1001
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
1002
|
Hatem E, Azzi S, El Banna N, He T, Heneman-Masurel A, Vernis L, Baïlle D, Masson V, Dingli F, Loew D, Azzarone B, Eid P, Baldacci G, Huang ME. Auranofin/Vitamin C: A Novel Drug Combination Targeting Triple-Negative Breast Cancer. J Natl Cancer Inst 2018; 111:597-608. [DOI: 10.1093/jnci/djy149] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/20/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Elie Hatem
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Sandy Azzi
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Tiantian He
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Vanessa Masson
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Bruno Azzarone
- Immunology Research Area, IRCCS, Ospedale Bambino Gesù, Rome, Italy
| | - Pierre Eid
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France
| | - Giuseppe Baldacci
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
1003
|
Mordaunt CE, Shibata NM, Kieffer DA, Członkowska A, Litwin T, Weiss KH, Gotthardt DN, Olson K, Wei D, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenetic changes of the thioredoxin system in the tx-j mouse model and in patients with Wilson disease. Hum Mol Genet 2018; 27:3854-3869. [PMID: 30010856 PMCID: PMC6216211 DOI: 10.1093/hmg/ddy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/02/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, leading to copper accumulation in the liver and brain. Excess copper inhibits S-adenosyl-L-homocysteine hydrolase, leading to variable WD phenotypes from widespread alterations in DNA methylation and gene expression. Previously, we demonstrated that maternal choline supplementation in the Jackson toxic milk (tx-j) mouse model of WD corrected higher thioredoxin 1 (TNX1) transcript levels in fetal liver. Here, we investigated the effect of maternal choline supplementation on genome-wide DNA methylation patterns in tx-j fetal liver by whole-genome bisulfite sequencing (WGBS). Tx-j Atp7b genotype-dependent differences in DNA methylation were corrected by choline for genes including, but not exclusive to, oxidative stress pathways. To examine phenotypic effects of postnatal choline supplementation, tx-j mice were randomized to one of six treatment groups: with or without maternal and/or continued choline supplementation, and with or without copper chelation with penicillamine (PCA) treatment. Hepatic transcript levels of TXN1 and peroxiredoxin 1 (Prdx1) were significantly higher in mice receiving maternal and continued choline with or without PCA treatment compared to untreated mice. A WGBS comparison of human WD liver and tx-j mouse liver demonstrated a significant overlap of differentially methylated genes associated with ATP7B deficiency. Further, eight genes in the thioredoxin (TXN) pathway were differentially methylated in human WD liver samples. In summary, Atp7b deficiency and choline supplementation have a genome-wide impact, including on TXN system-related genes, in tx-j mice. These findings could explain the variability of WD phenotype and suggest new complementary treatment options for WD.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Dorothy A Kieffer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel N Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristin Olson
- Department of Pathology, University of California, Davis, California, USA
| | - Dongguang Wei
- Department of Pathology, University of California, Davis, California, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology, University of California, Davis, California, USA
| | - Mohamed R Ali
- Department of Surgery, University of California, Davis, California, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| |
Collapse
|
1004
|
Branco V, Carvalho C. The thioredoxin system as a target for mercury compounds. Biochim Biophys Acta Gen Subj 2018; 1863:129255. [PMID: 30447253 DOI: 10.1016/j.bbagen.2018.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mercury interaction with selenium in vivo has been recognized for >50 years. Several researchers attempted to use selenium to mitigate the detrimental effects of mercurial compounds but the results were controversial. Selenium pools in living organisms are quite low and the high affinity of mercury to bind selenols pointed out selenoproteins as possible targets of toxicity. Such was the case of the selenoenzyme thioredoxin reductase (TrxR) which is an integrant part of the thioredoxin system. Given the important role of this redox system for cellular functioning and the high affinity of mercury for TrxR's active site, this interaction can be key to understand the mechanism by which Hg causes cell death. SCOPE OF THE REVIEW This review discusses the current state of knowledge concerning the interaction between mercury compounds and the thioredoxin system, its implications for the development of toxicity and the effects of selenium co-exposure. MAJOR CONCLUSIONS The mechanism of toxicity of mercurials is a complex chain of events starting with inhibition of the selenoenzyme, TrxR. Selenium supplementation protects TrxR from the toxicity of inorganic forms of mercury (i.e., Hg(II)) to a certain extent, but not from methylmercury. When TrxR is inhibited, thioredoxin is reduced by alternative mechanisms involving glutathione and glutaredoxin and only when this pathway is hampered does cell death occur. GENERAL SIGNIFICANCE Understanding the molecular mechanism of mercury toxicity and the mechanisms of enzymatic compensation allows the design of mitigation strategies and, since TxrR and Trx exist in the plasma, puts forward the possibility for future use of changes in activity/expression of these enzymes as biomarkers of mercury toxicity, thus refining the risk assessment process.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|
1005
|
The development of a new parameter for tracking post-transcriptional regulation allows the detailed map of the Pseudomonas aeruginosa Crc regulon. Sci Rep 2018; 8:16793. [PMID: 30429516 PMCID: PMC6235884 DOI: 10.1038/s41598-018-34741-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Bacterial physiology is regulated at different levels, from mRNA synthesis to translational regulation and protein modification. Herein, we propose a parameter, dubbed post-transcriptional variation (PTV), that allows extracting information on post-transcriptional regulation from the combined analysis of transcriptomic and proteomic data. We have applied this parameter for getting a deeper insight in the regulon of the Pseudomonas aeruginosa post-transcriptional regulator Crc. P. aeruginosa is a free-living microorganism, and part of its ecological success relies on its capability of using a large number of carbon sources. The hierarchical assimilation of these sources when present in combination is regulated by Crc that, together with Hfq (the RNA-binding chaperon in the complex), impedes their translation when catabolite repression is triggered. Most studies on Crc regulation are based either in transcriptomics or in proteomics data, which cannot provide information on post-transcriptional regulation when analysed independently. Using the PTV parameter, we present a comprehensive map of the Crc post-transcriptional regulon. In addition of controlling the use of primary and secondary carbon sources, Crc regulates as well cell respiration, c-di-GMP mediated signalling, and iron utilization. Thus, besides controlling the hyerarchical assimilation of carbon sources, Crc is an important element for keeping bacterial homeostasis and, consequently, metabolic robustness.
