51
|
Zhou P, Yin JX, Tao HL, Zhang HW. Pathogenesis and management of heparin-induced thrombocytopenia and thrombosis. Clin Chim Acta 2020; 504:73-80. [DOI: 10.1016/j.cca.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
|
52
|
Lopetuso LR, Gasbarrini A. Fighting the Hype for Predictors of Efficacy in Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:764-765. [PMID: 31689346 DOI: 10.1093/ibd/izz274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 12/31/2022]
Abstract
Primary or secondary nonresponse to anti-TNF–α due to immunogenicity or treatment-related side effects and the growing presence of innovative biological therapies targeting different cytokines and immune processes raise a clear need for predictors of efficacy for anti-TNF-α treatment.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma, Italia.,UOC Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia ed Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma, Italia.,UOC Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia ed Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
53
|
Barberio B, D'Incà R, Facchin S, Dalla Gasperina M, Fohom Tagne CA, Cardin R, Ghisa M, Lorenzon G, Marinelli C, Savarino EV, Zingone F. Matrix Metalloproteinase 3 Predicts Therapeutic Response in Inflammatory Bowel Disease Patients Treated With Infliximab. Inflamm Bowel Dis 2020; 26:756-763. [PMID: 31504536 DOI: 10.1093/ibd/izz195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBDs) are treated with anti-TNF agents. Strategies to monitor response to therapy may improve clinical control of the disease and reduce economical costs. Previous evidence suggests cleavage of infliximab (IFX) by Matrix Metalloproteinase 3 (MMP3) as a mechanism leading to loss of response. Our study aimed to evaluate if MMP3 serum levels could be considered an early marker of anti-TNF nonresponse and to analyze the correlation with other biochemical markers of treatment failure such as IFX trough levels and anti-IFX antibodies, inflammatory markers, and albumin levels. METHODS Retrospectively, 73 IBD patients who had received IFX for at least 1 year were enrolled: 35 patients were responders and 38 were nonresponders at 52 weeks. Clinical and biochemical data (Harvey-Bradshaw index [HBI], Mayo score, body mass index [BMI], C-reactive protein [CRP], fecal calprotectin and albumin levels), MMP3 serum levels, and drug monitoring were assessed at baseline, postinduction, and 52 weeks. RESULTS The MMP3 levels were similar at baseline (19.83 vs 17.92 ng/mL), but at postinduction, patients who failed to respond at 1 year had significantly higher levels than patients who responded (26.09 vs 8.68 ng/mL, P < 0.001); the difference was confirmed at week 52 (29.56 vs 11.48 ng/mL, P < 0.001). The MMP3 levels tended to be higher in patients without antidrug antibodies than in patients with antidrug antibodies at postinduction and 52 weeks. CONCLUSIONS The MMP3 serum determination may represent an early marker of response to infliximab.
Collapse
Affiliation(s)
- Brigida Barberio
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Renata D'Incà
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Sonia Facchin
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Marianna Dalla Gasperina
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Cedric Arsenè Fohom Tagne
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Romilda Cardin
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Matteo Ghisa
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Greta Lorenzon
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Carla Marinelli
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Edoardo Vincenzo Savarino
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| | - Fabiana Zingone
- Division of Gastroenterology, Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Italy
| |
Collapse
|
54
|
Sidorov A, Beduleva L, Menshikov I, Terentiev A, Cherepanov I. Physicochemical characteristics of human IgG Fc fragments that expose regulatory rheumatoid factor neoepitopes and may show promise as antirheumatic agents. Biotechnol Appl Biochem 2020; 67:287-293. [DOI: 10.1002/bab.1849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Alexandr Sidorov
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
| | - Liubov Beduleva
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
- Novye Vakciny Ltd. Izhevsk Russian Federation
| | - Igor Menshikov
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
- Novye Vakciny Ltd. Izhevsk Russian Federation
| | - Alexey Terentiev
- Udmurt Federal Research Center UB RAS Izhevsk Russian Federation
- Department of Immunology and Cell BiologyUdmurt State University Izhevsk Russian Federation
| | - Igor Cherepanov
- Department of Fundamental ChemistryUdmurt State University Izhevsk Russian Federation
| |
Collapse
|
55
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
56
|
Potthoff B, McBlane F, Spindeldreher S, Sickert D. A cell-based immunogenicity assay to detect antibodies against chimeric antigen receptor expressed by tisagenlecleucel. J Immunol Methods 2020; 476:112692. [DOI: 10.1016/j.jim.2019.112692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
|
57
|
Is there an Exposure-Response Relationship for Nivolumab in Real-World NSCLC Patients? Cancers (Basel) 2019; 11:cancers11111784. [PMID: 31766292 PMCID: PMC6895963 DOI: 10.3390/cancers11111784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic data from real-world cohort are sparse in non small–cell lung cancer (NSCLC) patients treated with nivolumab. The aim of this prospective observational study was to explore the exposure-response relationship for effectiveness and toxicity of nivolumab in 81 outpatients with metastatic lung cancer. Nivolumab plasma trough concentrations (Cmin) were assayed at days 14, 28, and 42. Prognostic factors (including Cmin) regarding progression-free survival (PFS) and overall survival (OS) were explored using a multivariate Cox model. A Spearman’s rank test was used to investigate the relationship between Cmin and grade >2 immune-related adverse events (irAE). Mean nivolumab Cmin was 16.2 ± 6.0 µg/mL (n = 76), 25.6 ± 10.2 µg/mL (n = 64) and 33.4 ± 11.3 µg/mL (n = 53) at days 14, 28, and 42, respectively. No pharmacokinetic/pharmacodynamic (PK/PD) relationship was observed with either survival or onset of irAE. Multivariable Cox regression analysis identified Eastern Cooperative Oncology Group Performance Status (hazard ratio 1.85, 95%confidence interval 1.02–3.38, p-value = 0.043) and baseline use of corticosteroids (HR 8.08, 95%CI 1.78–36.62, p-value = 0.007) as independent risk factor for PFS and only baseline use of corticosteroids (HR 6.29, 95%CI 1.46–27.08, p-value = 0.013) for OS. No PK/PD relationship for nivolumab was observed in real-world NSCLC patients. This supports the recent use of flat dose regimens without plasma drug monitoring.
