1351
|
Keenan DM, Alexander S, Irvine CHG, Clarke I, Scott C, Turner A, Tilbrook AJ, Canny BJ, Veldhuis JD. Reconstruction of in vivo time-evolving neuroendocrine dose-response properties unveils admixed deterministic and stochastic elements. Proc Natl Acad Sci U S A 2004; 101:6740-5. [PMID: 15090645 PMCID: PMC404115 DOI: 10.1073/pnas.0300619101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostasis in the intact organism is achieved implicitly by repeated incremental feedback (inhibitory) and feedforward (stimulatory) adjustments enforced via intermittent signal exchange. In separated systems, neurohormone signals act deterministically on target cells via quantifiable effector-response functions. On the other hand, in vivo interglandular signaling dynamics have not been estimable to date. Indeed, experimentally isolating components of an interactive network definitionally disrupts time-sensitive linkages. We implement and validate analytical reconstruction of endogenous effector-response properties via a composite model comprising (i) a deterministic basic feedback and feedforward ensemble structure; (ii) judicious statistical allowance for possible stochastic variability in individual biologically interpretable dose-response properties; and (iii) the sole data requirement of serially observed concentrations of a paired signal (input) and response (output). Application of this analytical strategy to a prototypical neuroendocrine axis in the conscious uninjected horse, sheep, and human (i) illustrates probabilistic estimation of endogenous effector dose-response properties; and (ii) unmasks statistically vivid (2- to 5-fold) random fluctuations in inferred target-gland responsivity within any given pulse train. In conclusion, balanced mathematical formalism allows one to (i) reconstruct deterministic properties of interglandular signaling in the intact mammal and (ii) quantify apparent signal-response variability over short time scales in vivo. The present proof-of-principle experiments introduce a previously undescribed means to estimate time-evolving signal-response relationships without isotope infusion or pathway disruption.
Collapse
Affiliation(s)
- Daniel M Keenan
- Department of Statistics, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1352
|
Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428:569-74. [PMID: 15058305 DOI: 10.1038/nature02440] [Citation(s) in RCA: 1214] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Obesity is an epidemic in Western society, and causes rapidly accelerating rates of type 2 diabetes and cardiovascular disease. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a 'fuel gauge' to monitor cellular energy status. We investigated the potential role of AMPK in the hypothalamus in the regulation of food intake. Here we report that AMPK activity is inhibited in arcuate and paraventricular hypothalamus (PVH) by the anorexigenic hormone leptin, and in multiple hypothalamic regions by insulin, high glucose and refeeding. A melanocortin receptor agonist, a potent anorexigen, decreases AMPK activity in PVH, whereas agouti-related protein, an orexigen, increases AMPK activity. Melanocortin receptor signalling is required for leptin and refeeding effects on AMPK in PVH. Dominant negative AMPK expression in the hypothalamus is sufficient to reduce food intake and body weight, whereas constitutively active AMPK increases both. Alterations of hypothalamic AMPK activity augment changes in arcuate neuropeptide expression induced by fasting and feeding. Furthermore, inhibition of hypothalamic AMPK is necessary for leptin's effects on food intake and body weight, as constitutively active AMPK blocks these effects. Thus, hypothalamic AMPK plays a critical role in hormonal and nutrient-derived anorexigenic and orexigenic signals and in energy balance.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1353
|
Abstract
Insulin and its receptor are found throughout the central nervous system (CNS). Insulin administered into the CNS can exert powerful effects, yet the consensus is that little or no insulin is produced in the CNS. Therefore, CNS insulin is essentially dependent on the ability of peripheral insulin to cross the blood-brain barrier (BBB). Insulin is known to cross the BBB by a saturable transport mechanism. This transporter shows some thematic similarities to other transporters for peptides or regulatory proteins. It is unevenly distributed throughout the CNS with the olfactory bulbs having the fastest transport rate of any brain region. It is partially saturated at euglycemic levels, suggesting that its main signaling function occurs at physiological blood levels, rather than as a brake to hypoglycemic events. One probable function of the BBB transporter is to allow CNS insulin to act as a counter-regulatory hormone to peripheral insulin. The transporter is regulated, with the transport rate of insulin being altered during development and by fasting, obesity, hibernation, diabetes mellitus and Alzheimer's disease. Enhancement of insulin transport by lipopolysaccharide could be the basis for the insulin resistance seen with bacterial infections. Inhibition of insulin transport across the BBB by dexamethasone could be the basis for the enhanced appetite seen with glucocorticoid treatments. Insulin itself also has effects on the BBB, altering enzymatic and transporter functions. Overall, BBB transport of insulin provides a mechanism for peripheral insulin to act within the CNS as a regulatory peptide.
Collapse
Affiliation(s)
- William A Banks
- Research Service (151), GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, WAB, 915 N. Grand Boulevard, St. Louis, MO 63106, USA.
| |
Collapse
|
1354
|
Abstract
Insulin and specific insulin receptors are found widely distributed in the central nervous system (CNS) networks related in particular to energy homeostasis. This review highlights the complex regulatory loop between dietary nutrients, brain insulin and feeding. It is well documented that brain insulin has a negative, anorexigenic effect on food intake. At present, a specific role for brain insulin on cognitive functions related to feeding is emerging. The balance between orexigenic and anorexigenic pathways in the hypothalamus is crucial for the maintenance of energy homeostasis in animals and humans. The ingestion of nutrients triggers neurochemical events that signal nutrient and energy availability in the CNS, down regulate stimulators, activate anorexigenic factors, including brain insulin, and result in reduced eating. The effects of insulin in the CNS are under a multilevel control of food-intake peripherally and in the CNS, via the metabolic, endocrine and neural modifications induced by nutrients. Single meals as well as glucose and serotonin are able to regulate insulin release directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms operating in glucose-induced insulin release show some analogy with the mechanisms operating in the pancreas. Leptin and melanocortins, peptides that down regulate food intake and are largely affected by nutrients, are highly interactive with insulin in the CNS probably via the neurotransmitter serotonin. In the hypothalamus, insulin and leptin share a common signaling pathway involved in food intake, namely the insulin receptor substrate, phosphatidylinositol 3-kinase pathway. Over or under-feeding, unbalanced single meals or diets, in particular diets enriched in fat, modify the amount of insulin actively transported into the brain, the release of brain insulin, the expression of insulin messenger RNA and potentially disrupt insulin signaling in the CNS. This impairment may result in disorders related to feeding behavior and energy homeostasis leading to profound dysregulations, obesity or diabetes.