Collapse
|
1006
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
1007
|
Yan X, Zhang X, Wang L, Zhang R, Pu X, Wu S, Li L, Tong P, Wang J, Meng QH, Jensen VB, Girard L, Minna JD, Roth JA, Swisher SG, Heymach JV, Fang B. Inhibition of Thioredoxin/Thioredoxin Reductase Induces Synthetic Lethality in Lung Cancers with Compromised Glutathione Homeostasis. Cancer Res 2018; 79:125-132. [PMID: 30401714 DOI: 10.1158/0008-5472.can-18-1938] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH)/GSH reductase (GSR) and thioredoxin/thioredoxin reductase (TXNRD) are two major compensating thiol-dependent antioxidant pathways that maintain protein dithiol/disulfide balance. We hypothesized that functional deficiency in one of these systems would render cells dependent on compensation by the other system for survival, providing a mechanism-based synthetic lethality approach for treatment of cancers. The human GSR gene is located on chromosome 8p12, a region frequently lost in human cancers. GSR deletion was detected in about 6% of lung adenocarcinomas in The Cancer Genome Atlas database. To test whether loss of GSR sensitizes cancer cells to TXNRD inhibition, we knocked out or knocked down the GSR gene in human lung cancer cells and evaluated their response to the TXNRD inhibitor auranofin. GSR deficiency sensitized lung cancer cells to this agent. Analysis of a panel of 129 non-small cell lung cancer (NSCLC) cell lines revealed that auranofin sensitivity correlated with the expression levels of the GSR, glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone dehydrogenase 1 (NQO1) genes. In NSCLC patient-derived xenografts with reduced expression of GSR and/or GCLC, growth was significantly suppressed by treatment with auranofin. Together, these results provide a proof of concept that cancers with compromised expression of enzymes required for GSH homeostasis or with chromosome 8p deletions that include the GSR gene may be targeted by a synthetic lethality strategy with inhibitors of TXNRD. SIGNIFICANCE: These findings demonstrate that lung cancers with compromised expression of enzymes required for glutathione homeostasis, including reduced GSR gene expression, may be targeted by thioredoxin/thioredoxin reductase inhibitors.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingxiang Pu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vanessa B Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
1008
|
Ren X, Zou L, Lu J, Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic Biol Med 2018; 127:238-247. [PMID: 29807162 DOI: 10.1016/j.freeradbiomed.2018.05.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
Thioredoxin system is a ubiquitous disulfide reductase system evolutionarily conserved through all living organisms. It contains thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. TrxR can use NADPH to reduce Trx which passes the reducing equivalent to its downstream substrates involved in various biomedical events, such as ribonucleotide reductase for deoxyribonucleotide and DNA synthesis, or peroxiredoxins for counteracting oxidative stress. Obviously, TrxR stays in the center of the system to maintain the electron flow. Mammalian TrxR contains a selenocysteine (Sec) in its active site, which is not present in the low molecular weight prokaryotic TrxRs. Due to the special property of Sec, mammalian TrxR employs a different catalytic mechanism from prokaryotic TrxRs and has a broader substrate-spectrum. On the other hand, Sec is easily targeted by electrophilic compounds which inhibits the TrxR activity and may turn TrxR into an NADPH oxidase. Ebselen, a synthetic seleno-compound containing selenazol, has been tested in several clinical studies. In mammalian cells, ebselen works as a GSH peroxidase mimic and mainly as a peroxiredoxin mimic via Trx and TrxR to scavenge hydrogen peroxide and peroxynitrite. In prokaryotic cells, ebselen is an inhibitor of TrxR and leads to elevation of reactive oxygen species (ROS). Recent studies have made use of the difference and developed ebselen as a potential antibiotic, especially in combination with silver which enables ebselen to kill multi-drug resistant Gram-negative bacteria. Collectively, Sec is important for the biological functions of mammalian TrxR and distinguishes it from prokaryotic TrxRs, therefore it is a promising drug target.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
1009
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
1010
|
Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj 2018; 1862:2405-2416. [DOI: 10.1016/j.bbagen.2018.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023]
|
1011
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
1012
|
TXNDC9 promotes hepatocellular carcinoma progression by positive regulation of MYC-mediated transcriptional network. Cell Death Dis 2018; 9:1110. [PMID: 30382079 PMCID: PMC6208382 DOI: 10.1038/s41419-018-1150-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
The thioredoxin domain containing proteins are a group of proteins involved in redox regulation and have been recently reported to be associated with tumor progression. However, the role of thioredoxin proteins in hepatocellular carcinoma (HCC) remains largely unknown. Here in our study, we demonstrated that thioredoxin domain containing protein 9 (TXNDC9) was over-expressed in HCC and promoted HCC progression. We found that TXNDC9 expression was amplified in HCC tissues and associated with an advanced grade of HCC. And, we demonstrated that overexpression of TXNDC9 was correlated with poor prognosis of HCC. Furthermore, by using CRISPR-Cas9 mediated TXNDC9 knockout and RNA-seq analysis, we found that TXNDC9 accelerated HCC proliferation regulation. Moreover, we demonstrated that TXNDC9 directly interacted with MYC and knockout/knockdown of TXNDC9 decreased the protein levels of MYC and inhibited MYC-mediated transcriptional activation of its targets. Besides, we identified that TXNDC9 was trans-activated by FOXA1, JUND, and FOSL2 in HCC. Taken together, our study unveiled an oncogenic role of TXNDC9 in HCC and provided a mechanistic insight into the TXNDC9 mediated gene regulation network during HCC development.
Collapse
|
1013
|
Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl Environ Microbiol 2018; 84:AEM.01616-18. [PMID: 30217837 DOI: 10.1128/aem.01616-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023] Open
Abstract
Thymol, carvacrol, and trans-cinnamaldehyde are essential oil (EO) compounds with broad-spectrum antimicrobial activities against foodborne pathogens, including Escherichia coli O157:H7. However, little is known regarding direct resistance and cross-resistance development in E. coli O157:H7 after adaptation to sublethal levels of these compounds, and information is scarce on microbial adaptive responses at a molecular level. The present study demonstrated that E. coli O157:H7 was able to grow in the presence of sublethal thymol (1/2T), carvacrol (1/2C), or trans-cinnamaldehyde (1/2TC), displaying an extended lag phase duration and a lower maximum growth rate. EO-adapted cells developed direct resistance against lethal EO treatments and cross-resistance against heat (58°C) and oxidative (50 mM H2O2) stresses. However, no induction of acid resistance (simulated gastric fluid, pH 1.5) was observed. RNA sequencing revealed a large number (310 to 338) of differentially expressed (adjusted P value [Padj ], <0.05; fold change, ≥5) genes in 1/2T and 1/2C cells, while 1/2TC cells only showed 27 genes with altered expression. In accordance with resistance phenotypes, the genes related to membrane, heat, and oxidative stress responses and genes related to iron uptake and metabolism were upregulated. Conversely, virulence genes associated with motility, biofilm formation, and efflux pumps were repressed. This study demonstrated the development of direct resistance and cross-resistance and characterized whole-genome transcriptional responses in E. coli O157:H7 adapted to sublethal thymol, carvacrol, or trans-cinnamaldehyde. The data suggested that caution should be exercised when using EO compounds as food antimicrobials, due to the potential stress resistance development in E. coli O157:H7.IMPORTANCE The present study was designed to understand transcriptomic changes and the potential development of direct and cross-resistance in essential oil (EO)-adapted Escherichia coli O157:H7. The results demonstrated altered growth behaviors of E. coli O157:H7 during adaptation in sublethal thymol, carvacrol, and trans-cinnamaldehyde. Generally, EO-adapted bacteria showed enhanced resistance against subsequent lethal EO, heat, and oxidative stresses, with no induction of acid resistance in simulated gastric fluid. A transcriptomic analysis revealed the upregulation of related stress resistance genes and a downregulation of various virulence genes in EO-adapted cells. This study provides new insights into microbial EO adaptation behaviors and highlights the risk of resistance development in adapted bacteria.
