101
|
Ding X, Shi MX, Liu D, Cao JX, Zhang KX, Zhang RD, Zhang LP, Ai KX, Su B, Zhang J. Transformation to small cell lung cancer is irrespective of EGFR and accelerated by SMAD4-mediated ASCL1 transcription independently of RB1 in non-small cell lung cancer. Cell Commun Signal 2024; 22:45. [PMID: 38233864 PMCID: PMC10795321 DOI: 10.1186/s12964-023-01260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/07/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Histological transformation to small cell lung cancer (SCLC) has been identified as a mechanism of TKIs resistance in EGFR-mutant non-small cell lung cancer (NSCLC). We aim to explore the prevalence of transformation in EGFR-wildtype NSCLC and the mechanism of SCLC transformation, which are rarely understood. METHODS We reviewed 1474 NSCLC patients to investigate the NSCLC-to-SCLC transformed cases and the basic clinical characteristics, driver gene status and disease course of them. To explore the potential functional genes in SCLC transformation, we obtained pre- and post-transformation specimens and subjected them to a multigene NGS panel involving 416 cancer-related genes. To validate the putative gene function, we established knocked-out models by CRISPR-Cas 9 in HCC827 and A549-TP53-/- cells and investigated the effects on tumor growth, drug sensitivity and neuroendocrine phenotype in vitro and in vivo. We also detected the expression level of protein and mRNA to explore the molecular mechanism involved. RESULTS We firstly reported an incidence rate of 9.73% (11/113) of SCLC transformation in EGFR-wildtype NSCLC and demonstrated that SCLC transformation is irrespective of EGFR mutation status (P = 0.16). We sequenced 8 paired tumors and identified a series of mutant genes specially in transformed SCLC such as SMAD4, RICTOR and RET. We firstly demonstrated that SMAD4 deficiency can accelerate SCLC transition by inducing neuroendocrine phenotype regardless of RB1 status in TP53-deficient NSCLC cells. Further mechanical experiments identified the SMAD4 can regulate ASCL1 transcription competitively with Myc in NSCLC cells and Myc inhibitor acts as a potential subsequent treatment agent. CONCLUSIONS Transformation to SCLC is irrespective of EFGR status and can be accelerated by SMAD4 in non-small cell lung cancer. Myc inhibitor acts as a potential therapeutic drug for SMAD4-mediated resistant lung cancer. Video Abstract.
Collapse
Affiliation(s)
- Xi Ding
- Department of Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Min-Xing Shi
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Di Liu
- Department of Radiotherapy, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing-Xue Cao
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kai-Xuan Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Run-Dong Zhang
- Department of General Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li-Ping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kai-Xing Ai
- Department of General Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Bo Su
- Department of Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jie Zhang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
102
|
Ko JH, Lambert KE, Bhattacharya D, Lee MC, Colón CI, Hauser H, Sage J. Small Cell Lung Cancer Plasticity Enables NFIB-Independent Metastasis. Cancer Res 2024; 84:226-240. [PMID: 37963187 PMCID: PMC10842891 DOI: 10.1158/0008-5472.can-23-1079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Metastasis is a major cause of morbidity and mortality in patients with cancer, highlighting the need to identify improved treatment and prevention strategies. Previous observations in preclinical models and tumors from patients with small cell lung cancer (SCLC), a fatal form of lung cancer with high metastatic potential, identified the transcription factor NFIB as a driver of tumor growth and metastasis. However, investigation into the requirement for NFIB activity for tumor growth and metastasis in relevant in vivo models is needed to establish NFIB as a therapeutic target. Here, using conditional gene knockout strategies in genetically engineered mouse models of SCLC, we found that upregulation of NFIB contributes to tumor progression, but NFIB is not required for metastasis. Molecular studies in NFIB wild-type and knockout tumors identified the pioneer transcription factors FOXA1/2 as candidate drivers of metastatic progression. Thus, while NFIB upregulation is a frequent event in SCLC during tumor progression, SCLC tumors can employ NFIB-independent mechanisms for metastasis, further highlighting the plasticity of these tumors. SIGNIFICANCE Small cell lung cancer cells overcome deficiency of the prometastatic oncogene NFIB to gain metastatic potential through various molecular mechanisms, which may represent targets to block progression of this fatal cancer type.
Collapse
Affiliation(s)
- Julie H. Ko
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kyle E. Lambert
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Caterina I. Colón
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Haley Hauser
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
103
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Gomez MM, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574746. [PMID: 38260422 PMCID: PMC10802488 DOI: 10.1101/2024.01.09.574746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.
Collapse
|
104
|
Enokido T, Horie M, Yoshino S, Suzuki HI, Matsuki R, Brunnström H, Micke P, Nagase T, Saito A, Miyashita N. Distinct microRNA Signature and Suppression of ZFP36L1 Define ASCL1-Positive Lung Adenocarcinoma. Mol Cancer Res 2024; 22:29-40. [PMID: 37801008 DOI: 10.1158/1541-7786.mcr-23-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Achaete-scute family bHLH transcription factor 1 (ASCL1) is a master transcription factor involved in neuroendocrine differentiation. ASCL1 is expressed in approximately 10% of lung adenocarcinomas (LUAD) and exerts tumor-promoting effects. Here, we explored miRNA profiles in ASCL1-positive LUADs and identified several miRNAs closely associated with ASCL1 expression, including miR-375, miR-95-3p/miR-95-5p, miR-124-3p, and members of the miR-17∼92 family. Similar to small cell lung cancer, Yes1 associated transcriptional regulator (YAP1), a representative miR-375 target gene, was suppressed in ASCL1-positive LUADs. ASCL1 knockdown followed by miRNA profiling in a cell culture model further revealed that ASCL1 positively regulates miR-124-3p and members of the miR-17∼92 family. Integrative transcriptomic analyses identified ZFP36 ring finger protein like 1 (ZFP36L1) as a target gene of miR-124-3p, and IHC studies demonstrated that ASCL1-positive LUADs are associated with low ZFP36L1 protein levels. Cell culture studies showed that ectopic ZFP36L1 expression inhibits cell proliferation, survival, and cell-cycle progression. Moreover, ZFP36L1 negatively regulated several genes including E2F transcription factor 1 (E2F1) and snail family transcriptional repressor 1 (SNAI1). In conclusion, our study revealed that suppression of ZFP36L1 via ASCL1-regulated miR-124-3p could modulate gene expression, providing evidence that ASCL1-mediated regulation of miRNAs shapes molecular features of ASCL1-positive LUADs. IMPLICATIONS Our study revealed unique miRNA profiles of ASCL1-positive LUADs and identified ASCL1-regulated miRNAs with functional relevance.
Collapse
Affiliation(s)
- Takayoshi Enokido
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| | - Rei Matsuki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
105
|
Enjo-Barreiro JR, Ruano-Ravina A, Pérez-Ríos M, Kelsey K, Barros-Dios JM, Varela-Lema L. Genome Wide Association Studies in Small-Cell Lung Cancer. A Systematic Review. Clin Lung Cancer 2024; 25:9-17. [PMID: 37940411 DOI: 10.1016/j.cllc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Small cell lung cancer (SCLC) is one of the deadliest forms of lung cancer, but few information exists regarding the role of genetics, particularly on Genome Wide Association Studies (GWAS). The aim of the study is to explore the evidence available obtained through GWAS studies for SCLC using a systematic review. We performed a literature search in the main databases until July 31st, 2023. We included all human based studies on GWAS for lung cancer which presented results for SCLC. Only studies with participants diagnosed of SCLC with anatomopathological confirmation were included. Fourteen studies were identified; 8 studies showed a relationship between ASCL1 overexpression and SCLC, which may regulate CHRNA5/A3/B4 cluster, producing a consequent nAChR overexpression. Nine papers, including 8 of the previous, found a positive association between SNPs located in chromosome 15 and SCLC. The most important cluster of genes found is CHRNA5/A3/B4 but the mechanism for the role of these genes is unclear. Kyoto Encyclopaedia of Genes and Genome (KEGG) shows that these receptors were found to be overexpressed where nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-Nitrosonornicotine (NNN) acts, involving different routes in SCLC carcinogenesis.
