101
|
Li X, Wang X, Liu G, Xu Y, Wu X, Yi R, Jin F, Sa C, Su X. Antioxidant stress and anticancer activity of peptide‑chelated selenium in vitro. Int J Mol Med 2021; 48:153. [PMID: 34165159 PMCID: PMC8219521 DOI: 10.3892/ijmm.2021.4986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The association between selenium and peptide in gastric cancer is an important research topic. The present study reported the facile synthesis of anticancer bioactive peptide (ACBP)‑functionalized selenium (ACBP‑S‑Se) particles with enhanced anticancer activities and a detailed mechanistic evaluation of their ability to regulate oxidative stress in vitro. Structural and chemical characterizations were revealed by ultraviolet absorption, Fourier transform infrared, X‑ray photoelectron, nuclear magnetic resonance carbon and hydrogen, energy dispersive X‑ray spectroscopy and inductively coupled plasma mass spectrometry, as well as scanning electron microscopy. Sulfhydrylation modifications of ACBP were achieved with S‑acetylmercaptosuccinic anhydride via chemical absorption. After the polypeptide was modified by sulfhydrylation, the ACBP chain was linked to sulfhydryl groups by amide bonds to form the ACBP‑chelated selenium complex. Two gastric cancer cell lines (MKN‑45 and MKN‑74 cells) demonstrated high susceptibility to ACBP‑S‑Se particles and displayed significantly decreased proliferation ability following treatment. The results suggested that the bioactive peptide‑chelated selenium particles effectively inhibited the proliferation of MKN‑45 and MKN‑74 cells in vitro. The genes encoding CDK inhibitor 1A (CDKN1A), cyclin B1, thioredoxin (TXN) and mitogen‑activated protein kinase kinase kinase 5 are associated with regulation of oxidative stress, while CDKN1A and TXN protect cells by decreasing oxidative stress and promoting cell growth arrest. Therefore, ACBP‑S‑Se may be an ideal chemotherapeutic candidate for human cancer, especially gastric cancer.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yanan Xu
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Ru Yi
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Feng Jin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Chula Sa
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
102
|
Šperanda T, Pavić V, Lončarić Z, Šperanda M, Popović M, Gantner V, Ðidara M. Selenium and Natural Zeolite Clinoptilolite Supplementation Increases Antioxidative Status and Immune Response in Growing Pigs. Front Vet Sci 2021; 8:688915. [PMID: 34395572 PMCID: PMC8362895 DOI: 10.3389/fvets.2021.688915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Selenium (Se), an essential trace element for human and animal health, is covalently incorporated into amino acids, acts as a cofactor for antioxidant enzymes, and is involved in the maintenance of the immune system. The main goal of this investigation was to show the effect of Se supplementation, at levels slightly higher than the recommended values, combined with natural zeolite clinoptilolite on Se deposition in tissues (muscle and liver) and on the immune and antioxidative status of supplemented growing pigs. The experiment was carried out during a 98 d period on 60 pigs. Pigs were fed a standard feed mixture based on corn and soybean and were divided into four groups, according to the level of dietary selenium supplementation as follows: C-0.3 mg/kg DM organic Se, E1-0.5 mg/kg DM sodium selenite, E2-0.5 mg/kg DM organic selenium; E3-0.5 mg/kg DM organic Se+0.2% zeolite. Higher (P < 0.05) selenium concentrations were determined in the muscle and liver in growing pigs fed with higher organic Se in combination with zeolite compared to the lower organic Se concentration. Addition of organic Se increased (P < 0.05) Se deposition in muscle and liver compared to the equal amount of inorganic Se (E2 vs. E1). Higher organic Se in combination with natural zeolite addition increases (P < 0.05) proportion of pigs' cluster of differentiation (CD)45+ compared to the same amount of inorganic Se and lower organic Se addition. The proportion of CD45+ and CD4+ lymphocytes was higher (P < 0.05) in E3 group compared to the other groups. Higher (P < 0.05) proportion of CD21+ lymphocytes were measured in the E2 and E3 groups compared with the other groups. The highest (P < 0.01) activity of glutathione peroxidase (GSH-Px) in pig erythrocytes was observed in the E3 group, while higher (P < 0.05) activity of glutathione reductase (GR) was in all experimental groups related to the control one. A dietary addition of 0.5 mg/kg DM of organic Se in combination with zeolite (0.2% DM) has increased (P < 0.05) Se deposition in liver, muscle, and blood, compared to the dietary addition of 0.3 mg/kg DM of the organic Se.
Collapse
Affiliation(s)
- Tomislav Šperanda
- Faculty of Agrobiotechnical Science in Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Valentina Pavić
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Science in Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marcela Šperanda
- Faculty of Agrobiotechnical Science in Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Popović
- Veterinary Faculty, University of Zagreb, Zagreb, Croatia
| | - Vesna Gantner
- Faculty of Agrobiotechnical Science in Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mislav Ðidara
- Faculty of Agrobiotechnical Science in Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
103
|
Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145442. [PMID: 33940727 DOI: 10.1016/j.scitotenv.2021.145442] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) has been confirmed as an environmental contaminant, which potential threats health impacts to humans and animals. Selenium (Se) as a beneficial element that alleviates the negative effects of Cd toxicity. Se mainly exists in two forms in food nutrients including organic Se usually as (Se-enriched yeast (SeY)) and inorganic Se (sodium selenite (SSe)). Nanoparticle of Se (Nano-Se), a new form Se, which is synthesized by the bioreduction of Se species, which attracted significant attention recently. However, compared the superiority alleviation effects of Nano-Se, SeY or SSe on Cd-induced toxicity and related mechanisms are still poorly understood. The purpose of this study was to compare the superiority antagonism effects of Nano-Se, SeY and SSe on Cd-induced inflammation response via NF-kB/IκB pathway in the heart. The present study demonstrated that exposed to Cd obviously increased the accumulation of Cd, disruption of ion homeostasis and depressed the ratios of K+/Na+ and Mg2+/Ca2+ via ion chromatography mass spectrometry (ICP-MS) detecting the heart specimens. In the results of histological and ultrastructure observation, typical inflammatory infiltrate characteristics and mitochondria and nuclear structure alterations in the hearts of Cd group were confirmed. Cd treatment enhanced the inducible nitric oxide synthase (iNOS) activities and NOS isoforms expression via NF-kB/IκB pathway to promote inflammation response. However, the combined treatment of Cd-exposed animals with Nano-Se was more effective than SeY and SSe in reversing Cd-induced histopathological changes and iNOS activities increased, reducing Cd accumulation and antagonizing Cd-triggered inflammation response via NF-kB/IκB pathway in chicken hearts. Overall, Se applications, especially Nano-Se, can be most efficiently used for relieving cardiotoxicity by exposed to Cd compared to other Se compound.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Chifeng Animal Health Supervision Institute, Chifeng County 024000, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046 Zhengzhou, Henan, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
104
|
An Y, Zhao J. Functionalized Selenium Nanotherapeutics Synergizes With Zoledronic Acid to Suppress Prostate Cancer Cell Growth Through Induction of Mitochondria-Mediated Apoptosis and Cell Cycle S Phase Arrest. Front Oncol 2021; 11:685784. [PMID: 34168998 PMCID: PMC8219073 DOI: 10.3389/fonc.2021.685784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
The use of established drugs in new therapeutic applications has great potential for the treatment of cancers. Nanomedicine has the advantages of efficient cellular uptake and specific cell targeting. In this study, we investigate using lentinan-functionalized selenium nanoparticles (LET-SeNPs) for the treatment of prostate cancer (PCa). We used assays to demonstrate that a combination of LET-SeNPs and zoledronic acid (ZOL) can reduce PCa cell viability in vitro. Stability and hemocompatibility assays were used to determine the safety of the combination of LET-SeNPs and ZOL. The localization of LET-SeNPs was confirmed using fluorescence microscopy. JC-1 was used to measure the mitochondrial membrane potential, while the cellular uptake, cell cycle and apoptosis were evaluated by flow cytometry. Finally, cell migration and invasion assays were used to evaluate the effects of the combination treatment on cell migration and invasion. Under optimized conditions, we found that LET-SeNPs has good stability. The combination of LET-SeNPs and ZOL can effectively inhibit metastatic PCa cells in a concentration-dependent manner, as evidenced by cytotoxicity testing, flow cytometric analysis, and mitochondria functional test. The enhanced anti-cancer effect of LET-SeNPs and ZOL may be related to the regulation of BCL2 family proteins that could result in the release of cytochrome C from the inner membranes of mitochondria into the cytosol, accompanied by induction of cell cycle arrest at the S phase, leading to irreversible DNA damage and killing of PCa cells. Collectively, the results of this study suggest that the combination of SeNPs and ZOL can successfully inhibit the growth of PCa cells.
