 40 osteoporosis rats were induced by 75 mg/(kg•d) RA once daily for 2 weeks, and then were randomly assigned to vehicle control (model), low-, middle-, and high-dose UA [(UA-L, UA-M, UA-H; 30, 60, 120 mg/(kg•d), respectively] groups (10 rats each). UA were administered once daily to the rats from the 3rd weeks for up to 4 weeks by gavage. Bone turnover markers [serum alkaline phosphatase (ALP), osteocalcin (OCN), urine deoxypyridinoline (DPD)] and other parameters, including serum calcium (S-Ca), serum phosphorus (S-P), urine calcium (U-Ca), urine phosphorus (U-P), and bone mineral density (BMD) of the femur, 4th lumbar vertebra and tibia, bone biomechanical properties and trabecular microarchitecture, were measured. RESULTS The osteoporosis in rats was successfully induced by RA. Compared with the model group, UA-M and UA-H significantly reversed the RA-induced changes in S-P, U-Ca, U-P, ALP, OCN and urine DPD ratio and markedly enhanced the BMD of right femur, 4th lumbar vertebra and tibia (Plt;0.05 or Plt;0.01). Further, biomechanical test and microcomputed tomography evaluation also showed that UA-H drastically improved biomechanical properties and trabecular microarchitecture (Plt;0.05 or Plt;0.01). CONCLUSION UA could promote bone formation, increase osteoblastic activity and reduce osteoclastic activity in rats, indicating that UA might be a potential therapeutic of RA-induced acute osteoporosis.
Collapse
Affiliation(s)
- Min Cheng
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi Province, 726000, China.
| | - Xu-Hua Liang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi Province, 726000, China
| | - Qing-Wei Wang
- Department of Pharmacy, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ya-Ting Deng
- Department of Pharmacology, Xi'an Medical College, Xi'an, 710021, China
| | - Zhi-Xin Zhao
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi Province, 726000, China
| | - Xue-Ying Liu
- Department of Medicinal Chemistry, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
61
|
Ahangari N, Kargozar S, Ghayour-Mobarhan M, Baino F, Pasdar A, Sahebkar A, Ferns GAA, Kim HW, Mozafari M. Curcumin in tissue engineering: A traditional remedy for modern medicine. Biofactors 2019; 45:135-151. [PMID: 30537039 DOI: 10.1002/biof.1474] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
Curcumin is the principal polyphenolic compound present in turmeric with broad applications in tissue engineering and regenerative medicine. It has some important inherent properties with the potential to facilitate tissue healing, including anti-inflammatory, anti-oxidant, and antibacterial activities. Therefore, curcumin has been used for the treatment of various damaged tissues, especially wound injuries. There are different forms of curcumin, among which nano-formulations are of a great importance in regenerative medicine. It is also important to design sophisticated delivery systems for controlled/localized delivery of curcumin to the target tissues and organs. Although there are many reports on the advantages of this compound, further research is required to fully explore its clinical usage. The review describes the physicochemical and biological properties of curcumin and the current state of the evidence on its applications in tissue engineering. © 2018 BioFactors, 45(2):135-151, 2019.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, Brighton, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
Chen ST, Kang L, Wang CZ, Huang PJ, Huang HT, Lin SY, Chou SH, Lu CC, Shen PC, Lin YS, Chen CH. (-)-Epigallocatechin-3-Gallate Decreases Osteoclastogenesis via Modulation of RANKL and Osteoprotegrin. Molecules 2019; 24:E156. [PMID: 30609798 PMCID: PMC6337469 DOI: 10.3390/molecules24010156] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoporosis is the second most common epidemiologic disease in the aging population worldwide. Previous studies have found that frequent tea drinkers have higher bone mineral density and less hip fracture. We previously found that (-)-epigallocatechin gallate (EGCG) (20⁻100 µmol/L) significantly suppressed receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclastogenesis and pit formation via inhibiting NF-κB transcriptional activity and nuclear transport of NF-κB in RAW 264.7 cells and murine primary bone marrow macrophage cells. The most important regulation in osteoclastogenesis is the receptor activator of nuclear factor-kB/RANKL/osteoprotegrin (RANK/RANKL/OPG) pathway. In this study, we used the coculture of RAW 264.7 cells and the feeder cells, ST2, to evaluate how EGCG regulated the RANK/RANKL/OPG pathway in RAW 264.7 cells and ST2 cells. We found EGCG decreased the RANKL/OPG ratio in both mRNA expression and secretory protein levels and eventually decreased osteoclastogenesis by TRAP (+) stain osteoclasts and TRAP activity at low concentrations-1 and 10 µmol/L-via the RANK/RANKL/OPG pathway. The effective concentration can be easily achieved in daily tea consumption. Taken together, our results implicate that EGCG could be an important nutrient in modulating bone resorption.
Collapse
Affiliation(s)
- Shih-Tse Chen
- Department of Psychiatry, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu 30059, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan.
| | - Peng-Ju Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Hsuan-Ti Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| |
Collapse
|
63
|
Liu YW, An SB, Yang T, Xiao YJ, Wang L, Hu YH. Protection Effect of Curcumin for Macrophage-Involved Polyethylene Wear Particle-Induced Inflammatory Osteolysis by Increasing the Cholesterol Efflux. Med Sci Monit 2019; 25:10-20. [PMID: 30599093 PMCID: PMC6327781 DOI: 10.12659/msm.914197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periprosthetic osteolysis, induced by wear particles and inflammation, is a common reason for failure of primary arthroplasty. Curcumin, a nature phenol from plants, has been reported to reduce the inflammation in macrophages. This study aimed to investigate the potential effect of curcumin on macrophage involved, wear particle-induced osteolysis and its mechanism. MATERIAL AND METHODS RAW264.7 macrophages were used to test the effects of polyethylene (PE) particles and curcumin on macrophage cholesterol efflux and phenotypic changes. A mouse model of PE particle-induced calvarial osteolysis was established to test the effects of curcumin in vivo. After 14 days of treatment, the bone quality of the affected areas was analyzed by micro-computed tomography (micro-CT) and histology, and the bone surrounding soft tissues were analyzed at the cellular and molecular levels. RESULTS We found that PE particles can stimulate osteoclastogenesis and produce an M1-like phenotype in macrophages in vitro. Curcumin enhanced the cholesterol efflux in macrophages, and maintained the M0-like phenotype under the influence of PE particles in vitro. Additionally, the cholesterol transmembrane regulators ABCA1, ABCG1, and CAV1 were enhanced by curcumin in vivo. We also found enhanced bone density, reduced osteoclastogenesis, and fewer inflammatory responses in the curcumin treated groups in our mouse osteolysis model. CONCLUSIONS Our study findings indicated that curcumin can inhibit macrophage involved osteolysis and inflammation via promoting cholesterol efflux. Maintaining the cholesterol efflux might be a potential strategy to prevent periprosthetic osteolysis after total joint arthroplasty surgery.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Sen-Bo An
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Tao Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yue-Jun Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
64
|
Nicolin V, De Tommasi N, Nori SL, Costantinides F, Berton F, Di Lenarda R. Modulatory Effects of Plant Polyphenols on Bone Remodeling: A Prospective View From the Bench to Bedside. Front Endocrinol (Lausanne) 2019; 10:494. [PMID: 31396157 PMCID: PMC6663995 DOI: 10.3389/fendo.2019.00494] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
During the past, a more comprehensive knowledge of mechanisms implicated in bone resorption processes has driven researchers to develop a compound library of many small molecules that specifically interfere with the genesis of osteoclast precursors cells. Natural compounds that suppress osteoclast commitment may have therapeutic value in treating pathologies associated with bone resorption like osteoporosis, rheumatoid arthritis, bone metastasis, and periodontal disease. The present review is focused on the current knowledge on the polyphenols derived from plants that could be efficacious in suppressing osteoclast differentiation and bone resorption.