Collapse
Affiliation(s)
- K Gerozissis
- Chercheur INSERM, UMR 7059 CNRS, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris Cedex 05, France.
| |
Collapse
|
1355
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
1356
|
Abstract
The physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, and together, these mechanisms optimize reproductive success under fluctuating metabolic conditions. Thus, it is difficult to understand the physiology of energy balance without understanding its link to reproductive success. The metabolic sensory stimuli, hormonal mediators and modulators, and central neuropeptides that control reproduction also influence energy balance. In general, those that increase ingestive behavior inhibit reproductive processes, with a few exceptions. Reproductive processes, including the hypothalamic-pituitary-gonadal (HPG) system and the mechanisms that control sex behavior are most proximally sensitive to the availability of oxidizable metabolic fuels. The role of hormones, such as insulin and leptin, are not understood, but there are two possible ways they might control food intake and reproduction. They either mediate the effects of energy metabolism on reproduction or they modulate the availability of metabolic fuels in the brain or periphery. This review examines the neural pathways from fuel detectors to the central effector system emphasizing the following points: first, metabolic stimuli can directly influence the effector systems independently from the hormones that bind to these central effector systems. For example, in some cases, excess energy storage in adipose tissue causes deficits in the pool of oxidizable fuels available for the reproductive system. Thus, in such cases, reproduction is inhibited despite a high body fat content and high plasma concentrations of hormones that are thought to stimulate reproductive processes. The deficit in fuels creates a primary sensory stimulus that is inhibitory to the reproductive system, despite high concentrations of hormones, such as insulin and leptin. Second, hormones might influence the central effector systems [including gonadotropin-releasing hormone (GnRH) secretion and sex behavior] indirectly by modulating the metabolic stimulus. Third, the critical neural circuitry involves extrahypothalamic sites, such as the caudal brain stem, and projections from the brain stem to the forebrain. Catecholamines, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) are probably involved. Fourth, the metabolic stimuli and chemical messengers affect the motivation to engage in ingestive and sex behaviors instead of, or in addition to, affecting the ability to perform these behaviors. Finally, it is important to study these metabolic events and chemical messengers in a wider variety of species under natural or seminatural circumstances.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
1357
|
Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A 2004; 101:4661-6. [PMID: 15070774 PMCID: PMC384803 DOI: 10.1073/pnas.0303992101] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Signal transducer and activator of transcription (STAT)3 is widely expressed in the CNS during development and adulthood. STAT3 has been implicated in the control of neuron/glial differentiation and leptin-mediated energy homeostasis, but the physiological role and degree of involvement of STAT3 in these processes is not defined and controversial because of the lack of a direct genetic model. To address this, we created mice with a neural-specific disruption of STAT3 (STAT3(N-/-)). Surprisingly, homozygous mutants were born at the expected Mendelian ratio without apparent developmental abnormalities but susceptible to neonatal lethality. Mutants that survived the neonatal period were hyperphagic, obese, diabetic, and infertile. Administering a melanocortin-3/4 receptor agonist abrogated the hyperphagia and hypothalamic immunohistochemistry showed a marked reduction in proopiomelanocortin with an increase in neuropeptide Y and agouti-related protein. Mutants had reduced energy expenditure and became hypothermic after fasting or cold stress. STAT3(N-/-) mice are hyperleptinemic, suggesting a leptin-resistant condition. Concomitant with neuroendocrine defects such as decreased linear growth and infertility with accompanying increased corticosterone levels, this CNS knockout recapitulates the unique phenotype of db/db and ob/ob obese models and distinguishes them from other genetic models of obesity. Thus, STAT3 in the CNS plays essential roles in the regulation of energy homeostasis and reproduction.
Collapse
Affiliation(s)
- Qian Gao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
1358
|
Suzuki R, Tobe K, Aoyama M, Inoue A, Sakamoto K, Yamauchi T, Kamon J, Kubota N, Terauchi Y, Yoshimatsu H, Matsuhisa M, Nagasaka S, Ogata H, Tokuyama K, Nagai R, Kadowaki T. Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(-/-) mice. J Biol Chem 2004; 279:25039-49. [PMID: 15028732 DOI: 10.1074/jbc.m311956200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously reported that insulin receptor substrate-2 (IRS-2)-deficient mice develop diabetes as a result of insulin resistance in the liver and failure of beta-cell hyperplasia. In this study we introduced the IRS-2 gene specifically into the liver of Irs2(-/-) mice with adenovirus vectors. Glucose tolerance tests revealed that the IRS-2 restoration in the liver ameliorated the hyperglycemia, but the improvement in hyperinsulinemia was only partial. Endogenous glucose production (EGP) and the rate of glucose disappearance (Rd) were measured during hyperinsulinemic-euglycemic clamp studies: EGP was increased 2-fold in the Irs2(-/-) mice, while Rd decreased by 50%. Restoration of IRS-2 in the liver suppressed EGP to a level similar to that in wild-type mice, but Rd remained decreased in the Adeno-IRS-2-infected Irs2(-/-) mice. Irs2(-/-) mice also exhibit obesity and hyperleptinemia associated with impairment of hypothalamic phosphatidylinositol 3-kinase activation. Continuous intracerebroventricular leptin infusion or caloric restriction yielded Irs2(-/-) mice whose adiposity was comparable to that of Irs2(+/+) mice, and both the hyperglycemia and the hyperinsulinemia of these mice improved with increased Rd albeit partially. Finally combination treatment consisting of adenovirus-mediated gene transfer of IRS-2 and continuous intracerebroventricular leptin infusion completely reversed the hyperglycemia and hyperinsulinemia in Irs2(-/-) mice. EGP and Rd also became normal in these mice as well as in mice treated by caloric restriction plus adenoviral gene transfer. We therefore concluded that a combination of increased EGP due to insulin signaling defects in the liver and reduced Rd due to obesity accounts for the systemic insulin resistance in Irs2(-/-) mice.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1359
|
Hildebrandt W, Hamann A, Krakowski-Roosen H, Kinscherf R, Dugi K, Sauer R, Lacher S, Nöbel N, Bodens A, Bellou V, Edler L, Nawroth P, Dröge W. Effect of thiol antioxidant on body fat and insulin reactivity. J Mol Med (Berl) 2004; 82:336-44. [PMID: 15007512 DOI: 10.1007/s00109-004-0532-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 01/23/2004] [Indexed: 02/07/2023]
Abstract
Insulin signaling is enhanced by moderate concentrations of reactive oxygen species (ROS) and suppressed by persistent exposure to ROS. Diabetic patients show abnormally high ROS levels and a decrease in insulin reactivity which is ameliorated by antioxidants, such as N-acetylcysteine (NAC). A similar effect of NAC has not been reported for non-diabetic subjects. We now show that the insulin receptor (IR) kinase is inhibited in cell culture by physiologic concentrations of cysteine. In two double-blind trials involving a total of 140 non-diabetic subjects we found furthermore that NAC increased the HOMA-R index (derived from the fasting insulin and glucose concentrations) in smokers and obese patients, but not in nonobese non-smokers. In obese patients NAC also caused a decrease in glucose tolerance and body fat mass. Simultaneous treatment with creatine, a metabolite utilized by skeletal muscle and brain for the interconversion of ADP and ATP, reversed the NAC-mediated increase in HOMA-R index and the decrease in glucose tolerance without preventing the decrease in body fat. As the obese and hyperlipidemic patients had lower plasma thiol concentrations than the normolipidemic subjects, our results suggest that low thiol levels facilitate the development of obesity. Supplementation of thiols plus creatine may reduce body fat without compromising glucose tolerance.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1360
|
Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Brüning JC. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 2004; 101:3100-5. [PMID: 14981233 PMCID: PMC365750 DOI: 10.1073/pnas.0308724101] [Citation(s) in RCA: 474] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impairment of insulin signaling in the brain has been linked to neurodegenerative diseases. To test the hypothesis that neuronal insulin resistance contributes to defects in neuronal function, we have performed a detailed analysis of brain/neuron-specific insulin receptor knockout (NIRKO) mice. We find that NIRKO mice exhibit a complete loss of insulin-mediated activation of phosphatidylinositol 3-kinase and inhibition of neuronal apoptosis. In intact animals, this loss results in markedly reduced phosphorylation of Akt and GSK3 beta, leading to substantially increased phosphorylation of the microtubule-associated protein Tau, a hallmark of neurodegenerative diseases. Nevertheless, these animals exhibit no alteration in neuronal proliferation/survival, memory, or basal brain glucose metabolism. Thus, lack of insulin signaling in the brain may lead to changes in Akt and GSK3 beta activity and Tau hyperphosphorylation but must interact with other mechanisms for development of Alzheimer's disease.