Collapse
Affiliation(s)
- José Ramón Enjo-Barreiro
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Service of Preventive Medicine, A Coruña University Teaching Hospital Complex, A Coruña, Spain
| | - Alberto Ruano-Ravina
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain.
| | - Mónica Pérez-Ríos
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
| | - Karl Kelsey
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI
| | - Juan Miguel Barros-Dios
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
| | - Leonor Varela-Lema
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
| |
Collapse
|
106
|
Zheng Z, Liu J, Ma J, Kang R, Liu Z, Yu J. Advances in new targets for immunotherapy of small cell lung cancer. Thorac Cancer 2024; 15:3-14. [PMID: 38093497 PMCID: PMC10761621 DOI: 10.1111/1759-7714.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Small cell lung cancer (SCLC) is one of the highly aggressive malignancies characterized by rapid growth and early metastasis, but treatment options are limited. For SCLC, carboplatin or cisplatin in combination with etoposide chemotherapy has been considered the only standard of care, but the standard first-line treatment only results in 10-month survival. The majority of patients relapse within a few weeks to months after treatment, despite the relatively sensitive response to chemotherapy. Over the past decade, immunotherapy has made significant progress in the treatment of SCLC patients. However, there have been limited improvements in survival rates for SCLC patients with the current immune checkpoint inhibitors PD-1/PD-L1 and CTLA-4. In the face of high recurrence rates, small beneficiary populations, and low survival benefits, the exploration of new targets for key molecules and signals in SCLC and the development of drugs with novel mechanisms may provide fresh hope for immunotherapy in SCLC. Therefore, the aim of this review was to explore four new targets, DLL3, TIGIT, LAG-3, and GD2, which may play a role in the immunotherapy of SCLC to find useful clues and strategies to improve the outcome for SCLC patients.
Collapse
Affiliation(s)
- Zitong Zheng
- Department of OncologyBinzhou Medical University HospitalBinzhouP.R. China
| | - Juanjuan Liu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Junling Ma
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Runting Kang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Zhen Liu
- Department of Graduate Work OfficeBinzhou Medical University HospitalBinzhouP.R. China
| | - Jiangyong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| |
Collapse
|
107
|
Borczuk AC. Neuroendocrine neoplasms of the lung. PRACTICAL PULMONARY PATHOLOGY 2024:465-496. [DOI: 10.1016/b978-0-323-79547-0.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
108
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
109
|
Popper H, Brcic L, Eidenhammer S. Does subtyping of high-grade pulmonary neuroendocrine carcinomas have an impact on therapy selection? Transl Lung Cancer Res 2023; 12:2412-2426. [PMID: 38205203 PMCID: PMC10775006 DOI: 10.21037/tlcr-23-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Background Small cell lung cancer (SCLC) and large cell neuroendocrine carcinomas (LCNEC) are characterized by a rapid progressive course. Therapy for SCLC has not much changed for decades, and in LCNEC controversies exist, favoring either SCLC-like or non-small cell lung cancer (NSCLC)-like therapy. Three subtypes of SCLC identified in cell cultures, namely ASCL1, NeuroD1, and POU2F3 have been confirmed by immunohistochemistry. The fourth type based on the expression of YAP1 was questioned, and another type, inflamed SCLC, was proposed. Methods SCLC and LCNEC samples were investigated by immunohistochemistry for different subtypes. Additionally, immunohistochemical markers as potential tools to identify patients who might respond to targeted treatment were investigated. For validation a biopsy set was added. Results ASCL1, NeuroD1, and POU2F3 were expressed in different percentages in SCLC and LCNEC. Similar percentages of expression were found in biopsies. ATOH was expressed in combination with one of the subtypes. YAP1 and TAZ were expressed in some SCLC and LCNEC cases. HES1 expression was seen in few cases. Predominantly stroma cells expressed programmed cell death ligand 1 (PD-L1). The dominant MYC protein was N-MYC. Aurora kinase A (AURKA) was expressed in the majority of both carcinomas, whereas fibroblast growth factor receptor 2 (FGFR2) in few. Conclusions SCLC and LCNEC can be subtyped into ASCL1-, NeuroD1-, and POU2F3-positive types. AURKA expression and positivity for N-MYC protein was not associated with subtypes. AURKA and FGFR2 are both possible targets for inhibition in SCLC and LCNEC, but patients' selection should be based on expression of the enzyme. Combined chemo- and immunotherapy might be decided by PD-L1 staining of stroma cells.
Collapse
Affiliation(s)
| | - Luka Brcic
- D&F Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
110
|
Gutiérrez M, Zamora I, Freeman MR, Encío IJ, Rotinen M. Actionable Driver Events in Small Cell Lung Cancer. Int J Mol Sci 2023; 25:105. [PMID: 38203275 PMCID: PMC10778712 DOI: 10.3390/ijms25010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.
Collapse
Affiliation(s)
- Mirian Gutiérrez
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Irene Zamora
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| |
Collapse
|
111
|
Chen CC, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, Sheu KM, Cheng D, Ta L, Varuzhanyan G, Huang A, Xu R, Zeng Y, Borujerdpur A, Bayley NA, Noguchi M, Mao Z, Morrissey C, Corey E, Nelson PS, Zhao Y, Huang J, Park JW, Witte ON, Graeber TG. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell 2023; 41:2066-2082.e9. [PMID: 37995683 PMCID: PMC10878415 DOI: 10.1016/j.ccell.2023.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Tyler Sugimoto
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Donghui Cheng
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Runzhe Xu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Yuanhong Zeng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amirreza Borujerdpur
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, China
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Owen N Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA; California NanoSystems Institute, UCLA, Los Angeles, CA, USA; Metabolomics Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
112
|
Rossi S, Pagliaro A, Michelini A, Navarria P, Clerici E, Franceschini D, Toschi L, Finocchiaro G, Scorsetti M, Santoro A. The Era of Immunotherapy in Small-Cell Lung Cancer: More Shadows Than Light? Cancers (Basel) 2023; 15:5761. [PMID: 38136306 PMCID: PMC10741846 DOI: 10.3390/cancers15245761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Small-cell lung cancer is an extremely chemo-sensitive disease; the addition of immunotherapy to chemotherapy has demonstrated a slight clinical benefit in pivotal trials, even with a statistically significant difference in terms of survival outcomes when compared to chemotherapy alone. In this scenario, the role of radiotherapy as a consolidation treatment in thoracic disease or as a prophylactic therapy in the brain should be clarified. In addition, due to the frailty and the poor prognostic characteristics of these patients, the need for predictive biomarkers that could support the use of immunotherapy is crucial. PD-L1 and TMB are not actually considered definitive biomarkers due to the heterogeneity of results in the literature. A new molecular classification of small-cell lung cancer based on the expression of key transcription factors seems to clarify the disease behavior, but the knowledge of this molecular subtype is still insufficient and the application in clinical practice far from reality; this classification could lead to a better understanding of SCLC disease and could provide the right direction for more personalized treatment. The aim of this review is to investigate the current knowledge in this field, evaluating whether there are predictive biomarkers and clinical patient characteristics that could help us to identify those patients who are more likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Sabrina Rossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
| | - Arianna Pagliaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
| | - Angelica Michelini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.N.); (E.C.); (D.F.)
| | - Elena Clerici
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.N.); (E.C.); (D.F.)
| | - Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.N.); (E.C.); (D.F.)
| | - Luca Toschi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
| | - Giovanna Finocchiaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.N.); (E.C.); (D.F.)
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (A.P.); (A.M.); (L.T.); (G.F.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
| |
Collapse
|
113
|
Li Y, Mahadevan NR, Duplaquet L, Hong D, Durmaz YT, Jones KL, Cho H, Morrow M, Protti A, Poitras MJ, Springer BF, Bronson RT, Gong X, Hui YH, Du J, Southard J, Thai T, Li S, Lizotte PH, Gokhale PC, Nguyen QD, Oser MG. Aurora A kinase inhibition induces accumulation of SCLC tumor cells in mitosis with restored interferon signaling to increase response to PD-L1. Cell Rep Med 2023; 4:101282. [PMID: 37992688 PMCID: PMC10694667 DOI: 10.1016/j.xcrm.2023.101282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.