Collapse
Affiliation(s)
- Yulin An
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
105
|
Yaseen MO, Jamshaid H, Saif A, Hussain T. Immunomodulatory role and potential utility of various nutrients and dietary components in SARS-CoV-2 infection. INT J VITAM NUTR RES 2021; 92:35-48. [PMID: 34100300 DOI: 10.1024/0300-9831/a000715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, the outbreak of severe acute respiratory syndrome cornoavirus-2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become a great perturbation all around the globe and has many devastating effects on every aspect of life. Apart from the oxygen therapy and extracorporeal membrane oxygenation, Remdesivir and Dexamethasone have been proven to be efficacious against COVID-19, along with various vaccine candidates and monoclonal antibody cocktail therapy for Regeneron. All of these are currently at different stages of clinical trials. People with weak immunity are more prone to a severe infection of SARS-CoV-2. Therefore, early and judicious nutritional supplementation along with pharmacological treatment and clinician collaborations are critical in restituting the current situation. Nutritional supplements help in acquiring strong immunity to prevent the progression of disease any further. Vitamin C, vitamin D, selenium, zinc and many other nutritional and dietary supplements inhibit the production of inflammatory cytokines during a viral infection and prevents several unwanted symptoms of infection. Many dietary components like citrus fruits, black elderberry, ginger, and probiotics have the ability to attack viral replication. These supplements can also tame the overriding immune system during coronavirus infection. Keeping in view these facts, nutritional and dietary supplements can be used along with other management modalities. These nutritional and dietary supplements are potential candidates to curb the convulsive unfolding of novel COVID-19, in combination with other standard treatment protocols. In this review, various search engines were used to exploit available literature in order to provide a comprehensive review on nutritional and dietary supplements with respect to the viral infections. It will also provide a brief overview on some of the clinical trials that are in progress to assess the role of nutritional supplements, either alone or in combination with other pharmacological drugs, in fight against COVID-19.
Collapse
Affiliation(s)
- Muhammad Osama Yaseen
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Humzah Jamshaid
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan.,Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Arifa Saif
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
106
|
Alekseenko SI, Skalny AV, Karpischenko SA, Tinkov AA. Serum, Whole Blood, Hair, and Mucosal Essential Trace Element and Mineral Levels in Children with Verified Chronic Rhinosinusitis Undergoing Functional Endoscopic Sinus Surgery. Biol Trace Elem Res 2021; 199:2112-2120. [PMID: 32789642 DOI: 10.1007/s12011-020-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to assess hair, serum, whole blood, and excised tissue essential element content in children with chronic rhinosinusitis (CRS). Eighty-eight children with chronic rhinosinusitis and 66 healthy controls were enrolled in the present study. Evaluation of endoscopic Lund-Kennedy and computed tomography Lund-Mackay scores, as well as tissue sampling, was performed only in children with chronic rhinosinusitis. Assessment of Sino-Nasal Outcome Test-20 (SNOT-20) scores was performed in both cases and controls. Hair, whole blood, blood serum, and excised mucosal tissue (only in patients) analysis was performed using inductively coupled argon plasma mass-spectrometry. The obtained data demonstrate that whole blood Ca, Mg, Se, and Zn, as well as hair Ca, Cu, Mg, and Zn levels in the examined patients were significantly lower as compared with the control values. Only serum Zn concentration in children with CRS exceeded the respective control values, whereas serum Cu levels only tended to decrease in CRS. In turn, hair Fe content in children with CRS exceeded that in healthy controls. Regression analysis demonstrate that hair Ca levels, as well as whole blood Ca, Se, and Zn concentrations, were considered as negative predictors, whereas increased hair iron level was significantly directly associated with CRS. Significant associations between hair, serum, whole blood, and tissue element levels and Lund-Kennedy and Lund-Mackay scores were also revealed. Generally, the obtained data demonstrate that chronic rhinosinusitis is associated with impaired essential metal levels in pediatric patients with chronic rhinosinusitis. The observed alterations may contribute to CRS pathogenesis through modulation of mucociliary clearance, immunity, inflammatory response, and redox environment.
Collapse
Affiliation(s)
- Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Sergey A Karpischenko
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia
- First Pavlov State Medical University of Saint Petersburg, St. Petersburg, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
107
|
Meng TT, Lin X, Xie CY, He JH, Xiang YK, Huang YQ, Wu X. Nanoselenium and Selenium Yeast Have Minimal Differences on Egg Production and Se Deposition in Laying Hens. Biol Trace Elem Res 2021; 199:2295-2302. [PMID: 32845448 DOI: 10.1007/s12011-020-02349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to compare the effects of nanoselenium (NS) and selenium yeast (SY) on the performance, egg selenium (Se) concentration, and anti-oxidative capacity of hens. A total of 216 Brown Hy-line hens (29-week old) were randomly allocated into three treatments (6 replicate/treatment, 12 hens/replicate). The pre-trial period lasted 7 days, and the experimental period lasted 35 days. Dietary treatments included corn-soybean meal basal diet (containing 0.16 μg Se/g, as control group), and basal diet supplemented with 0.3 mg Se/kg diet (Se was from NS or SY), called as SY group or NS group, respectively. At the end of the experiment, one hen per replicate from each treatment was slaughtered. Liver, spleen, and kidney tissues were sampled for the determination of Se concentrations. The results showed that NS or SY supplement significantly improved feed conversion ratio (P < 0.05), soft broken egg rate (P < 0.05), and the serum T-AOC value (P < 0.05) when compared with control group. Remarkably, the deposition of Se increased significantly (P < 0.05) and equivalently in egg, liver, and kidney of hens supplemented with both NS and SY. Interestingly, SY supplement also enhanced the serum CAT and SOD activities (P < 0.05), NS but not SY significantly reduced serum MDA (P < 0.05), whereas RT-PCR results did not show significant differences in the mRNA levels of antioxidant genes among three groups (P > 0.05). Taken together, dietary supplemented with SY or NS improved the Se deposition in eggs, liver and kidney of laying hens, increased antioxidant activity, and NS supplement had greater Se deposition in the kidney tissue than SY supplement. SY or NS supplement could be considered to be applied for Se-enriched egg production.
Collapse
Affiliation(s)
- Tian-Tian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chun-Yan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-Hua He
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yang-Kui Xiang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Yi-Qiang Huang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
108
|
Khatiwada S, Subedi A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19). Curr Nutr Rep 2021; 10:125-136. [PMID: 33835432 PMCID: PMC8033553 DOI: 10.1007/s13668-021-00354-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19) is a rapidly emerging disease caused by a highly contagious virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and this disease has affected millions of people across the world and led to hundreds of thousands of deaths worldwide. Nutrition is a key factor related to this disease, and nutritional status may determine the risk and outcomes of SARS-CoV-2 infection. Selenium is one of the major trace elements required for redox functions and has significant roles in viral infections. The purpose of this review was to examine the current evidence on the role of selenium in COVID-19. We reviewed studies on selenium and COVID-19, and other relevant studies to understand how selenium status can modify the risk of SARS-CoV-2 infection, and how selenium status might affect a person post-infection. RECENT FINDINGS We found that oxidative stress is a characteristic feature of COVID-19 disease, which is linked with the immunopathological disorder observed in individuals with severe COVID-19. Selenium plays a key role in strengthening immunity, reducing oxidative stress, preventing viral infections and supporting critical illness. Moreover, selenium deficiency is related to oxidative stress and hyperinflammation seen in critical illness, and selenium deficiency is found to be associated with the severity of COVID-19 disease. Selenium supplementation at an appropriate dose may act as supportive therapy in COVID-19. Future studies in large cohorts of COVID-19 are warranted to verify the benefits of selenium supplementation for reducing risk and severity of COVID-19.
Collapse
Affiliation(s)
| | - Astha Subedi
- Medicine ICU, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
109
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
110
|
Ebrahimzadeh-Attari V, Panahi G, Hebert JR, Ostadrahimi A, Saghafi-Asl M, Lotfi-Yaghin N, Baradaran B. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect 2021; 11:119-136. [PMID: 34195036 PMCID: PMC8233676 DOI: 10.34172/hpp.2021.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The novel coronavirus (COVID-19) is considered as the most life-threatening pandemic disease during the last decade. The individual nutritional status, though usually ignored in the management of COVID-19, plays a critical role in the immune function and pathogenesis of infection. Accordingly, the present review article aimed to report the effects of nutrients and nutraceuticals on respiratory viral infections including COVID-19, with a focus on their mechanisms of action. Methods: Studies were identified via systematic searches of the databases including PubMed/ MEDLINE, ScienceDirect, Scopus, and Google Scholar from 2000 until April 2020, using keywords. All relevant clinical and experimental studies published in English were included. Results: Protein-energy malnutrition (PEM) is common in severe respiratory infections and should be considered in the management of COVID-19 patients. On the other hand, obesity can be accompanied by decreasing the host immunity. Therefore, increasing physical activity at home and a slight caloric restriction with adequate intake of micronutrients and nutraceuticals are simple aids to boost host immunity and decrease the clinical manifestations of COVID-19. Conclusion: The most important nutrients which can be considered for COVID-19 management are vitamin D, vitamin C, vitamin A, folate, zinc, and probiotics. Their adequacy should be provided through dietary intake or appropriate supplementation. Moreover, adequate intake of some other dietary agents including vitamin E, magnesium, selenium, alpha linolenic acid and phytochemicals are required to maintain the host immunity.
Collapse
Affiliation(s)
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - James R. Hebert
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Lotfi-Yaghin
- Student Research Committee, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
111
|
Ghasemi F, Khoshmirsafa M, Safari E, Asgari M, Alemrajabi M, Nojehdehi S, Khorrami S. Vitamin E and selenium improve mesenchymal stem cell conditioned media immunomodulatory effects. Stem Cell Investig 2021; 8:9. [PMID: 34124232 DOI: 10.21037/sci-2020-008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
Background Mesenchymal stem cells (MSCs) with immunoregulatory properties affect immune systems. Many studies showed that antioxidants such as vitamin E (Vit E) and selenium (Se) could improve stem cells survival. This study aims to investigate the effects of MSC conditioned media (CM) treated with Vit E and Se on immune cells. Methods MSCs were isolated and cultured with Vit E and Se. Immature dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs) were cultured with MSC CM treated with Vit E and Se. The expression of HLA-DR, CD86, CD40, and CD83 on mature DC were evaluated. DC supernatant and PBMCs supernatant was collected for the study of TGF-β, IL-10, and IL-12. PBMCs evaluated for the expression of T-bet, GATA3, RORγt, and FOXP3. Results MSC CM increased CD40 on myeloid DC (mDC). CD40 has been decreased in DC treated with MSC (Vit E) and MSC (Se) CM. HLA-DR expression on DCs and IL-12 level were significantly reduced in MSC (Vit E) CM. IL-10 concentration increased in DCs treated with MSC (Vit E) and MSC (Se) CM. Treatment of PBMCs with MSC CM decreased IL-10 level, FOXP3, and RORγt expression. On the other hand, the MSC (Vit E) CM and MSC (Se) CM decreased the IL-10 level and increased IL-12, T-bet, and RORγt. Conclusions According to the results, the treatment of MSC with Vit E and Se enhanced the ability of MSCs to inhibit DCs and improved immunomodulatory effects. Concerning the effect of MSC on PBMC, it seems that it increased RORγt expression through monocytes.
