1101
|
Butler DL, Gildersleeve JC. Abnormal antibodies to self-carbohydrates in SARS-CoV-2 infected patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.15.341479. [PMID: 33083799 PMCID: PMC7574254 DOI: 10.1101/2020.10.15.341479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SARS-CoV-2 is a deadly virus that is causing the global pandemic coronavirus disease 2019 (COVID-19). Our immune system plays a critical role in preventing, clearing, and treating the virus, but aberrant immune responses can contribute to deleterious symptoms and mortality. Many aspects of immune responses to SARS-CoV-2 are being investigated, but little is known about immune responses to carbohydrates. Since the surface of the virus is heavily glycosylated, pre-existing antibodies to glycans could potentially recognize the virus and influence disease progression. Furthermore, antibody responses to carbohydrates could be induced, affecting disease severity and clinical outcome. In this study, we used a carbohydrate antigen microarray with over 800 individual components to profile serum anti-glycan antibodies in COVID-19 patients and healthy control subjects. In COVID-19 patients, we observed abnormally high IgG and IgM antibodies to numerous self-glycans, including gangliosides, N -linked glycans, LacNAc-containing glycans, blood group H, and sialyl Lewis X. Some of these anti-glycan antibodies are known to play roles in autoimmune diseases and neurological disorders, which may help explain some of the unusual and prolonged symptoms observed in COVID-19 patients. The detection of antibodies to self-glycans has important implications for using convalescent serum to treat patients, developing safe and effective SARS-CoV-2 vaccines, and understanding the risks of infection. In addition, this study provides new insight into the immune responses to SARS-CoV-2 and illustrates the importance of including host and viral carbohydrate antigens when studying immune responses to viruses.
Collapse
Affiliation(s)
- Dorothy L. Butler
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702
| |
Collapse
|
1102
|
Casciola-Rosen L, Thiemann DR, Andrade F, Trejo Zambrano MI, Hooper JE, Leonard EK, Spangler JB, Cox AL, Machamer CE, Sauer L, Laeyendecker O, Garibaldi BT, Ray SC, Mecoli CA, Christopher-Stine L, Gutierrez-Alamillo L, Yang Q, Hines D, Clarke WA, Rothman R, Pekosz A, Fenstermacher KJ, Wang Z, Zeger SL, Rosen A. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.13.20211664. [PMID: 33083808 PMCID: PMC7574257 DOI: 10.1101/2020.10.13.20211664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.
Collapse
Affiliation(s)
- Livia Casciola-Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David R. Thiemann
- Department of Medicine, Divisioin of Cardiology, Jhohns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Isabel Trejo Zambrano
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jody E. Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elissa K. Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea L. Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren Sauer
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Oliver Laeyendecker
- Division of Intramural Medicine, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian T. Garibaldi
- Johns Hopkins Biocontainment Unit, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stuart C. Ray
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher A. Mecoli
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Christopher-Stine
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Gutierrez-Alamillo
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingyuan Yang
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Hines
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William A. Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Rothman
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Katherine J. Fenstermacher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Zitong Wang
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Scott L. Zeger
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Antony Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
1103
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
1104
|
Azar MM, Shin JJ, Kang I, Landry M. Diagnosis of SARS-CoV-2 infection in the setting of the cytokine release syndrome. Expert Rev Mol Diagn 2020; 20:1087-1097. [PMID: 32990479 DOI: 10.1080/14737159.2020.1830760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease (COVID-19) can trigger a cytokine response storm (CRS) that is associated with high mortality but for which the underlying pathophysiology and diagnostics are not yet well characterized. This review provides an overview of the underlying immune profile of COVID-19-related CRS as well as laboratory markers for acute diagnosis and chronic follow-up of patients with SARS-CoV-2 and CRS. AREAS COVERED Innate and acquired immune profiles in COVID-19-CRS, RNA-detection methods for SARS-CoV-2 in the setting of CRS including factors that affect assay performance, serology for SARS-CoV-2 in the setting of CRS, and other biomarkers for COVID-19 will be discussed. EXPERT OPINION Studies support the implication of CRS in the pathogenesis, clinical severity and outcome of COVID-19 through the production of multiple inflammatory cytokines and chemokines from activated innate and adaptive immune cells. Although these inflammatory molecules, including IL-6, IL-2 R, IL-10, IP-10 and MCP-1, often correlate with disease severity as possible biomarkers, the pathogenic contributions of individual molecules and the therapeutic benefits of targeting them are yet to be demonstrated. Detection of SARS-CoV-2 RNA is the gold standard method for diagnosis of COVID-19 in the context of CRS but assay performance varies and is susceptible to false-negative results even as patients clinically deteriorate due to decreased viral shedding in the setting of CRS. Biomarkers including CRP, ferritin, D-dimer and procalcitonin may provide early clues about progression to CRS and help identify thrombotic and infectious complications of COVID-19.
Collapse
Affiliation(s)
- Marwan M Azar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine , New Haven, CT, USA
| | - Junghee J Shin
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine , New Haven, CT, USA
| | - Insoo Kang
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine , New Haven, CT, USA
| | - Marie Landry
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine , New Haven, CT, USA.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
1105
|
Boppana S, Qin K, Files JK, Russell RM, Stoltz R, Bibollet-Ruche F, Bansal A, Erdmann N, Hahn BH, Goepfert P. SARS-CoV-2-specific peripheral T follicular helper cells correlate with neutralizing antibodies and increase during convalescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.07.20208488. [PMID: 33052359 PMCID: PMC7553179 DOI: 10.1101/2020.10.07.20208488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 21 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mount at least one CD4 T-cell response, and 48% of individuals mount detectable SARS-CoV-2-specific peripheral T follicular helper cells (pTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific pTfh responses across all three protein specificities correlate with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, pTfh responses increase in frequency and magnitude in convalescence, and robust responses with magnitudes greater than 5% were detected only at the second convalescent visit, an average of 38 days post-symptom onset. These data deepen our understanding of antigen-specific pTfh responses in SARS-CoV-2 infection, suggesting that M and N protein-specific pTfh may also assist in the development of neutralizing antibodies and that pTfh response formation may be delayed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sushma Boppana
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Qin
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
1106
|
Vella L, Giles JR, Baxter AE, Oldridge DA, Diorio C, Kuri-Cervantes L, Alanio C, Pampena MB, Wu JE, Chen Z, Huang YJ, Anderson EM, Gouma S, McNerney KO, Chase J, Burudpakdee C, Lee JH, Apostolidis SA, Huang AC, Mathew D, Kuthuru O, Goodwin EC, Weirick ME, Bolton MJ, Arevalo CP, Ramos A, Jasen C, Giannini HM, DAndrea K, Meyer NJ, Behrens EM, Bassiri H, Hensley SE, Henrickson SE, Teachey DT, Betts MR, Wherry EJ. Deep Immune Profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32995826 DOI: 10.1101/2020.09.25.20201863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.
