101
|
Fujita N, Nagata S. Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: roles of Contactin and notochord-derived chondroitin sulfate proteoglycans. Dev Growth Differ 2006; 47:445-56. [PMID: 16179071 DOI: 10.1111/j.1440-169x.2005.00820.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyoku, Tokyo 112-8681, Japan
| | | |
Collapse
|
102
|
Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 2006; 41:2935-47. [PMID: 16310354 DOI: 10.1016/j.ejca.2005.09.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 01/03/2023]
Abstract
Carbonic anhydrase IX (CA IX) is a membrane isoenzyme, the overexpression of which is associated with clear cell carcinoma of the kidney. Its overexpression is restricted mainly to cancer, as it is absent in corresponding normal tissues making it a potential cancer biomarker. Several recent studies have shown that CA IX, apart from its classical enzyme activity of reversibly hydrating carbon dioxide extracellularly to facilitate the net extrusion of protons from inside to outside the cell, it can also be a key player in the modulation of cell adhesion processes and participate in the regulation of cell proliferation in response to hypoxic environment to ultimately contribute to tumour progression. Here, we have shown that the sole tyrosine moiety of CA IX present in its intracellular domain can be phosphorylated in an epidermal growth factor dependent manner, suggesting that it can feed into the growth factor receptor dependent signalling pathways. Our studies suggest that the tyrosine phosphorylated CA IX can interact with the regulatory subunit of PI-3-Kinase, contributing to Akt activation. These studies have revealed a positive feed back loop that can form the basis of a vicious cycle that could contribute to the progression of clear cell renal carcinoma and poor prognosis. These studies show that CA IX signalling may be a part of both the hypoxia driven and hypoxia independent pathways that occur in the cancer cell. Finally, our studies emphasize the need for a more refined strategy using signal transduction therapeutics to inhibit the cell surface carbonic anhydrases for the management of this malignancy.
Collapse
Affiliation(s)
- Thambi Dorai
- Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, NY 10466-2697, USA.
| | | | | | | | | |
Collapse
|
103
|
Rome C, Roullot V, Couillaud F. Polymorphism of the untranslated regions of the F3/contactin mRNA in the rat nervous system. ACTA ACUST UNITED AC 2005; 139:184-91. [PMID: 15967539 DOI: 10.1016/j.molbrainres.2005.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 01/06/2023]
Abstract
F3/contactin is a neural adhesion molecule implicated in various physiological processes. In rat brain tissues, we cloned various mRNA with the same coding region but differing in 3' and 5'UTR. The 3'UTR presents two polyadenylation signals. At the 5' end, we identified two leader exons, multiple transcription initiation sites and splicing events, leading to at least 19 different 5'UTR. The F3/contactin rat gene differs from the mouse gene for two reasons: (1) it contains two additional untranslated exons that are alternatively spliced and (2) it lacks the homologue mouse untranslated exon 0.
Collapse
Affiliation(s)
- Claire Rome
- INSERM U378, Institut François Magendie, Université Victor Segalen, Bordeaux, France
| | | | | |
Collapse
|
104
|
Proescholdt MA, Mayer C, Kubitza M, Schubert T, Liao SY, Stanbridge EJ, Ivanov S, Oldfield EH, Brawanski A, Merrill MJ. Expression of hypoxia-inducible carbonic anhydrases in brain tumors. Neuro Oncol 2005; 7:465-75. [PMID: 16212811 PMCID: PMC1871734 DOI: 10.1215/s1152851705000025] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel-Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1alpha staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marsha J. Merrill
- Send correspondence to Marsha Merrill, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg. 10, Rm. 5D37, 10 Center Drive, Bethesda, MD 20892-1414, USA (
)
| |
Collapse
|
105
|
Abstract
How demyelination and remyelination affect the function of myelinated axons is a fundamental aspect of demyelinating diseases. We examined this issue in Trembler-J mice, a genetically authentic model of a dominantly inherited demyelinating neuropathy of humans. The K+ channels Kv1.1 and Kv1.2 channels were often improperly located in the paranodal axon membrane, typically associated with improperly formed paranodes, and in unmyelinated segments between internodes. As in wild-type nerves, Trembler-J nodes contained Nav1.6, ankyrin-G, betaIV-spectrin, and KCNQ2, but, unlike wild-type nerves, they also contained Kv3.1b and Nav1.8. In unmyelinated segments bordered by myelin sheaths, these proteins were clustered in heminodes and did not appear to be diffusely localized in the unmyelinated segments themselves. Nodes and heminodes were contacted by Schwann cells processes that did not have the ultrastructural or molecular characteristics of mature microvilli. Despite the presence of Nav1.8, a tetrodotoxin-resistant sodium channel, sciatic nerve conduction was at least as sensitive to tetrodotoxin in Trembler-J nerves as in wild-type nerves. Thus, the profound reorganization of axonal ion channels and the aberrant expression of novel ion channels likely contribute to the altered conduction in Trembler-J nerves.
Collapse
Affiliation(s)
- Jérôme J Devaux
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6077, USA.
| | | |
Collapse
|
106
|
Hayashi N, Mizusaki MJ, Kamei K, Harada S, Miyata S. Chondroitin sulfate proteoglycan phosphacan associates with parallel fibers and modulates axonal extension and fasciculation of cerebellar granule cells. Mol Cell Neurosci 2005; 30:364-77. [PMID: 16150606 DOI: 10.1016/j.mcn.2005.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 01/06/2023] Open
Abstract
Phosphacan is a nervous system-specific chondroitin sulfate proteoglycan and one of the major components of extracellular matrix in the brain. In the present study, we examined its spatiotemporal expression, ultrastructural localization, binding manner, and in vitro analysis on cell adhesion, axonal extension, and fasciculation in rat cerebellum. The present light microscopic immunohistochemistry showed that phosphacan immunoreactivity was localized mainly at the molecular layer in the cerebellum, but not at the external granular layer. Further double labeling immunohistochemical and immunoelectron microscopic studies revealed that phosphacan was localized around parallel fibers, but not at synapses. The binding of phosphacan to membrane and/or extracellular matrix partly required Ca2+ and was mediated through its core glycoprotein. Phosphacan inhibited adhesion and axonal extension of cerebellar granule cells in dissociated culture, while it promoted axonal fasciculation of their aggregated culture. These results indicate that phosphacan around parallel fibers may be the repulsive substratum for adhesion and extension of granule cells and promote the fasciculation of parallel fibers.
Collapse
Affiliation(s)
- Noriko Hayashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
107
|
Niisato K, Fujikawa A, Komai S, Shintani T, Watanabe E, Sakaguchi G, Katsuura G, Manabe T, Noda M. Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J Neurosci 2005; 25:1081-8. [PMID: 15689543 PMCID: PMC6725950 DOI: 10.1523/jneurosci.2565.04.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although protein tyrosine phosphatases (PTPs) are expressed abundantly in the brain, their roles in synaptic plasticity have not been well elucidated. In this study, we have examined the physiological functions of Ptprz, which is a receptor-type PTP expressed predominantly in the brain as a chondroitin sulfate proteoglycan. We have examined phenotypes of mutant mice deficient in Ptprz using electrophysiological, pharmacological, and behavioral approaches. Mutant mice exhibit enhanced long-term potentiation (LTP) in the CA1 region of hippocampal slices and impaired spatial learning abilities in an age-dependent manner: young adult (<10 weeks old) mutant mice show normal LTP and learning abilities in the Morris water maze task, whereas adult (>13 weeks old) mutant mice exhibit enhanced LTP and impairment in the task. The enhanced LTP is specifically canceled out by pharmacological inhibition of Rho-associated kinase (ROCK), a major downstream effector of Rho. These findings suggest that the lack of Ptprz leads to aberrant activation of ROCK and resultantly to enhanced LTP in the slice and learning impairments in the animal.