Collapse
|
1014
|
Liu X, Wang L, Cai J, Liu K, Liu M, Wang H, Zhang H. N-acetylcysteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells. Int J Mol Med 2018; 43:199-208. [PMID: 30387809 PMCID: PMC6257848 DOI: 10.3892/ijmm.2018.3962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/23/2018] [Indexed: 01/15/2023] Open
Abstract
N-acetylcysteine (NAC) is a thiol-containing antioxidant that modulates the intracellular redox state. NAC can scavenge reactive oxygen species (ROS) and maintain reduced glutathione (GSH) levels, in order to protect cardiomyocytes from oxidative stress. The present study aimed to determine whether NAC protects cardiomyocytes from oxidative damage by regulating the redox status of intracellular antioxidant proteins. The results revealed that NAC pretreatment increased cell viability and inhibited the activation of caspase-3, -8 and -9 during hydrogen peroxide (H2O2)-induced oxidative stress in H9c2 cells. Furthermore, decreased ROS levels, and increased total and reduced GSH levels were detected in response to NAC pretreatment. Non-reducing redox western blotting was performed to detect the redox status of intracellular antioxidant proteins, including thioredoxin 1 (Trx1), peroxiredoxin 1 (Prx1), GSH reductase (GSR), and phosphatase and tensin homolog (PTEN). The results revealed that the reduced form of Trx1 was markedly increased, and the oxidized forms of Prx1, GSR and PTEN were decreased following NAC pretreatment. Furthermore, NAC pretreatment decreased H2O2-induced phosphorylation of apoptosis signal-regulating kinase 1, which depends on the redox state of Trx1, and increased H2O2-induced phosphorylation of protein kinase B, which is essential to cell survival. To the best of our knowledge, the present study is the first to reveal that NAC pretreatment may alleviate oxidation of intracellular antioxidant proteins to inhibit oxidative stress-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
1015
|
Shen F, Xiong Z, Kong J, Wang L, Cheng Y, Jin J, Huang Z. Triptolide impairs thioredoxin system by suppressing Notch1-mediated PTEN/Akt/Txnip signaling in hepatocytes. Toxicol Lett 2018; 300:105-115. [PMID: 30394310 DOI: 10.1016/j.toxlet.2018.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Triptolide (TP) is the main ingredient of Chinese herb Tripterygium wilfordii Hook f. (TWHF). Despite of its multifunction in pharmaceutics, accumulating evidences showed that TP caused obvious hepatotoxicity in clinic. The current study investigated the role of Notch1 signaling in TP-induced hepatotoxicity. Our data indicated that TP inhibited the protein expression of Notch1 and its active form Notch intracellular domain (NICD) leading to increased PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression. Moreover, PTEN triggered Txnip (thioredoxin-interacting protein) activation by inhibiting Akt phosphorylation, which resulted in reduction of Trx (thioredoxin). In conclusion, TP caused liver injury through initiating oxidative stress in hepatocyte. This study indicated the potency of Notch1 to protect against TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhewen Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Li Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yisen Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
1016
|
Shen ZJ, Liu YJ, Gao XH, Liu XM, Zhang SD, Li Z, Zhang QW, Liu XX. Molecular Identification of Two Thioredoxin Genes From Grapholita molesta and Their Function in Resistance to Emamectin Benzoate. Front Physiol 2018; 9:1421. [PMID: 30410444 PMCID: PMC6210739 DOI: 10.3389/fphys.2018.01421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Thioredoxins (Trxs), a member of the thioredoxin system, play crucial roles in maintaining intracellular redox homeostasis and protecting organisms against oxidative stress. In this study, we cloned and characterized two genes, GmTrx2 and GmTrx-like1, from Grapholita molesta. Sequence analysis showed that GmTrx2 and GmTrx-like1 had highly conserved active sites CGPC and CXXC motif, respectively, and shared high sequence identity with selected insect species. The quantitative real-time polymerase chain reaction results revealed that GmTrx2 was mainly detected at first instar, whereas GmTrx-like1 was highly concentrated at prepupa day. The transcripts of GmTrx2 and GmTrx-like1 were both highly expressed in the head and salivary glands. The expression levels of GmTrx2 and GmTrx-like1 were induced by low or high temperature, E. coli, M. anisopliae, H2O2, and pesticides (emamectin benzoate). We further detected interference efficiency of GmTrx2 and GmTrx-like1 in G. molesta larvae and found that peroxidase capacity, hydrogen peroxide content, and ascorbate content all increased after knockdown of GmTrx2 or GmTrx-like1. Furthermore, the hydrogen peroxide concentration was increased by emamectin benzoate and the sensitivity for larvae to emamectin benzoate was improved after GmTrx2 or GmTrx-like1 was silenced. Our results indicated that GmTrx2 and GmTrx-like1 played vital roles in protecting G. molesta against oxidative damage and also provided the theoretical basis for understanding the antioxidant defense mechanisms of the Trx system in insects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
1017
|
Krysiak R, Szkróbka W, Okopień B. The effect of vitamin D and selenomethionine on thyroid antibody titers, hypothalamic-pituitary-thyroid axis activity and thyroid function tests in men with Hashimoto's thyroiditis: A pilot study. Pharmacol Rep 2018; 71:243-247. [PMID: 30818086 DOI: 10.1016/j.pharep.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Both selenium and vitamin D were found to reduce thyroid antibody titers in women with Hashimoto's thyroiditis. METHODS The study enrolled 37 young drug-naïve euthyroid men with autoimmune thyroiditis, who were treated for 6 months with either exogenous vitamin D (group A, n = 20) or selenomethionine (group B, n = 17). Serum titers of thyroid peroxidase and thyroglobulin antibodies, serum levels of thyrotropin and free thyroid hormones, serum levels of 25-hydroxyvitamin D, as well Jostel's thyrotropin, the SPINA-GT and the SPINA-GD indices were determined at the beginning and at the end of the study. RESULTS At baseline, there were no differences between the study groups. Both vitamin D and selenomethionine reduced antibody titers and increased the SPINA-GT index. Only selenomethionine affected the SPINA-GD index, while only vitamin D increased 25-hydroxyvitamin D levels. Neither selenomethionine nor vitamin D significantly affected thyrotropin and free thyroid hormone levels. The effect of vitamin D on antibody titers correlated with baseline and treatment-induced changes in serum levels of 25-hydroxivitamin D. CONCLUSIONS Both vitamin D and selenomethionine have a beneficial effect on thyroid autoimmunity in drug-naïve men with Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Witold Szkróbka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
1018
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
1019
|
Isobavachalcone Induces ROS-Mediated Apoptosis via Targeting Thioredoxin Reductase 1 in Human Prostate Cancer PC-3 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1915828. [PMID: 30410640 PMCID: PMC6206523 DOI: 10.1155/2018/1915828] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Prostate carcinoma causes a great number of deaths every year; therefore, there is an urgent need to find new drug candidates to treat advanced prostate cancer. Isobavachalcone (IBC) is the chalcone composition of Psoralea corylifolia Linn used in traditional Chinese medicine. Although IBC demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of IBC have not been fully defined. In our study, we found that IBC may induce reactive oxygen species- (ROS-) mediated apoptosis via interaction with a selenocysteine (Sec) containing the antioxidant enzyme thioredoxin reductase 1 (TrxR1), and induce lethal endoplasmic reticulum (ER) stress by inhibiting TrxR1 activity and increasing ROS levels in human prostate cancer PC-3 cells. Furthermore, we also observed that knocking down TrxR1 would sensitized cancer cells to IBC treatment. Our study provides evidence for the anticancer mechanism of IBC with TrxR1 as a potential target.
Collapse
|
1020
|
Peng H, Zhang Y, Trinidad JC, Giedroc DP. Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus. Front Microbiol 2018; 9:2385. [PMID: 30374335 PMCID: PMC6196236 DOI: 10.3389/fmicb.2018.02385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) is thought to signal through protein S-sulfuration (persulfidation; S-sulfhydration) in both mammalian systems and bacteria. We previously profiled proteome S-sulfuration in Staphylococcus aureus (S. aureus) and identified two thioredoxin-like proteins, designated TrxP and TrxQ, that were capable of reducing protein persulfides as a potential regulatory mechanism. In this study, we further characterize TrxP, TrxQ and the canonical thioredoxin, TrxA, by identifying candidate protein substrates in S. aureus cells using a mechanism-based profiling assay where we trap mixed disulfides that exist between the attacking cysteine of a FLAG-tagged Trx and a persulfidated cysteine on the candidate substrate protein in cells. Largely non-overlapping sets of four, 32 and three candidate cellular substrates were detected for TrxA, TrxP, and TrxQ, respectively, many of which were previously identified as global proteome S-sulfuration targets including for example, pyruvate kinase, PykA. Both TrxA (k cat = 0.13 s-1) and TrxP (k cat = 0.088 s-1) are capable of reducing protein persulfides on PykA, a model substrate detected as a candidate substrate of TrxP; in contrast, TrxQ shows lower activity (k cat = 0.015 s-1). This work reveals that protein S-sulfuration, central to H2S and reactive sulfur species (RSS) signaling, may impact cellular activities and appears to be regulated in S. aureus largely by TrxP under conditions of sulfide stress.