Collapse
|
1107
|
Hazeldine J, Lord JM. Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19? Front Immunol 2020; 11:573662. [PMID: 33123152 PMCID: PMC7573102 DOI: 10.3389/fimmu.2020.573662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham National Health Service Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
1108
|
Mulinari Turin de Oliveira N, Fernandes da Silva Figueiredo I, Cristine Malaquias da Silva L, Sauruk da Silva K, Regis Bueno L, Barbosa da Luz B, Rita Corso C, Paula Werner MF, Soares Fernandes E, Maria-Ferreira D. Tissue Proteases and Immune Responses: Influencing Factors of COVID-19 Severity and Mortality. Pathogens 2020; 9:E817. [PMID: 33036180 PMCID: PMC7600261 DOI: 10.3390/pathogens9100817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is caused by the highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected the global population despite socioeconomic status and amazed surveillance agencies for its incidence, mortality, and recovery rates. COVID-19 affects all age groups; however, it is suggested to progress into severe disease and cause mortality in over 10% of the confirmed cases, depending on the individual characteristics of the affected population. One of the biggest unanswered questions it is why only some individuals develop into the severe stages of the disease. Current data indicate that most of the critically ill are the elderly or those with comorbidities such as hypertension, diabetes, and asthma. However, it has been noted that, in some populations, severe disease is mostly observed in much younger individuals (<60-years old) with no reported underlying medical conditions. Certainly, many factors may contribute to disease severity including intrinsic host factors such as genetic variants, the expression levels of tissue proteins, among others. Considering all these aspects, this review aims to discuss how the expression levels of tissue proteases and the different profiles of immune responses influence the susceptibility to COVID-19 as well as disease severity and outcome.
Collapse
Affiliation(s)
- Natália Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Isabella Fernandes da Silva Figueiredo
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Liziane Cristine Malaquias da Silva
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Laryssa Regis Bueno
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR 81531-980, Brazil; (B.B.d.L.); (M.F.P.W.)
| | - Cláudia Rita Corso
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Maria Fernanda Paula Werner
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR 81531-980, Brazil; (B.B.d.L.); (M.F.P.W.)
| | - Elizabeth Soares Fernandes
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| | - Daniele Maria-Ferreira
- Faculdades Pequeno Príncipe, Av. Iguaçu No 333, Curitiba, PR 80250-200, Brazil; (N.M.T.d.O.); (I.F.d.S.F.); (L.C.M.d.S.); (K.S.d.S.); (L.R.B.); (C.R.C.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba, PR 80250-200, Brazil
| |
Collapse
|
1109
|
McKie AM, Jones TPW, Sykes C. Prolonged viral shedding in an immunocompetent patient with COVID-19. BMJ Case Rep 2020; 13:e237357. [PMID: 33012717 PMCID: PMC7536772 DOI: 10.1136/bcr-2020-237357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
We present a case of COVID-19 in an immunocompetent patient with risk factors for severe disease who recovered after prolonged swab positivity of 61 days postsymptom onset without significant respiratory and organ dysfunction. We discuss the reasons behind her prolonged swab positivity in the context of current SARS-CoV-2 knowledge, document the trend in her inflammatory response and swab results, and discuss the implications swab positivity had on her isolation and recovery.
Collapse
|
1110
|
Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020; 370:89-94. [PMID: 32753554 PMCID: PMC7574914 DOI: 10.1126/science.abd3871] [Citation(s) in RCA: 862] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.
Collapse
Affiliation(s)
- Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Zoe C Burger
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Marshall Lammers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alena J Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
1111
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
1112
|
Tang H, Gao Y, Li Z, Miao Y, Huang Z, Liu X, Xie L, Li H, Wen W, Zheng Y, Su W. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin Transl Med 2020; 10:e200. [PMID: 33135345 PMCID: PMC7548099 DOI: 10.1002/ctm2.200] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COVID-19 is currently a global pandemic, but the response of human immune system to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. Noncoding RNAs serve as immune regulators and thus may play a critical role in disease progression. METHODS We performed multi-transcriptome sequencing of both noncoding RNAs and mRNAs isolated from the red blood cell depleted whole blood of moderate and severe COVID-19 patients. The functions of noncoding RNAs were validated by analyses of the expression of downstream mRNAs. We further utilized the single-cell RNA-seq data of COVID-19 patients from Wilk et al. and Chua et al. to characterize noncoding RNA functions in different cell types. RESULTS We defined four types of microRNAs with different expression tendencies that could serve as biomarkers for COVID-19 progress. We also identified miR-146a-5p, miR-21-5p, miR-142-3p, and miR-15b-5p as potential contributors to the disease pathogenesis, possibly serving as biomarkers of severe COVID-19 and as candidate therapeutic targets. In addition, the transcriptome profiles consistently suggested hyperactivation of the immune response, loss of T-cell function, and immune dysregulation in severe patients. CONCLUSIONS Collectively, these findings provide a comprehensive view of the noncoding and coding transcriptional landscape of peripheral immune cells during COVID-19, furthering our understanding and offering novel insights into COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Hao Tang
- Department of Respiratory and Critical Care Medicine Changzheng HospitalSecond Military Medical UniversityShanghaiChina
- Department of Critical CareWuhan Huo Shen Shan HospitalHubeiChina
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yushan Miao
- Department of Respiratory and Critical Care Medicine Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wen Wen
- National Center for Liver CancerSecond Military Medical UniversityShanghaiChina
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
1113
|
Culos A, Tsai AS, Stanley N, Becker M, Ghaemi MS, McIlwain DR, Fallahzadeh R, Tanada A, Nassar H, Espinosa C, Xenochristou M, Ganio E, Peterson L, Han X, Stelzer IA, Ando K, Gaudilliere D, Phongpreecha T, Marić I, Chang AL, Shaw GM, Stevenson DK, Bendall S, Davis KL, Fantl W, Nolan GP, Hastie T, Tibshirani R, Angst MS, Gaudilliere B, Aghaeepour N. Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions. NAT MACH INTELL 2020; 2:619-628. [PMID: 33294774 PMCID: PMC7720904 DOI: 10.1038/s42256-020-00232-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.