Collapse
Affiliation(s)
- Markus Schubert
- Institute for Genetics, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1361
|
Abstract
The worldwide prevalence of obesity is increasing at an alarming rate, with major adverse consequences for human health. This "obesity epidemic" is paralleled by a rapid and substantive increase in our understanding of molecular pathways and physiologic systems underlying the regulation of energy balance. While efforts to address the environmental factors that are responsible for the recent "epidemic" must continue, new molecular and physiologic insights into this system offer exciting possibilities for future development of successful therapies.
Collapse
Affiliation(s)
- Jeffrey S Flier
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
1362
|
Affiliation(s)
- Stuart A Ross
- Department of Cardiovascular and Metabolic Diseases, Mail Zone T2E, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
| | | | | |
Collapse
|
1363
|
Isoda F, Shiry L, Abergel J, Allan G, Mobbs C. D-chiro-Inositol enhances effects of hypothalamic toxin gold-thioglucose. Brain Res 2004; 993:172-6. [PMID: 14642843 DOI: 10.1016/j.brainres.2003.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
D-chiro-Inositol (DCI) enhances reproductive function in insulin-resistant women with polycystic ovarian disease and enhances the effects of insulin in the periphery, suggesting that this compound may act in part by sensitizing the hypothalamus to effects of insulin. Effects of gold-thioglucose (GTG) to produce hypothalamic lesions and subsequent obesity are insulin-dependent, suggesting that responses to GTG may be a marker of hypothalamic sensitivity to insulin. To assess these hypotheses, the present study assessed if DCI would enhance the ability of a subthreshhold dose of GTG to produce hypothalamic lesions and subsequent obesity. At the subthreshhold dose used (0.4 mg/kg i.p.), injection of GTG produced no subsequent effect on body weight compared to saline; similarly, at the dose of DCI used (10 mg/kg/day in drinking water), DCI produced no effect on body weight. In contrast, when given to mice exposed to DCI, this dose of GTG produced significant increase in body weight and evidence of an enhanced medial arcuate hypothalamic lesion.
Collapse
Affiliation(s)
- Fumiko Isoda
- Neurobiology of Aging Laboratories, Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
1364
|
Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 2004. [PMID: 14769918 DOI: 10.1073/pnas.0308617100;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the liver, insulin controls both lipid and glucose metabolism through its cell surface receptor and intracellular mediators such as phosphatidylinositol 3-kinase and serine-threonine kinase AKT. The insulin signaling pathway is further modulated by protein tyrosine phosphatase or lipid phosphatase. Here, we investigated the function of phosphatase and tension homologue deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, by targeted deletion of Pten in murine liver. Deletion of Pten in the liver resulted in increased fatty acid synthesis, accompanied by hepatomegaly and fatty liver phenotype. Interestingly, Pten liver-specific deletion causes enhanced liver insulin action with improved systemic glucose tolerance. Thus, deletion of Pten in the liver may provide a valuable model that permits the study of the metabolic actions of insulin signaling in the liver, and PTEN may be a promising target for therapeutic intervention for type 2 diabetes.
Collapse
|
1365
|
Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, Sherwin R, Devaskar S, Lesche R, Magnuson MA, Wu H. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 2004; 101:2082-7. [PMID: 14769918 PMCID: PMC357055 DOI: 10.1073/pnas.0308617100] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the liver, insulin controls both lipid and glucose metabolism through its cell surface receptor and intracellular mediators such as phosphatidylinositol 3-kinase and serine-threonine kinase AKT. The insulin signaling pathway is further modulated by protein tyrosine phosphatase or lipid phosphatase. Here, we investigated the function of phosphatase and tension homologue deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, by targeted deletion of Pten in murine liver. Deletion of Pten in the liver resulted in increased fatty acid synthesis, accompanied by hepatomegaly and fatty liver phenotype. Interestingly, Pten liver-specific deletion causes enhanced liver insulin action with improved systemic glucose tolerance. Thus, deletion of Pten in the liver may provide a valuable model that permits the study of the metabolic actions of insulin signaling in the liver, and PTEN may be a promising target for therapeutic intervention for type 2 diabetes.
Collapse
Affiliation(s)
- Bangyan Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1366
|
Postic C, Mauvais-Jarvis F, Girard J. Mouse models of insulin resistance and type 2 diabetes. ANNALES D'ENDOCRINOLOGIE 2004; 65:51-9. [PMID: 15122092 DOI: 10.1016/s0003-4266(04)95630-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C Postic
- Département d'Endocrinologie, Institut Cochin, INSERM U567, CNRS UMR8104 Université Paris V René Descartes, 24, rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | |
Collapse
|
1367
|
Vischer U, Szanto I, Michel JP. Commentary: The Association Between Insulin Resistance, Depression, and Dementia. J Gerontol A Biol Sci Med Sci 2004. [DOI: 10.1093/gerona/59.2.m189-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
1368
|
Protein tyrosine phosphatases. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
1369
|
Richard D, Baraboi D. Circuitries Involved in the Control of Energy Homeostasis and the Hypothalamic-Pituitary-Adrenal Axis Activity. ACTA ACUST UNITED AC 2004; 3:269-77. [PMID: 15330675 DOI: 10.2165/00024677-200403050-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The regulation of bodyweight is a complex process involving the interplay of neuronal circuitries controlling food intake and energy expenditure (thermogenesis) with endocrine secretions modulating the activity of the neurons making up those circuitries. The neurons controlling food intake and thermogenesis also modulate the hypothalamic-pituitary-adrenal axis, the role of which in the regulation of energy balance has been acknowledged for some time. These neurons secrete various neuromolecules or neuropeptides including endocannabinoids, neuropeptide Y, agouti-related protein, melanin-concentrating hormone, orexins (hypocretins), melanocortins, cocaine- and amphetamine-regulated transcript, thyrotropin-releasing hormone, corticotropin-releasing hormone, and urocortins. Among those peptides, neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, orexins, and endocannabinoids have been classified as being anabolic molecules whereas melanocortins, cocaine- and amphetamine-regulated transcript, thyrotropin-releasing hormone, and corticotropin-releasing hormone are referred to as catabolic peptides. The expression and secretion of these neuromolecules are known to be affected by the anabolic (corticosteroids and ghrelin) and catabolic (leptin, insulin, and glucagon-like peptide 1) peripheral hormones. A link is made between the pathways regulating energy balance and those modulating the activity of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Denis Richard
- D.B. Brown Obesity Research Chair, Centre de recherche, l'Hôpital Laval, Institut universitaire de cardiologie et de pneumologie Québec, Québec, Canada.
| | | |
Collapse
|
1370
|
Kino M, Yamato T, Aomine M. Simultaneous measurement of nitric oxide, blood glucose, and monoamines in the hippocampus of diabetic rat: an in vivo microdialysis study. Neurochem Int 2004; 44:65-73. [PMID: 12971908 DOI: 10.1016/s0197-0186(03)00125-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was undertaken to examine the relationships among the levels of nitric oxide (NO), monoamines, and blood glucose in the diabetic hippocampus. The levels of NO and monoamines (serotonin, 5-hydroxytryptamine [5-HT] and dopamine [DA]) were simultaneously measured in several experiments, using in vivo microdialysis techniques. We used both experimentally and spontaneously diabetic rats as the diabetic animal model, and compared the findings with those obtained from non-diabetic rats. The effects of the changed level of blood glucose due to insulin administration on the levels of NO, 5-HT, and DA were assessed. Total NO metabolite levels (NOx) were calculated as the sum of nitrite (NO2-) and nitrate (NO3-) levels. The results in the present study showed that: (1) the plasma levels of NOx in both diabetic rats were low compared to those in control rats, (2) the hippocampal NOx levels in both diabetic rats were almost the same as those in control rats, while the levels of 5-HT and DA were low in the diabetics, and (3) a sudden decrease in the plasma glucose level due to insulin administration reduced the NOx level as well as enhanced the 5-HT level in the diabetic hippocampus, a finding consistent with the results of 7 days administration of insulin. Taken together, these findings suggest that changes in the plasma glucose level cause, at least in part, the changes in the levels of NOx and monoamines in the diabetic brain.