Collapse
Affiliation(s)
- Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- *Correspondence: Vanessa Nicolin
| | | | | | | | - Federico Berton
- School of Dental Sciences, University of Trieste, Trieste, Italy
| | - Roberto Di Lenarda
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
65
|
de Almeida Brandão D, Spolidorio LC, Johnson F, Golub LM, Guimarães-Stabili MR, Rossa C. Dose-response assessment of chemically modified curcumin in experimental periodontitis. J Periodontol 2018; 90:535-545. [PMID: 30394523 DOI: 10.1002/jper.18-0392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND CMC2.24, a novel tri-ketonic chemically modified compound based on natural di-ketonic curcumin, has been shown to reduce bone loss and inflammatory mediators in experimental periodontitis, however, a potential dose-response relationship was not determined. The purpose of this study was to assess the effects of different doses of CMC2.24 on inflammation and bone resorption in vivo and also to describe on the effects of CMC2.24 on macrophage response. METHODS CMC2.24 was administered daily to animals for 28 days by oral gavage, at the following doses: 0 (control), 1, 3, 10, and 30 mg/kg of body weight. Experimental periodontitis was induced by injections of lipopolysaccharide (LPS) into the gingival tissues. Outcomes assessed were bone resorption, detection of tartrate-resistant acid phosphatase, and determination of gene expression. In vitro, macrophages (RAW264.7) were treated with different concentrations of CMC2.24: 1, 3, 10, and 30 μM and then subjected to different activation stimuli. Gene expression, phagocytic activity, production of reactive oxygen species (ROS) and cytokine production were evaluated. RESULTS CMC2.24 inhibited bone resorption, osteoclastogenesis, and tumor necrosis factor (TNF)-α expression in vivo. These beneficial responses reached maximum levels at a dose of 1 mg/kg, i.e. no dose-dependent effect. In vitro, CMC2.24 reduced the production of TNF-α and interleukin-10, inhibited phagocytic activity and stimulated production of ROS. A dose-dependent effect was observed only for ROS production. CONCLUSION Low doses of CMC2.24 (1 mg/kg/day) administered orally were sufficient to significantly inhibit alveolar bone resorption associated with the experimental periodontal disease; whereas in vitro macrophage inflammatory gene expression and phagocytosis were reduced, whereas production of ROS was stimulated.
Collapse
Affiliation(s)
| | | | - Francis Johnson
- Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine Stony Brook University
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara, Brazil
| |
Collapse
|
66
|
Khanizadeh F, Rahmani A, Asadollahi K, Ahmadi MRH. Combination therapy of curcumin and alendronate modulates bone turnover markers and enhances bone mineral density in postmenopausal women with osteoporosis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:438-445. [PMID: 30304108 PMCID: PMC10118732 DOI: 10.20945/2359-3997000000060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study evaluated the effects of combination therapy of curcumin and alendronate on BMD and bone turnover markers in postmenopausal women with osteoporosis. SUBJECTS AND METHODS In a randomized, double-blind trial study, 60 postmenopausal women were divided into three groups: control, alendronate, and alendronate + curcumin. Each group included 20 patients. Total body, total hip, lumbar spine and femoral neck BMDs were measured by dual-energy X-ray absorptiometry (DXA) at baseline and after 12 months of therapy. Bone turnover markers such as bone-specific alkaline phosphatase (BALP), osteocalcin and C-terminal cross-linking telopeptide of type I collagen (CTx) were measured at the outset and 6 months later. RESULTS Patients in the control group suffered a significant decrease in BMD and increased bone turnover markers at the end of study. The group treated with only alendronate showed significantly decreased levels of BALP and CTx and increased levels of osteocalcin compared to the control group. The alendronate group also showed significant increases in the total body, total hip, lumbar spine and femoral neck BMDs at the end of study compared to the control group. In the curcumin + alendronate group, BALP and CTx levels decreased and osteocalcin levels increased significantly at the end of study compared to the control and alendronate groups. BMD indexes also increased in four areas significantly at the end of study compared to the control and alendronate groups. CONCLUSION The combination of curcumin and alendronate has beneficial effects on BMD and bone turnover markers among postmenopausal women with osteoporosis. Arch Endocrinol Metab. 2018;62(4):438-45.
Collapse
Affiliation(s)
- Fatemeh Khanizadeh
- Obstetrician/Gynecology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Khairollah Asadollahi
- Clinical epidemiology, Departament of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
67
|
Bannuru RR, Osani MC, Al-Eid F, Wang C. Efficacy of curcumin and Boswellia for knee osteoarthritis: Systematic review and meta-analysis. Semin Arthritis Rheum 2018; 48:416-429. [PMID: 29622343 PMCID: PMC6131088 DOI: 10.1016/j.semarthrit.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE The unfavorable safety profiles of commonly prescribed knee osteoarthritis (OA) treatments have led clinicians and patients to seek safer alternatives. Research has suggested that curcuminoid and boswellia formulations could moderate key inflammatory pathways that are associated with worsening symptoms and disease progression. We conducted a systematic review and meta-analysis to assess the efficacy and safety of these treatments vs. placebo or NSAIDs for knee OA. METHODS We searched Medline, EMBASE, Google Scholar, Web of Science and the Cochrane database from inception to February 21, 2018. We also hand searched reference lists and reviewed conference proceedings. We included randomized clinical trials (RCTs) comparing curcuminoid or boswellia formulations with placebo or NSAIDs for knee OA. We calculated standardized mean differences (SMD) or risk ratios (RR) for all relevant outcomes. Meta-analyses were conducted using random effects models. Heterogeneity was assessed using the I2 statistic. RESULTS Eleven RCTs (N = 1009) were eligible for analysis. Study quality was low overall, and most included RCTs were conducted on fewer than 100 participants. Both curcuminoid and boswellia formulations were statistically significantly more effective than placebo for pain relief and functional improvement. There were no significant differences between curcuminoids or boswellia and placebo in safety outcomes. Curcuminoids showed no statistically significant differences in efficacy outcomes compared to NSAIDs; patients receiving curcuminoids were significantly less likely to experience gastrointestinal adverse events. No RCTs compared boswellia against approved NSAIDs. CONCLUSIONS The results of our study suggest that curcuminoid and boswellia formulations could be a valuable addition to the knee OA treatment regimens by relieving symptoms while reducing safety risks. The current body of evidence is not adequate in size or quality to make any meaningful clinical practice recommendations. Further research through large, high quality RCTs probably investigating the synergistic effect of these products with other OA treatments is warranted.