Collapse
Affiliation(s)
- Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Hyeonseo Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Murry Morrow
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Andrea Protti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Michael J Poitras
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Benjamin F Springer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Jian Du
- Loxo@Lilly, Indianapolis, IN 46225, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Lab, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Lab, Dana Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Quang-De Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
114
|
Solta A, Boettiger K, Kovács I, Lang C, Megyesfalvi Z, Ferk F, Mišík M, Hoetzenecker K, Aigner C, Kowol CR, Knasmueller S, Grusch M, Szeitz B, Rezeli M, Dome B, Schelch K. Entinostat Enhances the Efficacy of Chemotherapy in Small Cell Lung Cancer Through S-phase Arrest and Decreased Base Excision Repair. Clin Cancer Res 2023; 29:4644-4659. [PMID: 37725585 PMCID: PMC10644001 DOI: 10.1158/1078-0432.ccr-23-1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Acquired chemoresistance is a frequent event in small cell lung cancer (SCLC), one of the deadliest human malignancies. Histone deacetylase inhibitors (HDACi) have been shown to synergize with different chemotherapeutic agents including cisplatin. Accordingly, we aimed to investigate the dual targeting of HDAC inhibition and chemotherapy in SCLC. EXPERIMENTAL DESIGN The efficacy of HDACi and chemotherapy in SCLC was investigated both in vitro and in vivo. Synergistic drug interactions were calculated based on the HSA model (Combenefit software). Results from the proteomic analysis were confirmed via ICP-MS, cell-cycle analysis, and comet assays. RESULTS Single entinostat- or chemotherapy significantly reduced cell viability in human neuroendocrine SCLC cells. The combination of entinostat with either cisplatin, carboplatin, irinotecan, epirubicin, or etoposide led to strong synergy in a subset of resistant SCLC cells. Combination treatment with entinostat and cisplatin significantly decreased tumor growth in vivo. Proteomic analysis comparing the groups of SCLC cell lines with synergistic and additive response patterns indicated alterations in cell-cycle regulation and DNA damage repair. Cell-cycle analysis revealed that cells exhibiting synergistic drug responses displayed a shift from G1 to S-phase compared with cells showing additive features upon dual treatment. Comet assays demonstrated more DNA damage and decreased base excision repair in SCLC cells more responsive to combination therapy. CONCLUSIONS In this study, we decipher the molecular processes behind synergistic interactions between chemotherapy and HDAC inhibition. Moreover, we report novel mechanisms to overcome drug resistance in SCLC, which may be relevant to increasing therapeutic success.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ildikó Kovács
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Franziska Ferk
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Miroslav Mišík
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Michael Grusch
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
115
|
Ghigna MR, Cotteret S, Arbab A, Bani MA, Scoazec JY. Small cell lung cancer with SYN2::PPARG fusion. Pathol Res Pract 2023; 251:154904. [PMID: 38238071 DOI: 10.1016/j.prp.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) accounts for 15% of lung cancers worldwide. It is an aggressive tumor that is typically diagnosed at an advanced stage. Treatment involves chemo-immunotherapy and/or radiotherapy. Identifying druggable targets activated by specific genetic alterations represents a significant challenge in improving patient outcomes. METHODS We conducted a retrospective examination of molecular findings in lung cancer patients' records from 2021 to 2022. We discovered a unique case of SCLC harboring the SYN2-PPARG fusion. Histopathological analysis confirmed the diagnosis of SCLC. CASE REPORT A 60-year-old woman, a heavy smoker, came to our attention due to a persistent cough with slight hemoptysis. Imaging, including axial contrast-enhanced computed tomography, revealed an advanced disease with extra-thoracic spread. Tumor histology showed a sheet-like proliferation of small-sized cells with a neuroendocrine phenotype and a high proliferation tumor cell fraction. Molecular genetic analysis using NGS approach revealed a fusion involving the SYN2 and PPARG genes. CONCLUSION The SYN2-PPARG fusion has recently been documented in sinonasal adenocarcinoma and has been reported in only a single SCLC case previously. Highlighting the molecular heterogeneity within this aggressive form of lung cancer could potentially aid in the selection of specific therapies.
Collapse
Affiliation(s)
- M R Ghigna
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France.
| | - S Cotteret
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - A Arbab
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - M A Bani
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| | - J Y Scoazec
- Gustave Roussy Department of Biopathology, 114 Rue Edouard Vaillant, Villejuif, FR 94805, France
| |
Collapse
|
116
|
Hibdon ES, Keeley TM, Merchant JL, Samuelson LC. The bHLH transcription factor ASCL1 promotes differentiation of endocrine cells in the stomach and is regulated by Notch signaling. Am J Physiol Gastrointest Liver Physiol 2023; 325:G458-G470. [PMID: 37698169 PMCID: PMC10887855 DOI: 10.1152/ajpgi.00043.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Notch signaling regulates gastrointestinal stem cell proliferation and differentiation yet Notch-regulated transcriptional effectors of gastric epithelial cell differentiation are poorly understood. Here we tested the role of the bHLH transcription factor Achaete-Scute homolog 1 (ASCL1) in gastric epithelial cell differentiation, and its regulation by Notch. Newborn Ascl1 null mice showed a loss of expression of markers of neurogenin-3-dependent enteroendocrine cells, with normal expression of enterochromaffin-like cells, mucous cells, chief cells, and parietal cells. In adult mice, Ascl1 gene expression was observed in the stomach, but not the intestine, with higher expression in antral than corpus epithelium. Lineage tracing in Ascl1-CreERT2; Rosa26-LSL-tdTomato mice revealed single, scattered ASCL1+ cells in the gastric epithelium, demonstrating expression in antral gastrin- and serotonin-producing endocrine cells. ASCL1-expressing endocrine cells persisted for several weeks posttamoxifen labeling with a half-life of approximately 2 months. Lineage tracing in Gastrin-CreERT2 mice demonstrated a similar lifespan for gastrin-producing cells, confirming that gastric endocrine cells are long-lived. Finally, treatment of Ascl1-CreERT2; Rosa26-LSL-tdTomato mice with the pan-Notch inhibitor dibenzazepine increased the number of lineage-labeled cells in the gastric antrum, suggesting that Notch signaling normally inhibits Ascl1 expression. Notch regulation of Ascl1 was also demonstrated in a genetic mouse model of Notch activation, as well as Notch-manipulated antral organoid cultures, thus suggesting that ASCL1 is a key downstream Notch pathway effector promoting endocrine cell differentiation in the gastric epithelium.NEW & NOTEWORTHY Although Notch signaling is known to regulate cellular differentiation in the stomach, downstream effectors are poorly described. Here we demonstrate that the bHLH transcription factor ASCL1 is expressed in endocrine cells in the stomach and is required for formation of neurogenin-3-dependent enteroendocrine cells but not enterochromaffin-like cells. We also demonstrate that Ascl1 expression is inhibited by Notch signaling, suggesting that ASCL1 is a Notch-regulated transcriptional effector directing enteroendocrine cell fate in the mouse stomach.
Collapse
Affiliation(s)
- Elise S Hibdon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Juanita L Merchant
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
117
|
Megyesfalvi Z, Gay CM, Popper H, Pirker R, Ostoros G, Heeke S, Lang C, Hoetzenecker K, Schwendenwein A, Boettiger K, Bunn PA, Renyi-Vamos F, Schelch K, Prosch H, Byers LA, Hirsch FR, Dome B. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions. CA Cancer J Clin 2023; 73:620-652. [PMID: 37329269 DOI: 10.3322/caac.21785] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023] Open
Abstract
Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gyula Ostoros
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paul A Bunn
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
118
|
Canova S, Trevisan B, Abbate MI, Colonese F, Sala L, Baggi A, Bianchi SP, D'Agostino A, Cortinovis DL. Novel Therapeutic Options for Small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1277-1294. [PMID: 37870696 PMCID: PMC10640463 DOI: 10.1007/s11912-023-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to focus on the recent advances in the molecular knowledge of small cell lung cancer (SCLC) and potential promising new treatment strategies, like targeting the DNA damage pathway, epigenetics, angiogenesis, and oncogenic drivers. RECENT FINDINGS In the last few years, the addition of immunotherapy to chemotherapy has led to significant improvements in clinical outcomes in this complex neoplasia. Nevertheless, the prognosis remains dismal. Recently, numerous genomic alterations have been identified, and they may be useful to classify SCLC into different molecular subtypes (SCLC-A, SCLC-I, SCLC-Y, SCLC-P). SCLC accounts for 10-20% of all lung cancers, most patients have an extensive disease at the diagnosis, and it is characterized by poor prognosis. Despite the progresses in the knowledge of the disease, efficacious targeted treatments are still lacking. In the near future, the molecular characterisation of SCLC will be fundamental to find more effective treatment strategies.