Collapse
Affiliation(s)
- Hui Peng
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Biochemistry Graduate Program, Indiana University Bloomington, Bloomington, IN, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
1021
|
The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 2018; 8:740-759. [PMID: 28975503 DOI: 10.1007/s13346-017-0429-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB's strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits. This means that completely avoiding exposure is not possible, thus requiring the need to develop intervention strategies that can mitigate disease risks associated with exposure to PCBs. Currently, there is excitement in the use of nutritional compounds as a way of inhibiting the inflammation associated with PCBs, yet the suboptimal delivery and pharmacology of these compounds may not be sufficient in more acute exposures. In this review, we discuss the current state of knowledge of PCB toxicity and some of the antioxidant and anti-inflammatory nanocarrier systems that may be useful as an enhanced treatment modality for reducing PCB toxicity.
Collapse
|
1022
|
Role of Oxidative Stress in the Pathology and Management of Human Tuberculosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7695364. [PMID: 30405878 PMCID: PMC6201333 DOI: 10.1155/2018/7695364] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is the leading cause of mortality worldwide due to a single infectious agent. The pathogen spreads primarily via aerosols and especially infects the alveolar macrophages in the lungs. The lung has evolved various biological mechanisms, including oxidative stress (OS) responses, to counteract TB infection. M. tuberculosis infection triggers the generation of reactive oxygen species by host phagocytic cells (primarily macrophages). The development of resistance to commonly prescribed antibiotics poses a challenge to treat TB; this commonly manifests as multidrug resistant tuberculosis (MDR-TB). OS and antioxidant defense mechanisms play key roles during TB infection and treatment. For instance, several established first-/second-line antitubercle antibiotics are administered in an inactive form and subsequently transformed into their active form by components of the OS responses of both host (nitric oxide, S-oxidation) and pathogen (catalase/peroxidase enzyme, EthA). Additionally, M. tuberculosis has developed mechanisms to survive high OS burden in the host, including the increased bacterial NADH/NAD+ ratio and enhanced intracellular survival (Eis) protein, peroxiredoxin, superoxide dismutases, and catalases. Here, we review the interplay between lung OS and its effects on both activation of antitubercle antibiotics and the strategies employed by M. tuberculosis that are essential for survival of both drug-susceptible and drug-resistant bacterial subtypes. We then outline potential new therapies that are based on combining standard antitubercular antibiotics with adjuvant agents that could limit the ability of M. tuberculosis to counter the host's OS response.
Collapse
|
1023
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
1024
|
Zheng J, Cao J, Mao Y, Su Y, Wang J. Identification of microRNAs with heat stress responsive and immune properties in Marsupenaeus japonicus based on next-generation sequencing and bioinformatics analysis: Essential regulators in the heat stress-host interactions. FISH & SHELLFISH IMMUNOLOGY 2018; 81:390-398. [PMID: 29778844 DOI: 10.1016/j.fsi.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Summer mortality syndrome is one of the most serious issue for Marsupenaeus japonicus aquaculture in China. Since it causes massive economic loss and threatens sustainability of M. japonicus aquaculture industry, thus, there is an urgent desire to reveal the heat stress-host interactions mechanisms that lead to mass mortalities of M. japonicus in hot summer months. MicroRNAs (miRNAs) are small noncoding RNAs that involved in regulation of diverse biological processes, including stress and immune response, and might serve as potential regulators in the heat stress-host interactions. In the present study, miRNAs with heat stress responsive and immune properties were identified and characterized in M. japonicus by small RNA sequencing and bioinformatics analysis. In total, 79 host miRNAs were identified, among which 15 miRNAs were differentially expressed in response to heat stress. Target genes prediction and function annotation revealed that a variety of host cellular processes, such as signal transduction, transcription, anti-stress response, ribosomal biogenesis, lipid metabolism, cytoskeleton, etc, were potentially subject to miRNA-mediated regulation in response to heat stress. Furthermore, a total of 30 host miRNAs that potentially involved in interaction with white spot syndrome virus (WSSV) were obtained via predicting and analyzing the target genes from WSSV. The results showed that a batch of WSSV genes that code for structural proteins and enzymes that are essential for WSSV infection and proliferation, such as envelope proteins, capsid proteins, immediate-early proteins, collagen-like protein, protein kinase, thymidylate synthetase, TATA-box bind protein, etc, were predicted to be targeted by host miRNAs. Several of the host miRNAs with predicted antiviral capacity were down-regulated under heat stress, indicating a repression of host miRNA-mediated antiviral immune response. This study highlighted the essential roles of host miRNAs in the heat stress-host interactions and provided valuable information for further investigation on the mechanism of miRNA-mediated heat stress and immune response of shrimp.
Collapse
Affiliation(s)
- Jinbin Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiawen Cao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
1025
|
Wang RS, Oldham WM, Maron BA, Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal 2018; 29:953-972. [PMID: 29121773 PMCID: PMC6104248 DOI: 10.1089/ars.2017.7256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE All cellular metabolic processes are tied to the cellular redox environment. Therefore, maintaining redox homeostasis is critically important for normal cell function. Indeed, redox stress contributes to the pathobiology of many human diseases. The cellular redox response system is composed of numerous interconnected components, including free radicals, redox couples, protein thiols, enzymes, metabolites, and transcription factors. Moreover, interactions between and among these factors are regulated in time and space. Owing to their complexity, systems biology approaches to the characterization of the cellular redox response system may provide insights into novel homeostatic mechanisms and methods of therapeutic reprogramming. Recent Advances: The emergence and development of systems biology has brought forth a set of innovative technologies that provide new avenues for studying redox metabolism. This article will review these systems biology approaches and their potential application to the study of redox metabolism in stress and disease states. CRITICAL ISSUES Clarifying the scope of biological intermediaries affected by dysregulated redox metabolism requires methods that are suitable for analyzing big datasets as classical methods that do not account for multiple interactions are unlikely to portray the totality of perturbed metabolic systems. FUTURE DIRECTIONS Given the diverse redox microenvironments within cells, it will be important to improve the spatial resolution of omic approaches. Futures studies on the integration of multiple systems-based methods and heterogeneous omics data for redox metabolism are required to accelerate the development of the field of redox systems biology. Antioxid. Redox Signal. 29, 953-972.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - William M. Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley A. Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Section of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
1026
|
Chen LS, Li C, You XX, Lin YW, Wu YM. The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. Int J Med Microbiol 2018; 308:776-783. [DOI: 10.1016/j.ijmm.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/18/2018] [Accepted: 04/26/2018] [Indexed: 02/03/2023] Open
|
1027
|
Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel) 2018; 7:antiox7100129. [PMID: 30274149 PMCID: PMC6210431 DOI: 10.3390/antiox7100129] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response. Three enzymes mediate the endogenous production of H2S: cystathione β-synthase (CBS), cystathione γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). CBS and CSE localizations are organ-specific. 3-MST is a mitochondrial and cytosolic enzyme. The generation of H2S is firmly regulated by these enzymes under normal physiological conditions. Recent studies have highlighted the role of H2S in cellular redox homeostasis, as it displays significant antioxidant properties. H2S exerts antioxidant effects through several mechanisms, such as quenching reactive oxygen species (ROS) and reactive nitrogen species (RNS), by modulating cellular levels of glutathione (GSH) and thioredoxin (Trx-1) or increasing expression of antioxidant enzymes (AOE), by activating the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2). H2S also influences the activity of the histone deacetylase protein family of sirtuins, which plays an important role in inhibiting oxidative stress in cardiomyocytes and during the aging process by modulating AOE gene expression. This review focuses on the role of H2S in NRF2 and sirtuin signaling pathways as they are related to cellular redox homeostasis.