Collapse
Affiliation(s)
- Raveendhara R Bannuru
- Center for Complementary and Integrative Medicine, Division of Rheumatology, Tufts Medical Center, 800 Washington St., #406, Boston, MA 02111; Center for Treatment Comparison and Integrative Analysis, Division of Rheumatology, Tufts Medical Center, Boston, MA.
| | - Mikala C Osani
- Center for Treatment Comparison and Integrative Analysis, Division of Rheumatology, Tufts Medical Center, Boston, MA
| | - Fatimah Al-Eid
- Center for Treatment Comparison and Integrative Analysis, Division of Rheumatology, Tufts Medical Center, Boston, MA
| | - Chenchen Wang
- Center for Complementary and Integrative Medicine, Division of Rheumatology, Tufts Medical Center, 800 Washington St., #406, Boston, MA 02111
| |
Collapse
|
68
|
Kundur S, Prayag A, Selvakumar P, Nguyen H, McKee L, Cruz C, Srinivasan A, Shoyele S, Lakshmikuttyamma A. Synergistic anticancer action of quercetin and curcumin against triple‐negative breast cancer cell lines. J Cell Physiol 2018; 234:11103-11118. [DOI: 10.1002/jcp.27761] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sai Kundur
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Amrita Prayag
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Priyanga Selvakumar
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Hung Nguyen
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Lloyd McKee
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Clairissa Cruz
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Asha Srinivasan
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Sunday Shoyele
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| |
Collapse
|
69
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [PMID: 29597029 DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
70
|
Florczyk-Soluch U, Józefczuk E, Stępniewski J, Bukowska-Strakova K, Mendel M, Viscardi M, Nowak WN, Józkowicz A, Dulak J. Various roles of heme oxygenase-1 in response of bone marrow macrophages to RANKL and in the early stage of osteoclastogenesis. Sci Rep 2018; 8:10797. [PMID: 30018287 PMCID: PMC6050304 DOI: 10.1038/s41598-018-29122-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heme oxygenase-1 (HO-1; encoded by Hmox1), a downstream target of the Nrf2 transcription factor, has been postulated to be a negative regulator of osteoclasts (OCLs) differentiation. Here, we further explored such a hypothesis by examining HO-1 effects in different stages of osteoclastogenesis. We confirmed the inhibition of the expression of OCLs markers by Nrf2. In contrast, both the lack of the active Hmox1 gene or HO-1 silencing in OCLs precursor cells, bone marrow macrophages (BMMs), decreased their differentiation towards OCLs, as indicated by the analysis of OCLs markers such as TRAP. However, no effect of HO-1 deficiency was observed when HO-1 expression was silenced in BMMs or RAW264.7 macrophage cell line pre-stimulated with RANKL (considered as early-stage OCLs). Moreover, cobalt protoporphyrin IX (CoPPIX) or hemin, the known HO-1 inducers, inhibited OCLs markers both in RANKL-stimulated RAW264.7 cells and BMMs. Strikingly, a similar effect occurred in HO-1-/- cells, indicating HO-1-independent activity of CoPPIX and hemin. Interestingly, plasma of HO-1-/- mice contained higher TRAP levels, which suggests an increased number of bone-resorbing OCLs in the absence of HO-1 in vivo. In conclusion, our data indicate that HO-1 is involved in the response of bone marrow macrophages to RANKL and the induction of OCLs markers, but it is dispensable in early-stage OCLs. However, in vivo HO-1 appears to inhibit OCLs formation.
Collapse
Affiliation(s)
- Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Ewelina Józefczuk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Mendel
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Viscardi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland. .,Kardio-Med Silesia, Zabrze, Poland.
| |
Collapse
|
71
|
Hatefi M, Ahmadi MRH, Rahmani A, Dastjerdi MM, Asadollahi K. Effects of Curcumin on Bone Loss and Biochemical Markers of Bone Turnover in Patients with Spinal Cord Injury. World Neurosurg 2018; 114:e785-e791. [PMID: 29567290 DOI: 10.1016/j.wneu.2018.03.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osteoporosis is one of the most common problems of patients with spinal cord injuries (SCIs). The current study aimed to evaluate the antiosteoporotic effects of curcumin on densitometry parameters and biomarkers of bone turnovers among patients with SCI. MATERIALS AND METHODS The current controlled clinical trial was conducted among 100 patients with SCI referred to an outpatient clinic of rehabilitation in Ilam City, Iran, in 2013-2015. The intervention group received 110/mg/kg/day curcumin for 6 months and the control group received placebo. Bone mineral density (BMD) was measured in all patients. The level of procollagen type I N-terminal propeptide, serum carboxy-terminal telopeptide of type I collagen, osteocalcin, and bone-specific alkaline phosphates were compared before and after study. RESULTS BMD indicators of lumbar, femoral neck, and total hip in the control group significantly decreased compared with the beginning of study. However, in the curcumin group, a significant increase was observed in BMD indicators of lumbar, femoral neck, and hip at the end of study compared with the beginning. There was also a significant difference between interventional and control groups for the mean BMD of femoral neck and hip at the end of study (0.718 ± 0.002 g/cm2 vs. 0.712 ± 0.003 g/cm2 and 0.742 ± 0.031 g/cm2 vs. 0.692 ± 0.016 g/cm2, respectively). CONCLUSIONS Curcumin, via modulation of densitometry indices and bone resorption markers, showed inhibitory effects on the process of osteoporosis. Treatment with curcumin was significantly associated with a decrease in the osteoporosis progression and bone turnover markers of patients with SCI after 6 months.