Collapse
Affiliation(s)
- Kazue Niisato
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Heck N, Klausmeyer A, Faissner A, Garwood J. Cortical neurons express PSI, a novel isoform of phosphacan/RPTPbeta. Cell Tissue Res 2005; 321:323-33. [PMID: 16028071 DOI: 10.1007/s00441-005-1135-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/11/2005] [Indexed: 01/06/2023]
Abstract
Phosphacan is a chondroitin sulfate proteoglycan representing the secreted extracellular part of a transmembrane receptor protein tyrosine phosphatase (RPTP-beta). These isoforms have been implicated in cell-extracellular matrix signaling events associated with myelination, axon growth, and cell migration in the developing central nervous system and may play critical roles in the context of brain pathologies. Recently, we have reported the identification of a new isoform of phosphacan, the phosphacan short isoform (PSI), the expression of which peaks in the second postnatal week. PSI interacts with the neuronal receptors L1 and F3/contactin and can promote neurite growth of cortical neurons. In this study, we have assessed, by in situ hybridization, the expression profile of PSI in the rat brain at postnatal day 7. PSI is largely expressed in the gray matter of the developing cerebral cortex in which it colocalizes with phosphacan, whereas the expression of RPTPbeta receptor forms is restricted to the ventricular area in which PSI has not been observed. Neurons from all layers of the cortex express PSI. In the cerebellum, on the other hand, no expression of PSI has been detected, although the other phosphacan/RPTP-beta isoforms show strong PSI expression here. Overall, our study suggests that PSI is expressed during the postnatal period in differentiated neurons of the cortex but is absent from structures in which proliferation and migration occur. The significance of these observations is discussed in the context of previous models of phosphacan/RPTP-beta functions.
Collapse
Affiliation(s)
- Nicolas Heck
- LNDR, CNRS Centre de Neurochimie, 67084, Strasbourg, France.
| | | | | | | |
Collapse
|
109
|
Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR, Peles E. Gliomedin Mediates Schwann Cell-Axon Interaction and the Molecular Assembly of the Nodes of Ranvier. Neuron 2005; 47:215-29. [PMID: 16039564 DOI: 10.1016/j.neuron.2005.06.026] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/16/2005] [Accepted: 06/26/2005] [Indexed: 01/06/2023]
Abstract
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Ankyrins/metabolism
- Axons/metabolism
- Blotting, Northern/methods
- Blotting, Western/methods
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Compartmentation
- Cells, Cultured
- Chlorocebus aethiops
- Claudins
- Cloning, Molecular/methods
- Cytoskeletal Proteins
- Fluorescent Antibody Technique/methods
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Humans
- Macromolecular Substances/immunology
- Macromolecular Substances/metabolism
- Membrane Proteins/metabolism
- Microfilament Proteins/metabolism
- Microscopy, Immunoelectron/methods
- Myelin Basic Protein/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Neurofilament Proteins/metabolism
- Phosphoproteins/metabolism
- Protein Binding/physiology
- Protein Structure, Tertiary
- Ranvier's Nodes/metabolism
- Ranvier's Nodes/ultrastructure
- Rats
- Receptors, Peptide/metabolism
- S100 Proteins/metabolism
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Sciatic Nerve/growth & development
- Sciatic Nerve/metabolism
- Sodium Channels/metabolism
- Spectrin/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- Yael Eshed
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Haenisch C, Diekmann H, Klinger M, Gennarini G, Kuwada JY, Stuermer CAO. The neuronal growth and regeneration associated Cntn1 (F3/F11/Contactin) gene is duplicated in fish: expression during development and retinal axon regeneration. Mol Cell Neurosci 2005; 28:361-74. [PMID: 15691716 DOI: 10.1016/j.mcn.2004.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 01/06/2023] Open
Abstract
The Cntn1 (Contactin/F3/F11) cell adhesion molecule is involved in axon growth and guidance, fasciculation, synapse formation, and myelination in birds and mammals. We identified Cntn1 genes in goldfish, zebrafish, and fugu, and provide evidence for a fish-specific duplication leading to Cntn1a and Cntn1b. Our analyses suggest a subfunctionalization for the Cntn1 paralogs in zebrafish compared to other vertebrates which have a single Cntn1 gene. Similar to Cntn1a, Cntn1b transcripts are found in subsets of sensory and motor neurons. However, Cntn1b is detected later and more restricted than Cntn1a. This spatio-temporal expression pattern of the two zebrafish Cntn1 paralogs suggests functions related to those of mammalian Cntn1. In adult goldfish, Cntn1b is expressed in oligodendrocytes and is upregulated in retinal ganglion cells after optic nerve transection, which is consistent with an additional role during regeneration.
Collapse
|
111
|
Polykratis A, Katsoris P, Courty J, Papadimitriou E. Characterization of Heparin Affin Regulatory Peptide Signaling in Human Endothelial Cells. J Biol Chem 2005; 280:22454-61. [PMID: 15797857 DOI: 10.1074/jbc.m414407200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heparin affin regulatory peptide (HARP) is an 18-kDa secreted growth factor that has a high affinity for heparin and a potent role on tumor growth and angiogenesis. We have previously reported that HARP is mitogenic for different types of endothelial cells and also affects cell migration and differentiation (12). In this study we examined the signaling pathways involved in the migration and tube formation on matrigel of human umbilical vein endothelial cells (HUVEC) induced by HARP. We report for the first time that receptor-type protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), which is a receptor for HARP in neuronal cell types, is also expressed in HUVEC. We also document that HARP signaling through RPTPbeta/zeta leads to activation of Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase, and Erk1/2. Sodium orthovanadate, chondroitin sulfate-C, PP1, wortmannin, LY294002, and U0126 inhibit HARP-mediated signaling and HUVEC migration and tube formation. In addition, RPTPbeta/zeta suppression using small interfering RNA technology interrupts intracellular signals and HUVEC migration and tube formation induced by HARP. These results establish the role of RPTPbeta/zeta as a receptor of HARP in HUVEC and elucidate the HARP signaling pathway in endothelial cells.
Collapse
MESH Headings
- Blotting, Western
- CSK Tyrosine-Protein Kinase
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Movement
- Cells, Cultured
- Collagen/pharmacology
- Cytokines/chemistry
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Drug Combinations
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- Humans
- Immunoprecipitation
- Laminin/pharmacology
- Neovascularization, Pathologic
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Proteoglycans/pharmacology
- RNA/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- src-Family Kinases
Collapse
Affiliation(s)
- Apostolos Polykratis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | | | | | | |
Collapse
|
112
|
Hayashi N, Miyata S, Yamada M, Kamei K, Oohira A. Neuronal expression of the chondroitin sulfate proteoglycans receptor-type protein-tyrosine phosphatase beta and phosphacan. Neuroscience 2005; 131:331-48. [PMID: 15708477 DOI: 10.1016/j.neuroscience.2004.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2004] [Indexed: 12/30/2022]
Abstract
Receptor-type protein-tyrosine phosphatase beta (RPTPbeta) and its spliced variant phosphacan are major components of chondroitin sulfate proteoglycans in the CNS. In this study, expression and localization of RPTPbeta and phosphacan were examined in developing neurons by immunological analyses using 6B4, 3F8, and anti-PTP antibodies and reverse transcription-polymerase chain reaction (RT-PCR). Light microscopic immunohistochemistry showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed around neurons in the cortical plate. Further ultrastructural observation showed that 6B4 RPTPbeta/phosphacan immunoreactivity was observed mainly at the membrane of migrating neurons and radial glia. Immunocytochemical analysis revealed that RPTPbeta immunoreactivity was observed in cultured cerebral, hippocampal, and cerebellar neurons in addition to type-1 and type-2 astrocytes. Western analysis further demonstrated that the shorter receptor form of RPTPbeta (sRPTPbeta) was detected from cell lysate of cortical and hippocampal neurons using 6B4 and anti-PTP antibodies, while sRPTPbeta of cerebellar neurons and type-1 astrocytes was recognized only by anti-PTP antibody. Phosphacan was detected from neuronal culture supernatants of cortical, hippocampal, and cerebellar neurons, but not from type-1 astrocytes using 6B4 and 3F8 antibodies. RT-PCR analysis demonstrated the prominent expression of sRPTPbeta and phosphacan mRNAs in cortical neurons, and that of sRPTPbeta mRNA in type-1 astrocytes. During culture development of cortical neurons, the immunoreactivity of 6B4 sRPTPbeta was observed entirely on the neuronal surface including somata, dendrites, axons, and growth cones at earlier stages of cortical neuronal culture such as stages 2 and 3, while, after longer culture, 6B4 sRPTPbeta immunoreactivity in stages 4 and 5 neurons was detected at dendrites and somata and disappeared from axons, and was not observed over axonal terminals and postsynaptic spines. These results demonstrate that neurons are able to express sRPTPbeta on their cellular surface and to secrete phosphacan, and neuronal expression of sRPTPbeta may modulate neuronal differentiation including neuritogenesis and synaptogenesis.