Collapse
Affiliation(s)
- Fereshteh Ghasemi
- Department of Medical Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Medical Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Elahe Safari
- Department of Medical Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Marzieh Asgari
- Department of Medical Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Alemrajabi
- Department of General Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Firoozgar Clinical Research Development Center (FCRDC), Tehran, Iran
| | - Shahrzad Nojehdehi
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | - Samane Khorrami
- Department of Medical Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
112
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
Affiliation(s)
- Victor W. Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Alexandru R. Sasuclark
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Daniel J. Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST), Honolulu, HI, United States
| | - Celine Coyle
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Jennifer M. Pilat
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
113
|
Pérez-Valenzuela J, Mejías M, Ortiz D, Salgado P, Montt L, Chávez-Báez I, Vera-Tamargo F, Mandakovic D, Wacyk J, Pulgar R. Increased dietary availability of selenium in rainbow trout (Oncorhynchus mykiss) improves its plasma antioxidant capacity and resistance to infection with Piscirickettsia salmonis. Vet Res 2021; 52:64. [PMID: 33933136 PMCID: PMC8088010 DOI: 10.1186/s13567-021-00930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/05/2022] Open
Abstract
Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is the most important infectious disease in the Chilean salmon farming industry. An opportunity to control this disease is to use functional micronutrients to modulate host mechanisms of response to the infection. Since P. salmonis may affect the host antioxidant system in salmonids, particularly that dependent on selenium (Se), we hypothesized that fish’s dietary selenium supplementation could improve the response to the bacterial infection. To address this, we defined a non-antibiotic, non-cytotoxic concentration of selenium to evaluate its effect on the response to in vitro infections of SHK-1 cells with P. salmonis. The results indicated that selenium supplementation reduced the cytopathic effect, intracellular bacterial load, and cellular mortality of SHK-1 by increasing the abundance and activity of host glutathione peroxidase. We then prepared diets supplemented with selenium up to 1, 5, and 10 mg/kg to feed juvenile trout for 8 weeks. At the end of this feeding period, we obtained their blood plasma and evaluated its ability to protect SHK-1 cells from infection with P. salmonis in ex vivo assays. These results recapitulated the observed ability of selenium to protect against infection with P. salmonis by increasing the concentration of selenium and the antioxidant capacity in fish’s plasma. To the best of our knowledge, this is the first report of the protective capacity of selenium against P. salmonis infection in salmonids, becoming a potential effective host-directed dietary therapy for SRS and other infectious diseases in animals at a non-antibiotic concentration.
Collapse
Affiliation(s)
- Javiera Pérez-Valenzuela
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile
| | - Madelaine Mejías
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile
| | - Daniela Ortiz
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.,Laboratorio de Nutrición Animal (LABNA). Facultad de Ciencias Agronómicas, Producción Animal, Universidad de Chile, 11315, Santa Rosa, La Pintana, Chile
| | - Pablo Salgado
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.,Laboratorio de Nutrición Animal (LABNA). Facultad de Ciencias Agronómicas, Producción Animal, Universidad de Chile, 11315, Santa Rosa, La Pintana, Chile
| | - Liliana Montt
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile
| | - Ignacio Chávez-Báez
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile
| | - Francisca Vera-Tamargo
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile
| | - Dinka Mandakovic
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile.,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.,GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Jurij Wacyk
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile. .,Laboratorio de Nutrición Animal (LABNA). Facultad de Ciencias Agronómicas, Producción Animal, Universidad de Chile, 11315, Santa Rosa, La Pintana, Chile.
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, El Líbano, Macul, 5524, Santiago, Chile. .,Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.
| |
Collapse
|
114
|
Rowe S, Collins PD, Stacey SE, Carr AC. Micronutrients and respiratory infections: the biological rationale and current state of clinical evaluation. Br J Hosp Med (Lond) 2021; 82:1-8. [PMID: 33914636 DOI: 10.12968/hmed.2020.0730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A range of nutrients has been studied or proposed for use in preventing respiratory tract infections and reducing their severity. This article gives a narrative review of the existing literature, biological rationales and current state of clinical evaluation for micronutrient therapies. The importance of vitamin A, the B vitamins, vitamin C, vitamin D, eicosapentaenoic acid, vitamin E, selenium, zinc and a range of combination therapies are discussed, looking at their effects on reducing rates of infection, reducing severity of infection and improved recovery from infection. Further discussion regarding the level of evidence required for nutritional interventions is included.
Collapse
Affiliation(s)
- Sam Rowe
- Adult Critical Care Unit, Newham University Hospital, Barts Health NHS Trust, London, UK.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Patrick D Collins
- Adult Critical Care Unit, Newham University Hospital, Barts Health NHS Trust, London, UK
| | | | - Anitra C Carr
- Nutrition in Medicine Research Group, University of Otago, Christchurch, New Zealand
| |
Collapse
|
115
|
Ajdžanovic V, Filipovic B, Šošic-Jurjevic B, Miler M, Miloševic V. Margins of beneficial daily dosage of supplements in prevention of COVID-19. EXCLI JOURNAL 2021; 20:828-834. [PMID: 34177405 PMCID: PMC8222633 DOI: 10.17179/excli2021-3790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Vladimir Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošic-Jurjevic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
116
|
Potential Effects of Melatonin and Micronutrients on Mitochondrial Dysfunction during a Cytokine Storm Typical of Oxidative/Inflammatory Diseases. Diseases 2021; 9:diseases9020030. [PMID: 33919780 PMCID: PMC8167770 DOI: 10.3390/diseases9020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Exaggerated oxidative stress and hyper-inflammation are essential features of oxidative/inflammatory diseases. Simultaneously, both processes may be the cause or consequence of mitochondrial dysfunction, thus establishing a vicious cycle among these three factors. However, several natural substances, including melatonin and micronutrients, may prevent or attenuate mitochondrial damage and may preserve an optimal state of health by managing the general oxidative and inflammatory status. This review aims to describe the crucial role of mitochondria in the development and progression of multiple diseases as well as the close relationship among mitochondrial dysfunction, oxidative stress, and cytokine storm. Likewise, it attempts to summarize the main findings related to the powerful effects of melatonin and some micronutrients (vitamins and minerals), which may be useful (alone or in combination) as therapeutic agents in the treatment of several examples of oxidative/inflammatory pathologies, including sepsis, as well as cardiovascular, renal, neurodegenerative, and metabolic disorders.
Collapse
|
117
|
Polak E, Stępień AE, Gol O, Tabarkiewicz J. Potential Immunomodulatory Effects from Consumption of Nutrients in Whole Foods and Supplements on the Frequency and Course of Infection: Preliminary Results. Nutrients 2021; 13:1157. [PMID: 33915705 PMCID: PMC8065427 DOI: 10.3390/nu13041157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
A diet rich in nutrients should be implemented in order to boost the immune system and prevent infections. To investigate which nutrients are commonly consumed, an anonymous survey was given to 120 individuals and their responses were collected. The respondents answered questions relating to their health status, and their consumption of nutrients and supplements that produce immunomodulating effects. The participants were also asked about any prior viral, bacterial or fungal infections experienced, and in particular, infection frequency, course, and duration. The data collected were subjected to a statistical analyses to assess the relationship between the reported frequency of infections and nutrients consumed including vitamins D3, A, C, E, selenium, zinc, iron, β-carotene, omega-3 fatty acids as well as live active probiotic bacteria. The findings show that vitamin and mineral supplementation did not positively affect the duration, frequency, or course of infections in the surveyed sample. An exception was vitamin D3 supplementation that was correlated to sporadic incidence of viral infections. Conversely, immunity was positively affected by consumption of natural nutrients contained in whole food (vitamin C, iron, selenium, omega-3 fatty acids), evidenced by lower incidences and milder courses of infection.