Collapse
Affiliation(s)
- Stefania Canova
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Benedetta Trevisan
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Maria Ida Abbate
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Colonese
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Luca Sala
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Alice Baggi
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Sofia Paola Bianchi
- Radiation Oncology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Anna D'Agostino
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Diego Luigi Cortinovis
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Medicine and Surgery Department, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
119
|
Ozen M, Lopez CF. Data-driven structural analysis of small cell lung cancer transcription factor network suggests potential subtype regulators and transition pathways. NPJ Syst Biol Appl 2023; 9:55. [PMID: 37907529 PMCID: PMC10618210 DOI: 10.1038/s41540-023-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here, we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
Collapse
Affiliation(s)
- Mustafa Ozen
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA
| | - Carlos F Lopez
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA.
| |
Collapse
|
120
|
Tian L, Li H, Zhao P, Liu Y, Lu Y, Zhong R, Jin Y, Tan T, Cheng Y. C-Myc-induced hypersialylation of small cell lung cancer facilitates pro-tumoral phenotypes of macrophages. iScience 2023; 26:107771. [PMID: 37731607 PMCID: PMC10507237 DOI: 10.1016/j.isci.2023.107771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Immunosuppressive myeloid cell populations have been documented in small cell lung cancer (SCLC) subtypes, playing a key role in remolding the tumor microenvironment (TME). However, the cancer-associated transcriptional features of monocytes and tumor-associated macrophages (TAMs) in SCLC remain poorly understood. Herein, we analyzed the molecular features and functions of monocyte/macrophage subsets aiming to inhibit monocyte recruitment and pro-tumor behavior of macrophages. We observe that NEUROD1-high SCLC subtype (SCLC-N) exhibits subtype-specific hypersialylation induced by the unique target c-Myc (MYC) of NEUROD1. The hypersialylation can alter macrophage phenotypes and pro-tumor behavior by regulating the expression of the immune-inhibiting lectin receptors on monocyte-derived macrophages (MDMs) in SCLC-N. Inhibiting the aberrant sialic acid metabolic pathways in SCLC can significantly enhance the phagocytosis of macrophages. This study provides a comprehensive overview of the cancer-specific immune signature of monocytes and macrophages and reveals tumor-associated biomarkers as potential therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Lin Tian
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Peiyan Zhao
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuanhua Lu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yulong Jin
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Cheng
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
121
|
Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, Dassa B, Gruper Y, Khalaila R, Ben-Nun O, Gome T, Dobeš J, Ben-Dor S, Kedmi M, Keren-Shaul H, Heffner-Krausz R, Porat Z, Golani O, Addadi Y, Brenner O, Lo DD, Goldfarb Y, Abramson J. Thymic mimetic cells function beyond self-tolerance. Nature 2023; 622:164-172. [PMID: 37674082 DOI: 10.1038/s41586-023-06512-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.
Collapse
Affiliation(s)
- Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Del Castillo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
122
|
Chen P, Sun C, Wang H, Zhao W, Wu Y, Guo H, Zhou C, He Y. YAP1 expression is associated with survival and immunosuppression in small cell lung cancer. Cell Death Dis 2023; 14:636. [PMID: 37752152 PMCID: PMC10522695 DOI: 10.1038/s41419-023-06053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023]
Abstract
Immunotherapy is considered a major breakthrough in the treatment of small cell lung cancer (SCLC), although its anti-tumor efficacy is limited. With a high degree of malignancy and high heterogeneity, SCLC is difficult to treat in the clinic. A new combination strategy is urgently needed to further improve the efficacy of immunotherapy in patients with SCLC. By immunofluorescence, 100 SCLC patients in a local cohort were classified into the SCLC-A (high ASCL1 expression; n = 36), SCLC-N (high NEUROD1 expression; n = 32), SCLC-P (high POU2F3 expression; n = 14), and SCLC-Y (high YAP1 expression; n = 18) subtypes. Each SCLC molecular subtype represented different prognoses, tumor microenvironment traits, and immunotherapy sensitivities. Analysis of both the local and public cohorts suggested that the SCLC-Y subtype exhibited the worst clinical outcome (p < 0.05) when compared with other subtypes. SCLC with high YAP1 expression was characterized by high PD-L1 expression, high stromal score, T-cell functional impairment, and a close relationship with immune-related pathways. YAP1 upregulated PD-L1 expression and suppressed T cell activation, thus leading to immune evasion. In in vitro experiments, blockade of YAP1 promoted cancer cell apoptosis, immune cell proliferation, T-cell activation, and cytotoxic T-cell infiltration, thus further potentiating the efficacy of immunotherapy in patients with the SCLC-Y subtype.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Chenglong Sun
- Radiotherapy Department, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
123
|
Duplaquet L, Li Y, Booker MA, Xie Y, Olsen SN, Patel RA, Hong D, Hatton C, Denize T, Walton E, Laimon YN, Li R, Jiang Y, Bronson RT, Southard J, Li S, Signoretti S, Qiu X, Cejas P, Armstrong SA, Long HW, Tolstorukov MY, Haffner MC, Oser MG. KDM6A epigenetically regulates subtype plasticity in small cell lung cancer. Nat Cell Biol 2023; 25:1346-1358. [PMID: 37591951 PMCID: PMC10546329 DOI: 10.1038/s41556-023-01210-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah Naomi Olsen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yasmin N Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yijia Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA.
| |
Collapse
|
124
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
125
|
Lo YC, Rivera-Concepcion J, Vasmatzis G, Aubry MC, Leventakos K. Subtype of SCLC Is an Intrinsic and Persistent Feature Through Systemic Treatment. JTO Clin Res Rep 2023; 4:100561. [PMID: 37731627 PMCID: PMC10507151 DOI: 10.1016/j.jtocrr.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction SCLC is an aggressive malignancy with poor outcome. Most patients have disease recurrence despite treatments with multiple modalities. Subtyping of SCLC has been proposed recently, and novel agents targeting specific subtypes are actively being investigated. In this study, we evaluated the plasticity of subtypes in paired pre- and post-treatment samples. The aim was to understand possible subtype evolution after chemotherapy resistance that could lead to alternate targeted therapy strategies. Methods A total of 68 samples from 32 patients with sufficient paired specimens were identified from 1998 to 2022. ASCL1, NEUROD1, and POU2F3 immunohistochemistry studies were performed on all cases, and subtyping by predominant expression was determined. Subtype comparison in each patient was performed, and expression analysis was performed on the basis of subtypes. Results Of 32 cases, 28 (88%) had the same subtype in pre- and first post-treatment specimens. Protein expression level of subtype-specific transcription factor remained stable after chemotherapy. Two of five (40%) NEUROD1-predominant SCLC switched to ASCL1-predominant phenotype after treatment. One case had a pitfall of scoring ASCL1 on specimen with marked crushing artifacts. One case revealed the challenge of proper subtyping for samples with borderline POU2F3 expression. Conclusions Subtype of SCLC generally remains the same after acquiring chemotherapy resistance. Plasticity was observed with rare cases switching from NEUROD1-predominant to ASC1-predominant SCLC. Resubtyping is unnecessary for the consideration of novel subtype-specific targeted agents, except cases with NEUROD1-predominant subtype.
Collapse
Affiliation(s)
- Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Joel Rivera-Concepcion
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
- Current Affiliation: Department of Medical Oncology, Duke Cancer Center, Durham, North Carolina
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
126
|
Fazio N, La Salvia A. Precision medicine in gastroenteropancreatic neuroendocrine neoplasms: Where are we in 2023? Best Pract Res Clin Endocrinol Metab 2023; 37:101794. [PMID: 37414651 DOI: 10.1016/j.beem.2023.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Precision medicine describes a target-related approach to tailoring diagnosis and treatment of the individual patient. While this personalized approach is revoluzionizing many areas of oncology, it is quite late in the field of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs), in which there are few molecular alterations to be therapeutically targeted. We critically reviewed the current evidence about precision medicine in GEP NENs, focusing on potential clinically relevant actionable targets for GEP NENs, such as the mTOR pathway, MGMT, hypoxia markers, RET, DLL-3, and some general agnostic targets. We analysed the main investigational approaches with solid and liquid biopsies. Furthermore, we reviewed a model of precision medicine more specific for NENs that is the theragnostic use of radionuclides. Overall, currently no true predictive factors for therapy have been validated so far in GEP NENs, and the personalized approach is based more on clinical thinking within a NEN-dedicated multidisciplinary team. However, there is a robust background to suppose that precision medicine, with the theragnostic model will yield new insights in this context soon.