Collapse
Affiliation(s)
- N Hayashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
113
|
Mungenast AE, Ojeda SR. Expression of three gene families encoding cell-cell communication molecules in the prepubertal nonhuman primate hypothalamus. J Neuroendocrinol 2005; 17:208-19. [PMID: 15842232 DOI: 10.1111/j.1365-2826.2005.01293.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transsynaptic and glial-neuronal communication are important components of the mechanism underlying the pubertal activation of luteinizing hormone-releasing hormone (LHRH) secretion. The molecules required for the architectural organization of these cell-cell interactions have not been identified. We now show that the hypothalamus of the prepubertal female rhesus monkey expresses a multiplicity of genes encoding three families of adhesion/signalling proteins involved in the structural definition of both neurone-to-neurone and bi-directional neurone-glia communication. These include the neurexin/neuroligin (NRX/NRL) and protocadherin-alpha (PCDHalpha) families of synaptic specifiers/adhesion molecules, and key components of the contactin-dependent neuronal-glial adhesiveness complex, including contactin/F3 itself, the contactin-associated protein-1 (CASPR1), and the glial receptor protein tyrosine phosphatase beta. Prominently expressed among members of the NRX family is the neurexin isoform involved in the specification of glutamatergic synapses. Although NRXs, PCDHalphas and CASPR1 transcripts are mostly detected in neurones, the topography of expression appears different. NRX1 mRNA-containing neurones are scattered throughout the hypothalamus, PCDHalpha mRNA transcripts appear more abundant in neurones of the arcuate nucleus and periventricular region, and neurones positive for CASPR1 mRNA exhibit a particularly striking distribution pattern that delineates the hypothalamus. Examination of LHRH neurones, using the LHRH-secreting cell line GT1-7, showed that these cells contain transcripts encoding NRXs and one of their ligands (NRL1), at least one PCDHalpha (CNR-8/PCDHalpha10), and the CASPR1/contactin complex. The results indicate that the prepubertal female monkey hypothalamus contains a plethora of adhesion/signalling molecules with different but complementary functions, and that an LHRH neuronal cell line expresses key components of this structural complex. The presence of such cell-cell communication machinery in the neuroendocrine brain suggests an integrated participation of their individual components in the central control of female sexual development.
Collapse
Affiliation(s)
- A E Mungenast
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA
| | | |
Collapse
|
114
|
Kim HO, Blaskovich MA. Recent discovery and development of protein tyrosine phosphatase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.6.871] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
115
|
Müller S, Lamszus K, Nikolich K, Westphal M. Receptor protein tyrosine phosphatase ζ as a therapeutic target for glioblastoma therapy. Expert Opin Ther Targets 2005; 8:211-20. [PMID: 15161428 DOI: 10.1517/14728222.8.3.211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astrocytomas are the most frequent brain tumour type in adults. The most common astrocytoma is the glioblastoma (GBM), which is also the most malignant and refractory to treatment--ultimately leading to the patient's death within a year of diagnosis. Neither the classical nor more experimental therapeutic approaches have significantly improved the clinical outcome of this disease. Expression profile analysis of primary tumours has provided recent insight into the identification of new GBM therapeutic targets. These proteins serve as excellent candidates to either inhibit the target molecule's functions (e.g., angiogenesis, migration or proliferation) or, coupled with a toxin or radionucleotide, to bind and exterminate the tumour cells. The receptor protein tyrosine phosphatase zeta (RPTPzeta) and one of its main ligands, pleiotropin (Ptn), are overexpressed in GBMs, thus making them potentially very good targets for the development of new immunotherapeutics. This review will summarise recent advances in GBM therapies focusing on RPTPzeta as a target for immunotherapeutics.
Collapse
Affiliation(s)
- Sabine Müller
- AGY Therapeutics, 270 East Grant Avenue, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
116
|
Ensslen-Craig SE, Brady-Kalnay SM. Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev Biol 2004; 275:12-22. [PMID: 15464569 DOI: 10.1016/j.ydbio.2004.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/05/2004] [Accepted: 08/08/2004] [Indexed: 01/06/2023]
Abstract
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
117
|
Miyata S, Akagi A, Hayashi N, Watanabe K, Oohira A. Activity-dependent regulation of a chondroitin sulfate proteoglycan 6B4 phosphacan/RPTPbeta in the hypothalamic supraoptic nucleus. Brain Res 2004; 1017:163-71. [PMID: 15261112 DOI: 10.1016/j.brainres.2004.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 01/06/2023]
Abstract
The hypothalamic magnocellular neurons, synthesizing arginine vasopressin (AVP) and oxytocin, are well known to show structural plasticity during chronic physiological stimulation. We have previously reported that 6B4 phosphacan/receptor-type protein-tyrosine phosphatasebeta (RPTPbeta), a chondroitin sulfate proteoglycan is highly expressed in the supraoptic nucleus (SON) of adult hypothalamus. Here, we undertook to study the activity-dependent regulation of 6B4 phosphacan/RPTPbeta in this system. Double labeling confocal microscopy demonstrated in the SON that 6B4 phosphacan/RPTPbeta-immunoreactive perineuronal nets were seen around AVP-containing somata and dendrites and its distribution pattern was well coincided with that of TAG-1. Quantitative immunohistochemical and Western analyses showed that 1-week salt loading, known as the chronic physiological stimulation for inducing the structural changes such as synaptic remodeling and direct neuronal membrane apposition, decreased 6B4 phosphacan/RPTPbeta levels in the SON, but did not alter TAG-1 levels. The 6B4 phosphacan/RPTPbeta levels were returned to control basal values within 3 weeks after the cessation of the chronic stimulation. Activity-dependent decreases in 6B4 phosphacan/RPTPbeta levels of the SON were confirmed when Western and immunohistochemical samples were digested with chondroitinase ABC, indicating that the decrease in 6B4 phosphacan/RPTPbeta levels was due to disappearance of 6B4 phosphacan/RPTPbeta core protein rather than increase in chondroitin sulfate glycosaminoglycans. With electron microscopy, the electron-dense immunoproducts for 6B4 phosphacan/RPTPbeta were found on the membrane surface of axons and glial processes, but not at synaptic junctions in control SON, and its immunoreactivity was eliminated with the chronic salt loading. The present results indicate that the levels of 6B4 phosphacan/RPTPbeta are regulated with activity-dependent manner and may be concerned with the structural plasticity seen in the SON.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
118
|
Sima AAF, Zhang W, Li ZG, Murakawa Y, Pierson CR. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 2004; 53:1556-63. [PMID: 15161761 DOI: 10.2337/diabetes.53.6.1556] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To explore the molecular abnormalities underlying the degeneration of the node of Ranvier, a characteristic aberration of type 1 diabetic neuropathy, we examined in type 1 BB/Wor and type 2 BBZDR/Wor rats changes in expression of key molecules that make up the nodal and paranodal apparatus of peripheral nerve. Their posttranslational modifications were examined in vitro. Their responsiveness to restored insulin action was examined in type 1 animals replenished with proinsulin C-peptide. In sciatic nerve, the expression of contactin, receptor protein tyrosine phosphatase beta, and the Na(+)-channel beta(1) subunit, paranodal caspr and nodal ankyrin(G) was unaltered in 2-month type 1 diabetic BB/Wor rats but significantly decreased after 8 months of diabetes. These abnormalities were prevented by C-peptide administered to type 1 BB/Wor rats and did not occur in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. The expression of the alpha-Na(+)-channel subunit was unaltered. In SH-SY5Y cells, only the combination of insulin and C-peptide normalized posttranslational O-linked N-acetylglucosamine modifications and maximized serine phosphorylation of ankyrin(G) and p85 binding to caspr. The beneficial effects of C-peptide resulted in significant normalization of the nerve conduction deficits. These data describe for the first time the progressive molecular aberrations underlying nodal and paranodal degenerative changes in type 1 diabetic neuropathy and demonstrate that they are preventable by insulinomimetic C-peptide.