Collapse
Affiliation(s)
- Ewelina Polak
- Department of Dietetics, Institute of Health Sciences, College for Medical Sciences, University of Rzeszow, al/mjr. W. Kopisto 2a, 35-310 Rzeszów, Poland;
- Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences, University of Rzeszow, Warzywna 1A, 35-310 Rzeszów, Poland;
| | - Agnieszka Ewa Stępień
- Department of Dietetics, Institute of Health Sciences, College for Medical Sciences, University of Rzeszow, al/mjr. W. Kopisto 2a, 35-310 Rzeszów, Poland;
- Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences, University of Rzeszow, Warzywna 1A, 35-310 Rzeszów, Poland;
| | - Olga Gol
- Department of Human Immunology, Institute of Medicine, College for Medical Sciences, University of Rzeszow, Warzywna 1A., 35-310 Rzeszow, Poland;
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences, University of Rzeszow, Warzywna 1A, 35-310 Rzeszów, Poland;
- Department of Human Immunology, Institute of Medicine, College for Medical Sciences, University of Rzeszow, Warzywna 1A., 35-310 Rzeszow, Poland;
| |
Collapse
|
118
|
Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Brief Bioinform 2021; 22:1476-1498. [PMID: 33623995 PMCID: PMC7929402 DOI: 10.1093/bib/bbab045] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic by the World Health Organization, and the situation worsens daily, associated with acute increases in case fatality rates. The main protease (Mpro) enzyme produced by SARS-CoV-2 was recently demonstrated to be responsible for not only viral reproduction but also impeding host immune responses. The element selenium (Se) plays a vital role in immune functions, both directly and indirectly. Thus, we hypothesised that Se-containing heterocyclic compounds might curb the activity of SARS-CoV-2 Mpro. We performed a molecular docking analysis and found that several of the selected selenocompounds showed potential binding affinities for SARS-CoV-2 Mpro, especially ethaselen (49), which exhibited a docking score of -6.7 kcal/mol compared with the -6.5 kcal/mol score for GC376 (positive control). Drug-likeness calculations suggested that these compounds are biologically active and possess the characteristics of ideal drug candidates. Based on the binding affinity and drug-likeness results, we selected the 16 most effective selenocompounds as potential anti-COVID-19 drug candidates. We also validated the structural integrity and stability of the drug candidate through molecular dynamics simulation. Using further in vitro and in vivo experiments, we believe that the targeted compound identified in this study (ethaselen) could pave the way for the development of prospective drugs to combat SARS-CoV-2 infections and trigger specific host immune responses.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Ave, Memphis, TN 38163, USA
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Saad Ahmed Sami
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Ashiqul Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Shahriar Ahmed
- Department of Pharmacy, University of Chittagong, Bangladesh
| | | | | | - Payar Hossain
- Bachelor of Pharmacy professional degree focused in Pharmacy from University of Chittagong, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Firzan Nainu
- Faculty of Pharmacy Universitas Hasanuddin, Indonesia
| | | | | |
Collapse
|
119
|
Dehghani M, Shokrgozar N, Ramzi M, Kalani M, Golmoghaddam H, Arandi N. The impact of selenium on regulatory T cell frequency and immune checkpoint receptor expression in patients with diffuse large B cell lymphoma (DLBCL). Cancer Immunol Immunother 2021; 70:2961-2969. [PMID: 33721055 DOI: 10.1007/s00262-021-02889-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
For many decades, selenium (Se) has been known as a potential anti-cancer agent that can also improve the function of immune cells in a variety of solid tumors. However, there is no report on the role of Se on CD4+ T cell subsets like CD4+CD25+FOXP3+ regulatory T cells (Tregs) in lymphoma patients. In this randomized clinical trial, we investigated the effect of 3-month Se consumption on the frequency of CD4+CD25+FOXP3+ Tregs and the expression of immune checkpoint receptors in thirty-two non-Hodgkin lymphoma (NHL) patients (16 patients with Se (Se+) and 16 without Se (Se-) consumption) with diffuse large B-cell lymphoma (DLBCL) subtype at stable remission. The change in the frequency of Tregs and expression of immune checkpoint receptors including CTLA-4, LAG-3, TIM-3, and PD-L1 genes were evaluated after 3 months in both groups using flow cytometry and SYBR Green Real-time PCR method, respectively. The results showed that the frequency of CD4+CD25+FOXP3+ Tregs and expression of immune checkpoint receptors did not significantly change after 3-month Se consumption in DLBCL patients. However, alteration in the frequency of CD4+CD25-FOXP3+ Treg subsets was positively correlated with change in CTLA-4, LAG-3, and TIM-3 expression in the Se+ group. Three-month Se supplementation did not prevent relapse in Se+ group. Taken together, Se supplementation alone did not affect the frequency of CD4+CD25+FOXP3+ Tregs, expression of checkpoint receptors, and prevention of relapse in DLBCL patients at stable remission phase but might influence the functional properties of other Treg subsets like CD4+CD25-FOXP3+ Tregs.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Golmoghaddam
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
120
|
Srivastava A, Gupta RC, Doss RB, Lall R. Trace Minerals, Vitamins and Nutraceuticals in Prevention and Treatment of COVID-19. J Diet Suppl 2021; 19:395-429. [PMID: 33682615 DOI: 10.1080/19390211.2021.1890662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was first officially diagnosed in the city of Wuhan, China in January 2020. In reality, the disease was identified in December 2019 in the same city where patients began showing symptoms of pneumonia of unidentified origin. Very soon the disease became a global pandemic due to the suppression of information in the country of origin and inadequate testing for the COVID-19 virus. Currently, > 101 million people have been found positive for this virus and > 2.17 million people have died. There are no signs that COVID-19 is slowing down. This deadly virus affects multiple vital organs (lungs, heart, nervous system, blood, and immune system), yet its exact mechanism of pathophysiology remains obscure. Depending on the viral load, sick people often show symptoms of fever, cough, shortness of breath, coagulopathy, cardiac abnormalities, fatigue, and death. Great strides have been made in COVID-19 testing, thereby allowing timely therapeutic intervention. Currently, vaccines are on the market from Pfizer, Moderna and Astra Zeneca with limited supply. Phase III clinical trials are also underway from other manufacturers. In the current scenario, nutraceuticals and other phyto-mineral supplements appear to be promising alternative solutions for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | - Ramesh C Gupta
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Robin B Doss
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | | |
Collapse
|
121
|
Rong A, Franco-Garcia E, Zhou C, Heng M, Akeju O, Azocar RJ, Quraishi SA. Association of nutrition status and hospital-acquired infections in older adult orthopedic trauma patients. JPEN J Parenter Enteral Nutr 2021; 46:69-74. [PMID: 33660849 DOI: 10.1002/jpen.2096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/03/2021] [Accepted: 02/28/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Malnutrition is linked to suboptimal outcomes following elective surgery. Trauma patients do not typically have an opportunity for preoperative nutrition optimization and may be at risk for malnutrition. Our goal was to investigate whether nutrition status is associated with development of hospital-acquired infections (HAIs) in older adult, orthopedic trauma patients. METHODS We performed a retrospective analysis of data between January 1, 2017, and August 30, 2018, from the Massachusetts General Hospital Geriatric Inpatient Fracture Trauma Service. Admission nutrition status was assessed using the Mini Nutritional Assessment (MNA) and HAIs were validated through the American College of Surgeons National Surgical Quality Improvement Project database. To investigate whether nutrition status is associated with HAIs, we performed a multivariable logistic regression analysis controlling for age, sex, Charlson Comorbidity Index, glomerular filtration rate, and type of anesthesia. RESULTS Four hundred sixty-one patients comprised the analytic cohort. Multivariable regression analysis demonstrated that each unit increment in MNA score was associated with a 13% reduction in risk of HAI (odds ratio, 0.87; 95% CI, 0.79-0.97). Furthermore, adjusting for timing of perioperative antibiotics, perioperative transfusions, or development of pressure injury during hospitalization did not materially change these results. CONCLUSION Our results demonstrate that malnutrition is highly prevalent in older adult, orthopedic trauma patients and that nutrition status may influence the risk of developing HAIs in this cohort of patients. Further studies are needed to determine whether optimizing perioperative nutrition in older adult, orthopedic trauma patients can reduce infectious complications and improve overall health outcomes.
Collapse
Affiliation(s)
- Anni Rong
- School of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Esteban Franco-Garcia
- Department of Geriatrics, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Carmen Zhou
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Marilyn Heng
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA.,Department of Orthopaedics and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oluwaseun Akeju
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA.,Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruben J Azocar
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, Massachusetts, USA.,School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Sadeq A Quraishi
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, Massachusetts, USA.,School of Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
122
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
123
|
Trippe RC, Pilon-Smits EAH. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124178. [PMID: 33068997 PMCID: PMC7538129 DOI: 10.1016/j.jhazmat.2020.124178] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops. Selenium is also a potential toxin at higher concentrations, and multiple environmental disasters over the past 50 years have been caused by Se pollution from agricultural and industrial sources. Phytoremediation by plants able to take up large amounts of Se is an important tool to combat pollution issues. Both biofortification and phytoremediation applications require a thorough understanding of how Se is taken up and metabolized by plants. Selenium uptake and translocation in plants are largely accomplished via sulfur (S) transport proteins. Current understanding of these transporters is reviewed here, and transporters that may be manipulated to improve Se uptake are discussed. Plant Se metabolism also largely follows the S metabolic pathway. This pathway is reviewed here, with special focus on genes that have been, or may be manipulated to reduce the accumulation of toxic metabolites or enhance the accumulation of nontoxic metabolites. Finally, unique aspects of Se transport and metabolism in Se hyperaccumulators are reviewed. Hyperaccumulators, which can accumulate Se at up to 1000 times higher concentrations than normal plants, present interesting specialized systems of Se transport and metabolism. Selenium hyperaccumulation mechanisms and potential applications of these mechanisms to biofortification and phytoremediation are presented.
Collapse
Affiliation(s)
- Richard C Trippe
- Colorado State University, Biology Department, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
124
|
Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem 2021; 36:416-426. [PMID: 33613002 PMCID: PMC7879594 DOI: 10.1007/s12291-021-00961-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Nutritional deficiency is associated with impaired immunity and increased susceptibility to infections. The complex interactions of trace elements with the macromolecules trigger the effective immune response against the viral diseases. The outcome of various viral infections along with susceptibility is affected by trace elements such as zinc, selenium, iron, copper, etc. due to their immuno-modulatory effects. Available electronic databases have been comprehensively searched for articles published with full text available and with the key words “Trace elements”, “COVID-19”, “Viral Infections” and “Immune Response” (i.e. separately Zn, Se, Fe, Cu, Mn, Mo, Cr, Li, Ni, Co) appearing in the title and abstract. On the basis of available articles we have explored the role of trace elements in viral infections with special reference to COVID-19 and their interactions with the immune system. Zinc, selenium and other trace elements are vital to triggerTH1 cells and cytokine-mediated immune response for substantial production of proinflammatory cytokines. The antiviral activity of some trace elements is attributed to their inhibitory effect on viral entry, replication and other downstream processes. Trace elements having antioxidants activity not only regulate host immune responses, but also modify the viral genome. Adequate dietary intake of trace elements is essential for activation, development, differentiation and numerous functions.