Collapse
Affiliation(s)
- Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, Milan, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| |
Collapse
|
127
|
Biswas S, Kang K, Ng KP, Radivoyevitch T, Schalper K, Zhang H, Lindner DJ, Thomas A, MacPherson D, Gastman B, Schrump DS, Wong KK, Velcheti V, Saunthararajah Y. Neuroendocrine lineage commitment of small cell lung cancers can be leveraged into p53-independent non-cytotoxic therapy. Cell Rep 2023; 42:113016. [PMID: 37597186 PMCID: PMC10528072 DOI: 10.1016/j.celrep.2023.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Small cell lung cancers (SCLCs) rapidly resist cytotoxic chemotherapy and immune checkpoint inhibitor (ICI) treatments. New, non-cross-resistant therapies are thus needed. SCLC cells are committed into neuroendocrine lineage then maturation arrested. Implicating DNA methyltransferase 1 (DNMT1) in the maturation arrests, we find (1) the repression mark methylated CpG, written by DNMT1, is retained at suppressed neuroendocrine-lineage genes, even as other repression marks are erased; (2) DNMT1 is recurrently amplified, whereas Ten-Eleven-Translocation 2 (TET2), which functionally opposes DNMT1, is deleted; (3) DNMT1 is recruited into neuroendocrine-lineage master transcription factor (ASCL1, NEUROD1) hubs in SCLC cells; and (4) DNMT1 knockdown activated ASCL1-target genes and released SCLC cell-cycling exits by terminal lineage maturation, which are cycling exits that do not require the p53/apoptosis pathway used by cytotoxic chemotherapy. Inhibiting DNMT1/corepressors with clinical compounds accordingly extended survival of mice with chemorefractory and ICI-refractory, p53-null, disseminated SCLC. Lineage commitment of SCLC cells can hence be leveraged into non-cytotoxic therapy able to treat chemo/ICI-refractory SCLC.
Collapse
Affiliation(s)
- Sudipta Biswas
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Kang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwok Peng Ng
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kurt Schalper
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Hua Zhang
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anish Thomas
- Experimental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Brian Gastman
- Department of Plastic Surgery, Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kwok-Kin Wong
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA.
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
128
|
Nie J, Zhang P, Liang C, Yu Y, Wang X. ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med 2023; 205:318-331. [PMID: 37355053 DOI: 10.1016/j.freeradbiomed.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC). NEPC is usually associated with tumor aggression, hormone therapy resistance, and poor clinical outcome. However, the mechanisms underlying the trans-differentiation from CRPC to NEPC have not been elucidated. Achaete-scute complex-like 1 (ASCL1) plays a role in neuronal commitment and differentiation and olfactory and autonomic neuron generation. This study revealed that ASCL1 was regulated by the SRY-box transcription factor 2 (SOX2) and highly expressed in NEPC cells, which was closely related to poor prognosis. Moreover, ASCL1 overexpression significantly enhanced CRPC progression to NEPC by resisting ferroptosis. Mechanically, ferroptosis resistance was mediated by CAMP-responsive element binding protein 1 (CREB1) phosphorylation, promoted by substantially upregulated ASCL1 in NEPC cells. In addition, upregulated SOX2 induced PCa cell differentiation into neuroendocrine tumors by mediating their lineage changes. In conclusion, inhibiting the ferroptosis resistance mediated by ASCL1 could provide a new NEPC therapeutic target and increase patient survival.
Collapse
Affiliation(s)
- Jiawei Nie
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
129
|
Saida Y, Watanabe S, Kikuchi T. Extensive-Stage Small-Cell Lung Cancer: Current Landscape and Future Prospects. Onco Targets Ther 2023; 16:657-671. [PMID: 37551311 PMCID: PMC10404428 DOI: 10.2147/ott.s272552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Small-cell lung cancer (SCLC) is characterized by aggressive disease progression and tendency to metastasize. Although chemotherapy for extensive-stage SCLC (ES-SCLC) has remained unchanged for decades, immune checkpoint inhibitors have become the primary therapy for ES-SCLC. However, the number of patients benefiting from immunotherapy is limited, and the treatment outcomes remain unsatisfactory. In addition, predictive biomarkers for immunotherapy have not yet been identified. Recent reports have shed light on the genomics of SCLC and defined four distinct molecular subtypes based on transcription factor expression. This may increase our understanding of the biology of SCLC and identify novel therapeutic targets and drugs. In this article, we review the current standard management of ES-SCLC and present the most recent reports to further our understanding of molecular classification, predictive biomarkers, and prospective therapies, including immunotherapy, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- Yu Saida
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
130
|
Zhang Y, Chen Q, Huang T, Zhu D, Lu Y. Bioinformatics-based screening of key genes for transformation of tyrosine kinase inhibitor-resistant lung adenocarcinoma to small cell lung cancer. Front Med (Lausanne) 2023; 10:1203461. [PMID: 37583423 PMCID: PMC10424445 DOI: 10.3389/fmed.2023.1203461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose Lung adenocarcinoma (LUAD) is a common type of lung cancer. Cancer in a small number of patients with EGFR mutations will transform from LUAD to small cell lung cancer (SCLC) during epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapiesr. The purpose of the present study was to identify the core genes related to the transformation of LUAD into SCLC and to explore the associated molecular mechanisms. Methods GSE29016, GSE1037, GSE6044 and GSE40275 mRNA microarray datasets from Gene Expression Omnibus (GEO) were analyzed to obtain differentially expressed genes (DEGs) between LUAD and SCLC tissues, and the results were used for network analysis of protein-protein interactions (PPIs). After identifying the hub gene by STRING and Cytoscape platform, we explored the relationship between hub genes and the occurrence and development of SCLC. Finally, the obtained hub genes were validated in treated LUAD cells. Results A total of 41 DEGs were obtained, four hub genes (EZH2, NUSAP1, TTK and UBE2C) were identified, and related prognostic information was obtained. The coexpressed genes of the hub gene set were further screened, and the analysis identified many genes related to the cell cycle. Subsequently, LUAD cell models with TP53 and RB1 inactivation and overexpression of ASCL1 were constructed, and then the expression of hub genes was detected, the results showed that the four hub genes were all elevated in the established cell model. Conclusion EZH2, NUSAP1, TTK and UBE2C may affect the transformation of LUAD to SCLC and represent new candidate molecular markers for the occurrence and development of SCLC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Chen
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
131
|
Acosta J, Li Q, Freeburg NF, Murali N, Indeglia A, Grothusen GP, Cicchini M, Mai H, Gladstein AC, Adler KM, Doerig KR, Li J, Ruiz-Torres M, Manning KL, Stanger BZ, Busino L, Murphy M, Wan L, Feldser DM. p53 restoration in small cell lung cancer identifies a latent cyclophilin-dependent necrosis mechanism. Nat Commun 2023; 14:4403. [PMID: 37479684 PMCID: PMC10362054 DOI: 10.1038/s41467-023-40161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The p53 tumor suppressor regulates multiple context-dependent tumor suppressive programs. Although p53 is mutated in ~90% of small cell lung cancer (SCLC) tumors, how p53 mediates tumor suppression in this context is unknown. Here, using a mouse model of SCLC in which endogenous p53 expression can be conditionally and temporally regulated, we show that SCLC tumors maintain a requirement for p53 inactivation. However, we identify tumor subtype heterogeneity between SCLC tumors such that p53 reactivation induces senescence in a subset of tumors, while in others, p53 induces necrosis. We pinpoint cyclophilins as critical determinants of a p53-induced transcriptional program that is specific to SCLC tumors and cell lines poised to undergo p53-mediated necrosis. Importantly, inhibition of cyclophilin isomerase activity, or genetic ablation of specific cyclophilin genes, suppresses p53-mediated necrosis by limiting p53 transcriptional output without impacting p53 chromatin binding. Our study demonstrates that intertumoral heterogeneity in SCLC influences the biological response to p53 restoration, describes a cyclophilin-dependent mechanism of p53-regulated cell death, and uncovers putative mechanisms for the treatment of this most-recalcitrant tumor type.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nelson F Freeburg
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nivitha Murali
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Indeglia
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant P Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Cicchini
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung Mai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy C Gladstein
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keren M Adler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine R Doerig
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Ruiz-Torres
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly L Manning
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen Murphy
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Liling Wan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Feldser
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
132
|
Kim J, Kim S, Park SY, Lee GK, Lim KY, Kim JY, Hwang JA, Yu N, Kang EH, Hwang M, Song BR, Park C, Han JY. Molecular Subtypes and Tumor Microenvironment Characteristics of Small-Cell Lung Cancer Associated with Platinum-Resistance. Cancers (Basel) 2023; 15:3568. [PMID: 37509231 PMCID: PMC10377352 DOI: 10.3390/cancers15143568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their clinical relevance and therapeutic implications are not fully understood. Thus, we aimed to refine molecular subtypes and to uncover therapeutic targets. We classified the subtypes based on gene expression (n = 81) and validated them in our samples (n = 87). Non-SCLC samples were compared with SCLC subtypes to identify the early development stage of SCLC. Single-cell transcriptome analysis was applied to dissect the TME of bulk samples. Finally, to overcome platinum resistance, we performed drug screening of patient-derived cells and cell lines. Four subtypes were identified: the ASCL1+ (SCLC-A) subtype identified as TP53/RB-mutated non-SCLC representing the early development stage of SCLC; the immune activation (SCLC-I) subtype, showing high CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); the NEUROD1 (SCLC-N) subtype, which showed neurotransmission process; and the POU2F3+ (SCLC-P) subtype with epithelial-to-mesenchymal transition (EMT). EndMT was associated with the worst prognosis. While SCLC-A/N exhibited platinum sensitivity, the EndMT signal of SCLC-I conferred platinum resistance. A BET inhibitor suppressed the aggressive angiogenesis phenotype of SCLC-I. We revealed that EndMT development contributed to a poor outcome in SCLC-I. Moreover, heterogenous TME development facilitated platinum resistance. BET inhibitors are novel candidates for overcoming platinum resistance.