Collapse
Affiliation(s)
- Masoud Hatefi
- Department of Neurosurgery, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Asghar Rahmani
- Student Research Committee, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Moghadas Dastjerdi
- Department of Emergency Medicine, Faculty of Medicine, Esfahan University of Medical Sciences, Isfahan, Iran
| | - Khairollah Asadollahi
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
72
|
Asefi S, Seifi M, Fard GH, Lotfi A. Innovative evaluation of local injective gel of curcumin on the orthodontic tooth movement in rats. Dent Res J (Isfahan) 2018; 15:40-49. [PMID: 29497446 PMCID: PMC5806429 DOI: 10.4103/1735-3327.223618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Curcumin is the most active compound in turmeric. It can suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and prevent the osteoclastogenesis procedure. This study aimed to be the first to evaluate the effect of curcumin on the rate of orthodontic tooth movement (OTM). Materials and Methods Forty rats were used as follows in each group: (1) negative control: Did not receive any appliance or injection; (2) positive control: received 0.03 cc normal saline and appliance; (3) gelatin plus curcumin (G): Received 0.03 cc hydrogel and appliance; and (4) chitosan plus curcumin (Ch): Received 0.03 cc hydrogel and appliance. They were anesthetized and closed nickel-titanium coil springs were installed between the first molars and central incisors unilaterally as the orthodontic appliance. After 21 days, the rats were decapitated, and the distance between the first and second molars was measured by a leaf gauge. Howship's lacunae, blood vessels, osteoclast-like cells, and root resorption lacunae were evaluated in the histological analysis. Data were analyzed by one-way ANOVA, Tukey's test, and t-test (P < 0.05 consider significant). Results No significant difference was found in OTM between groups delivered orthodontic forces. Curcumin inhibited root and bone resorption, osteoclastic recruitment, and angiogenesis significantly. Conclusion Curcumin had no significant inhibitory effect on OTM. While it had a significant role on decreasing bone or root resorption (P > 0.05).
Collapse
Affiliation(s)
- Sohrab Asefi
- Department of Orthodontic, International Campus, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Seifi
- Department of Orthodontic and Dental Research, Research Institute of Dental Sciences Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Hatami Fard
- Department of Life Sciences, Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, London, UK
| | - Ali Lotfi
- Department of Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
73
|
|
74
|
Ham JR, Choi RY, Yee ST, Hwang YH, Kim MJ, Lee MK. Methoxsalen supplementation attenuates bone loss and inflammatory response in ovariectomized mice. Chem Biol Interact 2017; 278:135-140. [PMID: 29074052 DOI: 10.1016/j.cbi.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Methoxsalen (MTS) is a natural bioactive compound found in a variety of plants that has many known biofunctions; however, its effects on osteoporosis and related mechanisms are not clear. This study examined whether MTS exhibited preventive effects against postmenopausal osteoporosis. Female C3H/HeN mice were divided into four groups: Sham, ovariectomy (OVX), OVX with MTS (0.02% in diet), and OVX with estradiol (0.03 μg/day, s.c). After 6 weeks, MTS supplementation significantly increased femur bone mineral density and bone surface along with bone surface/total volume. MTS significantly elevated the levels of serum formation markers (estradiol, osteocalcin and bone-alkaline phosphatase) such as estradiol in OVX mice. Tartrate resistant acid phosphatase staining revealed that MTS suppressed osteoclast numbers and formation in femur tissues compared with the OVX group. Supplementation of MTS slightly up-regulated osteoblastogenesis-related genes (Runx-2, osterix, osteocalcin, and Alp) expression, whereas it significantly down-regulated inflammatory genes (Nfκb and Il6) expression in femur tissue compared with the OVX group. These results indicate that MTS supplementation effectively prevented OVX-induced osteoporosis via enhancement of bone formation and suppression of inflammatory response in OVX mice. Our study provides valid scientific information regarding the development and application of MTS as a food ingredient, a food supplement or an alternative agent for preventing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, South Korea
| | - Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, South Korea
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, South Korea
| | - Yun-Ho Hwang
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, South Korea
| | - Myung-Joo Kim
- Department of Bakery & Barista, Suseong College, Daegu, 42078, South Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, South Korea.
| |
Collapse
|
75
|
Ueno M, Cho K, Isaka S, Nishiguchi T, Yamaguchi K, Kim D, Oda T. Inhibitory effect of sulphated polysaccharide porphyran (isolated from Porphyra yezoensis)
on RANKL-induced differentiation of RAW264.7 cells into osteoclasts. Phytother Res 2017; 32:452-458. [DOI: 10.1002/ptr.5988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Kichul Cho
- Cell Factory Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Shogo Isaka
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Tomoki Nishiguchi
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI); Kyungpook National University; Daegu Republic of Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| |
Collapse
|
76
|
Son HE, Kim EJ, Jang WG. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci 2017; 193:34-39. [PMID: 29223538 DOI: 10.1016/j.lfs.2017.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
AIMS Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. MAIN METHODS The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. KEY FINDINGS Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. SIGNIFICANCE Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
77
|
Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol In Vitro 2017; 47:186-194. [PMID: 29223572 DOI: 10.1016/j.tiv.2017.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant B-cell neoplasm with accumulation of malignant plasma cells in bone marrow. Pharmacological therapy improves response frequency even if with various associated toxicities. Herein, we investigated if combination of curcumin with carfilzomib (CFZ) can induce a better cytotoxic effect on in vitro cultured U266 cells. Cell viability data showed that curcumin significantly ameliorates CFZ cytotoxic effect. Furthermore, curcumin alone did not affect proteasome at the tested dose, confirming the involvement of different mechanisms in the observed effects. U266 cells exposure to curcumin or CFZ increased reactive species (RS) levels, although their production did not appear further potentiated following drugs combination. Interestingly, NF-κB nuclear accumulation was reduced by treatment with CFZ or curcumin, and was more deeply decreased in cells treated with CFZ-curcumin combinations, very likely due to the different mechanisms through which they target NF-κB. Our results confirmed the induction of p53/p21 axis and G0/G1 cell cycle arrest in anticancer activities of both drugs, an effect more pronounced for the CFZ-curcumin tested combinations. Furthermore, curcumin addition enhanced CFZ proapoptotic effect. These findings evidence that curcumin can ameliorate CFZ efficacy, and lead us to hypothesize that this effect might be useful to optimize CFZ therapy in MM patients.
Collapse
|
78
|
Curcumin Attenuation of Wear Particle-Induced Osteolysis via RANKL Signaling Pathway Suppression in Mouse Calvarial Model. Mediators Inflamm 2017; 2017:5784374. [PMID: 29085185 PMCID: PMC5632469 DOI: 10.1155/2017/5784374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Wear particle-induced chronic inflammation and osteoclastogenesis are two critical factors in the osteolytic process. Curcumin (CUR) is an active compound of the medicinal herb Curcuma longa and has anti-inflammatory and antiosteoclastogenic properties. Our study tested the hypothesis that CUR might attenuate polymethylmethacrylate- (PMMA-) induced inflammatory osteolysis using mouse calvaria osteolysis model in vivo and in vitro. The mice were divided into four groups: phosphate-buffered saline group, CUR, PMMA, and PMMA + CUR groups. Three days before PMMA particle implantation, the mice were intraperitoneally injected with CUR (25 mg/kg/day). Ten days after the operation, the mouse calvaria was harvested for microcomputed tomography, histomorphometry, and molecular biology analysis. As expected, CUR markedly reduced the secretion of tumor necrosis factor-α, interleukin- (IL-) 1β, and IL-6 in the calvarial organ culture. Moreover, CUR suppressed osteoclastogenesis and decreased bone resorption in vivo compared with PMMA-stimulated calvaria. Furthermore, CUR downregulated the osteoclast-specific gene expression and reversed the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin messenger RNA and protein ratio in PMMA particle-stimulated mice. These results suggest that CUR attenuated PMMA particle-induced inflammatory osteolysis by suppressing the RANKL signaling pathway in the murine calvarium, which could be a candidate compound to prevent and treat AL.