Collapse
Affiliation(s)
- Tiziana Corsello
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Narayana Komaravelli
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
1028
|
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6231482. [PMID: 30356429 PMCID: PMC6178176 DOI: 10.1155/2018/6231482] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/19/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.
Collapse
|
1029
|
Yue LM, Gao YM, Han BH. Evaluation on the effect of hydrogen sulfide on the NLRP3 signaling pathway and its involvement in the pathogenesis of atherosclerosis. J Cell Biochem 2018; 120:481-492. [PMID: 30246263 DOI: 10.1002/jcb.27404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND As a common disease, the incidence of atherosclerosis (AS) in the world is high. Therefore, we aimed to evaluate the involvement of hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) in the pathogenesis of AS as well as their possible signaling pathways. METHODS Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis were used to detect the effect of CSE on the expression of inflammatory cytokines, ie, H 2 S, thioredoxin-interacting protein (TXNIP), NLRP3, apoptosis-associated speck-like protein (ASC), caspase-1, and interleukin (IL)-1β. In addition, immunohistochemistry and Western blot analysis were performed to detect the levels of TXNIP, NLRP3, ASC, caspase-1, IL-1β, and IL-18 among different groups. RESULT Knockdown of CSE by the transfection of CSE small interfering RNA upregulated the levels of two inflammatory cytokines, ie, IL-1β and IL-18. In addition, the downregulation of CSE promoted the expression of TXNIP, NLRP3, ASC, caspase-1, and IL-1β in THP-1 cells. Meanwhile, treating the cells with sodium hydrosulfide (NaHS) inhibited the productions of IL-1β and IL-18. Furthermore, upregulation of H 2 S synthesis by treating the cells with NaHS also reduced the protein levels of TXNIP, NLRP3, ASC, caspase-1, and IL-1β. Finally, the protein levels of TXNIP and NLRP3 in the AS group were much higher than those in the AS + H 2 S group, which in turn was higher than the sham group. In addition, the AS group displayed the highest protein levels of TXNIP, NLRP3, ASC, caspase-1, IL-1β, and IL-18, while the levels of these proteins in the AS + H 2 S group were higher than those in the sham group. CONCLUSION In summary, the present finding suggested a possible linkage between H 2 S metabolism and AS through the H 2 S/CSE-TXNIP-NLRP3-IL-18/IL-1β-nitric oxide (NO) signaling pathway.
Collapse
Affiliation(s)
- Li-Ming Yue
- Department of Emergency, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ya-Mei Gao
- Department of Cardiology, Weinan Center Hospital, Weinan, China
| | - Bao-Hua Han
- Department of Cardiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| |
Collapse
|
1030
|
Lian G, Gnanaprakasam JNR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TWM, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018; 7:e36158. [PMID: 30198844 PMCID: PMC6152796 DOI: 10.7554/elife.36158] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.
Collapse
Affiliation(s)
- Gaojian Lian
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
- Medical Research CenterUniversity of South ChinaHengyang, Hunan ProvinceChina
| | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Yuqing Shen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Mao Yang
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of SurgerySt. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Teresa A Cassel
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Douglas R Green
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Yusen Liu
- Center for Perinatal ResearchThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusOhio, United States
| | - Teresa WM Fan
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| |
Collapse
|
1031
|
Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19092665. [PMID: 30205557 PMCID: PMC6163693 DOI: 10.3390/ijms19092665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
The selenium content of the body is known to control the expression levels of numerous genes, both so-called selenoproteins and non-selenoproteins. Selenium is a trace element essential to human health, and its deficiency is related to, for instance, cardiovascular and myodegenerative diseases, infertility and osteochondropathy called Kashin–Beck disease. It is incorporated as selenocysteine to the selenoproteins, which protect against reactive oxygen and nitrogen species. They also participate in the activation of the thyroid hormone, and play a role in immune system functioning. The synthesis and incorporation of selenocysteine occurs via a special mechanism, which differs from the one used for standard amino acids. The codon for selenocysteine is a regular in-frame stop codon, which can be passed by a specific complex machinery participating in translation elongation and termination. This includes a presence of selenocysteine insertion sequence (SECIS) in the 3′-untranslated part of the selenoprotein mRNAs. Nonsense-mediated decay is involved in the regulation of the selenoprotein mRNA levels, but other mechanisms are also possible. Recent transcriptional analyses of messenger RNAs, microRNAs and long non-coding RNAs combined with proteomic data of samples from Keshan and Kashin–Beck disease patients have identified new possible cellular pathways related to transcriptional regulation by selenium.
Collapse
|
1032
|
Liu X, Liu K, Li C, Cai J, Huang L, Chen H, Wang H, Zou J, Liu M, Wang K, Tan S, Zhang H. Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells. J Cell Physiol 2018; 234:5117-5133. [PMID: 30256412 DOI: 10.1002/jcp.27322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Heat-shock protein B1 (HSPB1) is a multifunctional protein that protects against oxidative stress; however, its function in antioxidant pathways remains largely unknown. Here, we sought to determine the roles of HSPB1 in H9c2 cells subjected to oxidative stress. Using nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, we found that increased HSPB1 expression promoted the reduced states of glutathione reductase (GR), peroxiredoxin 1 (Prx1), and thioredoxin 1, whereas knockdown of HSPB1 attenuated these responses following oxidative stress. Increased HSPB1 expression promoted the activation of GR and thioredoxin reductase. Conversely, knockdown of HSPB1 attenuated these responses following oxidative stress. Importantly, overexpression of HSPB1 promoted the complex formation between HSPB1 and oxidized Prx1, leading to dephosphorylation of STE-mammalian STE20-like kinase 1 (MST1) in H9c2 cells exposed to H2 O 2 , whereas downregulation of HSPB1 induced the opposite results. Mechanistically, HSPB1 regulated the Hippo pathway by enhancing the dephosphorylation of MST1, resulting in reduced phosphorylation of LATS1 and Yes-associated protein (YAP). Moreover, HSPB1 regulated YAP-dependent gene expression. Thus, HSPB1 promoted the reduced state of endogenous antioxidant pathways following oxidative stress in H9c2 cells and improved the redox state of the cytoplasm via modulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Caiyan Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Li Huang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huan Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiang Zou
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| |
Collapse
|
1033
|
Synnott NC, Madden SF, Bykov VJN, Crown J, Wiman KG, Duffy MJ. The Mutant p53-Targeting Compound APR-246 Induces ROS-Modulating Genes in Breast Cancer Cells. Transl Oncol 2018; 11:1343-1349. [PMID: 30196236 PMCID: PMC6132178 DOI: 10.1016/j.tranon.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancer and thus an attractive target for novel cancer therapy. Several compounds that can reactive mutant p53 protein have been identified. APR-246 is currently being tested in a phase II clinical trial in high-grade serous ovarian cancer. We have used RNA-seq analysis to study the effects of APR-246 on gene expression in human breast cancer cell lines. Although the effect of APR-246 on gene expression was largely cell line dependent, six genes were upregulated across all three cell lines studied, i.e., TRIM16, SLC7A11, TXNRD1, SRXN1, LOC344887, and SLC7A11-AS1. We did not detect upregulation of canonical p53 target genes such as CDKN1A (p21), 14-3-3σ, BBC3 (PUMA), and PMAIP1 (NOXA) by RNA-seq, but these genes were induced according to analysis by qPCR. Gene ontology analysis showed that APR-246 induced changes in pathways such as response to oxidative stress, gene expression, cell proliferation, response to nitrosative stress, and the glutathione biosynthesis process. Our results are consistent with the dual action of APR-246, i.e., reactivation of mutant p53 and modulation of redox activity. SLC7A11, TRIM16, TXNRD1, and SRXN1 are potential new pharmacodynamic biomarkers for assessing the response to APR-246 in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vladimir J N Bykov
- Karolinska Institutet, Dept. of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Klas G Wiman
- Karolinska Institutet, Dept. of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
1034
|
Cao Y, Yang Q, Tu XH, Li SG, Liu S. Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21476. [PMID: 29873106 DOI: 10.1002/arch.21476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, thioredoxin peroxidase (TPX) plays an important role in protecting against oxidative damage. However, studies on the molecular characteristics of TPXs in the Asiatic rice borer, Chilo suppressalis, are limited. In this work, a cDNA sequence (CsTpx3) encoding a TPX was identified from C. suppressalis. The deduced CsTPX3 protein shares high sequence identity and two positionally conserved cysteines with orthologs from other insect species, and was classified as a typical 2-Cys TPX. CsTpx3 was expressed most highly during the fifth-instar larval stage, and transcripts were most abundant in the midgut. Recombinant CsTPX3 protein expressed in Escherichia coli displayed the expected peroxidase activity by removing H2 O2 . Furthermore, CsTPX3 protected DNA from oxidative damage, and E. coli cells overexpressing CsTPX3 exhibited long-term resistance to oxidative stress. Exposure to various oxidative stressors, such as cold (8°C), heat (35°C), bacteria (E. coli), and two insecticides (chlorpyrifos and lambda-cyhalothrin), significantly upregulated transcription of CsTpx3. However, exposure to abamectin had no such effect. Our results provide valuable information for future studies on the antioxidant mechanism in this insect species.