Collapse
Affiliation(s)
- Mayuko Kino
- Laboratory of Nutritional Physiology, Department of Nutrition Sciences, Faculty of Nutrition Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | | | | |
Collapse
|
1371
|
Abstract
A few examples of hypothalamic, peptidergic disorders leading to clinical signs and symptoms are presented in this review. Increased activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) and decreased activity of the vasopressin neurons in the biological clock and of the thyroxine-releasing hormone (TRH) neurons in the PVN contribute to the signs and symptoms of depression. In men, the central nucleus of the bed nucleus of the stria terminalis (BSTc) is about twice as large and contains twice as many somatostatin neurons as in women. In transsexuals this sex difference is reversed, pointing to a role of this structure in gender. Luteinizing hormone-releasing hormone (LHRH) neurons are formed in the fetal olfactory placade and migrate along the terminal nerve fibers into the hypothalamus. In Kallmann's syndrome the migration process of the LHRH (gonadotropin-releasing hormone) neurons is aborted, which explains the joint occurrence of hypogonadotropic hypogonadism and anosmia in this syndrome. In postmenopausal women, the neurons of the infundibular nucleus hypertrophy and become hyperactive because of the disappearance of the estrogen feedback and contain hyperactive peptidergic neurons. Climacteric flushes may be caused by hyperactivity of the neurokinin-B or LHRH neurons in this nucleus. The hypocretin (orexin) neurons in the perifornical area are involved in sleep. In narcolepsy with cataplexy, a loss of these neurons, probably due to an autoimmune process, is found. Obese subjects with a mutation in the gene that encodes for leptin, the preproghrelin gene, or the alpha-melanocyte-stimulating hormone (alpha-MSH) gene have been described. Decreased numbers and activity of the oxytocin neurons in the PVN may be responsible for the absence of satiety in Prader-Willi syndrome. Moreover, a glucocorticoid receptor polymorphism is associated with obesitas and dysregulation of the hypothalamus-pituitary-adrenal axis. In contrast, two single nucleotide polymorphisms (SNPs) of the AGRP gene have been associated with anorexia nervosa.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
1372
|
Fujita N, Sakamaki H, Uotani S, Takahashi R, Kuwahara H, Kita A, Oshima K, Yamasaki H, Yamaguchi Y, Eguchi K. Intracerebroventricular administration of insulin and glucose inhibits the anorectic action of leptin in rats. Exp Biol Med (Maywood) 2003; 228:1156-61. [PMID: 14610254 DOI: 10.1177/153537020322801009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obese individuals with glucose intolerance present with high serum levels of glucose, insulin, and leptin. These substances are potent inhibitors of feeding in the brain. Obese subjects still present with over-feeding despite elevation of the above factors. To elucidate the mechanism of this paradox, the effects of insulin and glucose on the anorectic action of leptin in the hypothalamus were examined. Adult male Sprague-Dawley rats (weighing 285-320 g) were pretreated with intracerebroventricular injection of insulin, glucose, or saline, followed by leptin (7.5 microg) or phosphate-buffered saline (PBS) injection into the third cerebral ventricle (icv). The cumulative food intakes were measured 24 hr after leptin icv. The tyrosine phosphorylation of signal transducer and activator transcription factor 3 (STAT3) in the hypothalamus was determined by Western blotting. In rats pretreated with saline and stimulated with leptin (saline/LEPTIN group), food intake diminished to about 50% of that of the saline/PBS group (P < 0.005). Food intake in the insulin/LEPTIN group was significantly higher compared with the saline/LEPTIN group (P < 0.005) and reached the level seen in the saline/PBS group. Similar data were obtained in glucose pretreatment experiments. Insulin and glucose icv resulted in reduction of leptin-induced STAT3 tyrosine phosphorylation compared with saline. Infusion of insulin and glucose icv did not alter peripheral blood glucose levels in all groups. High insulin or glucose levels in the brain could result in leptin resistance as manifested by food intake, which is probably due to the attenuation of STAT3 phosphorylation downstream the leptin receptor.
Collapse
Affiliation(s)
- Naruhiro Fujita
- First Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1373
|
Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 2003; 4:901-9. [PMID: 14595401 DOI: 10.1038/nrn1245] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Randy J Seeley
- Department of Psychiatry and Obesity Research Center, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA.
| | | |
Collapse
|
1374
|
Carvalheira JBC, Ribeiro EB, Araújo EP, Guimarães RB, Telles MM, Torsoni M, Gontijo JAR, Velloso LA, Saad MJA. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia 2003; 46:1629-1640. [PMID: 14600817 DOI: 10.1007/s00125-003-1246-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/04/2003] [Indexed: 02/07/2023]
Abstract
AIM/HYPOTHESIS By acting in the brain, insulin suppresses food intake. However, little is known with regard to insulin signalling in the hypothalamus in insulin-resistant states. METHODS Western blotting, immunohistochemistry and polymerase chain reaction assays were combined to compare in vivo hypothalamic insulin signalling through the PI3-kinase and MAP kinase pathways between lean and obese Zucker rats. RESULTS Intracerebroventricular insulin infusion reduced food intake in lean rats to a greater extent than that observed in obese rats, and pre-treatment with PI3-kinase inhibitors prevented insulin-induced anorexia. The relative abundance of IRS-2 was considerably higher than that of IRS-1 in hypothalamus of both lean and obese rats. Insulin-stimulated phosphorylation of IR, IRS-1/2, the associations of PI 3-kinase to IRS-1/2 and phosphorylation of Akt in hypothalamus were decreased in obese rats compared to lean rats. These effects seem to be mediated by increased phosphoserine content of IR, IRS-1/2 and decreased protein levels of IRS-1/2 in obese rats. In contrast, insulin stimulated the phosphorylation of MAP kinase equally in lean and obese rats. CONCLUSION/INTERPRETATION This study provides direct measurements of insulin signalling in hypothalamus, and documents selective resistance to insulin signalling in hypothalamus of Zucker rats. These findings provide support for the hypothesis that insulin could have anti-obesity actions mediated by the PI3-kinase pathway, and that impaired insulin signalling in hypothalamus could play a role in the development of obesity in this animal model of insulin-resistance.