Collapse
Affiliation(s)
- Jihyun Kim
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
- Korea Disease Control and Prevention Agency, Osong Health Technology Administration Complex, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Geon Kook Lee
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Kun Young Lim
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Jin Young Kim
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Jung-Ah Hwang
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Namhee Yu
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Eun Hye Kang
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Mihwa Hwang
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Bo Ram Song
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Charny Park
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| | - Ji-Youn Han
- Research Institute, National Cancer Center, 232 Ilsan-ro, Goyang-si 10408, Kyeonggi-do, Republic of Korea
| |
Collapse
|
133
|
Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JCH, Bailis JM, Bebb G, Goldrick A, Umejiego J, Paz-Ares L. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol 2023; 16:66. [PMID: 37355629 PMCID: PMC10290806 DOI: 10.1186/s13045-023-01464-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules-tarlatamab (formerly known as AMG 757), BI 764532, and HPN328-and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Collapse
Affiliation(s)
- Charles M Rudin
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Melissa L Johnson
- Department of Medical Oncology, Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Fiona Blackhall
- Department of Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Julie M Bailis
- Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | - Gwyn Bebb
- Oncology TA-US, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| |
Collapse
|
134
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
135
|
Moliner L, Zhang B, Lamberti G, Ardizzoni A, Byers LA, Califano R. Novel therapeutic strategies for recurrent SCLC. Crit Rev Oncol Hematol 2023; 186:104017. [PMID: 37150311 DOI: 10.1016/j.critrevonc.2023.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting and potential strategies to improve clinical outcomes of these patients are also addressed.
Collapse
Affiliation(s)
- Laura Moliner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Bingnan Zhang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, 40138, Italy
| | - Andrea Ardizzoni
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
136
|
Zunitch MJ, Fisch AS, Lin B, Barrios-Camacho CM, Faquin WC, Tachie-Baffour Y, Louie JD, Jang W, Curry WT, Gray ST, Lin DT, Schwob JE, Holbrook EH. Molecular Evidence for Olfactory Neuroblastoma as a Tumor of Malignant Globose Basal Cells. Mod Pathol 2023; 36:100122. [PMID: 36841178 PMCID: PMC10198888 DOI: 10.1016/j.modpat.2023.100122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Olfactory neuroblastoma (ONB, esthesioneuroblastoma) is a sinonasal cancer with an underdeveloped diagnostic toolkit, and is the subject of many incidents of tumor misclassification throughout the literature. Despite its name, connections between the cancer and normal cells of the olfactory epithelium have not been systematically explored and markers of olfactory epithelial cell types are not deployed in clinical practice. Here, we utilize an integrated human-mouse single-cell atlas of the nasal mucosa, including the olfactory epithelium, to identify transcriptomic programs that link ONB to a specific population of stem/progenitor cells known as olfactory epithelial globose basal cells (GBCs). Expression of a GBC transcription factor NEUROD1 distinguishes both low- and high-grade ONB from sinonasal undifferentiated carcinoma, a potential histologic mimic with a distinctly unfavorable prognosis. Furthermore, we identify a reproducible subpopulation of highly proliferative ONB cells expressing the GBC stemness marker EZH2, suggesting that EZH2 inhibition may play a role in the targeted treatment of ONB. Finally, we study the cellular states comprising ONB parenchyma using single-cell transcriptomics and identify evidence of a conserved GBC transcriptional regulatory circuit that governs divergent neuronal-versus-sustentacular differentiation. These results link ONB to a specific cell type for the first time and identify conserved developmental pathways within ONB that inform diagnostic, prognostic, and mechanistic investigation.
Collapse
Affiliation(s)
- Matthew J Zunitch
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Adam S Fisch
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yaw Tachie-Baffour
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Jonathan D Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| | - Eric H Holbrook
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
137
|
Ozen M, Lopez CF. Data-driven structural analysis of Small Cell Lung Cancer transcription factor network suggests potential subtype regulators and transition pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535226. [PMID: 37066351 PMCID: PMC10104011 DOI: 10.1101/2023.04.01.535226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Small Cell Lung Cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here, we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
Collapse
Affiliation(s)
- Mustafa Ozen
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA
- Currently at: Computational Innovation Hub, Multiscale Modeling Group, Altos Labs, Redwood City, CA 94065, USA
| | - Carlos F. Lopez
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA
- Currently at: Computational Innovation Hub, Multiscale Modeling Group, Altos Labs, Redwood City, CA 94065, USA
| |
Collapse
|
138
|
Pongor LS, Schultz CW, Rinaldi L, Wangsa D, Redon CE, Takahashi N, Fialkoff G, Desai P, Zhang Y, Burkett S, Hermoni N, Vilk N, Gutin J, Rona G, Zhao Y, Nichols S, Vilimas R, Sciuto L, Graham C, Caravaca JM, Turan S, Shen TW, Rajapakse VN, Kumar R, Upadhyay D, Kumar S, Kim YS, Roper N, Tran B, Hewitt SM, Kleiner DE, Aladjem MI, Friedman N, Hager GL, Pommier Y, Ried T, Thomas A. Extrachromosomal DNA Amplification Contributes to Small Cell Lung Cancer Heterogeneity and Is Associated with Worse Outcomes. Cancer Discov 2023; 13:928-949. [PMID: 36715552 PMCID: PMC10073312 DOI: 10.1158/2159-8290.cd-22-0796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. Oncogenic MYC amplifications drive SCLC heterogeneity, but the genetic mechanisms of MYC amplification and phenotypic plasticity, characterized by neuroendocrine and nonneuroendocrine cell states, are not known. Here, we integrate whole-genome sequencing, long-range optical mapping, single-cell DNA sequencing, and fluorescence in situ hybridization to find extrachromosomal DNA (ecDNA) as a primary source of SCLC oncogene amplifications and driver fusions. ecDNAs bring to proximity enhancer elements and oncogenes, creating SCLC transcription-amplifying units, driving exceptionally high MYC gene dosage. We demonstrate that cell-free nucleosome profiling can noninvasively detect ecDNA amplifications in plasma, facilitating its genome-wide interrogation in SCLC and other cancers. Altogether, our work provides the first comprehensive map of SCLC ecDNA and describes a new mechanism that governs MYC-driven SCLC heterogeneity. ecDNA-enabled transcriptional flexibility may explain the significantly worse survival outcomes of SCLC harboring complex ecDNA amplifications. SIGNIFICANCE MYC drives SCLC progression, but the genetic basis of MYC-driven SCLC evolution is unknown. Using SCLC as a paradigm, we report how ecDNA amplifications function as MYC-amplifying units, fostering tumor plasticity and a high degree of tumor heterogeneity. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Lőrinc Sándor Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged 6728, Hungary
| | - Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gavriel Fialkoff
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetic Core Facility, MCGP, CCR, NCI, NIH, Frederick, MD, USA
| | - Nadav Hermoni
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Noa Vilk
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Jenia Gutin
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, 450 East 29 Street, New York, NY 10016, USA
| | - Yongmei Zhao
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Manuel Caravaca
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Sevilay Turan
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Tsai-wei Shen
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, 450 East 29 Street, New York, NY 10016, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Deep Upadhyay
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bao Tran
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nir Friedman
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
139
|
Matera R, Chiang A. What Is New in Small Cell Lung Cancer. Hematol Oncol Clin North Am 2023; 37:595-607. [PMID: 37024387 DOI: 10.1016/j.hoc.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Small cell lung cancer (SCLC) is a rare yet aggressive lung cancer subtype with an extremely poor prognosis of around 1 year. SCLC accounts for 15% of all newly diagnosed lung cancers and is characterized by rapid growth with high potential for metastatic spread and treatment resistance. In the article the authors review some of the most notable efforts to improve outcomes, including trials of novel immunotherapy agents, novel disease targets, and multiple drug combinations.