Collapse
Affiliation(s)
- Ye Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Qing Yang
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-Hui Tu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Shi-Guang Li
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
1035
|
Haffo L, Lu J, Bykov VJN, Martin SS, Ren X, Coppo L, Wiman KG, Holmgren A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci Rep 2018; 8:12671. [PMID: 30140002 PMCID: PMC6107631 DOI: 10.1038/s41598-018-31048-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023] Open
Abstract
The tumor suppressor p53 is commonly inactivated in human tumors, allowing evasion of p53-dependent apoptosis and tumor progression. The small molecule APR-246 (PRIMA-1Met) can reactive mutant p53 in tumor cells and trigger cell death by apoptosis. The thioredoxin (Trx) and glutaredoxin (Grx) systems are important as antioxidants for maintaining cellular redox balance and providing electrons for thiol-dependent reactions like those catalyzed by ribonucleotide reductase and peroxiredoxins (Prxs). We show here that the Michael acceptor methylene quinuclidinone (MQ), the active form of APR-246, is a potent direct inhibitor of Trx1 and Grx1 by reacting with sulfhydryl groups in the enzymes. The inhibition of Trx1 and Grx1 by APR-246/MQ is reversible and the inhibitory efficiency is dependent on the presence of glutathione. APR-246/MQ also inhibits Trxs in mutant p53-expressing Saos-2 His-273 cells, showing modification of Trx1 and mitochondrial Trx2. Inhibition of the Trx and Grx systems leads to insufficient reducing power to deoxyribonucleotide production for DNA replication and repair and peroxiredoxin for removal of ROS. We also demonstrate that APR-246 and MQ inhibit ribonucleotide reductase (RNR) in vitro and in living cells. Our results suggest that APR-246 induces tumor cell death through both reactivations of mutant p53 and inhibition of cellular thiol-dependent redox systems, providing a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Lena Haffo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China
| | - Vladimir J N Bykov
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Sebastin S Martin
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
1036
|
Ruszkiewicz JA, Teixeira de Macedo G, Miranda-Vizuete A, Teixeira da Rocha JB, Bowman AB, Bornhorst J, Schwerdtle T, Aschner M. The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner. Neurotoxicology 2018; 68:189-202. [PMID: 30138651 DOI: 10.1016/j.neuro.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, United States.
| | - Gabriel Teixeira de Macedo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - João B Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, United States
| |
Collapse
|
1037
|
Kamunde C, Sharaf M, MacDonald N. H 2O 2 metabolism in liver and heart mitochondria: Low emitting-high scavenging and high emitting-low scavenging systems. Free Radic Biol Med 2018; 124:135-148. [PMID: 29802890 DOI: 10.1016/j.freeradbiomed.2018.05.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023]
Abstract
Although mitochondria are presumed to emit and consume reactive oxygen species (ROS), the quantitative interplay between the two processes in ROS regulation is not well understood. Here, we probed the role of mitochondrial bioenergetics in H2O2 metabolism using rainbow trout liver and heart mitochondria. Both liver and heart mitochondria emitted H2O2 at rates that depended on their metabolic state, with the emission rates (free radical leak) constituting 0.8-2.9% and 0.2-2.5% of the respiration rate in liver and heart mitochondria, respectively. When presented with exogenous H2O2, liver and heart mitochondria consumed it by first order reactions with half-lives (s) of 117 and 210, and rate constants of 5.96 and 3.37 (× 10-3 s-1), respectively. The mitochondrial bioenergetic status greatly affected the rate of H2O2 consumption in heart but not liver mitochondria. Moreover, the activities and contribution of H2O2 scavenging systems varied between liver and heart mitochondria. The significance of the scavenging systems ranked by the magnitude (%) of inhibition of H2O2 removal after correcting for emission were, liver (un-energized and energized): catalase > glutathione (GSH) ≥ thioredoxin reductase (TrxR); un-energized heart mitochondria: catalase > TrxR > GSH and energized heart mitochondria: GSH > TrxR > catalase. Notably, depletion of GSH evoked a massive surge in H2O2 emission that grossly masked the contribution of this pathway to H2O2 scavenging in heart mitochondria. Irrespective of the organ of their origin, mitochondria behaved as H2O2 regulators that emitted or consumed it depending on the ambient H2O2 concentration, mitochondrial bioenergetic state and activity of the scavenging enzyme systems. Indeed, manipulation of mitochondrial bioenergetics and H2O2 scavenging systems caused mitochondria to switch from being net consumers to net emitters of H2O2. Overall, our data suggest that the low levels of H2O2 typically present in cells would favor emission of this metabolite but the scavenging systems would prevent its accumulation.
Collapse
Affiliation(s)
- Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.
| | - Mahmoud Sharaf
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Nicole MacDonald
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|
1038
|
Saad I, Fournier CT, Wilson RL, Lakshmanan R, Selvaraju V, Thirunavukkarasu M, Alexander Palesty J, McFadden DW, Maulik N. Thioredoxin-1 augments wound healing and promote angiogenesis in a murine ischemic full-thickness wound model. Surgery 2018; 164:1077-1086. [PMID: 30131176 DOI: 10.1016/j.surg.2018.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/06/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonhealing wounds are a continuing health problem in the United States. Overproduction of reactive oxygen species is a major causative factor behind delayed wound healing. Previously we reported that thioredoxin-1 treatment could alleviate oxidative stress under ischemic conditions, such as myocardial infarction and hindlimb ischemia. In this study, we explored the potential for thioredoxin-1 gene therapy to effectively aid wound healing through improved angiogenesis in a murine ischemic wound model. METHODS Full-thickness, cutaneous, ischemic wounds were created in the dorsum skin flap of 8- to 12-week-old CD1 mice. Nonischemic wounds created lateral to the ischemic skin flap served as internal controls. Mice with both ischemic wounds and nonischemic wounds were treated with Adeno-LacZ (1 × 109 pfu) or Adeno-thioredoxin-1 (1 × 109 pfu), injected intradermally around the wound. Digital imaging was performed on days 0, 3, 6, and 9 to assess the rate of wound closure. Tissue samples collected at predetermined time intervals were processed for immunohistochemical analysis. RESULTS No significant differences in wound closure were identified among the nonischemic wounds control, nonischemic wounds-LacZ, and nonischemic wounds-thioredoxin-1 groups. Hence, only mice with ischemic wounds were further analyzed. The ischemic wounds-thioredoxin-1 group had significant improvement in wound closure on days 6 and 9 after surgery compared with the ischemic wounds control and ischemic wounds-LacZ groups. Immunohistochemical analysis indicated increased thioredoxin-1, vascular endothelial cell growth factor, and β-catenin levels in the ischemic wounds-thioredoxin-1 group compared with the ischemic wounds control and ischemic wounds-LacZ groups, as well as increased capillary density and cell proliferation, as represented by Ki-67 staining. CONCLUSION Taken together, thioredoxin-1 gene therapy promotes vascular endothelial cell growth factor signaling and re-epithelialization and activates wound closure in mice with ischemic wounds.