Collapse
Affiliation(s)
- Anders A F Sima
- Wayne State University, Department of Pathology, 540 E. Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
119
|
Dobbertin A, Rhodes KE, Garwood J, Properzi F, Heck N, Rogers JH, Fawcett JW, Faissner A. Regulation of RPTPbeta/phosphacan expression and glycosaminoglycan epitopes in injured brain and cytokine-treated glia. Mol Cell Neurosci 2004; 24:951-71. [PMID: 14697661 DOI: 10.1016/s1044-7431(03)00257-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS injury and are thought to limit axonal regeneration in the adult mammalian CNS. Therefore, we examined the expression of the CSPG, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan, after a knife lesion to the cerebral cortex and after treatment of glial cultures with regulatory factors. The three splice variants of this CSPG gene, the secreted isoform, phosphacan, and the two transmembrane isoforms, the long and short RPTPbeta, were examined. Western blot and immunostaining analysis of injured and uninjured tissue revealed a transient decrease of phosphacan protein levels, but not of short RPTPbeta, in the injured tissue from 1 to 7 days postlesion (dpl). By real time RT-PCR, we show that phosphacan and long RPTPbeta mRNA levels are transiently down-regulated at 2 dpl, unlike those of short RPTPbeta which increased after 4 dpl. In contrast to the core glycoprotein, the phosphacan chondroitin sulfate (CS) glycosaminoglycan epitope DSD-1 was up-regulated after 7 dpl. Phosphacan was expressed by cultivated astrocytes and oligodendrocyte precursors but was more glycanated in oligodendrocyte precursors, which produce more of DSD-1 epitope than astrocytes. Epidermal growth factor/transforming growth factor alpha strongly increased the astrocytic expression of long RPTPbeta and phosphacan and slightly the short RPTPbeta protein levels, while interferon gamma and tumor necrosis factor alpha reduced astrocytic levels of phosphacan, but not of the receptor forms. Examining the effects of phosphacan on axon growth from rat E17 cortical neurons, we found that phosphacan stimulates outgrowth in a largely CS dependent manner, while it blocks the outgrowth-promoting effects of laminin through an interaction that is not affected by removal of the CS chains. These results demonstrate complex injury-induced modifications in phosphacan expression and glycanation that may well influence axonal regeneration and repair processes in the damaged CNS.
Collapse
Affiliation(s)
- Alexandre Dobbertin
- Physiological Laboratory, University of Cambridge, CB2 3EG Cambridge, and Centre for Brain Repair, Forvie Site, Cambridge CB2 2PY, UK
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Butler CD, Schnetz SA, Yu EY, Davis JB, Temple K, Silver J, Malouf AT. Keratan sulfate proteoglycan phosphacan regulates mossy fiber outgrowth and regeneration. J Neurosci 2004; 24:462-73. [PMID: 14724244 PMCID: PMC6729989 DOI: 10.1523/jneurosci.3040-03.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have examined the role of chondroitin sulfate proteoglycans (CSPGs) and keratan sulfate proteoglycans (KSPGs) in directing mossy fiber (MF) outgrowth and regeneration in rat hippocampal slice cultures. MFs normally exhibit a very specific innervation pattern that is restricted to the stratum lucidum (SL). In addition, MFs in hippocampal slice cultures will regenerate this specific innervation pattern after transection. CSPGs are one of the best characterized inhibitory axon guidance molecules in the CNS and are widely expressed in all areas of the hippocampus except SL. KSPGs are also widely expressed in the hippocampus, but their role in axon outgrowth has not been extensively studied in the CNS where phosphacan is the only protein that appears to contain KS-GAGs. Cultured hippocampal slices were treated with either chondroitin ABC lyase or keratanases to reduce the inhibitory axon guidance properties of CS and KS proteoglycans, respectively. The ability of transected MFs to regenerate their normal innervation pattern after digestion of CS and KS-GAGS sugars with these enzymes was examined. Only keratanase treatment resulted in misrouting of MFs. Identifying the mechanism by which keratanase produced MF misrouting is complicated by the presence of splice variants of the phosphacan gene that include the extracellular form of phosphacan and the transmembrane receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). Both forms of phosphacan are made by astrocytes, suggesting that keratanase alters MF outgrowth by modifying astrocyte function.
Collapse
Affiliation(s)
- Christy D Butler
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Ohyama K, Ikeda E, Kawamura K, Maeda N, Noda M. Receptor-like protein tyrosine phosphatase zeta/RPTP beta is expressed on tangentially aligned neurons in early mouse neocortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:121-7. [PMID: 14757526 DOI: 10.1016/j.devbrainres.2003.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein tyrosine phosphatase zeta (PTPzeta)/RPTPbeta is a chondroitin sulfate proteoglycan predominantly expressed in the brain. In this study, we examined immunohistochemical localisation of PTPzeta in the mouse telencephalon from embryonic day 9.5 (E9.5) to E15.5. During E10.5-E12.5, immunoreactivities for PTPzeta are specifically observed on the tangentially aligned neurons at the preplate (PP) of the neocortex, as well as on the neurons at the mantle layer (ML) of the ganglionic eminences (GEs). Likewise, neurons immunoreactive for CR50, a marker for Cajal-Retzius neurons, are aligned from the ML of the ganglionic eminences to the PP of the neocortex and co-express PTPzeta. During E13.5-E15.5, PTPzeta-positive neurons are present at the subplate (SP) as well as at the marginal zone (MZ) of the neocortex. These results indicate that PTPzeta is a useful marker for early-generated neocortical neurons in mice: Cajal-Retzius neurons as well as the subplate neurons.
Collapse
Affiliation(s)
- Kyoji Ohyama
- Department of Anatomy, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
122
|
Coluccia A, Tattoli M, Bizzoca A, Arbia S, Lorusso L, De Benedictis L, Buttiglione M, Cuomo V, Furley A, Gennarini G, Cagiano R. Transgenic mice expressing F3/contactin from the transient axonal glycoprotein promoter undergo developmentally regulated deficits of the cerebellar function. Neuroscience 2004; 123:155-66. [PMID: 14667450 DOI: 10.1016/j.neuroscience.2003.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have shown that transgenic transient axonal glycoprotein (TAG)/F3 mice, in which the mouse axonal glycoprotein F3/contactin was misexpressed from a regulatory region of the gene encoding the transient axonal glycoprotein TAG-1, exhibit a transient disruption of cerebellar granule and Purkinje cell development [Development 130 (2003) 29]. In the present study we explore the neurobehavioural consequences of this mutation. We report on assays of reproductive parameters (gestation length, litter size and offspring viability) and on somatic and neurobehavioural end-points (sensorimotor development, homing performance, motor activity, motor coordination and motor learning). Compared with wild-type littermates, TAG/F3 mice display delayed sensorimotor development, reduced exploratory activity and impaired motor activity, motor coordination and motor learning. The latter parameters, in particular, were affected also in adult mice, despite the apparent recovery of cerebellar morphology, suggesting that subtle changes of neuronal circuitry persist in these animals after development is complete. These behavioural deficits indicate that the finely coordinated expression of immunoglobulin-like cell adhesion molecules such as TAG-1 and F3/contactin is of key relevance to the functional, as well as morphological maturation of the cerebellum.
Collapse
Affiliation(s)
- A Coluccia
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Policlinico, Piazza Giulio Cesare, I-70124, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H. Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 2004; 46:274-83. [PMID: 15048850 DOI: 10.1002/glia.20008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In myelinated axons, voltage-gated sodium channels specifically cluster at the nodes of Ranvier, while voltage-gated potassium channels are located at the juxtaparanodes. These characteristic localizations are influenced by myelination. During development, Nav1.2 first appears in the predicted nodes during myelination, and Nav1.6 replaces it in the mature nodes. Such replacements may be important physiologically. We examined the influence of the paranodal junction on switching of sodium channel subunits using the sulfatide-deficient mouse. This mutant displayed disruption of paranodal axoglial junctions and altered nodal lengths and channel distributions. The initial switching of Nav1.2 to Nav1.6 occurred in the mutant optic nerves; however, the number of Nav1.2-positive clusters was significantly higher than in wild-type mice. Although no signs of demyelination were observed at least up to 36 weeks of age, sodium channel clusters decreased markedly with age. Interestingly, Nav1.2 stayed in some of the nodal regions, especially where the nodal lengths were elongated, while Nav1.6 tended to remain in the normal-length nodes. The results in the mutant optic nerves suggested that paranodal junction formation may be necessary for complete replacement of nodal Nav1.2 to Nav1.6 during development as well as maintenance of Nav1.6 clusters at the nodes. Such subtype abnormality was not observed in the sciatic nerve, where paranodal disruption was observed. Thus, the paranodal junction significantly influences the retention of Nav1.6 in the node, which is followed by disorganization of nodal structures. However, its importance may differ between the central and peripheral nervous system.
Collapse
Affiliation(s)
- Ayaka Suzuki
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Gollan L, Salomon D, Salzer JL, Peles E. Caspr regulates the processing of contactin and inhibits its binding to neurofascin. ACTA ACUST UNITED AC 2003; 163:1213-8. [PMID: 14676309 PMCID: PMC2173730 DOI: 10.1083/jcb.200309147] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three cell adhesion molecules are present at the axoglial junctions that form between the axon and myelinating glia on either side of nodes of Ranvier. These include an axonal complex of contacin-associated protein (Caspr) and contactin, which was proposed to bind NF155, an isoform of neurofascin located on the glial paranodal loops. Here, we show that NF155 binds directly to contactin and that surprisingly, coexpression of Caspr inhibits this interaction. This inhibition reflects the association of Caspr with contactin during biosynthesis and the resulting expression of a low molecular weight (LMw), endoglycosidase H–sensitive isoform of contactin at the cell membrane, which remains associated with Caspr but is unable to bind NF155. Accordingly, deletion of Caspr in mice by gene targeting results in a shift from the LMw- to a HMw-contactin glycoform. These results demonstrate that Caspr regulates the intracellular processing and transport of contactin to the cell surface, thereby affecting its ability to interact with other cell adhesion molecules.