Collapse
|
125
|
Gröber U, Holick MF. The coronavirus disease (COVID-19) - A supportive approach with selected micronutrients. INT J VITAM NUTR RES 2021; 92:13-34. [PMID: 33487035 DOI: 10.1024/0300-9831/a000693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Worldwide the pandemic of COVID-19 spreads rapidly and has had an enormous public health impact with substantial morbidity and mortality especially in high-risk groups, such as older people and patients with comorbidities like diabetes, dementia or cancer. In the absence of a vaccine against COVID-19 there is an urgent need to find supportive therapies that can stabilize the immune system and can help to deal with the infection, especially for vulnerable groups such as the elderly. This is especially relevant for our geriatric institutions and nursing homes. A major potential contributing factor for elderly is due to their high incidence of malnutrition: up to 80% among the hospitalized elderly. Malnutrition results when adequate macronutrients and micronutrients are lacking in the diet. Often missing in public health discussions around preventing and treating COVID-19 patients are nutritional strategies to support optimal function of their immune system. This is surprising, given the importance that nutrients play a significant role for immune function. Several micronutrients, such as vitamin D, retinol, vitamin C, selenium and zinc are of special importance supporting both the adaptive and innate immune systems. As suboptimal status or deficiencies in these immune-relevant micronutrients impair immune function and reduces the resistance to infections, micronutrient deficiencies should therefore be corrected as soon as possible, especially in the elderly and other vulnerable groups. According to epidemiological, experimental and observational studies, some case reports and a few intervention studies the supplementation of vitamin D and/or zinc are promising. The multiple anti-inflammatory and immunomodulatory effects of Vitamin D could explain its protective role against immune hyper reaction and cytokine storm in patients with severe COVID-19. A randomized, placebo-controlled intervention study even shows that high dose vitamin D supplementation promotes viral clearance in asymptomatic and mildly symptomatic SARS-CoV-2 positive individuals. Besides, the data of a recent prospective study with COVID-19 patients reveal that a significant number of them were zinc deficient. The zinc deficient patients had more complications and the deficiency was associated with a prolonged hospital stay and increased mortality. Thus, immune-relevant micronutrients may help to increase the physiological resilience against COVID-19.
Collapse
Affiliation(s)
- Uwe Gröber
- Academy for Micronutrient medicine (AMM), Essen, Germany
| | | |
Collapse
|
126
|
Moghadam MT, Taati B, Paydar Ardakani SM, Suzuki K. Ramadan Fasting During the COVID-19 Pandemic; Observance of Health, Nutrition and Exercise Criteria for Improving the Immune System. Front Nutr 2021; 7:570235. [PMID: 33521030 PMCID: PMC7838371 DOI: 10.3389/fnut.2020.570235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Fasting is one of the religious rituals of Muslims worldwide who refrain from eating foods and liquids every year during Ramadan. This year (2020), Ramadan is very different from previous years due to the outbreak of a terrible microscopic giant called coronavirus disease 2019 (COVID-19). The pandemic COVID-19 has made Ramadan very important this year because the virus has infected millions of people around the world and killed thousands, especially people with immunodeficiency. In dealing with COVID-19, maintaining good hygiene and supporting the immune system are effective, preventive approaches. Moderate exercise training and proper nutrition are the most important factors to support immune function. Lack of facilities, poor health and many traditions that lead to public community gatherings have made many Islamic countries susceptible to this dangerous virus. In such an unprecedented situation, there are many Muslims who doubt whether they can fast or not. Therefore, the proposal of usable exercise programs and effective nutritional strategies is imperative. In this study, we will look at the proposed health effects of fasting and its impact on the immune system, the effects of Ramadan intermittent fasting on resting values and responses of immunological/antioxidant biomarkers in elite and recreational athletes, together with the important health, nutrition, and exercise advice that fasting people need to follow in the event of a COVID-19 outbreak.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Guilan, Rasht, Iran
| | | | | |
Collapse
|
127
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2021; 7:570748. [PMID: 33490124 PMCID: PMC7820179 DOI: 10.3389/fvets.2020.570748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A. Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
128
|
Lotfi F, Akbarzadeh-Khiavi M, Lotfi Z, Rahbarnia L, Safary A, Zarredar H, Baghbanzadeh A, Naghili B, Baradaran B. Micronutrient therapy and effective immune response: a promising approach for management of COVID-19. Infection 2021; 49:1133-1147. [PMID: 34160789 PMCID: PMC8220424 DOI: 10.1007/s15010-021-01644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The escalating prevalence of coronavirus disease 2019 (COVID-19) worldwide, with an increased rate of morbidity and mortality, highlights an urgent need to develop more effective therapeutic interventions. Despite the authorized treatment against COVID-19 by the European Union (EU), the safety and effectiveness of this therapeutic strategy for a wide variety of patients have remained a significant challenge. In this respect, micronutrients such as vitamins and minerals, as essential factors, can be considered for improving the function of the immune system and accelerating the treatment procedure. Dietary supplements can attenuate vascular and inflammatory manifestations related to infectious diseases in large part due to their anti-inflammatory and antioxidant properties. Recently, it has been revealed that poor nutritional status may be one of the notable risk factors in severe COVID-19 infections. In the current review, we focus on the micronutrient therapy of COVID-19 patients and provide a comprehensive insight into the essential vitamins/minerals and their role in controlling the severity of the COVID-19 infection. We also discuss the recent advancements, challenges, negative and positive outcomes in relevance to this approach.
Collapse
Affiliation(s)
- Fariba Lotfi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, P.O. Box 5165665811, Tabriz, Iran
| | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
129
|
Askari H, Sanadgol N, Azarnezhad A, Tajbakhsh A, Rafiei H, Safarpour AR, Gheibihayat SM, Raeis-Abdollahi E, Savardashtaki A, Ghanbariasad A, Omidifar N. Kidney diseases and COVID-19 infection: causes and effect, supportive therapeutics and nutritional perspectives. Heliyon 2021; 7:e06008. [PMID: 33495739 PMCID: PMC7817396 DOI: 10.1016/j.heliyon.2021.e06008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, the novel coronavirus disease 2019 (COVID-19), has attracted the attention of scientists where it has a high mortality rate among older adults and individuals suffering from chronic diseases, such as chronic kidney diseases (CKD). It is important to elucidate molecular mechanisms by which COVID-19 affects the kidneys and accordingly develop proper nutritional and pharmacological strategies. Although numerous studies have recently recommended several approaches for the management of COVID-19 in CKD, its impact on patients with renal diseases remains the biggest challenge worldwide. In this paper, we review the most recent evidence regarding causality, potential nutritional supplements, therapeutic options, and management of COVID-19 infection in vulnerable individuals and patients with CKD. To date, there is no effective treatment for COVID-19-induced kidney dysfunction, and current treatments are yet limited to anti-inflammatory (e.g. ibuprofen) and anti-viral medications (e.g. Remdesivir, and Chloroquine/Hydroxychloroquine) that may increase the chance of treatment. In conclusion, the knowledge about kidney damage in COVID-19 is very limited, and this review improves our ability to introduce novel approaches for future clinical trials for this contiguous disease.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rafiei
- Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Omidifar
- Biotechnology Research Center, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
130
|
Saeidi A, Tayebi SM, To-aj O, Karimi N, Kamankesh S, Niazi S, Khosravi A, Khademosharie M, Soltani M, Johnson KE, Rashid H, Laher I, Hackney AC, Zouhal H. Physical Activity and Natural Products and Minerals in the SARS-CoV-2 Pandemic: An Update. ANNALS OF APPLIED SPORT SCIENCE 2021; 9:e976. [PMID: 35237740 PMCID: PMC8887880 DOI: 10.29252/aassjournal.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coronavirus-disease 19 (COVID-19) has rapidly become a global public health issue, and there is a desperate need for strategies of prevention, reduction, and treatment to halt the epidemic. The coronavirus affects the immune system, and individuals with a compromised immune system, such as those with diabetes, hypertension, obesity, are more susceptible to this virus. Lifestyle-related variables such as physical activity and nutritional supplements can decrease inflammatory markers, increase anti-inflammatory and antioxidant status, and improve the immune system. Lifesty-lerelated variables play preventive roles against various infectious diseases including COVID-19. This review highlights the effects of physical activity and nutrients supplements on the immune system and their possible benefits in combating the harms caused by infection with the COVID-19 virus.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Damghan Branch, Islamic Azad University, Damghan,
Iran
| | | | - Oam To-aj
- Bangkok Thonburi University, Bangkok, Thailand
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| | | | | | | | | | | | | | | | - Harunor Rashid
- National Centre for Immunisation Research &
Surveillance of Vaccine Preventable Diseases (NCIRS), Westmead, Australia
| | - Ismail Laher
- University of British Columbia, Vancouver, Canada
| | | | - Hassane Zouhal
- University of Rennes 2, Rennes, France
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| |
Collapse
|
131
|
Vavougios GD, Ntoskas KT, Doskas TK. Impairment in selenocysteine synthesis as a candidate mechanism of inducible coagulopathy in COVID-19 patients. Med Hypotheses 2020; 147:110475. [PMID: 33421689 PMCID: PMC7831716 DOI: 10.1016/j.mehy.2020.110475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023]
Abstract
Coagulopathy has recently been recognized as a recurring complication of COVID-19, most typically associated with critical illness. There are epidemiological, mechanistic and transcriptomic evidence that link Selenium with SARS-CoV-2’s intracellular latency. Taking into consideration the vital role of selenoproteins in maintaining an adequate immune response, endothelial homeostasis and a non-prothrombotic platelet activation status, we propose that impairment in selenocysteine synthesis, via perturbations in the aforementioned physiological functions, potentially constitutes a mechanism of coagulopathy in COVID 19 patients other than those developed in critical illness.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2-4, P.C. 35 131, Galaneika, Lamia, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C. 41500 Larissa, Greece; Department of Neurology, Athens Naval Hospital, 70 Deinokratous Street, P.C. 115 21 Athens, Greece
| | | | - Triantafyllos K Doskas
- Department of Neurology, Athens Naval Hospital, 70 Deinokratous Street, P.C. 115 21 Athens, Greece.