Collapse
Affiliation(s)
- J B C Carvalheira
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas (UNICAMP), 13081-970, Campinas, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
1375
|
Abstract
The adipose-derived hormone leptin regulates energy balance and neuroendocrine function, and resistance to its appetite-suppressing effects might underlie common forms of obesity. Understanding the intracellular signaling pathways and hypothalamic neural circuitry by which leptin controls satiety and body weight is central to our understanding of leptin resistance and the identification of potential therapeutic targets. Here, we review the mechanisms by which leptin activates intracellular signaling and the roles of two specific leptin-activated signals [phosphatidylinositol 3-kinase and signal transducer and activator of transcription-3 (STAT3)] in the regulation of body weight and neuroendocrine function. The pathway by which leptin activates STAT3 is particularly intriguing because it is crucial for the regulation of feeding but dispensable for the control of reproductive and growth axes.
Collapse
Affiliation(s)
- Sarah H Bates
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
1376
|
Abstract
Ghrelin, a novel 28-amino acid orexigenic peptide discovered in 1999, has given us further insights into the control of energy homeostasis and growth hormone secretion. As a natural endogenous ligand of the growth hormone secretagogue receptor, it potently stimulates growth hormone release but is also implicated in many other homeostatic mechanisms. Released from the stomach, it stimulates lactotroph and corticotroph secretion, increases appetite and adiposity, has beneficial hemodynamic effects, has prokinetic and gastric acid secretory functions in the stomach, and may even be implicated in sleep. As advances in the understanding of appetite and obesity are made, it is timely to review the possibly central role of ghrelin in these physiological and pathophysiological states. This review will discuss the recent literature concerning this exciting novel neuropeptide and discuss the possible therapeutic possibilities it may open up to us.
Collapse
Affiliation(s)
- Charles D R Murray
- Physiology Unit, St. Mark's Hospital, Watford Road, Harrow HA1 3UJ, Middlesex, England, UK
| | | | | | | |
Collapse
|
1377
|
Grossman H. Does diabetes protect or provoke Alzheimer's disease? Insights into the pathobiology and future treatment of Alzheimer's disease. CNS Spectr 2003; 8:815-23. [PMID: 14702004 DOI: 10.1017/s1092852900019258] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus has long been considered a risk factor for the development of vascular dementia. Epidemiologic evidence has suggested that diabetes mellitus significantly increases risk for the development of Alzheimer's disease, independent of vascular risk factors. As insulin's role as a neuromodulator in the brain has been described, its significance for AD has also emerged. Insulin dysregulation may contribute to AD pathology through several mechanisms including decreased cortical glucose utilization particularly in the hippocampus and entorhinal cortex; increased oxidative stress through the formation of advanced glycation end-products; increased Tau phosphorylation and neurofibrillary tangle formation; increased b-amyloid aggregation through inhibition of insulin-degrading enzyme. Future treatment of AD might involve pharmacologic and dietary manipulations of insulin and glucose regulation.
Collapse
Affiliation(s)
- Hillel Grossman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
1378
|
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic and reproductive disorder. It is associated with substantial defects in insulin action and secretion that confer a markedly increased risk for type 2 diabetes mellitus. Insulin resistance modifies reproductive function both by the direct actions of insulin on steroidogenesis and by disruption of insulin signaling pathways in the central nervous system. These insights have led to a new therapy for PCOS with insulin-sensitizing agents. Hyperandrogenemia and insulin resistance cluster in PCOS families, consistent with a genetic susceptibility to these abnormalities. There is evidence for both linkage and association of the hyperandrogenemia phenotype with an allele of a marker locus on chromosome 19, in the region of the gene encoding the insulin receptor.
Collapse
Affiliation(s)
- Susan Sam
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
1379
|
Abstract
Polycystic ovary syndrome (PCOS) is a medical condition that has brought multiple specialists together. Gynecologists, endocrinologists, cardiologists, pediatricians, and dermatologists are all concerned with PCOS patients and share research data and design clinical trials to learn more about the syndrome. Insulin resistance is a common feature of PCOS and is more marked in obese women, suggesting that PCOS and obesity have a synergistic effect on the magnitude of the insulin disorder. Hyperinsulinemia associated with insulin resistance has been causally linked to all features of the syndrome, such as hyperandrogenism, reproductive disorders, acne, hirsutism, and metabolic disturbances. Women with PCOS should be evaluated for cardiovascular risk factors, such as lipid profile and blood pressure. Modification of diet and lifestyle should be suggested to those who are obese. Several insulin-lowering agents have been tested in the management of PCOS. In particular, metformin is the only drug currently in widespread clinical use for treatment of PCOS. In a high percentage of patients, treatment with metformin is followed by regularization of menstrual cycle, reduction in hyperandrogenism and in cardiovascular risk factors, and improvement in response to therapies for induction of ovulation.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Pediatrics, Obstetrics, and Reproductive Medicine, Institute of Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy.
| | | | | |
Collapse
|
1380
|
Reiter CEN, Sandirasegarane L, Wolpert EB, Klinger M, Simpson IA, Barber AJ, Antonetti DA, Kester M, Gardner TW. Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol Endocrinol Metab 2003; 285:E763-74. [PMID: 12799319 DOI: 10.1152/ajpendo.00507.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin receptor (IR) signaling cascades have been studied in many tissues, but retinal insulin action has received little attention. Retinal IR signaling and activity were investigated in vivo in rats that were freely fed, fasted, or injected with insulin by phosphotyrosine immunoblotting and by measuring kinase activity. A retina explant system was utilized to investigate the IR signaling cascade, and immunohistochemistry was used to determine which retinal cell layers respond to insulin. Basal IR activity in the retina was equivalent to that in brain and significantly greater than that of liver, and it remained constant between freely fed and fasted rats. Furthermore, IR signaling increased in the retina after portal vein administration of supraphysiological doses of insulin. Ex vivo retinas responded to 10 nM insulin with IR beta-subunit (IRbeta) and IR substrate-2 (IRS-2) tyrosine phosphorylation and AktSer473 phosphorylation. The retina expresses mRNA for all three Akt isoforms as determined by in situ hybridization, and insulin specifically increases Akt-1 kinase activity. Phospho-AktSer473 immunoreactivity increases in retinal nuclear cell layers with insulin treatment. These results demonstrate that the retinal IR signaling cascade to Akt-1 possesses constitutive activity, and that exogenous insulin further stimulates this prosurvival pathway. These findings may have implications in understanding normal and dysfunctional retinal physiology.
Collapse
Affiliation(s)
- Chad E N Reiter
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive H166, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1381
|
Wu XK, Zhou SY, Liu JX, Pöllänen P, Sallinen K, Mäkinen M, Erkkola R. Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil Steril 2003; 80:954-65. [PMID: 14556818 DOI: 10.1016/s0015-0282(03)01007-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Insulin resistance is a common feature of both polycystic ovary syndrome (PCOS) and non-insulin-dependent diabetes mellitus (NIDDM); however, the persistent reproductive disturbances appear to be limited to the former, suggesting that insulin resistance in the ovary itself may confer this susceptibility. DESIGN Prospective study. SETTING University-affiliated department. PATIENT(S) Forty-four women undergoing IVF treatment, of whom 11 had polycystic ovaries and 33 had normal ovulation (NO). INTERVENTION(S) The various effects and signaling of insulin and insulin-like growth factor-1 (IGF-1) were examined in cultured ovarian granulosa cells treated with troglitazone (1 microg/mL) or with vehicle by reverse transcription-polymerase chain reaction, western blot, and in vitro functional analyses. MAIN OUTCOME MEASURE(S) Glycogen and DNA syntheses, mRNA and protein expression, and cellular localization of insulin/IGF-1 receptors and insulin receptor substrates (IRSs). RESULT(S) There were significant decreases in insulin-stimulated glucose incorporation into glycogen in PCOS cells, which is a metabolic action of insulin. However, IGF-1 stimulation was found to be greater in PCOS cells at all experimental concentrations with respect to thymidine incorporation compared with NO cells, which is a mitogenic action. Troglitazone increased the insulin-induced glycogen synthesis but reduced the IGF-1-augmented responses of DNA synthesis in PCOS cells to the range within those of NO granulosa cells. We then found that troglitazone treatment reversed the expression imbalance between IRS-1 and IRS-2 in PCOS cells. CONCLUSION(S) There is a selective defect in insulin actions in PCOS granulosa cells, which suggests ovarian insulin resistance, and this metabolic phenotype is associated with an enhanced IGF-1 mitogenic potential. Troglitazone could divergently alter expression of various IRS molecules and insulin actions and could be used as an ovarian insulin sensitizer and mitogen/steroidogenic inhibitor in PCOS.