Collapse
Affiliation(s)
- Leora Gollan
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100 Israel
| | | | | | | |
Collapse
|
125
|
Svastová E, Zilka N, Zat'ovicová M, Gibadulinová A, Ciampor F, Pastorek J, Pastoreková S. Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Exp Cell Res 2003; 290:332-45. [PMID: 14567991 DOI: 10.1016/s0014-4827(03)00351-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a cancer-associated transmembrane isoform of zinc metalloenzymes that catalyse interconversion between carbon dioxide and bicarbonate. CA IX is strongly induced by tumor hypoxia and has been proposed to participate in acidification of tumor microenvironment and in cell adhesion. To elucidate the cell adhesion-related role of CA IX, we investigated its subcellular localization and relationship to E-cadherin, a key adhesion molecule whose loss or destabilization is linked to tumor invasion. For this purpose, we generated MDCK cells with constitutive expression of human CA IX protein. During the monolayer formation, CA IX was localized to cell-cell contacts and its distribution in lateral membranes overlapped with E-cadherin. Calcium switch-triggered disruption and reconstitution of cell contacts resulted in relocalization of both CA IX and E-cadherin to cytoplasm and back to plasma membrane. A similar phenomenon was observed in hypoxia-treated and reoxygenated cells. Moreover, CA IX-expressing MDCK cells exhibited reduced cell adhesion capacity and lower levels of Triton-insoluble E-cadherin. Finally, CA IX was found to coprecipitate with beta-catenin. We conclude that CA IX has a capacity to modulate E-cadherin-mediated cell adhesion via interaction with beta-catenin, which could be of potential significance in hypoxia-induced tumor progression.
Collapse
Affiliation(s)
- Eliska Svastová
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Efficient and rapid propagation of action potentials in myelinated axons depends on the molecular specialization of the nodes of Ranvier. The nodal region is organized into several distinct domains, each of which contains a unique set of ion channels, cell-adhesion molecules and cytoplasmic adaptor proteins. Voltage-gated Na+ channels - which are concentrated at the nodes - are separated from K+ channels - which are clustered at the juxtaparanodal region - by a specialized axoglial contact that is formed between the axon and the myelinating cell at the paranodes. This local differentiation of myelinated axons is tightly regulated by oligodendrocytes and myelinating Schwann cells, and is achieved through complex mechanisms that are used by another specialized cell-cell contact - the synapse.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
127
|
Skelton MR, Ponniah S, Wang DZM, Doetschman T, Vorhees CV, Pallen CJ. Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety. Brain Res 2003; 984:1-10. [PMID: 12932834 DOI: 10.1016/s0006-8993(03)02839-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Receptor PTPalpha is a widely expressed transmembrane enzyme enriched in brain. PTPalpha knockout (PTPalpha(-/-)) mice are viable and display no gross abnormalities. Brain and embryo derived fibroblast src and fyn activity is reduced to <50% in PTPalpha(-/-) mice. These protein kinases are implicated in multiple aspects of neuronal development and function. However, the effect of the loss of function of the PTPalpha gene on behavior has yet to be investigated. PTPalpha(-/-) and WT mice were tested for anxiety, swimming ability, spatial learning, cued learning, locomotor activity, and novel object recognition (NOR). PTPalpha(-/-) mice were indistinguishable from WT in swimming ability, cued learning and novel object recognition. Knockout mice showed decreased anxiety without an increase in head dips and stretch-attend movements. During Morris water maze (MWM) learning, PTPalpha(-/-) mice had increased latencies to reach the goal compared to WT on acquisition, but no memory deficit on probe trials. On reversal learning, knockout mice showed no significant effects. PTPalpha(-/-) mice showed decreased exploratory locomotor activity, but responded normally to a challenge dose of D-methamphetamine. The data suggest that PTPalpha serves a regulatory function in learning and other forms of neuroplasticity.
Collapse
Affiliation(s)
- Matthew R Skelton
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
Diabetic polyneuropathy (DPN) is the most common chronic complication of diabetes and affects Type 1 diabetic patients disproportionately. In the last two decades it has become increasingly evident that underlying metabolic, molecular and functional mechanisms and, ultimately, structural changes differ in DPN between the two major types of diabetes. In Type 1 diabetes, impaired insulin/C-peptide action has emerged as a prominent pathogenetic factor. C-peptide was long considered to be biologically inactive. During the last number of years it has been shown to have a number of insulin-like effects but without affecting blood glucose levels. Preclinical studies have demonstrated effects on Na(+)/K(+)-ATPase activity, endothelial nitric oxide synthase, expression of neurotrophic factors and regulation of molecular species underlying the degeneration of the nodal apparatus in Type 1 diabetic nerves, as well as DNA binding of transcription factors and modulation of apoptotic phenomena. In animal studies, these effects have translated into protection and improvement of functional abnormalities, promotion of nerve fibre regeneration, protection of structural changes and amelioration of apoptotic phenomena targeting central and peripheral nerve cell constituents. Several small-scale clinical trials confirm these beneficial effects on autonomic and somatic nerve function and blood flow in a variety of tissues. Therefore, evidence to date indicating that replacement of C-peptide in patients with Type 1 diabetes will retard and prevent chronic complication is real and encouraging. Large-scale clinical trials necessary to bring this natural substance into the clinical arena should, therefore, be encouraged and accelerated.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University, Scott Hall Rm 9275, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| |
Collapse
|
129
|
Miyaji E, Nishimori I, Taniuchi K, Takeuchi T, Ohtsuki Y, Onishi S. Overexpression of carbonic anhydrase-related protein VIII in human colorectal cancer. J Pathol 2003; 201:37-45. [PMID: 12950015 DOI: 10.1002/path.1404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase-related protein (CA-RP) VIII, which is a member of the CA gene family, has been shown to have no catalytic CA activity and its biological function is still unknown. Recently, overexpression of CAs IX and XII has been reported in certain types of malignancy. To investigate a potential role for CA-RP VIII in human colorectal epithelial carcinogenesis, colorectal tissue specimens from surgically resected adenocarcinomas (n = 60) and endoscopically polypectomized adenomas (n = 13) were analysed by immunohistochemistry using monoclonal antibodies to CA-RP VIII and Ki-67 antigen. Less than 5% of epithelial cells in normal colonic mucosae (n = 73) were CA-RP VIII-positive and these were localized to the deep part of the cryptal epithelium. Increased expression of CA-RP VIII was observed in 78% of colorectal carcinomas. An intense signal was frequently observed at the tumour invasion front and its distribution was completely different from that of Ki-67 antigen. Colorectal adenomas also showed significant immunopositivity for CA-RP VIII, but its expression level was much lower than in adenocarcinomas. These findings suggest that CA-RP VIII plays a role in the process of invasion in colorectal cancer.
Collapse
Affiliation(s)
- Eiki Miyaji
- First Department of Internal Medicine, Kochi Medical School, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Toledano-Katchalski H, Tiran Z, Sines T, Shani G, Granot-Attas S, den Hertog J, Elson A. Dimerization in vivo and inhibition of the nonreceptor form of protein tyrosine phosphatase epsilon. Mol Cell Biol 2003; 23:5460-71. [PMID: 12861030 PMCID: PMC165729 DOI: 10.1128/mcb.23.15.5460-5471.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.
Collapse
|
131
|
Abstract
The carbonic anhydrases (CAs) comprise a family of evolutionarily ancient enzymes found ubiquitously in nature. They have important roles in facilitating transport of carbon dioxide and protons in the intracellular space, across biological membranes and in the unstirred layers of the extracellular space. The tumour-associated isoenzymes, CAIX and CAXII, are expressed in a wide variety of malignancies and appear to be tightly regulated by microenvironmental hypoxia. CAIX expression is linked to poor prognosis in a number of human tumours, and may be a marker of aggressive malignant phenotype and a mechanism of progression. Inhibitors of CA may inhibit tumour growth and invasion, with consequent therapeutic potential.