Collapse
|
58
|
|
59
|
Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Health Res Rev 2019; 19:79-99. [PMID: 30683173 DOI: 10.1017/s1466252318000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
60
|
Hui GK, Gardener AD, Begum H, Eldrid C, Thalassinos K, Gor J, Perkins SJ. The solution structure of the human IgG2 subclass is distinct from those for human IgG1 and IgG4 providing an explanation for their discrete functions. J Biol Chem 2019; 294:10789-10806. [PMID: 31088911 PMCID: PMC6635440 DOI: 10.1074/jbc.ra118.007134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/03/2019] [Indexed: 11/06/2022] Open
Abstract
Human IgG2 antibody displays distinct therapeutically-useful properties compared with the IgG1, IgG3, and IgG4 antibody subclasses. IgG2 is the second most abundant IgG subclass, being able to bind human FcγRII/FcγRIII but not to FcγRI or complement C1q. Structural information on IgG2 is limited by the absence of a full-length crystal structure for this. To this end, we determined the solution structure of human myeloma IgG2 by atomistic X-ray and neutron-scattering modeling. Analytical ultracentrifugation disclosed that IgG2 is monomeric with a sedimentation coefficient (s20, w0) of 7.2 S. IgG2 dimer formation was ≤5% and independent of the buffer conditions. Small-angle X-ray scattering in a range of NaCl concentrations and in light and heavy water revealed that the X-ray radius of gyration (Rg ) is 5.2-5.4 nm, after allowing for radiation damage at higher concentrations, and that the neutron Rg value of 5.0 nm remained unchanged in all conditions. The X-ray and neutron distance distribution curves (P(r)) revealed two peaks, M1 and M2, that were unchanged in different buffers. The creation of >123,000 physically-realistic atomistic models by Monte Carlo simulations for joint X-ray and neutron-scattering curve fits, constrained by the requirement of correct disulfide bridges in the hinge, resulted in the determination of symmetric Y-shaped IgG2 structures. These molecular structures were distinct from those for asymmetric IgG1 and asymmetric and symmetric IgG4 and were attributable to the four hinge disulfides. Our IgG2 structures rationalize the existence of the human IgG1, IgG2, and IgG4 subclasses and explain the receptor-binding functions of IgG2.
Collapse
Affiliation(s)
- Gar Kay Hui
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Antoni D Gardener
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Halima Begum
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Charles Eldrid
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| | - Jayesh Gor
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
61
|
Cleavage of anti-PF4/heparin IgG by a bacterial protease and potential benefit in heparin-induced thrombocytopenia. Blood 2019; 133:2427-2435. [PMID: 30917957 DOI: 10.1182/blood.2019000437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is due to immunoglobulin G (IgG) antibodies, which bind platelet factor 4 (PF4) modified by polyanions, such as heparin (H). IgG/PF4/polyanion complexes directly activate platelets via Fc gamma type 2 receptor A (FcγRIIA) receptors. A bacterial protease, IgG-degrading enzyme of Streptococcus pyogenes (IdeS), cleaves the hinge region of heavy-chain IgG, abolishing its ability to bind FcγR, including FcγRIIA. We evaluated whether cleavage of anti-PF4/H IgG by IdeS could suppress the pathogenicity of HIT antibodies. IdeS quickly cleaved purified 5B9, a monoclonal chimeric anti-PF4/H IgG1, which led to the formation of single cleaved 5B9 (sc5B9), without any reduction in binding ability to the PF4/H complex. However, as compared with uncleaved 5B9, the affinity of sc5B9 for platelet FcγRIIA was greatly reduced, and sc5B9 was also unable to induce heparin-dependent platelet activation. In addition, incubating IdeS in whole blood containing 5B9 or HIT plasma samples led to cleavage of anti-PF4/H antibodies, which fully abolished the ability to induce heparin-dependent platelet aggregation and tissue factor messenger RNA synthesis by monocytes. Also, when whole blood was perfused in von Willebrand factor-coated microfluidic channels, platelet aggregation and fibrin formation induced by 5B9 with heparin was strongly reduced after IdeS treatment. Finally, IdeS prevented thrombocytopenia and hypercoagulability induced by 5B9 with heparin in transgenic mice expressing human PF4 and FcγRIIA receptors. In conclusion, cleavage of anti-PF4/H IgG by IdeS abolishes heparin-dependent cellular activation induced by HIT antibodies. IdeS injection could be a potential treatment of patients with severe HIT.
Collapse
|
62
|
Goufman IE, Yakovlev VN, Tikhonova NB, Matevosyan KS, Boltovskaya MN, Aisina RB, Mukhametova LI, Gershkovich KB. Increased Blood Concentration of IgG Degradation Products in Prostate Cancer. Bull Exp Biol Med 2019; 166:651-655. [PMID: 30903509 DOI: 10.1007/s10517-019-04411-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 11/29/2022]
Abstract
For elucidation of the mechanisms of IgG binding with human plasminogen in prostate cancer patients, we propose an original ELISA on polystyrene plates with immobilized heavy and light plasminogen chains. The level of IgG bound to plasminogen heavy chain in the serum of prostate cancer patients significantly exceeded that in healthy volunteers. IgG treated with plasmin more actively (by more than 2 times) bound plasminogen heavy chain than intact IgG. These findings indicate the involvement of lysine-binding sites of plasminogen heavy chain in the interaction with the C-terminal lysine of IgG and their fragments. ROC analysis of ELISA data showed significant differences between serum samples from patients with prostate cancer and benign prostatic hyperplasia. It is hypothesized that IgG in the tumor region undergo proteolysis and their products appear in the circulation.
Collapse
Affiliation(s)
- I E Goufman
- Research Institute of Human Morphology, Moscow, Russia.
| | | | - N B Tikhonova
- Research Institute of Human Morphology, Moscow, Russia
| | | | | | - R B Aisina
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | - K B Gershkovich
- N. M. Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
63
|
Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy. mBio 2019; 10:mBio.02491-18. [PMID: 30622190 PMCID: PMC6325251 DOI: 10.1128/mbio.02491-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While some individuals are nasally colonized with S. aureus, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate S. aureus from the nasal cavity. Among these, Corynebacterium pseudodiphtheriticum can eliminate S. aureus from the human nose. We sought to understand this phenomenon at a molecular level and found that C. pseudodiphtheriticum produces a factor(s) that specifically kills S. aureus. While resistant S. aureus isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by C. pseudodiphtheriticum to kill S. aureus could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds. Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen Staphylococcus aureus. However, the complex and dynamic molecular interactions that mediate these effects on S. aureus nasal colonization are often difficult to study and remain poorly understood. Here, we show that Corynebacterium pseudodiphtheriticum, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against S. aureus, including methicillin-resistant S. aureus (MRSA). Bacterial interaction assays revealed that S. aureus isolates that were spontaneously resistant to C. pseudodiphtheriticum killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a S. aureus transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of agrC, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in S. aureus, conferred resistance to killing. Analysis of the spontaneously resistant S. aureus isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that C. pseudodiphtheriticum induced dramatic changes to S. aureus cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that C. pseudodiphtheriticum-mediated killing of S. aureus requires S. aureus virulence components. While S. aureus can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a S. aureus commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.