Collapse
Affiliation(s)
- Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- These authors contributed equally: Anthony Culos, Amy S. Tsai
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Anthony Culos, Amy S. Tsai
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mohammad S Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Ontario, Canada
| | - David R McIlwain
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Athena Tanada
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Huda Nassar
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Edward Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Peterson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dyani Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thanaphong Phongpreecha
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan L Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wendy Fantl
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Trevor Hastie
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Robert Tibshirani
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors jointly supervised this work: Martin S. Angst, Brice Gaudilliere, Nima Aghaeepour
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors jointly supervised this work: Martin S. Angst, Brice Gaudilliere, Nima Aghaeepour
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors jointly supervised this work: Martin S. Angst, Brice Gaudilliere, Nima Aghaeepour
| |
Collapse
|
1114
|
Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva I, Vantourout P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman JD, Gee S, Chan JNE, Ryan S, Bugallo-Blanco E, Peterson P, Kisand K, Haljasmägi L, Chadli L, Moingeon P, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babalola K, Abdul-Jawad S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26:1623-1635. [PMID: 32807934 DOI: 10.1038/s41591-020-1038-6] [Citation(s) in RCA: 674] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.
Collapse
Affiliation(s)
- Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Irene Del Molino Del Barrio
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isaac Francos-Quijorna
- Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Davies
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, UK
| | - Richard Davis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Aislinn Jennings
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Vasiliki Sofra
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | | | - Efstathios Theodoridis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joshua D Freedman
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Nuo En Chan
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Sarah Ryan
- Department of Inflammation Biology, King's College London, London, UK
| | - Eva Bugallo-Blanco
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Loubna Chadli
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Lauren Martinez
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kate Brooks
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Jeremy Mason
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Federico Lopez Gomez
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Kola Babalola
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Sultan Abdul-Jawad
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - John Cason
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jonathan Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
1115
|
Jones GW, Monopoli MP, Campagnolo L, Pietroiusti A, Tran L, Fadeel B. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine (Lond) 2020; 15:2411-2427. [PMID: 32873192 PMCID: PMC7488724 DOI: 10.2217/nnm-2020-0286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need for safe and effective approaches to combat COVID-19. Here, we asked whether lessons learned from nanotoxicology and nanomedicine could shed light on the current pandemic. SARS-CoV-2, the causative agent, may trigger a mild, self-limiting disease with respiratory symptoms, but patients may also succumb to a life-threatening systemic disease. The host response to the virus is equally complex and studies are now beginning to unravel the immunological correlates of COVID-19. Nanotechnology can be applied for the delivery of antiviral drugs or other repurposed drugs. Moreover, recent work has shown that synthetic nanoparticles wrapped with host-derived cellular membranes may prevent virus infection. We posit that nanoparticles decorated with ACE2, the receptor for SARS-CoV-2, could be exploited as decoys to intercept the virus before it infects cells in the respiratory tract. However, close attention should be paid to biocompatibility before such nano-decoys are deployed in the clinic.
Collapse
Affiliation(s)
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Luisa Campagnolo
- Department of Biomedicine & Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine & Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
1116
|
Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva I, Vantourout P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman J, Gee S, Chan JNE, Ryan S, Bugallo-Blanco E, Peterson P, Kisand K, Haljasmägi L, Chadli L, Moingeon P, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babalola K, Abdul-Jawad S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. Author Correction: A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26. [PMID: 32908251 PMCID: PMC7479399 DOI: 10.1038/s41591-020-1038-6 10.1038/s41591-020-1079-x 10.1038/s41591-020-01186-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
Affiliation(s)
- Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Irene Del Molino Del Barrio
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isaac Francos-Quijorna
- Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Davies
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, UK
| | - Richard Davis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Aislinn Jennings
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Vasiliki Sofra
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | | | - Efstathios Theodoridis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joshua Freedman
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Nuo En Chan
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Sarah Ryan
- Department of Inflammation Biology, King's College London, London, UK
| | - Eva Bugallo-Blanco
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Loubna Chadli
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Lauren Martinez
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kate Brooks
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Jeremy Mason
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Federico Lopez Gomez
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Kola Babalola
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Sultan Abdul-Jawad
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - John Cason
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jonathan Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
1117
|
Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5:1185-1191. [PMID: 32908214 DOI: 10.1038/s41564-020-00789-5] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, USA.
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
1118
|
Martin-Sancho L, Lewinski MK, Pache L, Stoneham CA, Yin X, Pratt D, Churas C, Rosenthal SB, Liu S, De Jesus PD, O'Neill AM, Gounder AP, Nguyen C, Pu Y, Oom AL, Miorin L, Rodriguez-Frandsen A, Urbanowski M, Shaw ML, Chang MW, Benner C, Frieman MB, García-Sastre A, Ideker T, Hultquist JF, Guatelli J, Chanda SK. Functional Landscape of SARS-CoV-2 Cellular Restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.29.319566. [PMID: 33024967 PMCID: PMC7536870 DOI: 10.1101/2020.09.29.319566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A deficient interferon response to SARS-CoV-2 infection has been implicated as a determinant of severe COVID-19. To identify the molecular effectors that govern interferon control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human interferon stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors that inhibited viral entry, nucleic acid binding proteins that suppressed viral RNA synthesis, and a highly enriched cluster of ER and Golgi-resident ISGs that inhibited viral translation and egress. These included the type II integral membrane protein BST2/tetherin, which was found to impede viral release, and is targeted for immune evasion by SARS-CoV-2 Orf7a protein. Overall, these data define the molecular basis of early innate immune control of viral infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.
Collapse
|
1119
|
Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment. Cell Mol Immunol 2020; 18:528-538. [PMID: 32999454 PMCID: PMC7525231 DOI: 10.1038/s41423-020-00554-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.
Collapse
Affiliation(s)
- Amania A Sheikh
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
1120
|
Vignesh R, Shankar EM, Velu V, Thyagarajan SP. Is Herd Immunity Against SARS-CoV-2 a Silver Lining? Front Immunol 2020; 11:586781. [PMID: 33101320 PMCID: PMC7554232 DOI: 10.3389/fimmu.2020.586781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
- Infectious Diseases Laboratory, YRG Centre for AIDS Research and Education, Chennai, India
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
1121
|
Mann ER, Menon M, Knight SB, Konkel JE, Jagger C, Shaw TN, Krishnan S, Rattray M, Ustianowski A, Bakerly ND, Dark P, Lord G, Simpson A, Felton T, Ho LP, Feldmann M, Grainger JR, Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol 2020; 5:5/51/eabd6197. [PMID: 32943497 PMCID: PMC7857390 DOI: 10.1126/sciimmunol.abd6197] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.,Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Sean Blandin Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.,Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Tovah N Shaw
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Siddharth Krishnan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Andrew Ustianowski
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Nawar Diar Bakerly
- Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Paul Dark
- Intensive Care Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Graham Lord
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, UK
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford
| | | | - Marc Feldmann
- Kennedy Institute of Rheumatology, Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Science, Windmill Rd, Headington, Oxford, OX3 7LD, UK
| | | | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.