Collapse
Affiliation(s)
- Ibnalwalid Saad
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT; Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, CT
| | - Craig T Fournier
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT; Department of Plastic and Reconstructive Surgery, Albany Medical Center, Albany, NY
| | - Rickesha L Wilson
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - J Alexander Palesty
- Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, CT
| | | | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT.
| |
Collapse
|
1039
|
Quero J, Cabello S, Fuertes T, Mármol I, Laplaza R, Polo V, Gimeno MC, Rodriguez-Yoldi MJ, Cerrada E. Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold(III) Complexes. Inorg Chem 2018; 57:10832-10845. [DOI: 10.1021/acs.inorgchem.8b01464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Quero
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Cabello
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Teresa Fuertes
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inés Mármol
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ruben Laplaza
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Victor Polo
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
1040
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
1041
|
Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Xanthatin Promotes Apoptosis via Inhibiting Thioredoxin Reductase and Eliciting Oxidative Stress. Mol Pharm 2018; 15:3285-3296. [PMID: 29939757 DOI: 10.1021/acs.molpharmaceut.8b00338] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xanthatin (XT), a naturally occurring sesquiterpene lactone presented in cocklebur ( Xanthium strumarium L.), is under development as a potential anticancer agent. Despite the promising anticancer effect of XT, the molecular mechanism underlying its cellular action has not been well elucidated. The mammalian thioredoxin reductase (TrxR) enzymes, the essential seleno-flavoproteins containing a penultimate selenocysteine (Sec) residue at the C-terminus, represent a promising target for cancer chemotherapeutic agents. In this study, XT inhibits both the purified TrxR and the enzyme in cells. The possible binding mode of XT with the TrxR protein is predicted by the covalent docking method. Mechanism studies reveal that XT targets the Sec residue of TrxR and inhibits the enzyme activity irreversibly. Simultaneously, the inhibition of TrxR by XT promotes the oxidative stress-mediated apoptosis of HeLa cells. Importantly, the knockdown of the enzyme sensitizes the cells to XT treatment. Targeting TrxR thus discloses a novel molecular mechanism in accounting for the cellular action of XT and provides insights into the development of XT as an anticancer agent.
Collapse
Affiliation(s)
- Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Danfeng Shi
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Junmin Zhang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
1042
|
The Hepatoprotective Effect of Jaboticaba Peel Powder in a Rat Model of Type 2 Diabetes Mellitus Involves the Modulation of Thiol/Disulfide Redox State through the Upregulation of Glutathione Synthesis. J Nutr Metab 2018; 2018:9794629. [PMID: 30186630 PMCID: PMC6093015 DOI: 10.1155/2018/9794629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023] Open
Abstract
Jaboticaba peel powder (JPP) is rich in bioactive compounds, mainly soluble and insoluble polyphenols with great antioxidant properties. The aim of this study is to evaluate the effects of JPP supplementation on the oxidative stress and hepatic damage in a rat model of type 2 diabetes mellitus (T2DM). Diabetic rats received vehicle or JPP at 2.7 (JPP-I), 5.4 (JPP-II), or 10.8 (JPP-III) g/L in drinking water during 8 weeks. JPP-III attenuated hyperglycaemia and dyslipidemia increased by 86% the liver content of nonprotein thiol groups and by 90% the GSH/GSSG ratio by activating glutathione synthesis. Accordingly, JPP supplementation prevented the loss of activity of the sulfhydryl-dependent enzyme δ-aminolaevulinic acid dehydratase and attenuated hepatic injury assessed by the reduction of serum aspartate aminotransferase activity and liver hypertrophy. Our results support that JPP supplementation to T2DM rats decreases hepatic damage most likely by increasing glutathione synthesis and modulating the thiol/disulfide redox balance.
Collapse
|
1043
|
Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci Rep 2018; 8:11131. [PMID: 30042429 PMCID: PMC6057937 DOI: 10.1038/s41598-018-29313-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
Thiol-dependent enzymes, including the thioredoxin (Trx) and glutathione (GSH) systems, have recently been found as promising bactericidal targets in multidrug-resistant (MDR) bacteria. We previously discovered that silver acted synergistically with ebselen in the inhibition of the Trx system and also resulted in a fast depletion of GSH in Gram-negative bacteria. Silver has been found by others to improve the sensitivity of bacteria to certain conventional antibiotics. Here, we found that the synergistic antibacterial effects of silver with four conventional antibiotics was correlated with the blockage of bacterial Trx system by silver. The synergistic antibacterial effect came along with the production of reactive oxygen species. All these results suggested that silver primarily enhanced the bactericidal activities of conventional antibiotics towards Gram-negative strains through the upregulation of ROS production.
Collapse
|
1044
|
Development of Thiophene Compounds as Potent Chemotherapies for the Treatment of Cutaneous Leishmaniasis Caused by Leishmania major. Molecules 2018; 23:molecules23071626. [PMID: 29973498 PMCID: PMC6100043 DOI: 10.3390/molecules23071626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Leishmania major (L. major) is a protozoan parasite that causes cutaneous leishmaniasis. About 12 million people are currently infected with an annual incidence of 1.3 million cases. The purpose of this study was to synthesize a small library of novel thiophene derivatives, and evaluate its parasitic activity, and potential mechanism of action (MOA). We developed a structure–activity relationship (SAR) study of the thiophene molecule 5A. Overall, eight thiophene derivatives of 5A were synthesized and purified by silica gel column chromatography. Of these eight analogs, the molecule 5D showed the highest in vitro activity against Leishmania major promastigotes (EC50 0.09 ± 0.02 µM), with an inhibition of the proliferation of intracellular amastigotes higher than 75% at only 0.63 µM and an excellent selective index. Moreover, the effect of 5D on L. major promastigotes was associated with generation of reactive oxygen species (ROS), and in silico docking studies suggested that 5D may play a role in inhibiting trypanothione reductase. In summary, the combined SAR study and the in vitro evaluation of 5A derivatives allowed the identification of the novel molecule 5D, which exhibited potent in vitro anti-leishmanial activity resulting in ROS production leading to cell death with no significant cytotoxicity towards mammalian cells.
Collapse
|
1045
|
Han L, Zhou Z, Ma Y, Batistel F, Osorio J, Loor J. Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. J Dairy Sci 2018; 101:6511-6522. [DOI: 10.3168/jds.2017-14257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
|
1046
|
Oberacker T, Bajorat J, Ziola S, Schroeder A, Röth D, Kastl L, Edgar BA, Wagner W, Gülow K, Krammer PH. Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett 2018; 592:2297-2307. [PMID: 29897613 PMCID: PMC6099297 DOI: 10.1002/1873-3468.13156] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
The "free radical theory of aging" suggests that reactive oxygen species (ROS) are responsible for age-related loss of cellular functions and, therefore, represent the main cause of aging. Redox regulation by thioredoxin-1 (TRX) plays a crucial role in responses to oxidative stress. We show that thioredoxin-interacting protein (TXNIP), a negative regulator of TRX, plays a major role in maintaining the redox status and, thereby, influences aging processes. This role of TXNIP is conserved from flies to humans. Age-dependent upregulation of TXNIP results in decreased stress resistance to oxidative challenge in primary human cells and in Drosophila. Experimental overexpression of TXNIP in flies shortens lifespan due to elevated oxidative DNA damage, whereas downregulation of TXNIP enhances oxidative stress resistance and extends lifespan.