Collapse
|
64
|
Engineering the hinge region of human IgG1 Fc-fused bispecific antibodies to improve fragmentation resistance. Sci Rep 2018; 8:17253. [PMID: 30467410 PMCID: PMC6250740 DOI: 10.1038/s41598-018-35489-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Fc domain fusion can improve the therapeutic effects of relatively small biological molecules such as peptides, cytokines, and antibody fragments. Fc fusion proteins can also be used to enhance the cytotoxic effects of small bispecific antibodies (bsAbs). However, fragmentation of Fc fusion proteins, which mainly occurs around the hinge regions during production, storage, and circulation in the blood, is a major issue. In this study, we first investigated the mechanisms of fragmentation around the hinge region during storage using Fc-fused bsAbs with specificity for epidermal growth factor receptor and CD3 as a model. The fragmentation peaks generated by gel filtration analysis indicated that both contaminating proteases and dissolved active oxygen should be considered causes of fragmentation. We designed and constructed variants by introducing a point mutation into the upper hinge region, which reduced the cleavage caused by dissolved active oxygen, and shortened the hinge region to restrict access of proteases. These hinge modifications improved fragmentation resistance and did not affect the biological activity of the bsAbs in vitro. We confirmed the versatility of the hinge modifications using another Fc-fused bsAb. Our results show that hinge modifications to the Fc fusion protein, especially the introduction of a point mutation into the upper hinge region, can reduce fragmentation substantially, and these modifications can be used to improve the fragmentation resistance of other recombinant Fc fusion proteins.
Collapse
|
65
|
Jordan RE, Fan X, Salazar G, Zhang N, An Z. Proteinase-nicked IgGs: an unanticipated target for tumor immunotherapy. Oncoimmunology 2018; 7:e1480300. [PMID: 30228951 PMCID: PMC6140550 DOI: 10.1080/2162402x.2018.1480300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022] Open
Abstract
The host immune system adopts multiple mechanisms involving antibodies to confront cancer cells. Accordingly, anti-tumor mAbs have become mainstays in cancer treatment. However, neither host immunity nor mAb therapies appear capable of controlling tumor growth in all cases. Structural instability of IgG was overlooked as a factor contributing to immunosuppression in the tumor microenvironment. Recently, physiological proteinases were identified that disable IgG immune effector functions. Evidence shows that these proteinases cause localized IgG impairment by selective cleavage of a single IgG peptide bond in the hinge-region. The recognition of IgG cleavage in the tumor microenvironment provides alternatives for tumor immunotherapy.
Collapse
Affiliation(s)
- Robert E Jordan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Xuejun Fan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Georgina Salazar
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| |
Collapse
|
66
|
Karlsson CAQ, Järnum S, Winstedt L, Kjellman C, Björck L, Linder A, Malmström JA. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS. Mol Cell Proteomics 2018; 17:1097-1111. [PMID: 29511047 PMCID: PMC5986240 DOI: 10.1074/mcp.ra117.000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes, with a particular focus on bacterial cleavage of IgG in vivo. In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection.
Collapse
Affiliation(s)
- Christofer A Q Karlsson
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Sofia Järnum
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | - Lena Winstedt
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | | | - Lars Björck
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Adam Linder
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Johan A Malmström
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden;
| |
Collapse
|
67
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
68
|
Huang T, Mathieu M, Lee S, Wang X, Kee YS, Bevers JJ, Ciferri C, Estavez A, Wong M, Chiang NY, Nakamura G, Brezski RJ. Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of normal human B cells. J Biol Chem 2017; 293:906-919. [PMID: 29191832 DOI: 10.1074/jbc.ra117.000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer. However, despite more than 50 years of study, the origin and specific B cell compartments that express AHAs remain elusive. Recent research on serum AHAs suggests that they arise during an active immune response, in contrast to previous proposals that they derive from the preexisting immune repertoire in the absence of antigenic stimuli. We report here the isolation and characterization of AHAs from memory B cells, although anti-hinge-reactive B cells were also detected in the naive B cell compartment. IgG AHAs cloned from a single human donor exhibited restricted specificity for protease-cleaved F(ab')2 fragments and did not bind the intact IgG counterpart. The cloned IgG-specific AHA-variable regions were mutated from germ line-derived sequences and displayed a high sequence variability, confirming that these AHAs underwent class-switch recombination and somatic hypermutation. Consistent with previous studies of serum AHAs, several of these clones recognized a linear, peptide-like epitope, but one clone was unique in recognizing a conformational epitope. All cloned AHAs could restore immune effector functions to proteolytically generated F(ab')2 fragments. Our results confirm that a diverse set of epitope-specific AHAs can be isolated from a single human donor.
Collapse
Affiliation(s)
- Tao Huang
- From the Antibody Engineering Department and
| | | | - Sophia Lee
- From the Antibody Engineering Department and
| | - Xinhua Wang
- From the Antibody Engineering Department and
| | | | | | - Claudio Ciferri
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Alberto Estavez
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Manda Wong
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | | | | | | |
Collapse
|
69
|
Mei M, Zhai C, Li X, Zhou Y, Peng W, Ma L, Wang Q, Iverson BL, Zhang G, Yi L. Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 2017; 292:20707-20719. [PMID: 29038295 DOI: 10.1074/jbc.m117.812107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
An endoplasmic reticulum (ER) retention sequence (ERS) is a characteristic short sequence that mediates protein retention in the ER of eukaryotic cells. However, little is known about the detailed molecular mechanism involved in ERS-mediated protein ER retention. Using a new surface display-based fluorescence technique that effectively quantifies ERS-promoted protein ER retention within Saccharomyces cerevisiae cells, we performed comprehensive ERS analyses. We found that the length, type of amino acid residue, and additional residues at positions -5 and -6 of the C-terminal HDEL motif all determined the retention of ERS in the yeast ER. Moreover, the biochemical results guided by structure simulation revealed that aromatic residues (Phe-54, Trp-56, and other aromatic residues facing the ER lumen) in both the ERS (at positions -6 and -4) and its receptor, Erd2, jointly determined their interaction with each other. Our studies also revealed that this aromatic residue interaction might lead to the discriminative recognition of HDEL or KDEL as ERS in yeast or human cells, respectively. Our findings expand the understanding of ERS-mediated residence of proteins in the ER and may guide future research into protein folding, modification, and translocation affected by ER retention.
Collapse
Affiliation(s)
- Meng Mei
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Xinzhi Li
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Yu Zhou
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Wenfang Peng
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Qinhong Wang
- the Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China, and
| | - Brent L Iverson
- the Department of Chemistry, University of Texas, Austin, Texas 78712
| | - Guimin Zhang
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| | - Li Yi
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| |
Collapse
|
70
|
Immunoglobulins and their receptors, and subversion of their protective roles by bacterial pathogens. Biochem Soc Trans 2017; 44:1651-1658. [PMID: 27913674 DOI: 10.1042/bst20160246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Immunoglobulins (Igs) play critical roles in immune defence against infectious disease. They elicit potent elimination processes such as triggering complement activation and engaging specific Fc receptors present on immune cells, resulting in phagocytosis and other killing mechanisms. Many important pathogens have evolved mechanisms to subvert or evade Ig-mediated defence. One such mechanism used by several pathogenic bacteria features proteins that bind the Ig Fc region and compromise engagement of host effector molecules. Examples include different IgA-binding proteins produced by Staphylococcus aureus, Streptococcus pyogenes, and group B streptococci, all of which interact with the same interdomain region on IgA Fc. Since this region also forms the interaction site for the major human IgA-specific Fc receptor CD89, the bacteria are able to evade CD89-mediated clearance mechanisms. Similar disruption of Ig effector function by pathogen Ig-binding proteins is evident in other species. Remarkably, all the Ig-binding proteins studied in detail to date are seen to target the CH2-CH3 domain interface in the Ig Fc region, suggesting a common mode of immune evasion. A second Ig subversion mechanism that has evolved independently in numerous pathogens involves proteases that cleave Ig molecules within their hinge regions, uncoupling the antigen recognition capability of the Fab region from clearance mechanisms elicited by the Fc region. The emerging understanding of the structural basis for the recognition of Igs as substrates for these proteases and as interaction partners for Ig-binding proteins may open up new avenues for treatment or vaccination.