| |
Collapse
|
1122
|
Poonia B, Kottilil S. Immune Correlates of COVID-19 Control. Front Immunol 2020; 11:569611. [PMID: 33133083 PMCID: PMC7550526 DOI: 10.3389/fimmu.2020.569611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 caused by SARS CoV2 emerged in China at the end of 2019 and soon become a pandemic. Since the virus is novel, pre-existing CoV2-specific immunity is not expected to exist in humans, although studies have shown presence of CoV2 cross-reactive T cells in unexposed individuals. Lack of effective immunity in most individuals along with high infectiousness of the virus has resulted in massive global public health emergency. Intense efforts are on to study viral pathogenesis and immune response to help guide prophylactic and therapeutic interventions as well as epidemiological assessments like transmission modeling. To develop an effective vaccine or biologic therapeutic, it is critical to understand the immune correlates of COVID-19 control. At the same time, whether immunity in recovered individuals is effective for preventing re-infection will be important for informing interventions like social distancing. Key questions that are being investigated regarding immune response in COVID-19 which will help these efforts include, investigations of immune response that distinguishes patients with severe versus mild infection or those that recover relative to those that succumb, durability of immunity in recovered patients and relevance of developed immunity in a cured patient for protection against re-infection as well as value of convalescent plasma from recovered patients as a potential therapeutic modality. This is a broad and rapidly evolving area and multiple reports on status of innate and adaptive immunity against SARS-CoV2 are emerging on a daily basis. While many questions remain unanswered for now, the purpose of this focused review is to summarize the current understanding regarding immune correlates of COVID-19 severity and resolution in order to assist researchers in the field to pursue new directions in prevention and control.
Collapse
Affiliation(s)
- Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
1123
|
Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, Perez-Potti A, Sekine T, Rivera-Ballesteros O, Gredmark-Russ S, Rooyackers O, Folkesson E, Eriksson LI, Norrby-Teglund A, Ljunggren HG, Björkström NK, Aleman S, Buggert M, Klingström J, Strålin K, Sandberg JK. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol 2020; 5:eabe1670. [PMID: 32989174 PMCID: PMC7857393 DOI: 10.1126/sciimmunol.abe1670] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in the circulation of patients with active disease paired with strong activation. Furthermore, transcriptomic analyses indicated significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and later release back into the circulation when disease is resolved. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their possible involvement in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - André Perez-Potti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Elin Folkesson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
1124
|
Single cell sequencing unraveling genetic basis of severe COVID19 in obesity. ACTA ACUST UNITED AC 2020; 20:100303. [PMID: 32995660 PMCID: PMC7513689 DOI: 10.1016/j.obmed.2020.100303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 has shown a substantial variation in the rate and severity by which it impacts different demographic groups. Specifically, it has shown a predilection towards obese patients as well as well as other vulnerable groups including predilection of males over females, old age over young age and black races over Caucasian ones. Single cell sequencing studies have highlighted the role of cell polarity and the co-expression of proteases, such as Furin, along with ACE2 in the genesis of coronavirus disease rather than exclusively link tissue involvement with ACE2 levels thought previously. It has also forged a connection between the genetic and immune cellular mechanisms underlying COVID infection and the inflammatory state of obese patients, offering a more accurate explanation as to why obese patients are at increased risk of poor COVID outcomes. These commonalities encompass macrophage phenotype switching, genetic expression switching, and overexpression of the pro-inflammatory cytokines, depletion of the regulatory cytokines, in situ T cell proliferation, and T cell exhaustion. These findings demonstrate the necessity of single cell sequencing as a rapid means to identify and treat those who are most likely to need hospital admission and intensive care, in the hopes of precision medicine. Furthermore, this study underlines the use of immune modulators such as Leptin sensitizers, rather than immune suppressors as anti-inflammation therapies to switch the inflammatory response from a drastic immunological type 1 response to a beneficial type 2 effective one.
Collapse
|
1125
|
Lee HK, Knabl L, Pipperger L, Volland A, Furth P, Kang K, Smith H, Knabl L, Bellmann R, Bernhard C, Kaiser N, Gänzer H, Ströhle M, Walser A, Von Laer D, Hennighausen L. Immune transcriptomes of highly exposed SARS-CoV-2 asymptomatic seropositive versus seronegative individuals from the Ischgl community. RESEARCH SQUARE 2020:rs.3.rs-69657. [PMID: 32995765 PMCID: PMC7523134 DOI: 10.21203/rs.3.rs-69657/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To investigate prevalence of ongoing activation of inflammation following asymptomatic SARS-CoV-2 infection we characterized immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals with few underlying health issues following a community superspreading event. Four mildly symptomatic seropositive individuals examined three weeks after infection as positive controls demonstrated immunological activation. Approximately four to six weeks following the event, the two asymptomatic groups showed no significant differences. Two seropositive patients with underlying genetic disease impacting immunological activation were included (Cystic Fibrosis (CF), Nuclear factor-kappa B Essential Modulator (NEMO) deficiency). CF, but not NEMO, associated with significant immune transcriptome differences including some associated with severe SARS-CoV-2 infection (IL1B, IL17A, respective receptors). All subjects remained in their usual state of health from event through five-month follow-up. Here, asymptomatic infection resolved without evidence of prolonged immunological activation. Inclusion of subjects with underlying genetic disease illustrated the pathophysiological importance of context on impact of immunological response.
Collapse
Affiliation(s)
- Hye Kyung Lee
- National Institute of Diabetes and Digestive and Kidney Diseases
| | | | | | | | | | | | - Harold Smith
- National Institute of Diabetes and Digestive and Kidney Diseases
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1126
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Menachery VD, Gralinski LE, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, de Villena FPM, Heise MT, Baric RS, Lund JM. Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.21.306837. [PMID: 32995791 PMCID: PMC7523117 DOI: 10.1101/2020.09.21.306837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Vineet D. Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, TX
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sophia Jeng
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Darla R. Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A. Mooney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Shannon K. McWeeney
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
1127
|
Newell KL, Clemmer DC, Cox JB, Kayode YI, Zoccoli-Rodriguez V, Taylor HE, Endy TP, Wilmore JR, Winslow G. Switched and unswitched memory B cells detected during SARS-CoV-2 convalescence correlate with limited symptom duration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32908991 DOI: 10.1101/2020.09.04.20187724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study. We observed a significant negative correlation between the frequency of peripheral blood memory B cells and the duration of symptoms for convalescent subjects. Memory B cell subsets in convalescent subjects were composed of classical CD24+ class-switched memory B cells, but also activated CD24-negative and natural unswitched CD27+ IgD+ IgM+ subsets. Memory B cell frequency was significantly correlated with both IgG1 and IgM responses to the SARS-CoV-2 spike protein receptor binding domain (RBD). IgM+ memory, but not switched memory, directly correlated with virus-specific antibody responses, and remained stable over time. Our findings suggest that the frequency of memory B cells is a critical indicator of disease resolution, and that IgM+ memory B cells play an important role in SARS-CoV-2 immunity.