Collapse
Affiliation(s)
- C P S Potter
- Cancer Research UKGrowth Factor Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - A L Harris
- Cancer Research UKGrowth Factor Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Cancer Research UKGrowth Factor Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. E-mail:
| |
Collapse
|
132
|
Garwood J, Heck N, Reichardt F, Faissner A. Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem 2003; 278:24164-73. [PMID: 12700241 DOI: 10.1074/jbc.m211721200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phosphacan, one of the principal proteoglycans in the extracellular matrix of the central nervous system, is implicated in neuron-glia interactions associated with neuronal differentiation and myelination. We report here the identification of a novel truncated form of phosphacan, phosphacan short isoform (PSI), that corresponds to the N-terminal carbonic anhydrase- and fibronectin type III-like domains and half of the spacer region. The novel cDNA transcript was isolated by screening of a neonatal brain cDNA expression library using a polyclonal antibody raised against phosphacan. Expression of this transcript in vivo was confirmed by Northern blot hybridization. Analysis of brain protein extracts reveals the presence of a 90-kDa glycosylated protein in the phosphate-buffered saline-insoluble 100000 x g fraction that reacts with antisera against both phosphacan and a recombinant PSI protein and that has the predicted N-terminal sequence. This protein is post-translationally modified with oligosaccharides, including the HNK-1 epitope, but, unlike phosphacan, it is not a proteoglycan. The expression of the PSI protein varies during central nervous system development in a fashion similar to that observed for phosphacan, being first detected around embryonic day 16 and then showing a dramatic increase in expression to plateau around the second week post-natal. Both the native and recombinant PSI protein can interact with the Ig cell adhesion molecules, F3/contactin and L1, and in neurite outgrowth assays, the PSI protein can promote outgrowth of cortical neurons when used as a coated substrate. Hence, the identification of this novel isoform of phosphacan/receptor protein tyrosine phosphatase-beta provides a new component in cell-cell and cell-extracellular matrix signaling events in which these proteins have been implicated.
Collapse
Affiliation(s)
- Jeremy Garwood
- Laboratoire de Neurobiologie du Développement et de la Régénération, CNRS Centre de Neurochimie, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
133
|
Dunckley T, Lukas RJ. Nicotine modulates the expression of a diverse set of genes in the neuronal SH-SY5Y cell line. J Biol Chem 2003; 278:15633-40. [PMID: 12588870 DOI: 10.1074/jbc.m210389200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nicotine exposure can have long lasting effects on nervous system function, some of which must contribute to nicotine dependence. Up-regulation, an increase in numbers of radioligand-binding nicotinic acetylcholine receptors (nAChR), occurs on exposure to nicotine at high concentrations. To determine whether altered gene expression might account for long term changes and up-regulation following nicotine exposure, we assessed effects of 1 h of 1 mm nicotine exposure on alteration of gene expression in the neuron-like SH-SY5Y neuroblastoma clonal line. Repeat and cross-controlled microarray analyses yielded a list of 17 genes from the initially screened approximately 5,000 whose expression was consistently altered following nicotine treatment. Subsequent quantitative, real time reverse transcriptase PCR analyses confirmed altered expression in 14 of 16 genes tested. Further, the general nAChR antagonist, d-tubocurarine, blocked all but two of the observed changes in gene expression, indicating that these changes are dependent on nAChR activation. Use of other antagonists revealed that nAChR subtypes can differentially affect gene expression. The genes affected code for proteins that may be broadly categorized into four groups: transcription factors, protein processing factors, RNA-binding proteins, and plasma membrane-associated proteins. Our results suggest that nicotinic activation of nAChR may have a broad role in affecting cellular physiology through modulating gene expression.
Collapse
Affiliation(s)
- Travis Dunckley
- Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA
| | | |
Collapse
|
134
|
van der Wijk T, Blanchetot C, Overvoorde J, den Hertog J. Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers. J Biol Chem 2003; 278:13968-74. [PMID: 12582170 DOI: 10.1074/jbc.m300632200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) constitutively forms dimers in the membrane, and activity studies with forced dimer mutants of RPTP alpha revealed that rotational coupling of the dimer defines its activity. The hemagglutinin (HA) tag of wild type RPTP alpha and of constitutively dimeric, active RPTP alpha-F135C with a disulfide bond in the extracellular domain was not accessible for antibody, whereas the HA tag of constitutively dimeric, inactive RPTP alpha-P137C was. All three proteins were expressed on the plasma membrane to a similar extent, and the accessibility of their extracellular domains did not differ as determined by biotinylation studies. Dimerization was required for masking the HA tag, and we identified a region in the N terminus of RPTP alpha that was essential for the effect. Oxidative stress has been shown to induce a conformational change of the membrane distal PTP domain (RPTP alpha-D2). Here we report that H(2)O(2) treatment of cells induced a change in rotational coupling in RPTP alpha dimers as detected using accessibility of an HA tag in the extracellular domain as a read-out. The catalytic site Cys(723) in RPTP alpha-D2, which was required for the conformational change of RPTP alpha-D2 upon H(2)O(2) treatment, was essential for the H(2)O(2)-induced increase in accessibility. These results show for the first time that a conformational change in the intracellular domain of RPTP alpha led to a change in conformation of the extracellular domains, indicating that RPTPs have the capacity for inside-out signaling.
Collapse
Affiliation(s)
- Thea van der Wijk
- Hubrecht Laboratory, Netherland Institute for Developmental Biology, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | | | | |
Collapse
|
135
|
Adamsky K, Arnold K, Sabanay H, Peles E. Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 2003; 116:1279-89. [PMID: 12615970 DOI: 10.1242/jcs.00302] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Receptor protein tyrosine phosphatase beta (RPTP beta) mediates cell-cell and cell-matrix interactions. By searching for intracellular proteins that interact with the cytoplasmic region of this phosphatase using the two-hybrid method, we identified several proteins containing PDZ domains. One of these proteins, MAGI-3, contains a guanylate-kinase-like region, six PDZ and two WW domains. The interaction between RPTP beta and MAGI-3 was confirmed by co-immunoprecipitation and pulldown experiments in transfected cells. Immunofluorescence and immunoelectron microscopy revealed that MAGI-3 is concentrated in specific sites at the plasma membrane and in the nucleus. In epithelial cells, MAGI-3 was localized with ZO-1 and cingulin at tight junctions, whereas in primary cultured astrocytes it was found in E-cadherin-based cell-cell contacts and in focal adhesion sites. Although MAGI-3 itself was not phosphorylated on tyrosine residues, it became associated with tyrosine-phosphorylated proteins following a short treatment of the cells with vanadate. In glioblastoma SF763T cells MAGI-3 was associated with a tyrosine-phosphorylated protein with the apparent molecular weight of 130 kDa, whereas in Caco2 cells it was associated with a 90 kDa protein. Finally, we show that p130 served as a substrate for RPTP beta and that its dephosphorylation required the C-terminal sequence of the phosphatase, which mediated the interaction with MAGI-3. These findings suggest a possible role for MAGI-3 as a scaffolding molecule that links receptor tyrosine phosphatase with its substrates at the plasma membrane.
Collapse
Affiliation(s)
- Konstantin Adamsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
136
|
Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 2003; 278:10602-12. [PMID: 12525476 DOI: 10.1074/jbc.m210119200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.
Collapse
Affiliation(s)
- Hideaki Ando
- Division of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Japan.
| | | | | | | |
Collapse
|
137
|
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are key regulators of neuronal morphogenesis in a variety of different vertebrate and invertebrate systems, yet the mechanisms by which these proteins regulate central nervous system development are poorly understood. In the past few years, studies have begun to outline possible models for RPTP function by demonstrating in vivo roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In addition, the crystal structures of several RPTPs have been solved, numerous downstream effectors of RPTP signaling have been identified, and a small number of RPTP ligands have been described. In this review, we focus on how RPTPs transduce signals from the extracellular environment to the cytoplasm, using a detailed comparative analysis of the different RPTP subfamilies. Focusing on the roles RPTPs play in the development of the central nervous system, we discuss how the elucidation of RPTP crystal structures, the biochemical analysis of phosphatase enzyme catalysis, and the characterization of complex signal transduction cascades downstream of RPTPs have generated testable models of RPTP structure and function.