Collapse
|
79
|
Neog MK, Joshua Pragasam S, Krishnan M, Rasool M. p-Coumaric acid, a dietary polyphenol ameliorates inflammation and curtails cartilage and bone erosion in the rheumatoid arthritis rat model. Biofactors 2017; 43:698-717. [PMID: 28742266 DOI: 10.1002/biof.1377] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/17/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
This study was designed to explore the underlying mechanism of p-coumaric acid (CA), a dietary polyphenol in adjuvant-induced arthritis (AIA) rat model with reference to synovitis and osteoclastogenesis. Celecoxib (COX-2 selective inhibitor) (5 mg/kg b.wt) was used as a reference drug. CA remarkably suppressed the paw edema, body weight loss and inflammatory cytokine and chemokine levels (TNF-α, IL-1β, IL-6, and MCP-1) in serum and ankle joint of arthritic rats. Consistently, CA reduced the expression of osteoclastogenic factors (RANKL and TRAP), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-17), and inflammatory enzymes (iNOS and COX-2) in arthritic rats. However, OPG expression was found elevated. Besides, the abundance of transcription factors (NF-κB-p65, and p-NF-κB-p65, NFATc-1, and c-Fos) and MAP kinases (JNK, p-JNK, and ERK1/2) expression was alleviated in CA administered arthritic rats. In addition, CA truncated osteoclastogenesis by regulating the RANKL/OPG imbalance in arthritic rats and suppressing the RANKL-induced NFATc-1 and c-Fos expression in vitro. Radiological (CT and DEXA scan) and histological assessments authenticated that CA inhibited TRAP, bone destruction and cartilage degradation in association with enhanced bone mineral density. Taken together, our findings suggest that CA demonstrated promising anti-arthritic effect and could prove useful as an alternative drug in RA therapeutics. © 2017 BioFactors, 43(5):698-717, 2017.
Collapse
Affiliation(s)
- Manoj Kumar Neog
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| | - Samuel Joshua Pragasam
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| |
Collapse
|
80
|
Phenolics Isolated from Aframomum meleguta Enhance Proliferation and Ossification Markers in Bone Cells. Molecules 2017; 22:molecules22091467. [PMID: 28869564 PMCID: PMC6151453 DOI: 10.3390/molecules22091467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a serious health problem characterized by decreased bone mineral density and deterioration of bone microarchitecture. Current antiosteoporotic agents exhibit a wide range of adverse effects; meanwhile, phytochemicals are effective and safer alternatives. In the current work, nine compounds belonging to hydroxyphenylalkane and diarylheptanoid groups were isolated from Aframomum meleguea seeds and identified as 6-gingerol (1), 6-paradol (2), 8-dehydrogingerdione (3), 8-gingerol (4), dihydro-6-paradol (5), dihydrogingerenone A (6), dihydrogingerenone C (7), 1,7-bis(3,4-dihydroxy-5-methoxyphenyl)heptane-3,5-diyl diacetate (8), and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(3,4-dihydroxyphenyl)heptane-3,5-diyl diacetate (9). The structures of isolated compounds were established by NMR and mass spectral data, in addition to referring to literature data. Exposure of MCF-7, MG-63, and SAOS-2 cells to subcytotoxic concentrations of the compounds under investigation resulted in accelerated proliferation. Among them, paradol was selected for further detailed biochemical analysis in SAOS-2 cells. DNA flowcytometric analysis of cell cycle distribution revealed that paradol did not induce any significant change in the proliferation index of SAOS-2 cells. Assessment of osteogenic gene expression revealed that paradol enhanced the expression of osteocyte and osteoblast-related genes and inhibited osteoclast and RUNX suppressor genes. Biochemically, paradol enhanced alkaline phosphatase activity and vitamin D content and decreased the osteoporotic marker acid phosphatase. In conclusion, paradol, which is a major constituents of A. melegueta seeds, exhibited potent proliferative and ossification characteristics in bone cells.
Collapse
|
81
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
82
|
Cho DC, Ryu K, Kim KT, Sung JK. The Therapeutic Effects of Combination Therapy with Curcumin and Alendronate on Spine Fusion Surgery in the Ovariectomized Rats. KOREAN JOURNAL OF SPINE 2017; 14:35-40. [PMID: 28704906 PMCID: PMC5518429 DOI: 10.14245/kjs.2017.14.2.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Abstract
Objective The purpose of this study was to evaluate the therapeutic effects of combination therapy with curcumin and alendronate on spine fusion surgery in ovariectomized rats. Methods Thirty-two female Sprague-Dawley rats (12 weeks old) underwent bilateral ovariectomy (OVX). Eight weeks after surgery, animals underwent intertransverse spine fusion at L4–5. The rats were randomly distributed amongst 4 groups; untreated OVX group, curcumin administered group, alendronate administered group, and the combination therapy group. At 8 weeks after fusion surgery, the animals were sacrificed and the fusion mass was assessed by manual palpation, radiographic scan, and micro-computed tomographic scan. In addition, mechanical strength was determined by a 3-point bending test. Results Based on the results of manual palpation testing and 3-dimensional micro-computed tomography scanning, solid bone fusion rate was 50% (4 of 8) in the OVX group, 75% (6 of 8) in the alendronate-only and curcumin-only group, and 87.5% (7 of 8) in the combination therapy group, respectively. The combination therapy group had a higher fusion rate compared with the other treatment groups, though not statistically significantly (p>0.05). And the combination therapy group had a significant increase in fusion volume at 8 weeks after spine fusion surgery compared with curcumin-only group (p=0.039). The 3-point bending test showed that combination therapy group had a significantly greater maximal load value compared to that of curcumin-only group (p=0.024). Conclusion The present study demonstrated that additional treatment of curcumin and alendronate after spine fusion surgery in rat can promote higher fusion volume, and improve bone mechanical strength.