Collapse
|
1128
|
Bunders MJ, Altfeld M. Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity 2020; 53:487-495. [PMID: 32853545 PMCID: PMC7430299 DOI: 10.1016/j.immuni.2020.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Men present more frequently with severe manifestations of coronavirus disease 2019 (COVID-19) and are at higher risk for death. The underlying mechanisms for these differences between female and male individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are insufficiently understood. However, studies from other viral infections have shown that females can mount stronger immune responses against viruses than males. Emerging knowledge on the basic biological pathways that underlie differences in immune responses between women and men needs to be incorporated into research efforts on SARS-CoV-2 pathogenesis and pathology to identify targets for therapeutic interventions aimed at enhancing antiviral immune function and lung airway resilience while reducing pathogenic inflammation in COVID-19.
Collapse
Affiliation(s)
- Madeleine J Bunders
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Institute for Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
1129
|
Dagotto G, Yu J, Barouch DH. Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host Microbe 2020; 28:364-370. [PMID: 32798444 PMCID: PMC7416703 DOI: 10.1016/j.chom.2020.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
The explosive spread of SARS-CoV-2 suggests that a vaccine will be required to end this global pandemic. Progress in SARS-CoV-2 vaccine development to date has been faster than for any other pathogen in history. Multiple SARS-CoV-2 vaccine candidates have been evaluated in preclinical models and are currently in clinical trials. In this Perspective, we discuss three topics that are critical for SARS-CoV-2 vaccine development: antigen selection and engineering, preclinical challenge studies in non-human primate models, and immune correlates of protection.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Host Microbial Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Models, Animal
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Primates
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02215, USA.
| |
Collapse
|
1130
|
Rendeiro AF, Casano J, Kyriakos Vorkas C, Singh H, Morales A, DeSimone RA, Ellsworth GB, Soave R, Kapadia SN, Saito K, Brown CD, Hsu J, Kyriakides C, Chiu S, Cappelli L, Teresa Cacciapuoti M, Tam W, Galluzzi L, Simonson PD, Elemento O, Salvatore M, Inghirami G. Longitudinal immune profiling of mild and severe COVID-19 reveals innate and adaptive immune dysfunction and provides an early prediction tool for clinical progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.08.20189092. [PMID: 32935114 PMCID: PMC7491529 DOI: 10.1101/2020.09.08.20189092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With a rising incidence of COVID-19-associated morbidity and mortality worldwide, it is critical to elucidate the innate and adaptive immune responses that drive disease severity. We performed longitudinal immune profiling of peripheral blood mononuclear cells from 45 patients and healthy donors. We observed a dynamic immune landscape of innate and adaptive immune cells in disease progression and absolute changes of lymphocyte and myeloid cells in severe versus mild cases or healthy controls. Intubation and death were coupled with selected natural killer cell KIR receptor usage and IgM+ B cells and associated with profound CD4 and CD8 T cell exhaustion. Pseudo-temporal reconstruction of the hierarchy of disease progression revealed dynamic time changes in the global population recapitulating individual patients and the development of an eight-marker classifier of disease severity. Estimating the effect of clinical progression on the immune response and early assessment of disease progression risks may allow implementation of tailored therapies.
Collapse
Affiliation(s)
- André F Rendeiro
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joseph Casano
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Charles Kyriakos Vorkas
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Harjot Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ayana Morales
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert A DeSimone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Grant B Ellsworth
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rosemary Soave
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shashi N Kapadia
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Kohta Saito
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher D Brown
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - JingMei Hsu
- Division of Hematology/Oncology, Department of Medicine Weill Cornell Medicine, New York, NY, 10065, USA
| | - Christopher Kyriakides
- Department of Rehabilitation Medicine at NYU Grossman School of Medicine New York, NY, USA
| | - Steven Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Paul D Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mirella Salvatore
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Division of Public Health Programs, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
1131
|
Wang L, Candia J, Ma L, Zhao Y, Imberti L, Sottini A, Dobbs K, NIAID-NCI COVID Consortium, Lisco A, Sereti I, Su HC, Notarangelo LD, Wang XW. Serological Responses to Human Virome Define Clinical Outcomes of Italian Patients Infected with SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.04.20187088. [PMID: 32908997 PMCID: PMC7480049 DOI: 10.1101/2020.09.04.20187088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains unclear what drives these disparities. Here, we studied 159 hospitalized Italian patients with pneumonia from the NIAID-NCI COVID-19 Consortium using a phage-display method to characterize circulating antibodies binding to 93,904 viral peptides encoded by 1,276 strains of human viruses. SARS-CoV-2 infection was associated with a marked increase in individual's immune memory antibody repertoires linked to trajectories of disease severity from the longitudinal analysis also including anti-spike protein antibodies. By applying a machine-learning-based strategy, we developed a viral exposure signature predictive of COVID-19-related disease severity linked to patient survival. These results provide a basis for understanding the roles of memory B-cell repertoires in COVID-19-related symptoms as well as a predictive tool for monitoring its clinical severity.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- These authors contributed equally
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21701
- These authors contributed equally
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
- Lead Contact
| |
Collapse
|
1132
|
Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19. Cell 2020; 182:1077-1092. [PMID: 32846157 PMCID: PMC7428724 DOI: 10.1016/j.cell.2020.08.021] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
1133
|
Lee HK, Knabl L, Pipperger L, Volland A, Furth PA, Kang K, Smith HE, Knabl L, Bellmann R, Bernhard C, Kaiser N, Gänzer H, Ströhle M, Walser A, von Laer D, Hennighausen L. Immune transcriptomes of highly exposed SARS-CoV-2 asymptomatic seropositive versus seronegative individuals from the Ischgl community. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.01.20185884. [PMID: 32908998 PMCID: PMC7480050 DOI: 10.1101/2020.09.01.20185884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate prevalence of ongoing activation of inflammation following asymptomatic SARS-CoV-2 infection we characterized immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals with few underlying health issues following a community superspreading event. Four mildly symptomatic seropositive individuals examined three weeks after infection as positive controls demonstrated immunological activation. Approximately four to six weeks following the event, the two asymptomatic groups showed no significant differences. Two seropositive patients with underlying genetic disease impacting immunological activation were included (Cystic Fibrosis (CF), Nuclear factor-kappa B Essential Modulator (NEMO) deficiency). CF, but not NEMO, associated with significant immune transcriptome differences including some associated with severe SARS-CoV-2 infection (IL1B, IL17A, respective receptors). All subjects remained in their usual state of health from event through five-month follow-up. Here, asymptomatic infection resolved without evidence of prolonged immunological activation. Inclusion of subjects with underlying genetic disease illustrated the pathophysiological importance of context on impact of immunological response.