Collapse
Affiliation(s)
- Xiao Ke Wu
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Jinling Hospital of Nanjing University, Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
1382
|
Burcelin R, Thorens B, Glauser M, Gaillard RC, Pralong FP. Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology 2003; 144:4484-91. [PMID: 12960084 DOI: 10.1210/en.2003-0457] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin and leptin are peripheral metabolic factors signaling the body needs in energy to the central nervous system. Because energy homeostasis and reproductive function are closely related phenomena, we investigated the respective roles played by insulin and leptin in the hypothalamic control of GnRH secretion. We observed that increasing circulating insulin levels, by performing hyperinsulinemic clamp studies in male mice, was associated with a significant rise in LH secretion. This effect of insulin is likely mediated at the hypothalamic level, because it was also found to stimulate the secretion and the expression of GnRH by hypothalamic neurons in culture. Leptin was found to potentiate the effect of insulin on GnRH secretion in vitro but was devoid of any effect on its own. These data represent the first evidence of direct insulin sensing by hypothalamic neurons involved in activating the neuroendocrine gonadotrope axis. They also demonstrate that these neurons can integrate different hormonal signals to modulate net hypothalamic GnRH output. We propose that such integration is an essential mechanism for the adaptation of reproductive function to changes in the metabolic status of an individual.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institute of Pharmacology and Toxicology, Lausanne Medical School, Switzerland
| | | | | | | | | |
Collapse
|
1383
|
Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 2003; 14:447-55. [PMID: 12948526 DOI: 10.1016/s1359-6101(03)00052-2] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a fundamental defect that precedes the development of the full insulin resistance syndrome as well as beta cell failure and type 2 diabetes. Tumor necrosis factor-alpha (TNF-alpha), a paracrine/autocrine factor highly expressed in adipose tissues of obese animals and human subjects, is implicated in the induction of insulin resistance seen in obesity and type 2 diabetes. Here, we review several molecular aspects of adipose tissue physiology, and highlight the direct effects of TNF-alpha on the functions of adipose tissue including induction of lipolysis, inhibition of insulin signaling, and alterations in expression of adipocyte important genes through activation of NF-kappaB, as well as their pertinence to insulin sensitivity of adipocytes. We also review the ability of TNF-alpha to inhibit synthesis of several adipocyte-specific proteins including Acrp30 (adiponectin) and enhance release of free fatty acids (FFAs) from adipose tissue, and discuss how these factors may act as systemic mediators of TNF-alpha and affect whole body energy homeostasis and overall insulin sensitivity. On the basis of these mechanisms, we examine the therapeutic potential of blocking specific autocrine/paracrine signaling pathways in adipocytes, particularly those involving NF-kappaB, in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Hong Ruan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Room 601, Cambridge, MA 02142, USA
| | | |
Collapse
|
1384
|
Li Y, Eitan S, Wu J, Evans CJ, Kieffer B, Sun X, Polakiewicz RD. Morphine induces desensitization of insulin receptor signaling. Mol Cell Biol 2003; 23:6255-66. [PMID: 12917346 PMCID: PMC180943 DOI: 10.1128/mcb.23.17.6255-6266.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Morphine analgesia is mediated principally by the micro -opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine caused serine phosphorylation of the IR and impaired the formation of the signaling complex among the IR, Shc, and Grb2. Morphine also resulted in IRS-1 phosphorylation at serine 612 and reduced tyrosine phosphorylation at the YMXM p85-binding motifs, weakening the association of the IRS-1/p85 phosphatidylinositol 3-kinase complex. However, the IRS-1/Grb2 complex was unaffected by chronic morphine treatment. These results suggest that morphine attenuates IR signaling to Akt by disrupting the IRS-1-p85 interaction but inhibits signaling to ERK by disruption of the complex among the IR, Shc, and Grb2. Finally, we show that systemic morphine induced IRS-1 phosphorylation at Ser612 in the hypothalamus and hippocampus of wild type, but not MOR knockout, mice. Our results demonstrate that opiates can inhibit insulin signaling through direct cross talk between the downstream signaling pathways of the MOR and the IR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Analgesics, Opioid/pharmacology
- Animals
- Binding Sites
- Brain/drug effects
- Brain/metabolism
- CHO Cells
- Cricetinae
- Enzyme Inhibitors/pharmacology
- GRB2 Adaptor Protein
- Insulin/metabolism
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- Morphine/pharmacology
- Phosphatidylinositol 3-Kinases/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/drug effects
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases
- Proteins/drug effects
- Proteins/metabolism
- Proto-Oncogene Proteins/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serine/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction/drug effects
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- Yu Li
- Cell Signaling Technology, Inc., Beverly, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
1385
|
Abstract
Mammalian insulin and insulin-like growth factors (IGFs) signal through several receptors with different ligand specificities to regulate metabolism and growth. This regulation is defective in diabetes and in a wide variety of human tumors. Recent analysis in Drosophila melanogaster has revealed that insulin-like molecules (known as DILPs in flies) also control growth and metabolism, but probably do so by signaling through a single insulin receptor (InR). The intracellular signaling molecules regulated by this receptor are highly evolutionarily conserved. Work in flies has helped to dissect the network of InR-regulated intracellular signaling pathways and identify some of the critical players in these pathways and in interacting signaling cascades. Surprisingly, these studies have shown that DILPs control tissue and body growth primarily by regulating cell growth and cell size. Changes in cell growth produced by these molecules may subsequently modulate the rate of cell proliferation in a cell type-specific fashion. At least part of this growth effect is mediated by two small groups of neurons in the Drosophila brain, which secrete DILPs into the circulatory system at levels that are modulated by nutrition. This signaling center is also involved in DILP-dependent control of the fly's rate of development, fertility, and life span. These surprisingly diverse functions of InR signaling, which appear to be conserved in all higher animals, reflect a central role for this pathway in coordinating development, physiology, and properly proportioned growth of the organism in response to its nutritional state. Studies in flies are providing important new insights into the biology of this system, and the identification of novel components in the InR-regulated signaling cascade is already beginning to inform the development of new therapeutic strategies for insulin-linked diseases in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | |
Collapse
|
1386
|
Venâncio TM, Oliveira AEA, Silva LB, Machado OLT, Fernandes KVS, Xavier-Filho J. A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Braz J Med Biol Res 2003; 36:1167-73. [PMID: 12937781 DOI: 10.1590/s0100-879x2003000900004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata) genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/micro g of protein) of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit.