Collapse
Affiliation(s)
- Dae-Chul Cho
- Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu, Korea
| | - Kyoungsu Ryu
- Department of Neurosurgery, Halla Hospital, Jeju, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
83
|
Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174:1325-1348. [PMID: 27638428 PMCID: PMC5429333 DOI: 10.1111/bph.13621] [Citation(s) in RCA: 660] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
Curcumin, a yellow pigment in the Indian spice Turmeric (Curcuma longa), which is chemically known as diferuloylmethane, was first isolated exactly two centuries ago in 1815 by two German Scientists, Vogel and Pelletier. However, according to the pubmed database, the first study on its biological activity as an antibacterial agent was published in 1949 in Nature and the first clinical trial was reported in The Lancet in 1937. Although the current database indicates almost 9000 publications on curcumin, until 1990 there were less than 100 papers published on this nutraceutical. At the molecular level, this multitargeted agent has been shown to exhibit anti-inflammatory activity through the suppression of numerous cell signalling pathways including NF-κB, STAT3, Nrf2, ROS and COX-2. Numerous studies have indicated that curcumin is a highly potent antimicrobial agent and has been shown to be active against various chronic diseases including various types of cancers, diabetes, obesity, cardiovascular, pulmonary, neurological and autoimmune diseases. Furthermore, this compound has also been shown to be synergistic with other nutraceuticals such as resveratrol, piperine, catechins, quercetin and genistein. To date, over 100 different clinical trials have been completed with curcumin, which clearly show its safety, tolerability and its effectiveness against various chronic diseases in humans. However, more clinical trials in different populations are necessary to prove its potential against different chronic diseases in humans. This review's primary focus is on lessons learnt about curcumin from clinical trials. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Devivasha Bordoloi
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Ganesan Padmavathi
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Javadi Monisha
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Nand Kishor Roy
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Sahdeo Prasad
- Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
84
|
Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C, Yin P, Yu X, Tang M. β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Life Sci 2017; 174:15-20. [PMID: 28263804 DOI: 10.1016/j.lfs.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
AIMS β-Carotene is a natural anti-oxidant, which has been used for treatment of cancer and cardiovascular diseases. Recently, the ameliorating function of β-carotene in osteoporosis has been implicated. However, the precise mechanism of β-carotene in prevention and treatment of osteoporosis is largely unknown. In the present study, we aimed to elucidate how β-carotene affects osteoclast formation and bone resorption. MAIN METHODS Bone marrow-derived monocytes/-macrophages (BMM) were exposed to 0.05, 0.1, 0.2, 0.4 and 0.6μM β-carotene, followed by evaluation of cell viability, lactate dehydrogenase (LDH) release, receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and resorption pits formation. Key factors in nuclear factor kappa B (NF-ĸB) and mitogen-activated protein kinases (MAPK) pathways were evaluated with western blot after BMM cells were exposed to RANKL and β-carotene. The effects of β-carotene in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos and cathepsin K (CTSK) expression were also evaluated. KEY FINDINGS β-Carotene significantly inhibited BMM viability and promoted LDH release at concentrations of 0.4 and 0.6μM. A decrease in RANKL-induced osteoclastogenesis and resorption was also observed after β-carotene treatment. β-Carotene attenuated the NF-ĸB pathway activation by RANKL, with no effect on MAPK pathway. β-Carotene suppressed the upregulation of NFATc1 and c-Fos by RANKL. SIGNIFICANCE We clarified the anti-osteoclastogenic role of β-carotene, which is mediated by NF-κB signaling.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China; Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Peipei Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Mingjie Tang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
85
|
Son HE, Kim TH, Jang WG. Curculactones A and B induced the differentiation of C3H10T1/2 and MC3T3-E1 cells to osteoblasts. Bioorg Med Chem Lett 2017; 27:1301-1303. [PMID: 28082041 DOI: 10.1016/j.bmcl.2016.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023]
Abstract
Curculactones A and B are rare γ-lactone derivatives obtained from yellow, natural curcumin following γ-irradiation, and are a type of small molecules with a moderate anti-obesity effect. However, the exact role of curculactones A and B in osteoblast differentiation is unknown. In this study, the effects of curculactones A and B on the differentiation of the mesenchymal cell line C3H10T1/2 and pre-osteoblast cell line MC3T3-E1 to osteoblasts were examined. Curculactones A or B could markedly increase the mRNA levels of osteogenic marker genes and alkaline phosphatase (ALP) activity. Collectively, our findings indicate that curculactones A or B induced osteoblast differentiation through osteogenic expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC).
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea.
| |
Collapse
|
86
|
Abstract
Osteoarthritis (OA) is a chronic inflammatory degenerative process that affects joints such as the hands, hips, shoulders, feet, spine, and especially knees in millions of people worldwide. Some authors have shown that Curcuma longa components may exhibit benefic effects in the treatment of degenerative diseases as OA. This plant belongs to the family Zingiberaceae and it is popularly known as turmeric or saffron. This review intended to perform a retrospective search to identify studies involving humans and animal models. This review was based on articles linking OA and C. longa. Databases as Medline, Science Direct, and Lilacs were consulted and a retrospective search was carried out in order to identify studies involving humans and animal models. The curcuminoids from C. longa exhibit actions at different locations in the pathogenesis of OA once it may play an important role as anti-inflammatory, down-regulating enzymes as phospholipase A2, cyclooxygenase-2, and lipoxygenases, and reducing tumor necrosis factor-alpha-and interleukins such as interleukin-1β (IL-1β), IL-6, and IL-8. They also act as inducer of apoptosis in synoviocytes, decreasing the inflammation process and may also reduce the synthesis of reactive oxygen species. For these reasons, new pharmaceutical technology and pharmacological studies should be proposed to determine the dose, the best delivery vehicle, pharmaceutical formulation and route of administration of this plant so its use as an adjunct in the treatment of OA may become a reality in clinical practice.