Collapse
Affiliation(s)
- Hye Kyung Lee
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ludwig Knabl
- Institute of Virology, Department of Hygiene, Medical Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Lisa Pipperger
- Institute of Virology, Department of Hygiene, Medical Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Andre Volland
- Institute of Virology, Department of Hygiene, Medical Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Priscilla A. Furth
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | | | - Harold E. Smith
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Medical Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
1134
|
Abstract
The role of T cells in the resolution or exacerbation of COVID-19, as well as their potential to provide long-term protection from reinfection with SARS-CoV-2, remains debated. Nevertheless, recent studies have highlighted various aspects of T cell responses to SARS-CoV-2 infection that are starting to enable some general concepts to emerge.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
1135
|
Ware LB. Physiological and biological heterogeneity in COVID-19-associated acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2020; 8:1163-1165. [PMID: 32861277 PMCID: PMC7836300 DOI: 10.1016/s2213-2600(20)30369-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| |
Collapse
|
1136
|
Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C, Solary E, Fontenay M, André F, Maeurer M, Ippolito G, Piacentini M, Wang FS, Ginhoux F, Marabelle A, Kroemer G, Derosa L, Zitvogel L. Immune responses during COVID-19 infection. Oncoimmunology 2020; 9:1807836. [PMID: 32939324 PMCID: PMC7480812 DOI: 10.1080/2162402x.2020.1807836] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.
Collapse
Affiliation(s)
- Cléa Melenotte
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- Infectious Diseases, IHU-Méditerranée Infection, Marseille, France
| | | | - Anne-Gaëlle Goubet
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Imran Lahmar
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Agathe Dubuisson
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Didier Raoult
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Mansouria Merad
- Service de Urgences et de Permanence des Soins, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | | | - Eric Solary
- Immunology, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Centre National Recherche Scientifique (CNRS) UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Markus Maeurer
- Immunosurgery, Immunotherapy Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Med Clinic, University of Mainz, Mayence, Germany
| | - Giuseppe Ippolito
- Dipartimento di Epidemiologia Ricerca Pre-Clinica e Diagnostica Avanzata, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Department, National Institute for Infectious Disease IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Aurélien Marabelle
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie,Pathologie – PUI – Hygiène, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Laurence Zitvogel
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
1137
|
Hanna N, Hanna M, Sharma S. Is pregnancy an immunological contributor to severe or controlled COVID-19 disease? Am J Reprod Immunol 2020; 84:e13317. [PMID: 32757366 PMCID: PMC7435498 DOI: 10.1111/aji.13317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023] Open
Abstract
Since its emergence in Wuhan as a novel coronavirus disease, it has taken only a few months since January 2020 for it to be recognized as a widespread COVID‐19 pandemic which has contributed to global health devastation. As pointed out by health experts, it is a once in a century pandemic of our times. Clinical observations so far indicate that the older population and immune compromised individuals, particularly in African American and Hispanic/Latino communities, are at much higher risk for infection with this novel coronavirus. In this regard, pregnancy offers an altered immunity scenario which may allow severe COVID‐19 disease. The literature is so far highly conflicting on this issue. This review will offer a conceptual basis for severe or controlled disease and address trepidations for pregnant women associated with COVID‐19 pandemic, particularly in the comparative context of clinical consequences of other coronaviruses such as SARS and MERS. We will highlight the possible consequences of COVID‐19 on the general health of pregnant women as well as its possible effects at the maternal‐fetal interface. For the placenta‐related pathology, we will focus our discussion on the temporal expression of ACE2 throughout gestation for possible propagation of SARS‐CoV‐2 in the placenta in infected women and ensuing consequences.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Long Island School of Medicine, New York, NY, USA
| | | | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
1138
|
|
1139
|
Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, Mahajan VS, Piechocka-Trocha A, Lefteri K, Osborn M, Bals J, Bartsch YC, Bonheur N, Caradonna TM, Chevalier J, Chowdhury F, Diefenbach TJ, Einkauf K, Fallon J, Feldman J, Finn KK, Garcia-Broncano P, Hartana CA, Hauser BM, Jiang C, Kaplonek P, Karpell M, Koscher EC, Lian X, Liu H, Liu J, Ly NL, Michell AR, Rassadkina Y, Seiger K, Sessa L, Shin S, Singh N, Sun W, Sun X, Ticheli HJ, Waring MT, Zhu AL, Alter G, Li JZ, Lingwood D, Schmidt AG, Lichterfeld M, Walker BD, Yu XG, Padera RF, Pillai S. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 2020; 183:143-157.e13. [PMID: 32877699 PMCID: PMC7437499 DOI: 10.1016/j.cell.2020.08.025] [Citation(s) in RCA: 559] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.
Collapse
Affiliation(s)
- Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hsiao-Hsuan Kuo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jocelyn R Farmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, QC J1K 2R1, Canada
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kristina Lefteri
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew Osborn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Yannic C Bartsch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nathalie Bonheur
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Josh Chevalier
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fatema Chowdhury
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon Fallon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kelsey K Finn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Marshall Karpell
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Eric C Koscher
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jinqing Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashlin R Michell
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kyra Seiger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Libera Sessa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nishant Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hannah J Ticheli
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alex L Zhu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| | | |
Collapse
|
1140
|
Anderson EM, Diorio C, Goodwin EC, McNerney KO, Weirick ME, Gouma S, Bolton MJ, Arevalo CP, Chase J, Hicks P, Manzoni TB, Baxter AE, Andrea KP, Burudpakdee C, Lee JH, Vella LA, Henrickson SE, Harris RM, Wherry EJ, Bates P, Bassiri H, Behrens EM, Teachey DT, Hensley SE. SARS-CoV-2 antibody responses in children with MIS-C and mild and severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32839782 PMCID: PMC7444298 DOI: 10.1101/2020.08.17.20176552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 antibody responses in children remain poorly characterized. Here, we show that pediatric patients with multisystem inflammatory syndrome in children (MIS-C) possess higher SARS-CoV-2 spike IgG titers compared to those with severe coronavirus disease 2019 (COVID-19), likely reflecting a longer time since onset of infection in MIS-C patients.