| |
Collapse
|
132
|
Bezerra HVA, Buarque VLM, Silva LSB, Leme PRP, Vidal AMC, Vaz ACN, Gallo SB, Silva SL, Leme PR. Effect of Castor and Cashew Nut Shell Oils, Selenium and Vitamin E as Antioxidants on the Health and Meat Stability of Lambs Fed a High-Concentrate Diet. Antioxidants (Basel) 2020; 9:E1298. [PMID: 33353112 PMCID: PMC7766434 DOI: 10.3390/antiox9121298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Functional oils are known for their compounds with antioxidant, antimicrobial and anti-inflammatory properties, and are used in ruminant nutrition as alternatives to chemicals in order to improve performance. This study aimed to compare the influence of castor and cashew nut shell oils with pure organic selenium (hydroxy-selenomethionine) plus vitamin E, which are known and well-stablished antioxidants, on the performance traits, shelf life and microbial quality of the meat, physiological functions and oxidative stress control of lambs. Thirty-two Dorper x Santa Ines lambs (initial bodyweight of 22.42 ± 3.9 kg and 60 days of age) were submitted to a diet consisting of Cynodon dactylon hay (6%) and concentrate (94%). The animals were divided into four treatments: control, without additives; functional oils (FO), 0.50 g/kg DM of castor and cashew nut shell oils; hydroxy-selenomethionine and vitamin E (SeE), 0.50 mg/kg of organic selenium and 100 IU/kg DM of vitamin E; FO plus SeE, at the same doses as the other groups. Blood samples were collected after 1, 30 and 53 days on feed. After 54 days, the lambs were slaughtered and rumen health, carcass and meat traits, shelf life, and microbiological quality were evaluated. There were no differences in performance or carcass traits. A higher muscle and serum Se concentration (p < 0.0001), lower lipid peroxidation in meat during display (p < 0.0001), and a lower count of psychrotrophic microorganisms on day 5 were observed in the SeE and FO plus SeE groups. The treatments reduced the counts of Enterobacteriaceae, and Staphylococcus spp. FO animals showed higher GSH-Px activity on day 30, while the peroxidase activity was higher in FO plus SeE animals (p = 0.035). SeE and FO plus SeE animals had lower serum ALT and AST levels. Functional oils improved the microbiological quality of meat. Hydroxy-selenomethionine and vitamin E prevented oxidative stress, lipid peroxidation, and microbial spoilage.
Collapse
Affiliation(s)
- Helena Viel Alves Bezerra
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Vicente Luiz Macedo Buarque
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Lucas Santos Bermudes Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Paulo Roberto Pedroso Leme
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (A.M.C.V.); (A.C.N.V.)
| | - Andréia Cristina Nakashima Vaz
- Department of Veterinary Medicine, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (A.M.C.V.); (A.C.N.V.)
| | - Sarita Bonagurio Gallo
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Saulo Luz Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Paulo Roberto Leme
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| |
Collapse
|
133
|
Al-Deriny SH, Dawood MAO, Elbialy ZI, El-Tras WF, Mohamed RA. Selenium Nanoparticles and Spirulina Alleviate Growth Performance, Hemato-Biochemical, Immune-Related Genes, and Heat Shock Protein in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2020; 198:661-668. [PMID: 32157633 DOI: 10.1007/s12011-020-02096-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.
Collapse
Affiliation(s)
- Shady H Al-Deriny
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt.
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Wael F El-Tras
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
134
|
Ma C, Hoffmann PR. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin Cell Dev Biol 2020; 115:54-61. [PMID: 33214077 DOI: 10.1016/j.semcdb.2020.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays a key role in regulating the immune system. T cells are of particular interest due to their important role in promoting adaptive immunity against pathogens and cancer as well as regulating tolerance, all of which are influenced by dietary Se levels. The biological effects of Se are mainly exerted through the actions of the proteins into which it is inserted, i.e. selenoproteins. Thus, the roles that selenoproteins play in regulating T cell biology and molecular mechanisms involved have emerged as important areas of research for understanding how selenium affects immunity. Members of this diverse family of proteins exhibit a wide variety of functions within T cells that include regulating calcium flux induced by T cell receptor (TCR) engagement, shaping the redox tone of T cells before, during, and after activation, and linking TCR-induced activation to metabolic reprogramming required for T cell proliferation and differentiation. This review summarizes recent insights into the roles that selenoproteins play in these processes and their implications in understanding how Se may influence immunity.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA.
| |
Collapse
|
135
|
Sahebnasagh A, Saghafi F, Avan R, Khoshi A, Khataminia M, Safdari M, Habtemariam S, Ghaleno HR, Nabavi SM. The prophylaxis and treatment potential of supplements for COVID-19. Eur J Pharmacol 2020; 887:173530. [PMID: 32882216 PMCID: PMC7462519 DOI: 10.1016/j.ejphar.2020.173530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
The global impact of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infection that caused COVID-19 has been evident in the last few months from the unprecedented socioeconomic disruption to more than 600,000 deaths. The lack of vaccine and effective therapeutic agents for the disease prompted world-wide effort to test those antiviral therapeutics already in use for other diseases. Another interesting approach has been based on the pathological sequel of the disease that involve severe inflammatory reaction (or the cytokine storm) associated with pneumonia in critically ill patients. This article outlines the prophylaxis therapeutic potential of supplements vitamins and micronutrients in COVID-19. By ameliorating the inflammatory and oxidative stress associated with the disease and some direct antiviral effects, the application of these agents as adjuvants and other alternative approaches are discussed. Available clinical trials including those currently registered on these supplements are scrutinized.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Masoud Khataminia
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom.
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
136
|
Bityutsky VS, Tsekhmistrenko SI, Tsekhmistrenko ОS, Tymoshok NO, Spivak MY. Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The article is devoted to the mechanisms of regulation of redox processes in cells, a review of the Keap1 / Nrf2 / ARE redox-sensitive signaling system as a fundamental pathway that plays a key role in maintaining cellular redox homeostasis under stressful, inflammatory, carcinogenic and proapoptotic conditions. The structure of the cysteine-rich repressor protein Keap1, which is responsible for sensory perception of electrophiles and reactive oxygen species, the structure and functions of the transcription factor Nrf2, mechanisms of Nrf2 activation through the Keap1 / Nrf2 / ARE signaling system, which regulates the transcription and expression of cellular cytoprotective and antioxidant proteins, are described. Published data on the specificity of the interaction of the components of this cellular signaling pathway, the mechanisms of Keap1 dependent and independent adaptive response to the action of inductors, the role of biogenic selenium nanoparticles synthesized by green chemistry with the participation of bacteria in these processes are analyzed; features of Nrf2 induction depending on the type of bacteria and the stabilizing shell. It has been shown that biogenic selenium nanoparticles (BNSe), synthesized by different types of bacteria, activate the transcription factor Nrf2 using the Keap1-independent activation pathway through mitogen-protein kinases (MAPK): p38, ERK1 / 2 and AKT-mediated phosphorylation of Nrf2, protect the intestinal epithelial barrier function from the effects of oxidative damage, normalize mitochondrial function. A detailed understanding of thiol-dependent and independent redox signaling mechanisms under physiological and pathological conditions will lead to a deeper understanding of the redox component in human and animal diseases. The use of biogenic nanoselen, synthesized with the participation of various bacterial species, has been demonstrated to activate the Keap1 / Nrf2 / ARE signaling pathway, which may be of practical interest as a therapeutic target for many redox-mediated diseases.