Collapse
Affiliation(s)
- Marina Cristina Akuri
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Brazil.,Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília - SP, Brazil
| | - Raíssa Meira Val
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Brazil.,Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília - SP, Brazil
| |
Collapse
|
87
|
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 2016; 35:1-22. [PMID: 27996308 DOI: 10.1080/07357907.2016.1247166] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin has been shown to have a wide variety of therapeutic effects, ranging from anti-inflammatory, chemopreventive, anti-proliferative, and anti-metastatic. This review provides an overview of the recent research conducted to overcome the problems with the bioavailability of curcumin, and of the preclinical and clinical studies that have reported success in combinatorial strategies coupling curcumin with other treatments. Research on the signaling pathways that curcumin treatment targets shows that it potently acts on major intracellular components involved in key processes such as genomic modulations, cell invasion and cell death pathways. Curcumin is a promising molecule for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Vanessa Innao
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Sabina Russo
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Demetrio Gerace
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Andrea Alonci
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Caterina Musolino
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| |
Collapse
|
88
|
Bakır B, Yetkin Ay Z, Büyükbayram Hİ, Kumbul Doğuç D, Bayram D, Candan İA, Uskun E. Effect of Curcumin on Systemic T Helper 17 Cell Response; Gingival Expressions of Interleukin-17 and Retinoic Acid Receptor-Related Orphan Receptor γt; and Alveolar Bone Loss in Experimental Periodontitis. J Periodontol 2016; 87:e183-e191. [DOI: 10.1902/jop.2016.150722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
89
|
Wang N, Wang F, Gao Y, Yin P, Pan C, Liu W, Zhou Z, Wang J. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J Pharmacol Sci 2016; 132:192-200. [PMID: 27840063 DOI: 10.1016/j.jphs.2016.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
The detrimental effects of oxidative stress on the skeletal system have been documented, and understanding the mechanisms is important to design a therapeutic strategy. As an antioxidant and anti-inflammatory agent, the active ingredient of turmeric curcumin has been used as medication for numerous complications including bone loss. However, it is unclear if curcumin could influence the osteogenic potential of mesenchymal stem cells (MSCs), particularly in oxidative injuries. Here we demonstrate that curcumin treatment protects cell death caused by hydrogen peroxide (H2O2) exposure in human adipose-derived MSCs in vitro. Importantly, curcumin is able to enhance the osteoblast differentiation of human adipose-derived MSCs that is inhibited by H2O2. Notably, both oxidative stress and the inhibition of Wnt/β-catenin signaling are attenuated by curcumin treatment. These results suggest that curcumin can promote osteoblast differentiation of MSCs and protect the inhibitory effect elicited by oxidative injury. The findings support potential use of curcumin or related antioxidants in MSC-based bone regeneration for disease related with oxidative stress-induced bone loss.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Peipei Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Liu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
90
|
Jain S, Krishna Meka SR, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. ACTA ACUST UNITED AC 2016; 11:055007. [PMID: 27710925 DOI: 10.1088/1748-6041/11/5/055007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Curcumin is a phenolic compound isolated from Curcuma longa that is known to exhibit wide ranging biological activity including potential benefits for bone growth. The aim of this work was to engineer curcumin eluting tissue scaffolds and investigate their potential use in bone tissue regeneration. We prepared curcumin loaded poly(ε-caprolactone) (PCL) nanofibers by electrospinning. Morphological characterization of the nanofibers revealed that the average diameter of neat fibers and that of fibers with 1 wt% and 5 wt% curcumin is 840 ± 130 nm, 827 ± 129 nm and 680 ± 110 nm, respectively. Fourier transformation infrared spectroscopy and 1H nuclear magnetic resonance confirmed the successful loading of the drug in fibers. In aqueous medium, the fibers released ≈18% of the encapsulated drug in 3 d and ≈60% in 9 d. The cell response to the curcumin loaded nanofibers was assessed using MC3T3-E1 pre-osteoblasts. Cell proliferation was moderated with increased loading of curcumin and was 50% lower on the fibers containing 5% curcumin at day 10 than the control fibers. Osteogenesis was confirmed by assaying the expression of alkaline phosphatase and staining of mineral deposits by Alizarin red stain, which were both markedly higher for 1% curcumin compared to neat polymer but lower for 5% curcumin. Mineral deposition was also confirmed chemically by Fourier transform infrared spectroscopy. These results were corroborated by increased gene and protein expression of known osteogenic markers in 1% curcumin. Thus, controlled release of curcumin from polymer scaffolds is a promising strategy for bone tissue regeneration.
Collapse
Affiliation(s)
- Shubham Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
91
|
Wu YX, Wu TY, Xu BB, Xu XY, Chen HG, Li XY, Wang G. Protocatechuic acid inhibits osteoclast differentiation and stimulates apoptosis in mature osteoclasts. Biomed Pharmacother 2016; 82:399-405. [DOI: 10.1016/j.biopha.2016.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022] Open
|
92
|
An J, Hao D, Zhang Q, Chen B, Zhang R, Wang Y, Yang H. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol 2016; 36:118-131. [PMID: 27131574 DOI: 10.1016/j.intimp.2016.04.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
Abstract
Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Dingjun Hao
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Qian Zhang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Bo Chen
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Rui Zhang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Yi Wang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Hao Yang
- Translational Medicine Centre, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China.
| |
Collapse
|
93
|
Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells. Mol Med Rep 2016; 14:1957-62. [PMID: 27430169 PMCID: PMC4991763 DOI: 10.3892/mmr.2016.5456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Aspirin is a commonly used medicine as an effective antipyretic, analgesic and anti-inflammatory drug. Previous studies have demonstrated its potential effects of anti-postmenopausal osteoporosis, while the molecular mechanisms remain unclear. The effects of aspirin on receptor-activator of nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclasts were investigated in RAW264.7 cells in the current study. Using tartrate-resistant acid phosphatase (TRAP) staining, it was observed that aspirin inhibited the differentiation of RANKL-induced RAW264.7 cells. The mRNA expression of osteoclastic marker genes, including cathepsin K, TRAP, matrix metalloproteinase 9 and calcitonin receptor, were suppressed by aspirin as identified using reverse transcription-quantitative polymerase chain reaction analysis. The immunofluorescence assay indicated that aspirin markedly inhibited NF-κB p65 translocation to the nucleus in RANKL-induced RAW264.7 cells. In addition, aspirin also suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), observed by western blot analysis. Taken together, these data identified that aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells, implying that aspirin may possess therapeutic potential for use in the prevention and treatment of osteoporosis.
Collapse
|
94
|
Peddada KV, Peddada KV, Shukla SK, Mishra A, Verma V. Role of Curcumin in Common Musculoskeletal Disorders: a Review of Current Laboratory, Translational, and Clinical Data. Orthop Surg 2016; 7:222-31. [PMID: 26311096 DOI: 10.1111/os.12183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022] Open
Abstract
The Indian spice turmeric, in which the active and dominant biomolecule is curcumin, has been demonstrated to have significant medicinal properties, including anti-inflammatory and anti-neoplastic effects. This promise is potentially very applicable to musculoskeletal disorders, which are common causes of physician visits worldwide. Research at the laboratory, translational and clinical levels that supports the use of curcumin for various musculoskeletal disorders, such as osteoarthritis, osteoporosis, musculocartilaginous disorders, and sarcoma is here in comprehensively summarized. Though more phase I-III trials are clearly needed, thus far the existing data show that curcumin can indeed potentially be useful in treatment of the hundreds of millions worldwide who are afflicted by these musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anusha Mishra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
95
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|
96
|
Rohanizadeh R, Deng Y, Verron E. Therapeutic actions of curcumin in bone disorders. BONEKEY REPORTS 2016; 5:793. [PMID: 26962450 DOI: 10.1038/bonekey.2016.20] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/28/2016] [Indexed: 01/10/2023]
Abstract
Curcumin is the active component of turmeric extract derived from the Curcuma longa plant. In the last decade, curcumin has raised a considerable interest in medicine owing to its negligible toxicity and multiple therapeutic actions including anti-cancer, anti-inflammatory and anti-microbial activities. Among the various molecular targets of curcumin, some are involved in bone remodeling, which strongly suggests that curcumin can affect the skeletal system. The review sheds light on the current and potential applications of curcumin to treat bone disorders characterized by an excessive resorption activity. Within the scope of this review, the novel formulations of curcumin to overcome its physico-chemical and pharmacokinetic constraints are also discussed.