Collapse
Affiliation(s)
- Karl G Johnson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02446, USA
| | | |
Collapse
|
138
|
Taniuchi K, Nishimori I, Takeuchi T, Ohtsuki Y, Onishi S. cDNA cloning and developmental expression of murine carbonic anhydrase-related proteins VIII, X, and XI. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:207-15. [PMID: 12531530 DOI: 10.1016/s0169-328x(02)00563-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To help understand the biological functions of carbonic anhydrase-related proteins (CA-RPs VIII, X, and XI), we obtained cDNA clones of murine CA-RPs X and XI and studied the tissue distribution of all three CA-RPs and their developmental expression in the murine embryonic brain. The amino acid sequences of murine CA-RPs are highly conserved with their human homologues, indicating a fundamental biological role of CA-RPs. Among a panel of vital organs, the strongest mRNA expression of all three CA-RPs was consistently observed in the brain. Immunohistochemical analysis revealed the expression of all three CA-RPs in the neural cell body and neurites. CA-RP X was also observed in the myelin sheath, as demonstrated using the shiverer demyelinated mouse. In murine embryos, CA-RP VIII and X messages first appeared in the middle of the gestation period, while the CA-RP XI message was seen at an early gestational stage and expressed to a lesser extent as gestation progressed. All CA-RPs were expressed in the neuroprogenitor cells in the subventricular area and subsequently detected in the neural cells migrating to the cortex. Although the exact function of CA-RPs is still undefined, these findings suggest an important role of CA-RPs in the CNS.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- First Department of Internal Medicine, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | |
Collapse
|
139
|
Morgenstern DA, Asher RA, Fawcett JW. Chondroitin sulphate proteoglycans in the CNS injury response. PROGRESS IN BRAIN RESEARCH 2002; 137:313-32. [PMID: 12440375 DOI: 10.1016/s0079-6123(02)37024-9] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As the preceding discussion has demonstrated, experimental data now indicate that the expression of a number of different CSPGs is increased following CNS injury. The hyalectans neurocan, versican and [figure: see text] brevican, plus NG2 and phosphacan are upregulated following injury and all have been shown to exhibit inhibitory effects on neurite outgrowth in vitro. It is likely therefore that the increased expression of these molecules contributes to the non-permissive nature of the glial scar. The relative contributions of individual molecules remain, however, to be determined. It is important to remember also that not only does the glial scar contain many different inhibitory molecules, but that these are the products of a number of different cells, including not just astrocytes, but also oligodendrocyte progenitor and meningeal cells. It is arguable that the latter two cell types make a greater contribution than astrocytes to the inhibitory environment of the injured CNS. Recently, attempts have been made to alter the CSPG component of the glial scar in the hope that this will facilitate improved axonal regeneration. Three studies (Bradbury et al., 2002; Yick et al., 2000; Moon et al., 2001) have reported an improved regenerative response following treatment of the injured CNS with chondroitinase ABC. CSPGs represent a significant source of inhibition within the injured CNS; these studies indicate that successful CNS regeneration may be brought about by interventions which target these molecules and/or the cells which produce them.
Collapse
Affiliation(s)
- Daniel A Morgenstern
- Physiological Laboratory, Centre for Brain Repair, Cambridge University, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | |
Collapse
|
140
|
Legname G, Nelken P, Guan Z, Kanyo ZF, DeArmond SJ, Prusiner SB. Prion and doppel proteins bind to granule cells of the cerebellum. Proc Natl Acad Sci U S A 2002; 99:16285-90. [PMID: 12446843 PMCID: PMC138603 DOI: 10.1073/pnas.242611999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We reported that expression of the cellular prion protein (PrPC) rescues doppel (Dpl)-induced cerebellar degeneration in mice. To search for protein(s) that mediate this process, we fused the C-termini of mouse (Mo) PrP and Dpl to the Fc portion of an IgG. Although both MoPrP-Fc and MoDpl-Fc bound to many regions of the brain, we observed restricted binding to granule cells in the cerebellum, suggesting a scenario in which granule cells express a protein that mediates Dpl-induced neurodegeneration. Because granule cells do not express PrPC, it seems unlikely that MoPrP-Fc binding reflects a ligand that is involved in the conversion of PrPC into PrPSc, the disease-causing isoform. In contrast, the dominant-negative MoPrP(Q218K)-Fc not only binds to granule cells but also binds to neurons of the molecular layer where PrPC is expressed. These findings raise the possibility that the cells of the molecular layer express an auxiliary protein, provisionally designated protein X, which is involved in prion formation and is likely to be distinct from the protein that mediates Dpl-induced degeneration. Although the binding of the dominant-negative MoPrP(Q218K)-Fc to cells in the molecular layer expressing PrPC is consistent with a scenario for the binding of MoPrP(Q218K)-Fc to protein X, the absence of PrPSc deposition in the molecular layer requires that PrP(Sc), once formed there, be readily transported to the cerebellar white matter where PrPSc is found. Identifying the ligands to which PrP-Fc, Dpl-Fc, and dominant-negative PrP bind may provide new insights into the functions of PrPC and Dpl as well as the mechanism of PrPSc formation.
Collapse
Affiliation(s)
- Giuseppe Legname
- Institute for Neurodegenerative Diseases and Departments of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
141
|
Gut MO, Parkkila S, Vernerová Z, Rohde E, Závada J, Höcker M, Pastorek J, Karttunen T, Gibadulinová A, Závadová Z, Knobeloch KP, Wiedenmann B, Svoboda J, Horak I, Pastoreková S. Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology 2002; 123:1889-903. [PMID: 12454846 DOI: 10.1053/gast.2002.37052] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Carbonic anhydrase (CA) IX is a highly active enzyme with adhesion capacity that is functionally implicated in acid-base balance and intercellular communication. It is normally present in basolateral membranes of gastrointestinal epithelial cells and ectopically expressed in various carcinomas. To show its physiologic relevance, we have cloned the Car9 gene and generated CA IX-deficient mice. METHODS The mice with null mutation of the Car9 gene were obtained by targeted gene disruption. Tissue architecture and expression of markers were determined by histochemical and immunohistochemical techniques. RESULTS Mice homozygous for the mutation developed gastric hyperplasia of the glandular epithelium with numerous cysts. The first changes were observed in the newborn animals, and the hyperplasia became prominent at the end of gastric morphogenesis in 4-week-old mice. Loss of CA IX led to overproduction of mucus-secreting pit cells and depletion of pepsinogen-positive chief cells. The proportion of H(+)/K(+)-adenosine triphosphatase-positive parietal cells significantly decreased, but their absolute number was not reduced. Correspondingly, CA IX-deficient mice had normal gastric pH, acid secretion, and serum gastrin levels. CONCLUSIONS Phenotypic consequences of the Car9 null mutation show the important role of CA IX in morphogenesis and homeostasis of the glandular gastric epithelium via the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Marta Ortova Gut
- Department of Molecular Genetics, Institute of Molecular Pharmacology and Medical Center of Free University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The interaction between neurons and glial cells that results in myelin formation represents one of the most remarkable intercellular events in development. This is especially evident at the primary functional site within this structure, the node of Ranvier. Recent experiments have revealed a surprising level of complexity within this zone, with several components, including ion channels, sequestered with a very high degree of precision and sharply demarcated borders. We discuss the current state of knowledge of the cellular and molecular mechanisms responsible for the formation and maintenance of the node. In normal axons, Na+ channels are present at high density within the nodal gap, and voltage-dependent K+ channels are sequestered on the internodal side of the paranode--a region known as the juxtaparanode. Modifying the expression of certain surface adhesion molecules that have been recently identified, markedly alters this pattern. There is a special emphasis on contactin, a protein with multiple roles in the nervous system. In central nervous system (CNS) myelinated fibers, contactin is localized within both the nodal gap and paranodes, and appears to have unique functions in each zone. New experiments on contactin-null mutant mice help to define these mechanisms.
Collapse
Affiliation(s)
- Katie Kazarinova-Noyes
- Department of Neurobiology/Anatomy, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
143
|
A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 2002. [PMID: 12151530 DOI: 10.1523/jneurosci.22-15-06507.2002] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myelinated axons are divided into four distinct regions: the node of Ranvier, paranode, juxtaparanode, and internode, each of which is characterized by a specific set of axonal proteins. Voltage-gated Na+ channels are clustered at high densities at the nodes, whereas shaker-type K+ channels are concentrated at juxtaparanodal regions. These channels are separated by the paranodal regions, where septate-like junctions are formed between the axon and the myelinating glial cells. Although oligodendrocytes and myelin sheaths are believed to play an instructive role in the local differentiation of the axon to distinct domains, the molecular mechanisms involved are poorly understood. In the present study, we have examined the distribution of axonal components in mice incapable of synthesizing sulfatide by disruption of the galactosylceramide sulfotransferase gene. These mice displayed abnormal paranodal junctions in the CNS and PNS, whereas their compact myelin was preserved. Immunohistochemical analysis demonstrated a decrease in Na+ and K+ channel clusters, altered nodal length, abnormal localization of K+ channel clusters appearing primarily in the presumptive paranodal regions, and diffuse distribution of contactin-associated protein along the internode. Similar abnormalities have been reported previously in mice lacking both galactocerebroside and sulfatide. Interestingly, although no demyelination was observed, these channel clusters decreased markedly with age. The initial timing and the number of Na+ channel clusters formed were normal during development. These results indicate a critical role for sulfatide in proper localization and maintenance of ion channels clusters, whereas they do not appear to be essential for initial cluster formation of Na+ channels.