Collapse
|
71
|
Liu C, Yu J, Li H, Liu J, Xu Y, Song P, Liu Q, Zhao H, Xu J, Maher VE, Booth BP, Kim G, Rahman A, Wang Y. Association of time-varying clearance of nivolumab with disease dynamics and its implications on exposure response analysis. Clin Pharmacol Ther 2017; 101:657-666. [PMID: 28182273 DOI: 10.1002/cpt.656] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023]
Abstract
Nivolumab is a human monoclonal antibody that blocks the interaction between PD-1 programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2. Nivolumab demonstrated efficacy in clinical trials for various types of cancer. A time-varying clearance was identified for nivolumab. We show that the change of clearance over time is associated with the post-treatment effects: clearance decreases when disease status improves. This interaction between posttreatment effects and drug exposure may lead to a biased steep estimate of the exposure-response (E-R) relationship for efficacy. Under this scenario, simulations were performed to develop a proposed methodology to assess the causal effect of drug exposure upon clinical response. Data from nivolumab trials were subsequently used to verify the proposed methodology for E-R analysis. The results showed that E-R analysis results based on pharmacokinetic (PK) metrics derived from the first dose are more consistent with the true E-R or dose-response relationship than the steady-state PK metrics.
Collapse
Affiliation(s)
- C Liu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - J Yu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - H Li
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - J Liu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - Y Xu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - P Song
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - Q Liu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - H Zhao
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - J Xu
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - V E Maher
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - B P Booth
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - G Kim
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - A Rahman
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - Y Wang
- Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
72
|
Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:331-339. [PMID: 28275265 DOI: 10.1038/nrrheum.2017.15] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of autoantibodies is one of the hallmarks of rheumatoid arthritis (RA). In the past few decades, rheumatoid factors (autoantibodies that recognize the Fc-tail of immunoglobulins) as well as anti-citrullinated protein antibodies (ACPAs) have been studied intensively. ACPAs recognize post-translationally modified proteins in which the amino acid arginine has been converted into a citrulline. More recently, other autoantibody systems recognizing post-translationally modified proteins have also gained attention, including autoantibodies recognizing fragmented immunoglobulin (anti-hinge antibodies), autoantibodies recognizing acetylated proteins and autoantibodies recognizing proteins that are modified by adducts formed under oxidative stress. In particular, detailed insights have been obtained on the presence and properties of autoantibodies recognizing carbamylated proteins, commonly called anti-carbamylated protein (anti-CarP) antibodies. In this Review, we summarize the current knowledge relating to these emerging autoantibodies that recognize post-translationally modified proteins identified in RA, with an emphasis on anti-CarP antibodies.
Collapse
|
73
|
Williams AJ, Ovadia RD, Giese GS. Improving Stepwise Assembly of a Bispecific F(ab′)2 from Two Different Fab′ Molecules. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ambrose J. Williams
- Department
of Purification Development, Genentech, Inc., South San Francisco, California 94080, United States
| | - Robert D. Ovadia
- Department of Pharmaceutical Processing & Technology Development, Genentech, Inc., South San Francisco, California 94080, United States
| | - Glen S. Giese
- Department
of Purification Development, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
74
|
Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH. Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice. Adv Healthc Mater 2017; 6. [PMID: 27869355 DOI: 10.1002/adhm.201600707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/07/2016] [Indexed: 12/28/2022]
Abstract
Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents. However, to avoid the need for repeated application in a clinical setting and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. In this study, the use of porous silicon nanoparticles (pSi NPs) is demonstrated for the controlled release of FnAb to diabetic wounds. We achieve FnAb loading regimens exceeding 250 µg antibody per mg of vehicle. FnAb-loaded pSi NPs increase keratinocyte proliferation and enhance migration in scratch wound assays. Release studies confirm the functionality of the FnAb in terms of Flii binding. Using a streptozotocin-induced model of diabetic wound healing, a significant improvement in healing is observed for mice treated with FnAb-loaded pSi NPs compared to controls, including FnAb alone. FnAb-loaded pSi NPs treated with proteases show intact and functional antibody for up to 7 d post-treatment, suggesting protection of the antibodies from proteolytic degradation in wound fluid. pSi NPs may therefore enable new therapeutic approaches for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Christopher T. Turner
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Steven J. P. McInnes
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Elizabeth Melville
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Allison J. Cowin
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Nicolas H. Voelcker
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| |
Collapse
|
75
|
Staples KJ, Taylor S, Thomas S, Leung S, Cox K, Pascal TG, Ostridge K, Welch L, Tuck AC, Clarke SC, Gorringe A, Wilkinson TMA. Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) Infection and Airway Inflammation in COPD. PLoS One 2016; 11:e0167250. [PMID: 27898728 PMCID: PMC5127575 DOI: 10.1371/journal.pone.0167250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a key pathogen in COPD, being associated with airway inflammation and risk of exacerbation. Why some patients are susceptible to colonisation is not understood. We hypothesised that this susceptibility may be due to a deficiency in mucosal humoral immunity. The aim of our study (NCT01701869) was to quantify the amount and specificity of antibodies against NTHi in the lungs and the associated risk of infection and inflammation in health and COPD. Phlebotomy, sputum induction and bronchoscopy were performed on 24 mild-to-moderate COPD patients and 8 age and smoking-matched controls. BAL (Bronchoalveolar lavage) total IgG1, IgG2, IgG3, IgM and IgA concentrations were significantly increased in COPD patients compared to controls. NTHi was detected in the lungs of 7 of the COPD patients (NTHi+ve-29%) and these patients had a higher median number of previous exacerbations than NTHi-ve patients as well as evidence of increased systemic inflammation. When comparing NTHi+ve versus NTHi-ve patients we observed a decrease in the amount of both total IgG1 (p = 0.0068) and NTHi-specific IgG1 (p = 0.0433) in the BAL of NTHi+ve patients, but no differences in total IgA or IgM. We observed no evidence of decreased IgG1 in the serum of NTHi+ve patients, suggesting this phenomenon is restricted to the airway. Furthermore, the NTHi+ve patients had significantly greater levels of IL-1β (p = 0.0003), in BAL than NTHi-ve COPD patients.This study indicates that the presence of NTHi is associated with reduced levels and function of IgG1 in the airway of NTHi-colonised COPD patients. This decrease in total and NTHI-specific IgG1 was associated with greater systemic and airway inflammation and a history of more frequent exacerbations and may explain the susceptibility of some COPD patients to the impacts of NTHi.