Collapse
Affiliation(s)
- Elizabeth M Anderson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.,These authors contributed equally to this work: Elizabeth M. Anderson and Caroline Diorio
| | - Caroline Diorio
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,These authors contributed equally to this work: Elizabeth M. Anderson and Caroline Diorio
| | - Eileen C Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Kevin O McNerney
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E Weirick
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Marcus J Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Claudia P Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Julie Chase
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Amy E Baxter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt P Andrea
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chakkapong Burudpakdee
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica H Lee
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A Vella
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca M Harris
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.,Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Edward M Behrens
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David T Teachey
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
1141
|
Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32817957 DOI: 10.1101/2020.08.11.20171843] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.
Collapse
|
1142
|
Elizaldi S, Lakshmanappa YS, Roh J, Schmidt B, Carroll T, Weaver K, Smith J, Deere J, Dutra J, Stone M, Franz S, Sammak R, Olstad K, Reader JR, Ma ZM, Nguyen N, Watanabe J, Usachenko J, Immareddy R, Yee J, Weiskopf D, Sette A, Hartigan-O'Connor D, McSorley S, Morrison J, Tran N, Simmons G, Busch M, Kozlowsk P, van Rompay K, Miller C, Iyer S. SARS-CoV-2 infection induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. RESEARCH SQUARE 2020:rs.3.rs-51545. [PMID: 32818217 PMCID: PMC7430596 DOI: 10.21203/rs.3.rs-51545/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD4 T follicular helper (T fh ) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that SARS-CoV-2 infection resulted in transient accumulation of pro-inflammatory monocytes and proliferating T fh cells with a T h 1 profile in peripheral blood. CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes. We observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Our data suggest that a vaccine promoting T h 1-type T fh responses that target the S protein may lead to protective immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Justin Smith
- Louisiana State University Health Sciences Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | | | | | | | | | | | | | | | - Pamela Kozlowsk
- Louisiana State University Health Sciences Center New Orleans
| | | | | | - Smita Iyer
- University of California Davis School of Veterinary Medicine and California National Primate Research Center
| |
Collapse
|
1143
|
Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel C, Takehara KK, Eggenberger J, Hemann E, Waterman HR, Fahning ML, Chen Y, Rathe J, Stokes C, Wrenn S, Fiala B, Carter L, Hamerman JA, King NP, Gale M, Campbell DJ, Rawlings D, Pepper M. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. RESEARCH SQUARE 2020:rs.3.rs-57112. [PMID: 32818218 PMCID: PMC7430600 DOI: 10.21203/rs.3.rs-57112/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.
Collapse
Affiliation(s)
- Lauren B. Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- These authors contributed equally
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- These authors contributed equally
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- These authors contributed equally
| | - Kurt B. Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- These authors contributed equally
| | - Peter A. Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- These authors contributed equally
| | - Chris Thouvenel
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA and Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kennidy K. Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Julie Eggenberger
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Emily Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Hayley R. Waterman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mitchell L. Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Yu Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA and Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jennifer Rathe
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jessica A. Hamerman
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Daniel J. Campbell
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - David Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA and Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
1144
|
Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, Wagh D, Coller J, Pellegrini KL, Kazmin D, Alaaeddine G, Leung WS, Chan JMC, Chik TSH, Choi CYC, Huerta C, Paine McCullough M, Lv H, Anderson E, Edupuganti S, Upadhyay AA, Bosinger SE, Maecker HT, Khatri P, Rouphael N, Peiris M, Pulendran B. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020; 369:1210-1220. [PMID: 32788292 DOI: 10.1126/science.abc6261] [Citation(s) in RCA: 842] [Impact Index Per Article: 168.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong
| | - Ranawaka A P M Perera
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, HKU, Hong Kong
| | - Madeleine Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.,Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Natalia Sigal
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurel Bristow
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Owen Tak-Yin Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong
| | - Dhananjay Wagh
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Coller
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn L Pellegrini
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ghina Alaaeddine
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Wai Shing Leung
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong
| | - Jacky Man Chun Chan
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong
| | - Thomas Shiu Hong Chik
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong
| | - Chris Yau Chung Choi
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong
| | - Christopher Huerta
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Michele Paine McCullough
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong
| | - Evan Anderson
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Srilatha Edupuganti
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA
| | - Holden Terry Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.,Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong.,Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, HKU, Hong Kong
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
1145
|
Zheng J, Roy Wong LY, Li K, Verma AK, Ortiz M, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB, Perlman S. K18-hACE2 Mice for Studies of COVID-19 Treatments and Pathogenesis Including Anosmia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32817939 DOI: 10.1101/2020.08.07.242073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing COVID-19 pandemic is associated with substantial morbidity and mortality. While much has been learned in the first months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation and many patients with this finding show no or only minor respiratory signs. Studies in animals experimentally infected with SARS-CoV-2, the cause of COVID-19, provide opportunities to study aspects of the disease not easily investigated in human patients. COVID-19 severity ranges from asymptomatic to lethal. Most experimental infections provide insights into mild disease. Here, using K18-hACE2 mice that we originally developed for SARS studies, we show that infection with SARS-CoV-2 causes severe disease in the lung, and in some mice, the brain. Evidence of thrombosis and vasculitis was detected in mice with severe pneumonia. Further, we show that infusion of convalescent plasma (CP) from a recovered COVID-19 patient provided protection against lethal disease. Mice developed anosmia at early times after infection. Notably, while treatment with CP prevented significant clinical disease, it did not prevent anosmia. Thus K18-hACE2 mice provide a useful model for studying the pathological underpinnings of both mild and lethal COVID-19 and for assessing therapeutic interventions.