Collapse
Affiliation(s)
- Tina Oberacker
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jörg Bajorat
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sabine Ziola
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anne Schroeder
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel Röth
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lena Kastl
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bruce A. Edgar
- German Cancer Research Center (DKFZ)Center for Molecular BiologyUniversity of Heidelberg AllianceGermany
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Wolfgang Wagner
- Department for Stem Cell Biology and Cellular EngineeringHelmholtz‐Institute for Biomedical EngineeringRWTH Aachen University Medical SchoolGermany
| | - Karsten Gülow
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
- Internal Medicine IUniversity Hospital RegensburgGermany
| | - Peter H. Krammer
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
1047
|
Jeon J, Kim JK, Choi Q, Kim JW. Genetic and phenotypic characterizations of drug-resistant Mycobacterium tuberculosis isolates in Cheonan, Korea. J Clin Lab Anal 2018; 32:e22404. [PMID: 29396866 PMCID: PMC6817145 DOI: 10.1002/jcla.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) causes tuberculosis (TB), which is a fatal disease. Cases of drug-resistant MTB have increased in recent years. In this study, we analyzed 7 sites of MTB DNA sequences, including the rpoB and inhA gene, to investigate the relationship between gene mutations and drug resistance in MTB. METHODS Mycobacterium tuberculosis liquid culture samples (197 specimens from 74 cases) were collected between June 2015 and May 2016 and sequenced. The results were compared with those obtained from antibiotic susceptibility tests. RESULTS In 65 (87.8%) cases, the antibiotic-resistant phenotype was consistent with genotyping results, whereas in 9 (12.2%) cases, there was no match. Eight mutations were detected in the rpoB gene, which showed the highest mutation rate. Sequencing results indicated that these mutations were present in 12 cases. CONCLUSION Previously published data on antibiotic resistance genes are insufficient for effective prevention of multidrug- or extensive drug-resistant TB. Additional studies are needed to characterize the complement of antibiotic resistance genes in MTB.
Collapse
Affiliation(s)
- Jae‐Sik Jeon
- Department of Biomedical Laboratory ScienceDankook University College of Health SciencesCheonanKorea
| | - Jae Kyung Kim
- Department of Biomedical Laboratory ScienceDankook University College of Health SciencesCheonanKorea
| | - Qute Choi
- Department of Laboratory MedicineDankook University HospitalCheonanKorea
| | - Jong Wan Kim
- Department of Laboratory MedicineDankook University College of MedicineCheonanKorea
| |
Collapse
|
1048
|
Kusakisako K, Fujisaki K, Tanaka T. The multiple roles of peroxiredoxins in tick blood feeding. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:269-280. [PMID: 30030662 DOI: 10.1007/s10493-018-0273-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radicals (HO·) are generated through partial reduction of oxygen. The HO· are the most reactive and have a shorter half-life than H2O2, they are produced from comparatively stable H2O2 through Fenton reaction. Although controlling HO· is important and biologically advantageous for organisms, it may be difficult. Ticks are obligate hematophagous arthropods that need blood feeding for development. Ticks feed on vertebrate blood containing high levels of iron. Ticks also concentrate iron-containing host blood, leading to high levels of iron in ticks. Host-derived iron may react with oxygen in the tick body, resulting in high concentrations of H2O2. On the other hand, ticks have antioxidant enzymes, such as peroxiredoxins (Prxs), to scavenge H2O2. Gene silencing of Prxs in ticks affects their blood feeding, oviposition, and H2O2 concentration. Therefore, Prxs could play important roles in ticks' blood feeding and oviposition through the regulation of the H2O2 concentration. This review discusses the current knowledge of Prxs in hard ticks. Tick Prxs are also multifunctional molecules related to antioxidants and immunity like other organisms. In addition, tick Prxs play a role in regulating the host immune response for ticks' survival in the host body. Tick Prx also can induce Th2 immune response in the host. Thus, this review would contribute to the further understanding of the tick's antioxidant responses during blood feeding and the search for a candidate target for tick control.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
1049
|
Knockdown of Trnau1ap inhibits the proliferation and migration of NIH3T3, JEG-3 and Bewo cells via the PI3K/Akt signaling pathway. Biochem Biophys Res Commun 2018; 503:521-527. [PMID: 29758194 DOI: 10.1016/j.bbrc.2018.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The tRNA selenocysteine 1 associated protein 1 (Trnau1ap, initially named SECp43) is involved in Selenocysteine (Sec) biosynthesis and incorporation into selenoproteins, which play a key role in biological processes, such as embryonic development. We previously reported that downregulation of Trnau1ap inhibited proliferation of cardiomyocyte-like H9c2 cells. However, the effects of Trnau1ap on cell proliferation and migration of embryonic development are not known, and the mechanisms remain elusive. Herein, lentiviral shRNA vectors were transfected in NIH3T3, JEG-3 and Bewo cells (embryonic, trophoblast and placental cells). We found that knockdown of Trnau1ap resulted in reduced expression levels of selenoproteins. The data of Cell Count Kit-8 (CCK-8) assay and wound scratch assay revealed the proliferation and migration rates were reduced in the Trnau1ap-shRNA groups. Furthermore, western blot analysis showed that the phosphorylation level of Akt in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway was attenuated. These results indicate that Trnau1ap plays an important role in regulation of cell proliferation and migration through the PI3K/Akt signaling pathway, as well as being essential for embryonic development by regulating the expression of selenoproteins.
Collapse
|
1050
|
Liang Y, Che X, Zhao Q, Darwazeh R, Zhang H, Jiang D, Zhao J, Xiang X, Qin W, Liu L, He Z. Thioredoxin-interacting protein mediates mitochondrion-dependent apoptosis in early brain injury after subarachnoid hemorrhage. Mol Cell Biochem 2018; 450:149-158. [PMID: 29905889 DOI: 10.1007/s11010-018-3381-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/11/2018] [Indexed: 01/31/2023]
Abstract
Early brain injury (EBI) was reported to be the primary cause of high mortality and poor outcomes in subarachnoid hemorrhage (SAH) patients, and apoptosis is regarded as the most important physiopathologic mechanism during EBI. Recently, our team found that thioredoxin-interacting protein (TXNIP) links endoplasmic reticulum stress (ER stress) to neuronal apoptosis and aggravates EBI. However, the other underlying mechanisms remain unknown. Mitochondria are considered to be the central points in integrating apoptotic cell death. However, whether crosstalk between TXNIP and the mitochondria-mediated intrinsic apoptotic pathway is effective on EBI has not been previously reported. Therefore, we created an endovascular perforation SAH model in Sprague-Dawley rats to determine the possible mechanism. We found that TXNIP expression in apoptotic neurons significantly increased in the SAH group compared with the sham group. In addition, increased TXNIP expression was accompanied by remarkable changes in mitochondrial-related antiapoptotic and proapoptotic factors. Furthermore, resveratrol (RES, a TXNIP inhibitor) administration significantly downregulated the expression of TXNIP and mitochondria-related proapoptotic factors. Additionally, it attenuated SAH prognostic indicators, such as brain edema, blood-brain barrier permeability, and neurological deficits. Therefore, our study further confirms that TXNIP may participate in neuronal apoptosis through the mitochondrial signaling pathway and that TXNIP may be a target for SAH treatment.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Che
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rami Darwazeh
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengzhi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Qin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|