Collapse
|
140
|
Lee S, Yoo SS, Choi JE, Hong MJ, Do SK, Lee JH, Lee WK, Park JE, Choi SH, Seo H, Lee J, Lee SY, Cha SI, Kim CH, Kang HG, Park JY. Genetic variants of NEUROD1 target genes are associated with clinical outcomes of small-cell lung cancer patients. Thorac Cancer 2023; 14:1145-1152. [PMID: 36935366 PMCID: PMC10151137 DOI: 10.1111/1759-7714.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Neurogenic differentiation factor 1 (NEUROD1) is frequently overexpressed in small-cell lung cancer (SCLC). NEUROD1 plays an important role in promoting malignant behavior and survival. METHODS In this study, we evaluated the association between putative functional polymorphisms in 45 NEUROD1 target genes and chemotherapy response and survival outcomes in 261 patients with SCLC. Among the 100 single nucleotide polymorphisms (SNPs) studied, two were significantly associated with both chemotherapy response and overall survival (OS) of patients with SCLC. RESULTS The SNP rs3806915C⟩A in semaphorin 6A (SEMA6A) gene was significantly associated with better chemotherapy response and OS (p = 0.04 and p = 0.04, respectively). The SNP rs11265375C⟩T in nescient helix-loop helix 1 (NHLH1) gene was also associated with better chemotherapy response and OS (p = 0.04 and p = 0.02, respectively). Luciferase assay showed a significantly higher promoter activity of SEMA6A with the rs3806915 A allele than C allele in H446 lung cancer cells (p = 4 × 10-6 ). The promoter activity of NHLH1 showed a significantly higher with the rs11265375 T allele than C allele (p = 0.001). CONCLUSION These results suggest that SEMA6A rs3806915C>A and NHLH1 rs11265375C>T polymorphisms affect the promoter activity and expression of the genes, which may affect the survival outcome of patients with SCLC.
Collapse
Affiliation(s)
- Sunwoong Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
141
|
Antonarelli G, Pieri V, Porta FM, Fusco N, Finocchiaro G, Curigliano G, Criscitiello C. Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation. Cells 2023; 12:cells12060840. [PMID: 36980181 PMCID: PMC10047715 DOI: 10.3390/cells12060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | | | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
142
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Gerdan C, Dinya E, Hoetzenecker K, Hirsch FR, Lohinai Z, Dome B. Protein Expression of immune checkpoints STING and MHCII in small cell lung cancer. Cancer Immunol Immunother 2023; 72:561-578. [PMID: 35978199 PMCID: PMC10991160 DOI: 10.1007/s00262-022-03270-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND SCLC is an aggressive malignancy where immunotherapies show limited efficacy. We aimed to characterize the SCLC microenvironment according to the expression patterns of SCLC subtype markers and novel immune checkpoints to identify therapeutic vulnerabilities. METHODS We included SCLC tissue samples from 219 surgically resected, limited-stage patients in this cross-sectional study. We performed immunohistochemistry for STING and MHCII, as well as for the novel subtype markers (ASCL1, NEUROD1, POU2F3, YAP1). Moreover, we assessed CD45 + , CD8 + and CD68 + immune cell infiltration. RESULTS 36% of SCLC tumors showed significant stromal or intraepithelial CD45 + immune cell infiltration. These patients exhibited significantly increased overall survival (OS) (vs. patients with immune-deserted tumors). High CD8 expression was associated with increased median OS. We found STING expression on cancer-associated fibroblasts in the stroma and on T-cells and macrophages in both tumorous and stromal compartments. STING expression positively correlated with immune cell infiltration. Increased STING-positivity in tumor nests was an independent favorable prognosticator for OS. ASCL1 was the most frequently expressed subtype-specific protein. Concomitant expression of three or four subtype-defining markers was seen in 13.8% of the included samples, whereas 24.1% of the cases were classified as quadruple negative tumors. YAP1 expression was associated with increased immune infiltrates. Tumor cell MHCII expression positively correlated with immune cell infiltration and with STING- and YAP1 expressions. CONCLUSIONS STING and MHCII are expressed in SCLC. The majority of immune-infiltrated SCLCs exhibit increased STING expression. Immune infiltration and STING expression are prognostic in limited-stage SCLC, making STING a potential therapeutic target.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Viktoria Laszlo
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Tunde Harko
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Csongor Gerdan
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, Budapest, Hungary
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York, NY, USA
| | - Zoltan Lohinai
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
143
|
Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed Pharmacother 2023; 159:114248. [PMID: 36645960 DOI: 10.1016/j.biopha.2023.114248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and poorly differentiated cancer with high-grade neuroendocrine (NE) features, accounting for approximately 15 % of all lung cancers. For decades, chemotherapy and radiotherapy have predominated the treatment strategy for SCLC, but relapses ensue quickly and result in poor survival of patients. Immunotherapy has brought novel insights, yet the efficacy is still restricted to a limited population with SCLC. Notch signaling is identified to play a key role in the initiation and development of SCLC, and the Notch ligand, Delta-like ligand 3 (DLL3) is found broadly and specifically expressed in SCLC cells. Thus, Notch signaling is under active exploration as a potential therapeutic target in SCLC. Herein, we summarized and updated the functional relevance of Notch signaling in SCLC, discussed Notch signaling-targeted therapy for SCLC and the correspondent preclinical and clinical trials, and investigated the promising synergy effects of Notch signaling targeted therapy and immune checkpoint inhibitors (ICIs) treatment.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Yunkai Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xuchang Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
144
|
Molecular features and evolutionary trajectory of ASCL1 + and NEUROD1 + SCLC cells. Br J Cancer 2023; 128:748-759. [PMID: 36517551 PMCID: PMC9977910 DOI: 10.1038/s41416-022-02103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer without recognised morphologic or genetic heterogeneity. Based on the expression of four transcription factors, ASCL1, NEUROD1, POU2F3, and YAP1, SCLCs are classified into four subtypes. However, biological functions of these different subtypes are largely uncharacterised. METHODS We studied intratumoural heterogeneity of resected human primary SCLC tissues using single-cell RNA-Seq. In addition, we undertook a series of in vitro and in vivo functional studies to reveal the distinct features of SCLC subtypes. RESULTS We identify the coexistence of ASCL1+ and NEUROD1+ SCLC cells within the same human primary SCLC tissue. Compared with ASCL1+ SCLC cells, NEUROD1+ SCLC cells show reduced epithelial features and lack EPCAM expression. Thus, EPCAM can be considered as a cell surface marker to distinguish ASCL1+ SCLC cells from NEUROD1+ SCLC cells. We further demonstrate that NEUROD1+ SCLC cells exhibit higher metastatic capability than ASCL1+ SCLC cells and can be derived from ASCL1+ SCLC cells. CONCLUSIONS Our studies unveil the biology and evolutionary trajectory of ASCL1+ and NEUROD1+ SCLC cells, shedding light on SCLC tumourigenesis and progression.