Collapse
Affiliation(s)
- Karl J. Staples
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- * E-mail:
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Steve Thomas
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Stephanie Leung
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Karen Cox
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | | | - Kristoffer Ostridge
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Lindsay Welch
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Andrew C. Tuck
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Stuart C. Clarke
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| |
Collapse
|
76
|
Falkenburg WJJ, van Schaardenburg D, Ooijevaar-de Heer P, Tsang-A-Sjoe MWP, Bultink IEM, Voskuyl AE, Bentlage AEH, Vidarsson G, Wolbink G, Rispens T. Anti-Hinge Antibodies Recognize IgG Subclass- and Protease-Restricted Neoepitopes. THE JOURNAL OF IMMUNOLOGY 2016; 198:82-93. [PMID: 27864476 DOI: 10.4049/jimmunol.1601096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022]
Abstract
Anti-hinge Abs (AHAs) target neoepitopes exposed after proteolytic cleavage of IgG. In this study, we explored the diversity of protease- and IgG subclass-restricted AHAs and their potential as immunological markers in healthy donors (HDs) and patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). AHA reactivity against IgG-degrading enzyme of Streptococcus pyogenes (IdeS)- or pepsin-generated F(ab')2 fragments of all four human IgG subclasses was determined. AHA reactivity against one or more out of eight F(ab')2 targets was found in 68% (68 of 100) of HDs, 69% (68 of 99) of SLE patients, and 81% (79 of 97) of RA patients. Specific recognition of hinge epitopes was dependent on IgG subclass and protease used to create the F(ab')2 targets, as confirmed by inhibition experiments with F(ab')2 fragments and hinge peptides. Reactivity against IdeS-generated F(ab')2 targets was found most frequently, whereas reactivity against pepsin-generated F(ab')2 targets better discriminated between RA and HDs or SLE, with significantly higher AHA levels against IgG1/3/4. In contrast, AHA levels against pepsin-cleaved IgG2 were comparable. No reactivity against IdeS-generated IgG2-F(ab')2s was detected. The most discriminatory AHA reactivity in RA was against pepsin-cleaved IgG4, with a 35% prevalence, ≥5.8-fold higher than in HDs/SLE, and significantly higher levels (p < 0.0001). Cross-reactivity for F(ab')2s generated from different IgG subclasses was only observed for subclasses having homologous F(ab')2 C termini (IgG1/3/4). For IgG2, two pepsin cleavage sites were identified; anti-hinge reactivity was restricted to only one of these. In conclusion, AHAs specifically recognize IgG subclass- and protease-restricted hinge neoepitopes. Their protease-restricted specificity suggests that different AHA responses developed under distinct inflammatory or infectious conditions and may be markers of, and participants in, such processes.
Collapse
Affiliation(s)
- Willem J J Falkenburg
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, the Netherlands; .,Department of Immunopathology, Sanquin Research, 1006 AN Amsterdam, the Netherlands
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, the Netherlands.,Amsterdam Rheumatology and Immunology Center, Academic Medical Center, 1100 DD Amsterdam, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Michel W P Tsang-A-Sjoe
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; and
| | - Irene E M Bultink
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; and
| | - Alexandre E Voskuyl
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; and
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research, 1006 AN Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, 1006 AN Amsterdam, the Netherlands
| | - Gertjan Wolbink
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
77
|
Agrawal S, Feng Y, Roy A, Kollia G, Lestini B. Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy. J Immunother Cancer 2016; 4:72. [PMID: 27879974 PMCID: PMC5109842 DOI: 10.1186/s40425-016-0177-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
Background Immuno-oncology (I-O) therapies target the host immune system, providing the potential to choose a uniform dose and schedule across tumor types. However, dose selection for I-O agents usually occurs early in clinical development and is typically based on tumor response, which may not fully represent the potential for improved overall survival. Here, we describe an integrated approach which incorporates clinical safety and efficacy data with data obtained from analyses of dose-/exposure-response (D-R/E-R) relationships, used to select a monotherapy dose for nivolumab, a programmed death–1 inhibitor, in clinical studies of different tumor types. Methods Dose was selected based on anti-tumor activity and safety data from a large phase 1b, open-label, dose-escalation study of nivolumab at doses ranging from 0.1 to 10 mg/kg administered every 2 weeks (Q2W) in 306 patients with advanced malignancies, and quantitative analyses were performed to characterize D-R/E-R relationships for pharmacodynamic, safety, and efficacy endpoints. Results A maximum tolerated dose for nivolumab was not identified, and the safety profile was similar across tumor types and dose levels (0.1–10 mg/kg). Objective response rates (ORRs) were similar across doses in melanoma and renal cell carcinoma (RCC), while higher ORRs were observed in non-small cell lung cancer (NSCLC) at 3 mg/kg and 10 mg/kg versus 1 mg/kg. Peripheral receptor occupancy was saturated at doses ≥ 0.3 mg/kg. In D-R/E-R analyses, a positive dose-dependent objective response trend was observed for each tumor type, but appeared to plateau at nivolumab doses of ≥ 1 mg/kg for melanoma and RCC, and at ≥ 3 mg/kg for NSCLC. Although there was no apparent relationship between tumor shrinkage rate and exposure, tumor progression rate appeared to decrease with increasing exposure up to a dose of 3 mg/kg Q2W for NSCLC. Conclusions Nivolumab monotherapy at 3 mg/kg Q2W provides unified dosing across tumor types. This dose and schedule has been validated in several phase II/III studies in which overall survival was an endpoint. Integrating D-R/E-R relationships with efficacy data and a safety profile that is unique to I-O therapy is a rational approach for dose selection of these agents. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0177-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruti Agrawal
- Clinical Pharmacology and Pharmacometrics, Exploratory Clinical and Translational Research, Bristol-Myers Squibb Co., 3551 Lawrenceville Road, Princeton, NJ 08543 USA
| | - Yan Feng
- Clinical Pharmacology and Pharmacometrics, Exploratory Clinical and Translational Research, Bristol-Myers Squibb Co., 3551 Lawrenceville Road, Princeton, NJ 08543 USA
| | - Amit Roy
- Clinical Pharmacology and Pharmacometrics, Exploratory Clinical and Translational Research, Bristol-Myers Squibb Co., 3551 Lawrenceville Road, Princeton, NJ 08543 USA
| | - Georgia Kollia
- Global Biometric Sciences, Bristol-Myers Squibb Co., Princeton, NJ 08543 USA
| | - Brian Lestini
- Global Clinical Research, Bristol-Myers Squibb Co., Princeton, NJ 08543 USA
| |
Collapse
|
78
|
Skopelja S, Hamilton BJ, Jones JD, Yang ML, Mamula M, Ashare A, Gifford AH, Rigby WF. The role for neutrophil extracellular traps in cystic fibrosis autoimmunity. JCI Insight 2016; 1:e88912. [PMID: 27777975 DOI: 10.1172/jci.insight.88912] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While respiratory failure in cystic fibrosis (CF) frequently associates with chronic infection by Pseudomonas aeruginosa, no single factor predicts the extent of lung damage in CF. To elucidate other causes, we studied the autoantibody profile in CF and rheumatoid arthritis (RA) patients, given the similar association of airway inflammation and autoimmunity in RA. Even though we observed that bactericidal permeability-increasing protein (BPI), carbamylated proteins, and citrullinated proteins all localized to the neutrophil extracellular traps (NETs), which are implicated in the development of autoimmunity, our study demonstrates striking autoantibody specificity in CF. Particularly, CF patients developed anti-BPI autoantibodies but hardly any anti-citrullinated protein autoantibodies (ACPA). In contrast, ACPA-positive RA patients exhibited no reactivity with BPI. Interestingly, anti-carbamylated protein autoantibodies (ACarPA) were found in both cohorts but did not cross-react with BPI. Contrary to ACPA and ACarPA, anti-BPI autoantibodies recognized the BPI C-terminus in the absence of posttranslational modifications. In fact, we discovered that P. aeruginosa-mediated NET formation results in BPI cleavage by P. aeruginosa elastase, which suggests a novel mechanism in the development of autoimmunity to BPI. In accordance with this model, autoantibodies associated with presence of P. aeruginosa on sputum culture. Finally, our results provide a role for autoimmunity in CF disease severity, as autoantibody levels associate with diminished lung function.