Collapse
|
137
|
Hong J, Ndou SP, Adams S, Scaria J, Woyengo TA. Canola meal in nursery pig diets: growth performance and gut health. J Anim Sci 2020; 98:skaa338. [PMID: 33098648 PMCID: PMC8060915 DOI: 10.1093/jas/skaa338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
An experiment was conducted to determine the effects of including canola meal (CM) in nursery pig diets on growth performance, immune response, fecal microbial composition, and gut integrity. A total of 200 nursery pigs (initial body weight = 7.00 kg) were obtained in two batches of 100 pigs each. Pigs in each batch were housed in 25 pens (four pigs per pen) and fed five diets in a randomized complete block design. The five diets were corn-soybean meal (SBM)-based basal diets with 0%, 10%, 20%, 30%, or 40% of CM. The diets were fed in three phases: phase 1: day 0 to 7, phase 2: day 7 to 21, and phase 3: day 21 to 42. Diets in each phase were formulated to similar net energy, Ca, and digestible P and amino acid contents. Feed intake and body weight were measured by phase. Immune response and gut integrity parameters were measured at the end of phases 1 and 2. Fecal microbial composition for diets with 0% or 20% CM was determined at the end of phase 2. Overall average daily gain (ADG) responded quadratically (P < 0.05) to increasing dietary level of CM such that ADG was increased by 17% due to an increase in the dietary level of CM from 0% to 20% and was reduced by 16% due to an increase in the dietary level of CM from 20% to 40%. Pigs fed diets with 0% or 40% CM did not differ in overall ADG. Dietary CM tended to quadratically decrease (P = 0.09) serum immunoglobulin A (IgA) level at the end of phase 2 such that serum IgA level tended to reduce with an increase in dietary CM from 0% to 20% and to increase with an increase in dietary CM from 20% to 40%. Dietary CM at 20% decreased (P < 0.05) the relative abundance of Bacteroidetes phylum and tended to increase (P = 0.07) the relative abundance of Firmicutes phylum. Dietary CM linearly increased (P < 0.05) the lactulose to mannitol ratio in the urine by 47% and 49% at the end of phases 1 and 2, respectively, and tended to linearly decrease (P < 0.10) ileal transepithelial electrical resistance at the end of phase 1 by 64%. In conclusion, CM fed in the current study could be included in corn-SBM-based diets for nursery pigs 20% to improve the growth performance and gut microbial composition and reduce immune response. Also, the CM used in the current study could be included in corn-SBM-based diets for nursery pigs at 30% or 40% without compromising growth performance. Dietary CM increased gut permeability, implying that dietary CM at 20% improves the growth performance of weaned pigs through mechanisms other than reducing gut permeability.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | - Seidu Adams
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
138
|
Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr 2020; 7:580504. [PMID: 33195370 PMCID: PMC7642511 DOI: 10.3389/fnut.2020.580504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 caused a major global pandemic and continues to be an unresolved global health crisis. The supportive care interventions for reducing the severity of symptoms along with participation in clinical trials of investigational treatments are the mainstay of COVID-19 management because there is no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese patients. Micronutrients may boost the host immunity against viral infections, including COVID-19. In this review, we discuss the clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fatih M. Uckun
- COVID-19 Task Force, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Kazim Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
139
|
Nutrigenetics of antioxidant enzymes and micronutrient needs in the context of viral infections. Nutr Res Rev 2020; 34:174-184. [PMID: 33081856 DOI: 10.1017/s0954422420000244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sustaining adequate nutritional needs of a population is a challenging task in normal times and a priority in times of crisis. There is no 'one-size-fits-all' solution that addresses nutrition. In relevance to the COVID-19 (coronavirus disease 2019) pandemic crisis, viral infections in general and RNA viruses in particular are known to induce and promote oxidative stress, consequently increasing the body's demand for micronutrients, especially those related to antioxidant enzymic systems, thus draining the body of micronutrients, and so hindering the human body's ability to cope optimally with oxidative stress. Common polymorphisms in major antioxidant enzymes, with world population minor allele frequencies ranging from 0·5 to 50 %, are related to altered enzymic function, with substantial potential effects on the body's ability to cope with viral infection-induced oxidative stress. In this review we highlight common SNP of the major antioxidant enzymes relevant to nutritional components in the context of viral infections, namely: superoxide dismutases, glutathione peroxidases and catalase. We delineate functional polymorphisms in several human antioxidant enzymes that require, especially during a viral crisis, adequate and potentially additional nutritional support to cope with the pathological consequences of disease. Thus, in face of the COVID-19 pandemic, nutrition should be tightly monitored and possibly supplemented, with special attention to those carrying common polymorphisms in antioxidant enzymes.
Collapse
|
140
|
Lee HJ, Park JS, Yoo HJ, Lee HM, Lee BC, Kim JH. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel) 2020; 9:antiox9101021. [PMID: 33092166 PMCID: PMC7589095 DOI: 10.3390/antiox9101021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune activation associates with the intracellular generation of reactive oxygen species(ROS). To elicit effective immune responses, ROS levels must be balanced. Emerging evidenceshows that ROS-mediated signal transduction can be regulated by selenoproteins such asmethionine sulfoxide reductase B1 (MsrB1). However, how the selenoprotein shapes immunityremains poorly understood. Here, we demonstrated that MsrB1 plays a crucial role in the ability ofdendritic cells (DCs) to provide the antigen presentation and costimulation that are needed forcluster of differentiation antigen four (CD4) T-cell priming in mice. We found that MsrB1 regulatedsignal transducer and activator of transcription-6 (STAT6) phosphorylation in DCs. Moreover, bothin vitro and in vivo, MsrB1 potentiated the lipopolysaccharide (LPS)-induced Interleukin-12 (IL-12)production by DCs and drove T-helper 1 (Th1) differentiation after immunization. We propose thatMsrB1 activates the STAT6 pathway in DCs, thereby inducing the DC maturation and IL-12production that promotes Th1 differentiation. Additionally, we showed that MsrB1 promotedfollicular helper T-cell (Tfh) differentiation when mice were immunized with sheep red blood cells.This study unveils as yet unappreciated roles of the MsrB1 selenoprotein in the innate control ofadaptive immunity. Targeting MsrB1 may have therapeutic potential in terms of controllingimmune reactions.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Hyun Jung Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.J.Y.); (H.M.L.); (B.C.L.)
| | - Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.J.Y.); (H.M.L.); (B.C.L.)
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.J.Y.); (H.M.L.); (B.C.L.)
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.J.Y.); (H.M.L.); (B.C.L.)
- Correspondence: ; Tel.: +82-2-3290-3045
| |
Collapse
|
141
|
Zhang Z, Liu Q, Yang J, Yao H, Fan R, Cao C, Liu C, Zhang S, Lei X, Xu S. The proteomic profiling of multiple tissue damage in chickens for a selenium deficiency biomarker discovery. Food Funct 2020; 11:1312-1321. [PMID: 32022057 DOI: 10.1039/c9fo02861g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ruifeng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Changyu Cao
- College of Life and Science, Foshan University, Foshan, 528000, P. R. China
| | - Ci Liu
- College of Animal Technology, Shanxi Agricultural University, Jinzhong, 030600, P. R. China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14583, USA
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14583, USA
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
142
|
Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37:101715. [PMID: 32992282 PMCID: PMC7481318 DOI: 10.1016/j.redox.2020.101715] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jinsong Zhang
- Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, PR China
| | - Ramy Saad
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
143
|
Watanabe LM, Fernandes de Lima L, Ferraz-Bannitz R, Takaara D, Coimbra Romano B, Braga Costa TM, Foss de Freitas MC, Bueno AC, Barbosa Júnior F, Marliere Navarro A. Association between creatine kinase activity, oxidative stress and selenoproteins mRNA expression changes after Brazil nut consumption of patients using statins. Clin Nutr 2020; 39:3175-3181. [DOI: 10.1016/j.clnu.2020.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
|
144
|
Ferreira C, Viana SD, Reis F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms 2020; 8:E1514. [PMID: 33019592 PMCID: PMC7601735 DOI: 10.3390/microorganisms8101514] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic infection caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients present a complex clinical picture that, in severe cases, evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. The underlying pathophysiological mechanisms are complex and multifactorial and have been summarized as a hyperresponse of the immune system that originates an inflammatory/cytokine storm. In elderly patients, particularly in those with pre-existing cardiovascular, metabolic, renal, and pulmonary disorders, the disease is particularly severe, causing prolonged hospitalization at intensive care units (ICU) and an increased mortality rate. Curiously, the same populations have been described as more prone to a gut microbiota (GM) dysbiosis profile. Intestinal microflora plays a major role in many metabolic and immune functions of the host, including to educate and strengthen the immune system to fight infections, namely of viral origin. Notably, recent studies suggest the existence of GM dysbiosis in COVID-19 patients. This review article highlights the interplay between the triad GM dysbiosis-immune hyperresponse-inflammation in the individual resilience/fragility to SARS-CoV-2 infection and presents the putative impact of pharmacological and nutraceutical approaches on the triumvirate, with focus on GM.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| |
Collapse
|
145
|
The Relevance of Selenium Status in Rheumatoid Arthritis. Nutrients 2020; 12:nu12103007. [PMID: 33007934 PMCID: PMC7601319 DOI: 10.3390/nu12103007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that can cause joint damage. Among the environmental risk factors, diet plays an important role because it can aggravate or attenuate inflammation. Selenium (Se) is considered an essential trace element since it is a structural component of antioxidant enzymes; however, its concentration can be affected by diet, drugs and genetic polymorphisms. Studies have reported that RA patients have a deficient diet in some food groups that is associated with parameters of disease activity. Furthermore, it has been shown that there is an alteration in serum Se levels in this population. Although some clinical trials have been conducted in the past to analyze the effect of Se supplementation in RA, no significant results were obtained. Contrastingly, experimental studies that have evaluated the effect of novel Se nanoparticles in RA-induced models have shown promising results on the restoration of antioxidant enzyme levels. In particular, glutathione peroxidase (GPx) is an important selenoprotein that could have a modulating effect on inflammation in RA. Considering that RA patients present an inflammatory and oxidative state, the aim of this review is to give an overview of the current knowledge about the relevance of Se status in RA.