Collapse
|
144
|
Gollan L, Sabanay H, Poliak S, Berglund EO, Ranscht B, Peles E. Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. J Cell Biol 2002; 157:1247-56. [PMID: 12082082 PMCID: PMC2173544 DOI: 10.1083/jcb.200203050] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr-contactin chimera from the cell surface. These results suggest that Caspr serves as a "transmembrane scaffold" that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.
Collapse
Affiliation(s)
- Leora Gollan
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
145
|
Moon LDF, Asher RA, Rhodes KE, Fawcett JW. Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat. Neuroscience 2002; 109:101-17. [PMID: 11784703 DOI: 10.1016/s0306-4522(01)00457-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteoglycans may modulate axon growth in the intact and injured adult mammalian CNS. Here we investigate the distribution and time course of deposition of a range of proteoglycans between 4 and 14 days following unilateral axotomy of the nigrostriatal tract in anaesthetised adult rats. Immunolabelling using a variety of antibodies was used to examine the response of heparan sulphate proteoglycans, chondroitin sulphate proteoglycans and keratan sulphate proteoglycans. We observed that many proteoglycans became abundant between 1 and 2 weeks post-axotomy. Heparan sulphate proteoglycans were predominantly found within the lesion core (populated by blood vessels, amoeboid macrophages and meningeal fibroblasts) whereas chondroitin sulphate proteoglycans and keratan sulphate proteoglycans were predominantly found in the lesion surround (populated by reactive astrocytes, activated microglia and adult precursor cells). Immunolabelling indicated that cut dopaminergic nigral axons sprouted prolifically within the lesion core but rarely grew into the lesion surround. We conclude that sprouting of cut dopaminergic nigral axons may be supported by heparan sulphate proteoglycans but restricted by chondroitin sulphate proteoglycans and keratan sulphate proteoglycans.
Collapse
Affiliation(s)
- L D F Moon
- Physiological Laboratory, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
146
|
Abstract
We have examined the molecular organization of axons in the spinal cords of myelin-deficient (md) rats, which have profound CNS dysmyelination associated with oligodendrocyte cell death. Although myelin sheaths are rare, most large axons are at least partially surrounded by oligodendrocyte processes. At postnatal day 7 (P7), almost all node-like clusters of voltage-gated Na+ channels and ankyrinG are adjacent to axonal segments ensheathed by oligodendrocytes, but at P21, many node-like clusters are found in axonal segments that lack oligodendrocyte ensheathment. In P21 wild-type (WT) rats, the voltage-gated Na+ channels Na(v)1.2, Na(v)1.6, and Na(v)1.8, are found in different subpopulations of myelinated axons, and md rats have a similar distribution. The known molecular components of paranodes--contactin, Caspr, and neurofascin 155--are not clustered in md spinal cords, and no septate-like junctions between oligodendrocyte processes and axons are found by electron microscopy. Furthermore, Kv1.1 and Kv1.2 K+ channels are not spatially segregated from the node-like clusters of Na+ channels in md rats, in contrast to their WT littermates. These results suggest the following: node-like clusters of voltage-gated Na+ channels and ankyrinG form adjacent to ensheathed axonal segments even in the absence of a myelin sheath; these clusters persist after oligodendrocyte cell death; dysmyelination does not alter the expression of different nodal of voltage-gated Na+ channels; the absence of paranodes results in the mislocalization of neurofascin155, contactin, and Caspr, and the aberrant localization of Kv1.1 and Kv1.2.
Collapse
|
147
|
Suzuki Y, Kitagawa M, Knox JP, Yamaguchi I. A role for arabinogalactan proteins in gibberellin-induced alpha-amylase production in barley aleurone cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:733-741. [PMID: 12148531 DOI: 10.1046/j.1365-313x.2002.01259.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant proteoglycans that have been implicated in plant growth and development. The possible involvement of AGPs in the action of gibberellin (GA), a class of plant hormones, was examined by applying beta-glucosyl Yariv reagent (beta-Glc)3Y, a synthetic phenyl glycoside that interacts selectively with AGPs, to barley aleurone protoplasts. Gibberellin induces transcription and secretion of alpha-amylases in the protoplasts. Induction of alpha-amylase was clearly inhibited by (beta-Glc)3Y but not by (alpha-Gal)3Y, a negative control of the Yariv reagent that does not interact with AGPs. Transfection analysis, using an alpha-amylase promoter-GUS fusion gene in the protoplasts, indicated that the transcriptional activation of the alpha-amylase promoter was inhibited specifically by (beta-Glc)3Y. These observations are the first indication of an involvement of AGPs in a plant hormone function. The inhibitory effect of (beta-Glc)3Y was not observed when aleurone layers or half-seed grains were used. This result, together with the fact that protoplasts do not have cell walls, suggests that the AGPs that function in alpha-amylase induction reside at the plasma membrane. An aleurone-specific AGP was detected by reversed-phase HPLC, and supported the idea that an AGP may play an important role in aleurone-specific events. The possible mechanism of AGP function in gibberellin-induced alpha-amylase production is discussed.
Collapse
Affiliation(s)
- Yoshihito Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Japan.
| | | | | | | |
Collapse
|
148
|
Murai KK, Misner D, Ranscht B. Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr Biol 2002; 12:181-90. [PMID: 11839269 DOI: 10.1016/s0960-9822(02)00680-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.
Collapse
Affiliation(s)
- Keith K Murai
- The Burnham Institute, Neurobiology Program, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
149
|
Denisenko-Nehrbass N, Faivre-Sarrailh C, Goutebroze L, Girault JA. A molecular view on paranodal junctions of myelinated fibers. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:99-103. [PMID: 11755788 DOI: 10.1016/s0928-4257(01)00085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.
Collapse
|
150
|
Theodosis DT. Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 2002; 23:101-35. [PMID: 11906204 DOI: 10.1006/frne.2001.0226] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxytocin-secreting neurons of the hypothalamoneurohypophysial system undergo reversible morphological changes whenever they are strongly stimulated. In the hypothalamus, such structural plasticity is represented by modifications in the size and shape of their somata and dendrites, in the extent to which their surfaces are covered by glia, and in the density of their synapses. In the neurohypophysis, there is a parallel reduction in glial (pituicyte) coverage of their axons together, with retraction of pituicyte processes from the perivascular basal lamina and an increase in the number and size of their terminals. These changes occur rapidly, within a few hours. On the other hand, the system returns to its prestimulated condition on arrest of stimulation at a rate that depends on the length of time it has remained activated. Such neuronal-glial changes have several functional consequences. In the hypothalamic nuclei, reduction in astrocytic coverage of oxytocinergic neurons and their synapses modifies extracellular ionic homeostasis and glutamate clearance and, therefore, their overall excitability. Since it results in extensive dendritic bundling, it may also lead to ephaptic interactions and may facilitate dendritic electrotonic coupling. A most important indirect effect may be to permit synaptic remodeling that occurs concomitantly and that results in significant increases in the number of excitatory and inhibitory synapses driving their activity. In the stimulated neurohypophysis, glial retraction results in increased levels of extracellular K+ which can enhance neurohormone release while an enlarged neurovascular contact zone may facilitate diffusion of neurohormone into the circulation. Ongoing work aims to unravel the cell mechanisms and factors underlying such plasticity and has revealed that neurons and glia of the hypothalamoneurohypophysial system continue to express juvenile molecular features associated with similar neuronglial interactions and synaptic events during development and regeneration. They include strong expression of cell surface adhesion molecules like F3/contactin and polysialylated neural cell adhesion molecule, extracellular matrix glycoproteins like tenascin C, and cytoskeletal proteins like vimentin and microtubule-associated protein 1D. Some of these molecules reach the cell surface constitutively while others follow the activity-dependent regulated pathway. We consider many of these molecular features permissive, allowing oxytocin neurons and their glia to undergo morphological remodeling throughout life, provided the proper stimulus intervenes. In the hypothalamic nuclei, one such stimulus is centrally released oxytocin; in the neurohypophysis, an adrenergic, cAMP-mediated mechanism appears responsible.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- INSERM U378 Neuroendocrinologie Morphofonctionelle, Institut François Magendie, Bordeaux, France.
| |
Collapse
|