Collapse
Affiliation(s)
| | | | - Jonathan D Jones
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Mei-Ling Yang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark Mamula
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alix Ashare
- Department of Microbiology and Immunology and.,Division of Pulmonology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alex H Gifford
- Division of Pulmonology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - William Fc Rigby
- Department of Microbiology and Immunology and.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
79
|
Kim HS, Kim I, Zheng L, Vernes JM, Meng YG, Spiess C. Evading pre-existing anti-hinge antibody binding by hinge engineering. MAbs 2016; 8:1536-1547. [PMID: 27606571 DOI: 10.1080/19420862.2016.1219006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antigen-binding fragments (Fab) and F(ab')2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab')2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab')2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab')2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA.
Collapse
Affiliation(s)
- Hok Seon Kim
- a Department of Antibody Engineering , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Ingrid Kim
- a Department of Antibody Engineering , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Linda Zheng
- b Department of Biochemical and Cellular Pharmacology , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jean-Michel Vernes
- b Department of Biochemical and Cellular Pharmacology , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Y Gloria Meng
- b Department of Biochemical and Cellular Pharmacology , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech Research and Early Development , South San Francisco , CA , USA
| |
Collapse
|
80
|
Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor. Appl Microbiol Biotechnol 2016; 100:10521-10529. [PMID: 27470143 DOI: 10.1007/s00253-016-7717-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.
Collapse
|
81
|
Preexisting Antibodies to an F(ab')2 Antibody Therapeutic and Novel Method for Immunogenicity Assessment. J Immunol Res 2016; 2016:2921758. [PMID: 27413757 PMCID: PMC4927981 DOI: 10.1155/2016/2921758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Anti-therapeutic antibodies (ATAs) may impact drug exposure and activity and induce immune complex mediated toxicity; therefore the accurate measurement of ATA is important for the analysis of drug safety and efficacy. Preexisting ATAs to the hinge region of anti-Delta like ligand 4 (anti-DLL4) F(ab′)2, a potential antitumor therapeutic, were detected in cynomolgus monkey serum, which presented a challenge in developing assays for detecting treatment induced ATA. A total ATA assay was developed using a bridging ELISA that detected both anti-CDR and anti-framework ATA including anti-hinge reactivity. A competition assay that could detect 500 ng/mL of anti-CDR ATA in the presence of preexisting ATA was also developed to determine ATA specific to the anti-DLL4 F(ab′)2 CDR using anti-DLL4 F(ab′)2 and a control F(ab′)2. We used these assay methods in a cynomolgus monkey in vivo study to successfully evaluate total and anti-CDR ATA. The preexisting anti-hinge reactivity was also observed to a lesser extent in human serum, and a similar approach could be applied for specific immunogenicity assessment in clinical trials.
Collapse
|
82
|
Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 2016; 85:32-45. [PMID: 27155114 DOI: 10.1016/j.bios.2016.04.091] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
83
|
Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nat Microbiol 2016; 1:16054. [DOI: 10.1038/nmicrobiol.2016.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
|
84
|
MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc Natl Acad Sci U S A 2016; 113:5406-11. [PMID: 27114507 DOI: 10.1073/pnas.1600546113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoplasmas are "minimal" bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB-IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB-MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas.
Collapse
|
85
|
Crescioli S, Correa I, Karagiannis P, Davies AM, Sutton BJ, Nestle FO, Karagiannis SN. IgG4 Characteristics and Functions in Cancer Immunity. Curr Allergy Asthma Rep 2016; 16:7. [PMID: 26742760 PMCID: PMC4705142 DOI: 10.1007/s11882-015-0580-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IgG4 is the least abundant subclass of IgG in normal human serum, but elevated IgG4 levels are triggered in response to a chronic antigenic stimulus and inflammation. Since the immune system is exposed to tumor-associated antigens over a relatively long period of time, and tumors notoriously promote inflammation, it is unsurprising that IgG4 has been implicated in certain tumor types. Despite differing from other IgG subclasses by only a few amino acids, IgG4 possesses unique structural characteristics that may be responsible for its poor effector function potency and immunomodulatory properties. We describe the unique attributes of IgG4 that may be responsible for these regulatory functions, particularly in the cancer context. We discuss the inflammatory conditions in tumors that support IgG4, the emerging and proposed mechanisms by which IgG4 may contribute to tumor-associated escape from immune surveillance and implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Silvia Crescioli
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine; Faculty of Life Sciences and Medicine, King's College London, London, UK. .,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK.
| | - Isabel Correa
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine; Faculty of Life Sciences and Medicine, King's College London, London, UK. .,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK.
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine; Faculty of Life Sciences and Medicine, King's College London, London, UK. .,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK.
| | - Anna M Davies
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK. .,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK. .,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Frank O Nestle
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine; Faculty of Life Sciences and Medicine, King's College London, London, UK. .,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK.
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine; Faculty of Life Sciences and Medicine, King's College London, London, UK. .,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK. .,St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Kings' College London and NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, Guy's Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK.
| |
Collapse
|
86
|
van Schie KA, Wolbink GJ, Rispens T. Cross-reactive and pre-existing antibodies to therapeutic antibodies--Effects on treatment and immunogenicity. MAbs 2016; 7:662-71. [PMID: 25962087 PMCID: PMC4623040 DOI: 10.1080/19420862.2015.1048411] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The potential for immunogenicity is an ever-present concern during the development of biopharmaceuticals. Therapeutic antibodies occasionally elicit an antibody response in patients, which can result in loss of response or adverse effects. However, antibodies that bind a drug are sometimes found in pre-treatment serum samples, with the amount depending on drug, assay, and patient population. This review summarizes published data on pre-existing antibodies to therapeutic antibodies, including rheumatoid factors, anti-allotype antibodies, anti-hinge antibodies, and anti-glycan antibodies. Unlike anti-idiotype antibodies elicited by the drug, pre-formed antibodies in general appear to have little consequences during treatment. In the few cases where (potential) clinical consequences were encountered, antibodies were characterized and found to bind a distinct, unusual epitope of the therapeutic. Immunogenicity testing strategies should therefore always include a proper level of antibody characterization, especially when pre-formed antibodies are present. This minimizes false-positives, particularly due to rheumatoid factors, and helps to judge the potential threat in case a genuine pre-dose antibody reactivity is identified.