Collapse
|
1146
|
Rodriguez L, Pekkarinen PT, Lakshmikanth T, Tan Z, Consiglio CR, Pou C, Chen Y, Mugabo CH, Nguyen NA, Nowlan K, Strandin T, Levanov L, Mikes J, Wang J, Kantele A, Hepojoki J, Vapalahti O, Heinonen S, Kekäläinen E, Brodin P. Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. CELL REPORTS MEDICINE 2020; 1:100078. [PMID: 32838342 PMCID: PMC7405891 DOI: 10.1016/j.xcrm.2020.100078] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5–7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19. Immunomonitoring from acute to recovery phase COVID-19 An IFNγ-eosinophil axis precedes lung hyperinflammation Basophils modulate SARS-CoV-2 IgG responses A shared trajectory of immunological recovery in COVID-19
Collapse
Affiliation(s)
- Lucie Rodriguez
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Pirkka T Pekkarinen
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Camila Rosat Consiglio
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Constantin Habimana Mugabo
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Ngoc Anh Nguyen
- Translational Immunology Research Program, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Tomas Strandin
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Lev Levanov
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden
| | - Anu Kantele
- Inflammation Center, Division of Infectious Diseases, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Santtu Heinonen
- New Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, and Helsinki University Hospital, Helsinki 00100, Finland
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna 171 77, Sweden.,Department of Pediatric Rheumatology, Karolinska University Hospital, Solna 171 76, Sweden
| |
Collapse
|
1147
|
Desai N, Neyaz A, Szabolcs A, Shih AR, Chen JH, Thapar V, Nieman LT, Solovyov A, Mehta A, Lieb DJ, Kulkarni AS, Jaicks C, Pinto CJ, Juric D, Chebib I, Colvin RB, Kim AY, Monroe R, Warren SE, Danaher P, Reeves JW, Gong J, Rueckert EH, Greenbaum BD, Hacohen N, Lagana SM, Rivera MN, Sholl LM, Stone JR, Ting DT, Deshpande V. Temporal and Spatial Heterogeneity of Host Response to SARS-CoV-2 Pulmonary Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.30.20165241. [PMID: 32766600 PMCID: PMC7402055 DOI: 10.1101/2020.07.30.20165241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relationship of SARS-CoV-2 lung infection and severity of pulmonary disease is not fully understood. We analyzed autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter- and intra- patient heterogeneity of pulmonary virus infection. There was a spectrum of high and low virus cases that was associated with duration of disease and activation of interferon pathway genes. Using a digital spatial profiling platform, the virus corresponded to distinct spatial expression of interferon response genes and immune checkpoint genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Niyati Desai
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Azfar Neyaz
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | | | - Jonathan H. Chen
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Pathology, Boston, MA 02114, USA
| | - Vishal Thapar
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Linda T. Nieman
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- The Broad Institute, Cambridge, MA 02142, USA
| | | | | | | | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Ivan Chebib
- Department of Pathology, Boston, MA 02114, USA
| | | | | | - Robert Monroe
- Advanced Cell Diagnostics, a Bio-Techne Brand, Newark, CA 94560, USA
| | | | | | | | | | | | | | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Boston, MA 02114, USA
- The Broad Institute, Cambridge, MA 02142, USA
| | - Stephen M. Lagana
- Columbia University Irving Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Miguel N. Rivera
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Pathology, Boston, MA 02114, USA
- The Broad Institute, Cambridge, MA 02142, USA
| | - Lynette M. Sholl
- Brigham and Woman’s Hospital, Department of Pathology, Boston, MA 02115
| | | | - David T. Ting
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Boston, MA 02114, USA
| | - Vikram Deshpande
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Pathology, Boston, MA 02114, USA
| |
Collapse
|
1148
|
Abstract
SARS-CoV-2, the virus that causes COVID-19, emerged in late 2019, and was declared a global pandemic on March 11th 2020. With over 50 million cases and 1.2 million deaths around the world, to date, this pandemic represents the gravest global health crisis of our times. Thus, the race to develop a COVID-19 vaccine is an urgent global imperative. At the time of writing, there are over 165 vaccine candidates being developed, with 33 in various stages of clinical testing. In this review, we discuss emerging insights about the human immune response to SARS-CoV-2, and their implications for vaccine design. We then review emerging knowledge of the immunogenicity of the numerous vaccine candidates that are currently being tested in the clinic and discuss the range of immune defense mechanisms that can be harnessed to develop novel vaccines that confer durable protection against SARS-CoV-2. Finally, we conclude with a discussion of the potential role of a systems vaccinology approach in accelerating the clinical testing of vaccines, to meet the urgent needs posed by the pandemic.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Bali Pulendran
- Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
1149
|
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584:463-469. [PMID: 32717743 PMCID: PMC7477538 DOI: 10.1038/s41586-020-2588-y] [Citation(s) in RCA: 1563] [Impact Index Per Article: 312.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.
Collapse
Affiliation(s)
- Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Sundaram
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallory K Ellingson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Haowei Wang
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - John B Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Camila D Odio
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Roy Herbst
- Yale University School of Medicine, Yale Cancer Center, and Smilow Cancer Hospital, New Haven, CT, USA
| | - Albert C Shaw
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
1150
|
Flannery DD, Gouma S, Dhudasia MB, Mukhopadhyay S, Pfeifer MR, Woodford EC, Gerber JS, Arevalo CP, Bolton MJ, Weirick ME, Goodwin EC, Anderson EM, Greenplate AR, Kim J, Han N, Pattekar A, Dougherty J, Kuthuru O, Mathew D, Baxter AE, Vella LA, Weaver J, Verma A, Leite R, Morris JS, Rader DJ, Elovitz MA, Wherry EJ, Puopolo KM, Hensley SE. SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Sci Immunol 2020; 5:eabd5709. [PMID: 32727884 PMCID: PMC7594018 DOI: 10.1126/sciimmunol.abd5709] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important for determining SARS-CoV-2 exposures within both individuals and populations. We validated a SARS-CoV-2 spike receptor binding domain serological test using 834 pre-pandemic samples and 31 samples from COVID-19 recovered donors. We then completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate exposure to SARS-CoV-2 within the community.
Collapse
MESH Headings
- Adult
- Black or African American/statistics & numerical data
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- COVID-19
- COVID-19 Testing
- Clinical Laboratory Techniques/methods
- Clinical Laboratory Techniques/statistics & numerical data
- Cohort Studies
- Coronavirus Infections/blood
- Coronavirus Infections/diagnosis
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Female
- Health Status Disparities
- Hispanic or Latino/statistics & numerical data
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin M/blood
- Immunoglobulin M/immunology
- Pandemics
- Philadelphia/epidemiology
- Pneumonia, Viral/blood
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/blood
- Pregnancy Complications, Infectious/epidemiology
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Protein Domains/immunology
- SARS-CoV-2
- Seroepidemiologic Studies
- Spike Glycoprotein, Coronavirus/immunology
- Young Adult
Collapse
Affiliation(s)
- Dustin D Flannery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Miren B Dhudasia
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sagori Mukhopadhyay
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Madeline R Pfeifer
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emily C Woodford
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jeffrey S Gerber
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Claudia P Arevalo
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marcus J Bolton
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Madison E Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eileen C Goodwin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elizabeth M Anderson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Justin Kim
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Nicholas Han
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Laura A Vella
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - JoEllen Weaver
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anurag Verma
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rita Leite
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jeffrey S Morris
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michal A Elovitz
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Karen M Puopolo
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|