Collapse
|
146
|
Sumarmi S. Kerja Harmoni Zat Gizi dalam Meningkatkan Imunitas Tubuh Terhadap Covid-19: Mini Review. AMERTA NUTRITION 2020. [DOI: 10.20473/amnt.v4i3.2020.250-256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABSTRACTBackground: The Covid-19 pandemic in Indonesia has been running since March 2020. Efforts to break the chain of transmission of the disease caused by the new SARS-CoV 2 coronavirus are by avoiding contact by practicing social & physical distancing and improving personal hygiene, and increase immunity or body defense against the corona virus.Purpose: This article discusses the role of macro nutrients and micronutrients that have the potential to increase immunity such as omega-3 fatty acids, several water soluble vitamins such as vitamin B6, vitamin C, as well as fat soluble vitamins such as vitamin A, vitamin D and vitamin E. as well as several minerals such as Fe, Zn, Se. The mechanisms of innate immunity and adaptive immunity that involve these nutrients will be discussed in depth, as well as how the cellular mechanism fights the corona virus.Discussion: The mechanism for the entry of the corona virus into the cell is through a mechanism called endocytosis, in which the virus is captured by the receptors on the surface of the cell, then drawn into the cell. Spike protein (protein S) facilitates the entry of viruses into target cells, especially lung cells.Conclusion The body's defense mechanisms against the corona virus are: 1) strengthening the body's frontline defenses or innate immunity; 2) stimulates the production of IgM and IgG immunoglobulins in the circulation; 3) blocking the virus from binding to the ACE-2 receptor; 4) reduce the intensity of cytokine storms; 5) reduce the speed of virus replication. ABSTRAKLatar Belakang: Pandemi Covid-19 di Indonesia telah berjalan sejak bulan Maret 2020. Upaya untuk memutus rantai penularan penyakit yang disebabkan oleh virus corona jenis baru SARS-CoV 2 adalah dengan menghidari kontak dengan cara mempraktekkan social & physical distancing dan meningkatkan kebersihan diri, serta meningkatkan imunitas atau pertahanan tubuh terhadap virus corona. Tujuan: Artikel ini membahas peran zat gizi makro dan zat gizi mikro yang berpotensi untuk meningkatkan imunitas seperti asam lemak omega-3, beberapa vitamin larut air seperti vitamin B6, vitamin C, juga vitamin larut lemak seperti vitamin A, vitamin D dan vitamin E, serta beberapa mineral seperti Fe, Zn, Se. Mekanisme innate immunity dan adaptive immunity yang melibatkan zat gizi tersebut akan dibahas secara mendalam, serta bagaimana mekanisme selular melawan virus corona. Ulasan: Mekanisme masuknya virus corona ke dalam sel adalah melalui mekanisme yang disebut endositosis, yaitu virus ditangkap oleh reseptor yang terdapat di permukaan sel, kemudian ditarik masuk ke dalam sel. Spike protein (protein S) bertugas memfasilitasi masuknya virus ke dalam sel target, terutama sel paru.Kesimpulan Mekanisme pertahanan tubuh melawan virus corona adalah: 1) menguatkan pertahanan tubuh garis depan atau innate immunity; 2) menstimulasi produksi immunoglobulin IgM dan IgG di dalam sirkulasi; 3) memblokir agar virus tidak terikat oleh receptor ACE-2; 4) menurunkan intensitas badai sitokin; 5) menurunkan kecepatan replikasi virus.
Collapse
|
147
|
Jia W, Song Y, Yang L, Kong J, Boczek T, He Z, Wang Y, Zhang X, Hu H, Shao D, Tang H, Xia L, Xu X, Guo F. The changes of serum zinc, copper, and selenium levels in epileptic patients: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2020; 13:1047-1058. [PMID: 32856976 DOI: 10.1080/17512433.2020.1816821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION It is widely accepted that trace elements have been implicated in various metabolic processes. Valproic acid (VPA) is a remarkably safe and effective antiepileptic drug. There is no consensus option regarding the fluctuations in serum zinc (Zn), copper (Cu), and selenium (Se) in epileptic patients treated with VPA. We applied a meta-analysis to systematically assess the effects of VPA on serum ions in these patients. AREAS COVERED In this study, we performed a meta-analysis of the changes in serum Zn, Cu, and Se levels in human samples of healthy controls, epileptic patients, and patients treated with VPA. Twenty-two published analyzable studies were selected by searching the databases of PubMed, China National Knowledge Infrastructure (CNKI), Google Scholar, Web of Science, EMBASE, WAN FANG and Vip. EXPERT OPINION Serum Se levels in epileptic patients were decreased compared to healthy controls. Serum Zn levels in patients with VPA treatment were significantly lower than those in epileptic patients. The results of this meta-analysis are instructive for the intake of trace elements such as Zn, Cu, and Se in the diet balance of patients with epilepsy treated with VPA. Meanwhile, this study provides a theoretical basis for the combined use of other drugs that affect the intake and absorption of trace elements and VPA.
Collapse
Affiliation(s)
- Wanying Jia
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Yang Song
- School of Humanities and Social Sciences, China Medical University , Shenyang, China
| | - Lei Yang
- Tianjin Customs, Technical Center for Safety of Industrial Products , Tianjin, China
| | - Jingjing Kong
- Department of Gerontology, The First Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Tomasz Boczek
- Department of Ophthalmology, Stanford University School of Medicine , Palo Alto, CA, USA
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University , Shenyang, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Xiaohong Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Hong Tang
- School of Public Health, China Medical University , Shenyang, China
| | - Liguang Xia
- Department of Pediatric Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Xiaoxue Xu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| |
Collapse
|
148
|
Chaari A, Bendriss G, Zakaria D, McVeigh C. Importance of Dietary Changes During the Coronavirus Pandemic: How to Upgrade Your Immune Response. Front Public Health 2020; 8:476. [PMID: 32984253 PMCID: PMC7481450 DOI: 10.3389/fpubh.2020.00476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus pandemic continues to spread causing further public health, social, and economic issues. The disparities in the rates of death between countries poses questions about the importance of lifestyle habits and the immune status of populations. An exploration of dietary habits and COVID-19-related death might unravel associations between these two variables. Indeed, while both nutritional excess and deficiency are associated with immunodeficiency, adequate nutrition leading to an optimally functioning immune system may be associated with better outcomes with regards to preventing infection and complications of COVID-19, as well as developing a better immune response to other pathogenic viruses and microorganisms. This article outlines the key functions of the immune system and how macronutrients, micronutrients, and metabolites from the gut microbiome can be essential in the development of an efficient immune system. In addition, the effects of intermittent fasting on the inflammatory state as well as metabolic parameters will be discussed.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Department, Weill Cornell Medicine, Qatar Foundation, Education City, Doha, Qatar
| | | | | | | |
Collapse
|
149
|
Lenhart JG, Vu PT, Quackenbush K, LaPorte A, Smith J. The efficacy of a compounded micronutrient supplement on the incidence, duration, and severity of the common cold: A pilot randomized, double-blinded, placebo-controlled trial. PLoS One 2020; 15:e0237491. [PMID: 32841256 PMCID: PMC7447041 DOI: 10.1371/journal.pone.0237491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose Viral upper respiratory infections are associated with significant health and economic impact. This study sought to determine the efficacy of routine immune system micronutrient supplementation on the incidence, duration and severity of common cold symptoms. Methods This pilot study was a randomized, double-blinded, placebo-controlled trial of N = 259 with asymptomatic participants aged 18 to 65 in two cold seasons of 2016 and 2017. The treatment group received an immune system targeted micronutrient caplet, while the placebo group received a micronized cellulose caplet externally identical to the treatment caplet. Weekly surveys were sent electronically to participants to document common cold incidence, duration and severity. Primary statistical results were obtained using mixed-effects logistic regressions to account for longitudinal measurements for participants. Results The odds of acquiring an upper respiratory infection, adjusted for potential confounders, was estimated to be 0.74 times lower in the treatment group (p = 0.14). The odds of reporting specific symptoms were statistically lower in the treatment arm compared to the placebo arm for runny nose (OR = 0.53, p = 0.01) and cough (OR = 0.51, p = 0.04). Shorter durations of runny nose and cough were also observed in the treatment arm compared to placebo (both p < 0.05). There was no significant difference in severity of symptoms in either group. The observed proportion of reported cold symptoms in the treatment group was lower compared to the placebo group between late January and February in two consecutive cold seasons. Given the physical, workplace and economic impact of upper respiratory infections, this low cost and low risk intervention should be further studied with more robust investigation and meticulous experimental design.
Collapse
Affiliation(s)
- James G. Lenhart
- Community Health Care Family Medicine Residency, Tacoma, Washington in affiliation with the Family Medicine Residency Network, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| | - Phuong T. Vu
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Kale Quackenbush
- Community Health Care Family Medicine Residency, Tacoma, Washington in affiliation with the Family Medicine Residency Network, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anne LaPorte
- Community Health Care Family Medicine Residency, Tacoma, Washington in affiliation with the Family Medicine Residency Network, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jeff Smith
- Community Health Care Family Medicine Residency, Tacoma, Washington in affiliation with the Family Medicine Residency Network, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
150
|
d'Arqom A, G Putri M, Savitri Y, Rahul Alfaidin AM. Vitamin and mineral supplementation for β-thalassemia during COVID-19 pandemic. Future Sci OA 2020; 6:FSO628. [PMID: 33230422 PMCID: PMC7434224 DOI: 10.2144/fsoa-2020-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
AIM Low levels of immune-related micronutrients have been identified in β-thalassemia samples. Moreover, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, alters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. MATERIALS & METHODS Searches of PUBMED and EMBASE were conducted to identify the level and supplementation of micronutrients in β-thalassemia, published from 2001-May 2020. RESULTS The review found six observational and five interventional studies supporting the importance of supplementing vitamins and minerals among patients with β-thalassemia. CONCLUSION Supplementation of immune-related vitamins and minerals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Department of Pharmacology & Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Melvanda G Putri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Yovani Savitri
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | | |
Collapse
|