Collapse
Affiliation(s)
- Karin A van Schie
- a Sanquin Research; Dept. Immunopathology; Amsterdam, The Netherlands; and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam ; Amsterdam , The Netherlands
| | | | | |
Collapse
|
87
|
Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol Lett 2016; 172:29-39. [PMID: 26905931 DOI: 10.1016/j.imlet.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth.
Collapse
Affiliation(s)
- Robert E Jordan
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA.
| | - Jeffrey Fernandez
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Randall J Brezski
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - Allison R Greenplate
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - David M Knight
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - T Shantha Raju
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - A Simon Lynch
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
88
|
Sjögren J, Olsson F, Beck A. Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 2016; 141:3114-25. [DOI: 10.1039/c6an00071a] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody subunits LC, Fd and Fc/2, generated by IdeS digestion has been applied in analytical methodologies to characterize antibody quality attributes such as glycosylation, oxidation, deamidation, and identity.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre
- St Julien-en-Genevois
- France
| |
Collapse
|
89
|
|
90
|
Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol Sci 2015; 37:231-241. [PMID: 26719219 DOI: 10.1016/j.tips.2015.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - William R Strohl
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - A Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
91
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
92
|
Persson H, Söderberg JJ, Vindebro R, Johansson BP, von Pawel-Rammingen U. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition. Mol Immunol 2015; 68:176-84. [DOI: 10.1016/j.molimm.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
|
93
|
Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs 2015; 8:205-15. [PMID: 26599345 PMCID: PMC4966609 DOI: 10.1080/19420862.2015.1117719] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
94
|
Biancheri P, Brezski RJ, Di Sabatino A, Greenplate AR, Soring KL, Corazza GR, Kok KB, Rovedatti L, Vossenkämper A, Ahmad N, Snoek SA, Vermeire S, Rutgeerts P, Jordan RE, MacDonald TT. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 2015; 149:1564-1574.e3. [PMID: 26170138 DOI: 10.1053/j.gastro.2015.07.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Many patients with inflammatory bowel disease (IBD) fail to respond to anti-tumor necrosis factor (TNF) agents such as infliximab and adalimumab, and etanercept is not effective for treatment of Crohn's disease. Activated matrix metalloproteinase 3 (MMP3) and MMP12, which are increased in inflamed mucosa of patients with IBD, have a wide range of substrates, including IgG1. TNF-neutralizing agents act in inflamed tissues; we investigated the effects of MMP3, MMP12, and mucosal proteins from IBD patients on these drugs. METHODS Biopsy specimens from inflamed colon of 8 patients with Crohn's disease and 8 patients with ulcerative colitis, and from normal colon of 8 healthy individuals (controls), were analyzed histologically, or homogenized and proteins were extracted. We also analyzed sera from 29 patients with active Crohn's disease and 33 patients with active ulcerative colitis who were candidates to receive infliximab treatment. Infliximab, adalimumab, and etanercept were incubated with mucosal homogenates from patients with IBD or activated recombinant human MMP3 or MMP12 and analyzed on immunoblots or in luciferase reporter assays designed to measure TNF activity. IgG cleaved by MMP3 or MMP12 and antihinge autoantibodies against neo-epitopes on cleaved IgG were measured in sera from IBD patients who subsequently responded (clinical remission and complete mucosal healing) or did not respond to infliximab. RESULTS MMP3 and MMP12 cleaved infliximab, adalimumab, and etanercept, releasing a 32-kilodalton Fc monomer. After MMP degradation, infliximab and adalimumab functioned as F(ab')2 fragments, whereas cleaved etanercept lost its ability to neutralize TNF. Proteins from the mucosa of patients with IBD reduced the integrity and function of infliximab, adalimumab, and etanercept. TNF-neutralizing function was restored after incubation of the drugs with MMP inhibitors. Serum levels of endogenous IgG cleaved by MMP3 and MMP12, and antihinge autoantibodies against neo-epitopes of cleaved IgG, were higher in patients who did not respond to treatment vs responders. CONCLUSIONS Proteolytic degradation may contribute to the nonresponsiveness of patients with IBD to anti-TNF agents.
Collapse
Affiliation(s)
- Paolo Biancheri
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Randall J Brezski
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Antonio Di Sabatino
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Allison R Greenplate
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Keri L Soring
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Gino R Corazza
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Klaartje B Kok
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Laura Rovedatti
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Anna Vossenkämper
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Nadja Ahmad
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Susanne A Snoek
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Severine Vermeire
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Paul Rutgeerts
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Robert E Jordan
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| |
Collapse
|
95
|
Cordy JC, Morley PJ, Wright TJ, Birchler MA, Lewis AP, Emmins R, Chen YZ, Powley WM, Bareille PJ, Wilson R, Tonkyn J, Bayliffe AI, Lazaar AL. Specificity of human anti-variable heavy (VH ) chain autoantibodies and impact on the design and clinical testing of a VH domain antibody antagonist of tumour necrosis factor-α receptor 1. Clin Exp Immunol 2015; 182:139-48. [PMID: 26178412 DOI: 10.1111/cei.12680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
During clinical trials of a tumour necrosis factor (TNF)-R1 domain antibody (dAb™) antagonist (GSK1995057), infusion reactions consistent with cytokine release were observed in healthy subjects with high levels of a novel, pre-existing human anti-VH (HAVH) autoantibody. In the presence of HAVH autoantibodies, GSK1995057 induced cytokine release in vitro due to binding of HAVH autoantibodies to a framework region of the dAb. The epitope on GSK1995057 was characterized and dAbs with reduced binding to HAVH autoantibodies were generated; pharmacological comparability was determined in human in-vitro systems and in-vivo animal experiments. A Phase I clinical trial was conducted to investigate the safety and tolerability of the modified dAb (GSK2862277). A significant reduction in HAVH binding was achieved by adding a single alanine residue at the C-terminus to create GSK2862277. Screening a pool of healthy donors demonstrated a reduced frequency of pre-existing autoantibodies from 51% to 7%; in all other respects, GSK2862277 and the parent dAb were comparable. In the Phase I trial, GSK2862277 was well tolerated by both the inhaled and intravenous routes. One subject experienced a mild infusion reaction with cytokine release following intravenous dosing. Subsequently, this subject was found to have high levels of a novel pre-existing antibody specific to the extended C-terminus of GSK2862277. Despite the reduced binding of GSK2862277 to pre-existing HAVH autoantibodies, adverse effects associated with the presence of a novel pre-existing antibody response specific to the modified dAb framework were identified and highlight the challenge of developing biological antagonists to this class of receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Z Chen