Collapse
|
145
|
Jafari P, Husain AN, Setia N. All Together Now: Standardization of Nomenclature for Neuroendocrine Neoplasms across Multiple Organs. Surg Pathol Clin 2023; 16:131-150. [PMID: 36739160 DOI: 10.1016/j.path.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroendocrine neoplasms (NENs) span virtually all organ systems and exhibit a broad spectrum of behavior, from indolent to highly aggressive. Historically, nomenclature and grading practices have varied widely across, and even within, organ systems. However, certain core features are recapitulated across anatomic sites, including characteristic morphology and the crucial role of proliferative activity in prognostication. A recent emphasis on unifying themes has driven an increasingly standardized approach to NEN classification, as delineated in the World Health Organization's Classification of Tumours series. Here, we review recent developments in NEN classification, with a focus on NENs of the pancreas and lungs.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA.
| | - Aliya N Husain
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA
| | - Namrata Setia
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA
| |
Collapse
|
146
|
Shirasawa M, Yoshida T, Shiraishi K, Takigami A, Takayanagi D, Imabayashi T, Matsumoto Y, Masuda K, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Yotsukura M, Yoshida Y, Nakagawa K, Tsuchida T, Hamamoto R, Yamamoto N, Motoi N, Kohno T, Watanabe SI, Ohe Y. Identification of inflamed-phenotype of small cell lung cancer leading to the efficacy of anti-PD-L1 antibody and chemotherapy. Lung Cancer 2023; 179:107183. [PMID: 37037178 DOI: 10.1016/j.lungcan.2023.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Platinum etoposide plus anti-programmed cell death ligand-1 (PD-L1) antibody therapy is the standard of care for extensive-stage small cell lung cancer (ES-SCLC). However, patient characteristics associated with the efficacy of the combination therapy in SCLC are unclear. METHODS We retrospectively reviewed post-surgical limited-stage (LS)-SCLC and ES-SCLC patients treated with atezolizumab plus carboplatin and etoposide (ACE). The association between SCLC subtypes based on transcriptomic data and pathological findings, including CD8-positive tumor-infiltrating lymphocyte (TIL) status, was investigated in the LS-SCLC cohort. The association between the efficacy of ACE therapy, pathological subtypes, and TIL status was evaluated in the ES-SCLC cohort. RESULTS The LS-SCLC cohort (N = 48) was classified into four SCLC subtypes (ASCL1 + NEUROD1 [SCLC-A + N, N = 17], POU2F3 [SCLC-P, N = 15], YAP1 [SCLC-Y, N = 10], and inflamed [SCLC-I, N = 6]) based on transcriptomic data. SCLC-I showed enriched immune-related pathways, the highest immune score (CD8A expression and T-cell-inflamed gene expression profiles), and epithelial-mesenchymal transition (EMT), in transcriptional subtypes. Immunohistochemical staining (IHC) showed that SCLC-I had the highest density of CD8-positive TILs in transcriptional subtypes. In the ES-SCLC cohort, the efficacy of ACE therapy did not differ according to pathological subtypes. The progression-free survival (PFS) of TILHigh patients was significantly longer than that of TILLow patients (PFS: 7.3 months vs. 4.0 months, p < 0.001). CONCLUSION Tumors with a high density of TILs, which represent the most immunogenic SCLC subtype (SCLC-I), based on transcriptomic data could benefit from ACE therapy.
Collapse
|
147
|
Guo J, Mu D, Yu W, Sun L, Zhang J, Ren X, Han Y. [Study on the Biological Function of Abemecilib in Inhibiting the Proliferation, Invasion and
Migration of Small Cell Lung Cancer with High c-Myc Expression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:105-112. [PMID: 36872049 PMCID: PMC10033240 DOI: 10.3779/j.issn.1009-3419.2023.106.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Small cell lung cancer (SCLC) with high c-Myc expression is prone to relapse and metastasis, leading to extremely low survival rate. Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor Abemaciclib plays a key role in the treatment of tumors, but the effects and mechanisms on SCLC remain unclear. This study was to analyze the effect and molecular mechanism of Abemaciclib in inhibiting proliferation, migration and invasion of SCLC with high c-Myc expression, with a view to expanding a new direction for reducing the recurrence and metastasis. METHODS Proteins interacting with CDK4/6 were predicted using the STRING database. The expressions of CDK4/6 and c-Myc in 31 cases of SCLC cancer tissues and paired adjacent normal tissues were analyzed by immunohistochemistry. The effects of Abemaciclib on the proliferation, invasion and migration of SCLC were detected by CCK-8, colony formation assay, Transwell and migration assay. Western blot was used to detect the expressions of CDK4/6 and related transcription factors. Flow cytometry was used to analyze the effects of Abemaciclib on the cell cycle and checkpoint of SCLC. RESULTS The expression of CDK4/6 was associated with c-Myc by STRING protein interaction network. c-Myc can directly modalize achaete-scute complex homolog 1 (ASCL1), neuronal differentiation 1 (NEUROD1) and Yes-associated protein 1 (YAP1). Moreover, CDK4 and c-Myc regulate the expression of programmed cell death ligand 1 (PD-L1). Immunohistochemistry showed that the expressions of CDK4/6 and c-Myc in cancer tissues were higher than those in adjacent tissues(P<0.0001). CCK-8, colony formation assay, Transwell and migration assay verified that Abemaciclib could effectively inhibit the proliferation, invasion and migration of SBC-2 and H446OE(P<0.0001). Western blot analysis further showed that Abemaciclib not only inhibited CDK4 (P<0.05) and CDK6 (P<0.05), but also affected c-Myc (P<0.05), ASCL1 (P<0.05), NEUROD1 (P<0.05) and YAP1 (P<0.05), which are related to SCLC invasion and metastasis. Flow cytometry showed that Abemaciclib not only inhibited the cell cycle progression of SCLC cells (P<0.0001), but also significantly increased PD-L1 expression on SBC-2 (P<0.01) and H446OE (P<0.001). CONCLUSIONS Abemaciclib significantly inhibits the proliferation, invasion, migration and cell cycle progression of SCLC by inhibiting the expressions of CDK4/6, c-Myc, ASCL1, YAP1 and NEUROD1. Abemaciclib can also increase the expression of PD-L1 in SCLC.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Di Mu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Leina Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Ying Han
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| |
Collapse
|
148
|
Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat Commun 2023; 14:567. [PMID: 36732329 PMCID: PMC9895058 DOI: 10.1038/s41467-023-36253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
|
149
|
Li X, Li Y, Zhao Z, Miao N, Liu G, Deng L, Wei S, Hou J. Immunogenicity of small-cell lung cancer associates with STING pathway activation and is enhanced by ATR and TOP1 inhibition. Cancer Med 2023; 12:4864-4881. [PMID: 35957613 PMCID: PMC9972012 DOI: 10.1002/cam4.5109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The activation of STING (stimulator of interferon genes) pathway enhances antitumor immunity in small-cell lung cancer (SCLC), while the DNA damage induced by non-cGAMP-based agonists is a potent inducer of STING activity. Here, we investigate the intrinsic expression of STING in cancer cells and evaluate the value of the combination of ATR and TOP1 inhibitors in enhancing antitumor immunity. METHODS STING expression was assessed at mRNA and protein levels in SCLC and normal lung tissues. Transcriptomic subsets of SCLC were identified based on STING-related genes. Distinct mutation and immunogenomic profiles of these subsets were determined. The direct antitumor efficacy and the potential of enhancing antitumor immunity of the strategy using the ATR-TOP1-inhibitor combination were tested in SCLC cell lines. RESULTS The intrinsic expression of STING was significantly reduced in SCLC compared to normal lung tissues (p < 0.0001). Three STING-related SCLC subtypes were identified in which the STING-high subtype was associated with (1) high immune infiltration, (2) high expression of genes related to MHC and immune checkpoints, and (3) high EMT and ferroptosis score. On the contrary, the STING-low subtype was enriched with pathways related to DNA damage response (DDR) and cell cycle progression. The association between the DDR pathway activity and the STING-IFN innate immune response was verified by in vitro experiments in which the inhibition of ATR and TOP1 triggered the expression of genes encoding type I IFN signaling and pro-inflammatory cytokines/chemokines in a STING-low SCLC cell line. CONCLUSION Our study verifies that activation of the STING-IFN response by ATR and TOP1 inhibitors might be a therapeutic strategy to improve the response to immune checkpoint therapy in STING-low SCLC. Furthermore, the combinations of ATR and TOP1 inhibitors can augment tumor inflammation in STING-low SCLC.
Collapse
Affiliation(s)
- Xuetao Li
- The Laboratory of Computational Medicine and Systems Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yujun Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Nabo Miao
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guorong Liu
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liaoyuan Deng
- The Laboratory of Computational Medicine and Systems Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jun Hou
- The Laboratory of Computational Medicine and Systems Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
150
|
Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, Theelke J, Vicari M, Czarnewski P, Liontos A, Abalo X, Andrusivová Ž, Mirzazadeh R, Asp M, Li X, Hu L, Sariyar S, Martinez Casals A, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat Cell Biol 2023; 25:351-365. [PMID: 36646791 PMCID: PMC9928586 DOI: 10.1038/s41556-022-01064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023]
Abstract
The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Theelke
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Liontos
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xesus Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Žaneta Andrusivová
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Firsova
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden.
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden.
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
| |
Collapse
|