Collapse
Affiliation(s)
- T M Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | | | | | | | | | | |
Collapse
|
1387
|
Baudler S, Krone W, Brüning JC. Genetic manipulation of the insulin signalling cascade in mice--potential insight into the pathomechanism of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 2003; 17:431-43. [PMID: 12962695 DOI: 10.1016/s1521-690x(03)00039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To understand the mechanism of insulin signalling and insulin resistance in the development of type 2 diabetes, it is necessary to elucidate the role of insulin and related signal molecules in normal cellular development and functions. A technique for addressing this problem, which is growing more and more important, is the generation and characterization of knockout animal models; such models allow in vivo study of the effects of a lack of a certain gene product, for example, a hormone or intracellular signalling molecule, on the viability, development and physiology of the animal. Besides the conventional form of knockout-which abolishes expression of the gene of interest in every cell of the body and during embryonic development-more recent technology permits the selective inactivation of genes in a tissue-specific and even time-controlled manner. With these techniques, it has become possible not only to examine the function of genes whose conventional inactivation would be lethal for the animal, but also to examine the specific functions that these genes have in certain tissues or at certain developmental stages. Here, we review the phenotype of mice resulting from both conventional and conditional inactivation of molecules in the insulin signalling cascade; this work has led to novel concepts in the understanding of insulin action and the development of insulin resistance.
Collapse
Affiliation(s)
- S Baudler
- Klinik II und Poliklinik für Innere Medizin and the Center for Molecular Medicine (ZMMK) der Universität zu Köln, Joseph-Stelzmann-Strasse 9, D-50931 Köln (Cologne), Germany
| | | | | |
Collapse
|
1388
|
Abstract
Central melanocortin signaling plays an important role in regulation of energy homeostasis by leptin and insulin. We investigated the interaction between leptin, insulin, and melanocortin-4 receptors (MC-4Rs) in the control of renal sympathetic nerve activity (RSNA) in mice. We compared the effects of intracerebroventricular (ICV) administration of leptin, insulin, MC-3/4R agonist (MTII), and corticotrophin-releasing factor (CRF) on RSNA in leptin receptor-deficient (db/db) mice, MC-4R knock-out mice, and their wild-type controls. ICV administration of leptin and MTII caused a significant and dose-dependent increase in RSNA in control mice. As expected, leptin had no significant effect on RSNA in the db/db mice. Interestingly, db/db mice exhibited markedly attenuated RSNA responses to ICV administration of MTII. However, the increase in RSNA induced by insulin and CRF was comparable between db/db and control mice. In the heterozygous and homozygous MC-4R knock-out mice, the RSNA response to MTII was attenuated and abolished, respectively. The RSNA response to ICV leptin and insulin was also attenuated and abolished in the heterozygous and homozygous MC-4R knock-out mice, respectively. In contrast, CRF induced a similar increase in RSNA in the MC-4R knock-out and wild-type mice. Our data demonstrate that in the absence of leptin receptors, the sympathoexcitatory effects of melanocortin system stimulation are attenuated. In addition, the renal sympathoexcitatory responses to leptin and insulin are dependent on the MC-4R, demonstrating an important role for the MC-4R in the regulation of renal sympathetic nerve outflow by leptin and insulin.
Collapse
|
1389
|
Abstract
Mice bearing targeted gene mutations that affect insulin receptor (Insr) function have contributed important new information on the pathogenesis of type 2 diabetes. Whereas complete Insr ablation is lethal, conditional mutagenesis in selected tissues has more limited consequences on metabolism. Studies of mice with tissue-specific ablation of Insr have indicated that both canonical (e.g. muscle and adipose tissue) and noncanonical (e.g. liver, pancreatic beta-cells, and brain) insulin target tissues can contribute to insulin resistance, albeit in a pathogenically distinct fashion. Furthermore, experimental crosses of Insr mutants with mice carrying mutations that affect insulin action at more distal steps of the insulin signaling cascade have begun to unravel the genetics of type 2 diabetes. These studies are consistent with an oligogenic inheritance, in which synergistic interactions among few alleles may account for the genetic susceptibility to diabetes. In addition to mutant alleles conferring an increased risk of diabetes, these studies have uncovered mutations that protect against insulin resistance, thus providing proof-of-principle for the notion that certain alleles may confer resistance to diabetes.
Collapse
Affiliation(s)
- Haruka Okamoto
- Department of Medicine and Institute of Human Nutrition, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
1390
|
|
1391
|
Kovacs P, Morales JC, Karkanias GB. Central insulin administration maintains reproductive behavior in diabetic female rats. Neuroendocrinology 2003; 78:90-5. [PMID: 12915761 DOI: 10.1159/000071964] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 05/23/2003] [Indexed: 11/19/2022]
Abstract
Diabetic female rats have decreased ovulation, reproductive behavior and luteinizing hormone surges. Peripheral insulin treatment restores the phenotype to normal and also corrects many of the metabolic changes. To further evaluate the role of insulin in the specific maintenance of reproductive behavior, rather than administering it peripherally, we gave insulin intracerebroventricularly (ICV) at doses that did not correct the peripheral metabolic changes associated with diabetes such as hyperglycemia. During the experiment, we assessed the general activity and reproductive behavior of gonadectomized, estrogen- and progesterone-treated diabetic and control, nondiabetic female rats. Some of the animals received ICV saline, the rest received ICV insulin. General activity (ambulation, rearing and corner sniffing) was not affected by any of the treatments. Streptozotocin-induced diabetes resulted in a significantly decreased lordosis quotient, and ICV insulin was able to completely prevent this reduction. Furthermore, ICV insulin was able to cause a modest increase in the lordosis quotient among nondiabetic rats as well. Moreover, ICV insulin also increased the quality of lordosis among diabetic rats. Our results support a central role of insulin in the control of reproductive functions, beyond maintaining the homeostatic and metabolic balance.
Collapse
Affiliation(s)
- Peter Kovacs
- Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
1392
|
Henry BA. Links between the appetite regulating systems and the neuroendocrine hypothalamus: lessons from the sheep. J Neuroendocrinol 2003; 15:697-709. [PMID: 12787054 DOI: 10.1046/j.1365-2826.2003.01049.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamus is integral to the regulation of energy homeostasis and the secretion of hormones from the pituitary gland. Consequently, hypothalamic systems may have a dual purpose in regulating both neuroendocrine function and appetite. To date, most studies investigating the interface between appetite and hormone secretion have been performed in rats or mice that have been acutely fasted or baring a genetic abnormality causing either obesity or aphagia. By contrast, various physiological models, including chronic food-restriction or photoperiodically driven changes in voluntary food intake, add further perspective to the issue. In this regard, sheep provide an innovative model whereby long-term changes in body weight or extended feeding rhythms can be investigated. This review compares and contrasts data obtained in different species with regard to the neuroendocrinology of appetite, and discusses the benefits and knowledge gained from using various nonrodent models with a particular emphasis on a ruminant species.