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | | | | | | | - A L Lazaar
- GlaxoSmithKline, King of Prussia, PA, USA
| |
Collapse
|
96
|
Zhang N, Deng H, Fan X, Gonzalez A, Zhang S, Brezski RJ, Choi BK, Rycyzyn M, Strohl W, Jordan R, An Z. Dysfunctional Antibodies in the Tumor Microenvironment Associate with Impaired Anticancer Immunity. Clin Cancer Res 2015. [PMID: 26224871 DOI: 10.1158/1078-0432.ccr-15-1057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Studies have demonstrated that cancer-associated matrix metalloproteinases (MMP) can generate single peptide bond cleavages in the hinge region of immunoglobulin G1 (IgG1). This study investigated the cleavage of endogenous IgGs by MMPs in the tumor microenvironment and the consequences of the IgG hinge cleavage for humoral immunity. EXPERIMENTAL DESIGN We investigated the occurrence of single peptide bond cleaved IgGs (scIgG) in tumor tissues and plasma samples collected from a cohort of breast cancer patients (n = 60). Samples from healthy people (n = 20) were used as the control. Antibody hinge cleavage was detected by multiple assays, including IHC, ELISA, and flow cytometry. A correlation analysis was conducted between scIgG levels and patient clinical parameters. RESULTS Levels of scIgGs in tumors were significantly higher than in normal tissues. In addition, scIgG levels in tumors were enriched compared with that in the plasma of the same patients. The appearance of scIgGs in tumor tissues was associated with altered host IgG content and decreased IgG1. Increased tumor scIgGs were found to be positively correlated with adverse clinical factors, such as elevated tumor-associated macrophages, increased expression of MMP9 and other MMPs, and local metastasis to axillary lymph nodes. CONCLUSIONS The study contributes to mounting evidence for the presence of hinge-cleaved antibodies with reduced Fc immune effector function in the tumor microenvironment. The results highlight a link between tumor scIgGs and poor patient outcomes, and reveal a component of compromised humoral immunity within tumors that could point to new immunotherapeutic strategies to rescue host immunity.
Collapse
Affiliation(s)
- Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anneliese Gonzalez
- Division of Oncology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Songlin Zhang
- Clinical Pathology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Randall J Brezski
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Byung-Kwon Choi
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael Rycyzyn
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - William Strohl
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Robert Jordan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas. Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
97
|
Pinheiro A, Woof JM, Almeida T, Abrantes J, Alves PC, Gortázar C, Esteves PJ. Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol 2015; 4:140088. [PMID: 25185680 PMCID: PMC4185434 DOI: 10.1098/rsob.140088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Immunoglobulin G (IgG) is the predominant serum immunoglobulin and has the longest serum half-life of all the antibody classes. The European rabbit IgG has been of significant importance in immunological research, and is therefore well characterized. However, the IgG of other leporids has been disregarded. To evaluate the evolution of this gene in leporids, we sequenced the complete IGHG for six other genera: Bunolagus, Brachylagus, Lepus, Pentalagus, Romerolagus and Sylvilagus. The newly sequenced leporid IGHG gene has an organization and structure similar to that of the European rabbit IgG. A gradient in leporid IgG constant domain diversity was observed, with the CH1 being the most conserved and the CH3 the most variable domain. Positive selection was found to be acting on all constant domains, but with a greater incidence in the CH3 domain, where a cluster of three positively selected sites was identified. In the hinge region, only three polymorphic positions were observed. The same hinge length was observed for all leporids. Unlike the variation observed for the European rabbit, all 11 Lepus species studied share exactly the same hinge motif, suggesting its maintenance as a result of an advantageous structure or conformation.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal SaBio IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real 13071, Spain
| | - Jenny M Woof
- Division of Cancer Research, Medical Research Institute, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Tereza Almeida
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Paulo C Alves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA
| | - Christian Gortázar
- SaBio IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real 13071, Spain
| | - Pedro J Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| |
Collapse
|
98
|
Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins. J Bacteriol 2015; 197:2400-11. [PMID: 25962917 DOI: 10.1128/jb.00073-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed "nutritional immunity." Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood-hemoglobin and serum albumin-can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for bacterial pathogens.
Collapse
|
99
|
Plomp R, Dekkers G, Rombouts Y, Visser R, Koeleman CAM, Kammeijer GSM, Jansen BC, Rispens T, Hensbergen PJ, Vidarsson G, Wuhrer M. Hinge-Region O-Glycosylation of Human Immunoglobulin G3 (IgG3). Mol Cell Proteomics 2015; 14:1373-84. [PMID: 25759508 PMCID: PMC4424406 DOI: 10.1074/mcp.m114.047381] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/06/2015] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and a fundamental component of the immune system. IgG3 represents ∼8% of the total amount of IgG in human serum and stands out from the other IgG subclasses because of its elongated hinge region and enhanced effector functions. This study reports partial O-glycosylation of the IgG3 hinge region, observed with nanoLC-ESI-IT-MS(/MS) analysis after proteolytic digestion. The repeat regions within the IgG3 hinge were found to be in part O-glycosylated at the threonine in the triple repeat motif. Non-, mono- and disialylated core 1-type O-glycans were detected in various IgG3 samples, both poly- and monoclonal. NanoLC-ESI-IT-MS/MS with electron transfer dissociation fragmentation and CE-MS/MS with CID fragmentation were used to determine the site of IgG3 O-glycosylation. The O-glycosylation site was further confirmed by the recombinant production of mutant IgG3 in which potential O-glycosylation sites had been knocked out. For IgG3 samples from six donors we found similar O-glycan structures and site occupancies, whereas for the same samples the conserved N-glycosylation of the Fc CH2 domain showed considerable interindividual variation. The occupancy of each of the three O-glycosylation sites was found to be ∼10% in six serum-derived IgG3 samples and ∼13% in two monoclonal IgG3 allotypes.
Collapse
Affiliation(s)
- Rosina Plomp
- From the ‡Center for Proteomics and Metabolomics
| | | | - Yoann Rombouts
- From the ‡Center for Proteomics and Metabolomics, §Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Bas C Jansen
- From the ‡Center for Proteomics and Metabolomics
| | - Theo Rispens
- ¶¶Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Manfred Wuhrer
- From the ‡Center for Proteomics and Metabolomics, **Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
100
|
Spooner J, Keen J, Nayyar K, Birkett N, Bond N, Bannister D, Tigue N, Higazi D, Kemp B, Vaughan T, Kippen A, Buchanan A. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab. Biotechnol Bioeng 2015; 112:1472-7. [PMID: 25619171 DOI: 10.1002/bit.25550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 01/19/2023]
Abstract
Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.
Collapse
Affiliation(s)
| | - Jenny Keen
- MedImmune, Granta Park, Cambridge, United Kingdom
| | | | - Neil Birkett
- MedImmune, Granta Park, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|