Collapse
Affiliation(s)
- Ramin Rohanizadeh
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, New South Wales, Australia
| | - Yi Deng
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, New South Wales, Australia
| | - Elise Verron
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia; INSERM, U791, LIOAD, Nantes, France
| |
Collapse
|
97
|
Tyagi AK, Prasad S, Majeed M, Aggarwal BB. Calebin A downregulates osteoclastogenesis through suppression of RANKL signalling. Arch Biochem Biophys 2016; 593:80-9. [PMID: 26874195 DOI: 10.1016/j.abb.2016.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/28/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
Osteoporosis is a bone disease that is exacerbated by aging and age-associated chronic diseases such as cancer. Cancer-induced bone loss is usually treated with bisphosphonates or denosumab, an antibody against receptor activator of nuclear factor (NF)-κB ligand (RANKL). Because these drugs are expensive and have numerous side effects and high rates of toxicity, safer, more effective, and more affordable therapies for osteoporosis are still needed. We identified a compound, calebin A (CA), derived from turmeric (Curcuma longa) that affects osteoclastogenesis through modulation of the RANKL signalling pathway. The CA's effect on NF-κB activation was examined by electrophoretic mobility shift assay. Using mouse macrophages in vitro model, we found that CA suppressed RANKL-induced osteoclast differentiation of macrophages into osteoclasts, and downregulate RANKL-induced osteoclastogenesis-related marker gene expression, including NFATc-1, TRAP, CTR, and cathepsin K. CA also suppressed the osteoclastogenesis induced by multiple myeloma and breast cancer cells. This effect of CA was correlated with suppression of the phosphorylation and degradation of inhibitor of κB and, thus, inhibition of NF-κB activation. Furthermore, we found that an NF-κB-specific inhibitory peptide blocked RANKL-induced osteoclastogenesis, demonstrating that the NF-κB signalling pathway is mandatory for RANKL-induced osteoclastogenesis. Our results conclusively indicate that CA downmodulates the osteoclastogenesis induced by RANKL and by tumour cells through suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
98
|
Ito S, Ohmi A, Sakamiya A, Yano T, Okumura K, Nishimura N, Kagontani K. Ginger hexane extract suppresses RANKL-induced osteoclast differentiation. Biosci Biotechnol Biochem 2016; 80:779-85. [PMID: 26967638 DOI: 10.1080/09168451.2015.1127133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteoporosis is a debilitating disease caused by decreased bone density. Compounds with anti-osteoclastic activity, such as bisphosphonates, may help in the prevention and treatment of osteoporosis. Herein, we determined the inhibitory effects of ginger hexane extract (GHE) on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. The results showed that GHE (1) suppressed osteoclast differentiation and the formation of actin rings; (2) inhibited the expression of Nfatc1, a master transcriptional factor for osteoclast differentiation, in a dose-dependent manner (10-20 μg/mL); and (3) inhibited other osteoclastogenesis-related genes, such as Oscar, Dc-stamp, Trap, and Mmp9. These findings suggest that GHE may be used to prevent and treat osteoporosis by inhibiting osteoclast differentiation.
Collapse
Affiliation(s)
- Suguru Ito
- a Tsuji Health & Beauty Science Laboratory , Mie University , Tsu, Japan
- b Tsuji Oil Mills Co., Ltd. , Matsusaka , Japan
- c Graduate School of Regional Innovation Studies , Mie University , Tsu, Japan
| | | | - Akiyo Sakamiya
- c Graduate School of Regional Innovation Studies , Mie University , Tsu, Japan
| | - Takeo Yano
- c Graduate School of Regional Innovation Studies , Mie University , Tsu, Japan
| | - Katsuzumi Okumura
- d Department of Life Sciences, Graduate School of Bioresources , Mie University , Tsu, Japan
| | - Norihiro Nishimura
- a Tsuji Health & Beauty Science Laboratory , Mie University , Tsu, Japan
- e Department of Translational Medical Sciences, Graduate School of Medicine , Mie University , Tsu, Japan
| | - Kazuhiro Kagontani
- a Tsuji Health & Beauty Science Laboratory , Mie University , Tsu, Japan
- b Tsuji Oil Mills Co., Ltd. , Matsusaka , Japan
| |
Collapse
|
99
|
Chen Z, Xue J, Shen T, Ba G, Yu D, Fu Q. Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosisin vivoandin vitro. Clin Exp Pharmacol Physiol 2016; 43:268-76. [PMID: 26515751 DOI: 10.1111/1440-1681.12513] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/25/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiguang Chen
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Jinqi Xue
- The Seventh Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Tao Shen
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Gen Ba
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Dongdong Yu
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Qin Fu
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
100
|
TenBroek EM, Yunker L, Nies MF, Bendele AM. Randomized controlled studies on the efficacy of antiarthritic agents in inhibiting cartilage degeneration and pain associated with progression of osteoarthritis in the rat. Arthritis Res Ther 2016; 18:24. [PMID: 26794830 PMCID: PMC4721142 DOI: 10.1186/s13075-016-0921-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Background As an initial step in the development of a local therapeutic to treat osteoarthritis (OA), a number of agents were tested for their ability to block activation of inflammation through nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), subchondral bone changes through receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis, and proteolytic degradation through matrix metalloproteinase (MMP)-13 activity. Candidates with low toxicity and predicted efficacy were further examined using either of two widely accepted models of OA joint degeneration in the rat: the monoiodoacetic acid (MIA) model or the medial meniscal tear/medial collateral ligament tear (MMT/MCLT) model. Methods Potential therapeutics were assessed for their effects on the activation of nuclear factor (NF)-κB, RANKL-mediated osteoclastogenesis, and MMP-13 activity in vitro using previously established assays. Toxicity was measured using HeLa cells, a synovial cell line, or primary human chondrocytes. Drugs predicted to perform well in vivo were tested either systemically or via intraarticular injection in the MIA or the MMT/MCLT model of OA. Pain behavior was measured by mechanical hyperalgesia using the digital Randall-Selitto test (dRS) or by incapacitance with weight bearing (WB). Joint degeneration was evaluated using micro computed tomography and a comprehensive semiquantitative scoring of cartilage, subchondral bone, and synovial histopathology. Results Several agents were effective both in vitro and in vivo. With regard to pain behavior, systemically delivered clonidine was superior in treating MIA-induced changes in WB or dRS, while systemic clonidine, curcumin, tacrolimus, and fluocinolone were all somewhat effective in modifying MMT/MCLT-induced changes in WB. Systemic tacrolimus was the most effective in slowing disease progression as measured by histopathology in the MMT/MCLT model. Conclusions All of the agents that demonstrated highest benefit in vivo, excepting clonidine, were found to inhibit MMP-13, NF-κB, and bone matrix remodeling in vitro. The MIA and MMT/MCLT models of OA, previously shown to possess inflammatory characteristics and to display associated pain behavior, were affected to different degrees by the same drugs. Although no therapeutic was remarkable across all measures, the several which showed the most promise in either model merit continued study with alternative dosing and therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0921-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica M TenBroek
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Laurie Yunker
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Mae Foster Nies
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Alison M Bendele
- Bolder BioPATH, Inc., 5541 Central Avenue, Suite 160, Boulder, CO, 80301, USA.
| |
Collapse
|