Collapse
Affiliation(s)
- B A Henry
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol, UK.
| |
Collapse
|
1393
|
Affiliation(s)
- Thomas G Pickering
- The Zena and Michael A. Wiener Cardiovascular Institute, Mt. Sinai School of Medicine, 50 East 98th Street, New York, NY 10029-6574, USA
| |
Collapse
|
1394
|
Anderwald C, Brabant G, Bernroider E, Horn R, Brehm A, Waldhäusl W, Roden M. Insulin-dependent modulation of plasma ghrelin and leptin concentrations is less pronounced in type 2 diabetic patients. Diabetes 2003; 52:1792-8. [PMID: 12829648 DOI: 10.2337/diabetes.52.7.1792] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The gastric peptide ghrelin augments and the adipocyte-derived hormone leptin reduces appetite and food intake. In the central nervous system, insulin directly decreases hunger sensation but could also act indirectly by modulating ghrelin and leptin secretion. This study examines dose-dependent effects of insulin on plasma ghrelin and leptin concentrations during hyperinsulinemic (1, 2, and 4 mU x kg(-1) x min(-1))-euglycemic clamp tests in six nondiabetic (control subjects) and six type 2 diabetic patients. Type 2 diabetic patients were studied before and after prolonged (12-h and 67-h) variable intravenous insulin treatment aiming at near-normoglycemia (115 +/- 4 mg/dl). Nondiabetic subjects were also studied during saline infusion, which did not affect ghrelin but decreased leptin by 19 +/- 6% (P < 0.03). In control subjects, plasma ghrelin decreased at all clamp steps (-17 +/- 1, -27 +/- 6, and -33 +/- 4%, respectively; P < 0.006 vs. baseline), whereas leptin increased by 35 +/- 11% (P < 0.05). In type 2 diabetic patients without insulin treatment, ghrelin decreased by 18 +/- 7% (P < 0.05) only after 4 mU x kg(-1) x min(-1) insulin infusion and leptin increased by 19 +/- 6% (P < 0.05). After prolonged insulin treatment and near-normoglycemia, ghrelin and leptin remained unchanged in type 2 diabetic patients during the clamps. In conclusion, insulin reduces plasma ghrelin in nondiabetic patients and, to a lesser extent, in type 2 diabetic patients before insulin therapy. These findings indicate an indirect effect of insulin via ghrelin on the suppression of hunger sensation and appetite.
Collapse
Affiliation(s)
- Christian Anderwald
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, University of Vienna Medical School, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
1395
|
Das UN, Ramos EJB, Meguid MM. Metabolic alterations during inflammation and its modulation by central actions of omega-3 fatty acids. Curr Opin Clin Nutr Metab Care 2003; 6:413-9. [PMID: 12806215 DOI: 10.1097/01.mco.0000078981.18774.5e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To discuss the possible relationship between long-chain polyunsaturated fatty acids, cytokines, anandamides, nitric oxide, leptin, various neurotransmitters in the brain, and their role in anorexia of acute and chronic inflammatory conditions and cancer. RECENT FINDINGS Recent studies have shown that long-chain polyunsaturated fatty acids, especially the omega-3 series, have antiinflammatory actions, increase the concentrations of anandamides, enhance the levels of acetylcholine and nitric oxide and modulate the concentrations and actions of various neurotransmitters, including leptin, in the brain. Patients suffering from acute and chronic inflammatory conditions have low tissue concentrations of various long-chain polyunsaturated fatty acids, and high levels of proinflammatory cytokines that can cause anorexia and decrease food intake. SUMMARY It is suggested that supplementation of long-chain polyunsaturated fatty acids may have a role in the prevention and treatment of acute and chronic inflammatory conditions, improving anorexia associated with these conditions.
Collapse
Affiliation(s)
- Undurti N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| | | | | |
Collapse
|
1396
|
Abstract
To examine the role of the insulin receptor in fuel homeostasis, we and others have carried out genetic ablation studies in mice. Mice lacking insulin receptors are born with normal features, but develop early postnatal diabetes and die of ketoacidosis. In contrast, mice lacking insulin receptors in specific cell types as a result of conditional mutagenesis develop mild metabolic and reproductive abnormalities. These experiments have uncovered novel functions of insulin receptors in tissues such as brain and pancreatic beta-cells. Combined knockout studies of insulin and Igf1 receptors indicate that the insulin receptor also promotes embryonic growth. Experimental crosses of mice with insulin receptor haploinsufficiency have been instrumental to the genetic analysis of insulin action by enabling us to assign specific roles to different insulin receptor substrates and identify novel elements in insulin signaling.
Collapse
Affiliation(s)
- Tadahiro Kitamura
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
1397
|
Inoue K, Ikegami H, Fujisawa T, Shintani M, Kawabata Y, Nojima K, Ono M, Nisino M, Itoi-Babaya M, Babaya N, Ogihara T. Less frequent body weight gain in elderly type 2 diabetic patients treated with glimepiride. Geriatr Gerontol Int 2003. [DOI: 10.1046/j.1444-1586.2003.00056.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1398
|
Abstract
Obesity has become a leading public health concern. Over 1 billion people are now overweight or obese, and the prevalence of these conditions is rising rapidly. Remarkable new insights into the mechanisms that control body weight are providing an increasingly detailed framework for a better understanding of obesity pathogenesis. Key peripheral signals, such as leptin, insulin, and ghrelin, have been linked to hypothalamic neuropeptide systems, and the anatomic and functional networks that integrate these systems have begun to be elucidated. This article highlights some of these recent findings and their implications for the future of obesity treatment.
Collapse
Affiliation(s)
- David E Cummings
- Department of Medicine, VA Puget Sound Health Care System and Harborview Medical Center, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
1399
|
Abstract
The genetic study of rats and mice using natural variants, natural mutations, chemical or radiation induced mutations, engineered mutations and conditional engineered mutations has provided the tools for investigating the genetics of disease. The completion of the mouse genomic sequence and progress towards sequencing the rat genome in the past year will enable the molecular identification of quantitative trait loci and induced mutations. Sequence-based single nucleotide polymorphism discovery and a greater understanding of the haplotype structure of inbred strains is revitalising quantitative trait locus mapping and there are now plans for an ambitious eight-way recombinant inbred cross and renewed interest in existing resources such as heterogeneous stocks. In the past year there have been refinements to ENU mutagenesis approaches including balancer chromosomes and a new gene-driven approach.
Collapse
Affiliation(s)
- Roger D Cox
- MRC Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
1400
|
Korhonen S, Hippeläinen M, Vanhala M, Heinonen S, Niskanen L. The androgenic sex hormone profile is an essential feature of metabolic syndrome in premenopausal women: a controlled community-based study. Fertil Steril 2003; 79:1327-34. [PMID: 12798879 DOI: 10.1016/s0015-0282(03)00347-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate sex hormones in premenopausal white women with metabolic syndrome (MBS). DESIGN Cross-sectional controlled community-based study. SETTING Pieksämäki District Health Center, Pieksämäki, Finland. PATIENT(S) Five hundred forty-three women, aged 34 to 54 years, were screened according to National Cholesterol Education Program criteria: waist >88 cm, hypertension >/=130/>/=85 mm Hg, hypertriglyceridemia >/=1.7 mmol/L, high-density lipoprotein (HDL)-cholesterol <1.3 mmol/L, and fasting glucose >/=6.1 mmol/L. Sixty-three women fulfilled at least three of the above-mentioned criteria and were enrolled. Eighty-eight age-matched women without MBS served as controls. INTERVENTION(S) None. MAIN OUTCOME MEASURES Sex steroid levels in relation to insulin sensitivity and body composition. RESULT(S) A markedly lower insulin sensitivity index and higher free androgen index were detected in the women with MBS than in the controls. Abdominal obesity and increased diastolic blood pressure were significantly associated with high free androgen index in multiple regression analysis. CONCLUSION(S) A hyperandrogenic hormone profile appeared to be a typical feature of premenopausal female MBS even without polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Seija Korhonen
- Department of Obstetrics and Gynecology, Mikkeli Central Hospital, Mikkeli, Finland
| | | | | | | | | |
Collapse
|