101
|
Li N, Zhao C, Zhang P, Wu S, Dou X, Xu S, Zhang X, Peng C, Xie Y, Huang S, Zhou L, Shen Y, Wang L, Wang J, Yu C. The role of gut microbiota associated metabolites in digestive disorders. ENGINEERED REGENERATION 2024; 5:228-246. [DOI: 10.1016/j.engreg.2024.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
|
102
|
Jia W, Li Y, Cheung KCP, Zheng X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:865-878. [PMID: 37515688 DOI: 10.1007/s11427-023-2353-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
103
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
104
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
105
|
Li Y, Qi P, Song SY, Wang Y, Wang H, Cao P, Liu Y, Wang Y. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024; 174:116585. [PMID: 38615611 DOI: 10.1016/j.biopha.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
106
|
Chen S, Hu Z, Tang J, Zhu H, Zheng Y, Xiao J, Xu Y, Wang Y, Luo Y, Mo X, Wu Y, Guo J, Zhang Y, Luo H. High temperature and humidity in the environment disrupt bile acid metabolism, the gut microbiome, and GLP-1 secretion in mice. Commun Biol 2024; 7:465. [PMID: 38632312 PMCID: PMC11024098 DOI: 10.1038/s42003-024-06158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.
Collapse
Affiliation(s)
- Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongren Hu
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jianbang Tang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | | | - Yuhua Zheng
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiedong Xiao
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Yao Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Mo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yalan Wu
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianwen Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, The Life Science Institute, National University of Singapore, Singapore, Singapore.
| | - Huanhuan Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
107
|
Zazueta A, Valenzuela-Pérez L, Ortiz-López N, Pinto-León A, Torres V, Guiñez D, Aliaga N, Merino P, Sandoval A, Covarrubias N, Pérez de Arce E, Cattaneo M, Urzúa A, Roblero JP, Poniachik J, Gotteland M, Magne F, Beltrán CJ. Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2024; 25:4387. [PMID: 38673972 PMCID: PMC11050088 DOI: 10.3390/ijms25084387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location. We aimed to identify microbial signatures in a group of Chilean MASLD patients. Forty subjects were recruited, including healthy controls (HCs), overweight/obese subjects (Ow/Ob), patients with MASLD without fibrosis (MASLD/F-), and MASLD with fibrosis (MASLD/F+). Both MASLD and fibrosis were detected through elastography and/or biopsy, and fecal microbiota were analyzed through deep sequencing. Despite no differences in α- and β-diversity among all groups, a higher abundance of Bilophila and a lower presence of Defluviitaleaceae, Lachnospiraceae ND3007, and Coprobacter was found in MASLD/F- and MASLD/F+, compared to HC. Ruminococcaceae UCG-013 and Sellimonas were more abundant in MASLD/F+ than in Ow/Ob; both significantly differed between MASLD/F- and MASLD/F+, compared to HC. Significant positive correlations were observed between liver stiffness and Bifidobacterium, Prevotella, Sarcina, and Acidaminococcus abundance. Our results show that MASLD is associated with changes in bacterial taxa that are known to be involved in bile acid metabolism and SCFA production, with some of them being more specifically linked to fibrosis.
Collapse
Affiliation(s)
- Alejandra Zazueta
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Lucía Valenzuela-Pérez
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Nicolás Ortiz-López
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Araceli Pinto-León
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Verónica Torres
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Danette Guiñez
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Nicolás Aliaga
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Pablo Merino
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Alexandra Sandoval
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Natalia Covarrubias
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Edith Pérez de Arce
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Máximo Cattaneo
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Alvaro Urzúa
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Caroll Jenny Beltrán
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| |
Collapse
|
108
|
Wang X, Jin Y, Di C, Zeng Y, Zhou Y, Chen Y, Pan Z, Li Z, Ling W. Supplementation of Silymarin Alone or in Combination with Salvianolic Acids B and Puerarin Regulates Gut Microbiota and Its Metabolism to Improve High-Fat Diet-Induced NAFLD in Mice. Nutrients 2024; 16:1169. [PMID: 38674860 PMCID: PMC11053752 DOI: 10.3390/nu16081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Can Di
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
109
|
Lu XR, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Liu YX, Li JY, Yang YJ. A combined transcriptomics and proteomics approach to reveal the mechanism of AEE relieving hyperlipidemia in ApoE -/- mice. Biomed Pharmacother 2024; 173:116400. [PMID: 38484560 DOI: 10.1016/j.biopha.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.
Collapse
Affiliation(s)
- Xiao-Rong Lu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shi-Hong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Bai
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ya-Xian Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
110
|
Du Z, Luo Z, Huang Y, Zhou T, Ma L, Wu D, Yao X, Shen L, Yu S, Yong K, Yan Z, Cao S. Screening for potential warning biomarkers in cows with ketosis based on host-microbiota co-metabolism analysis. Front Microbiol 2024; 15:1373402. [PMID: 38605714 PMCID: PMC11006965 DOI: 10.3389/fmicb.2024.1373402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction The risk of ketosis is assessed by monitoring changes in plasma metabolites and cow behavior during the peripartum period. However, little is known about changes in the fecal bile acid and microbiota of cows before parturition. Therefore, this study clarified the bile acid profile and screened potential warning biomarkers in heifers 7 days before calving. Methods Ninety healthy cows were tracked in the transition period, and plasma and feces were collected 7 days before calving, on calving day, and 7 days after calving. The cows were divided into ketosis and healthy groups based on the blood β-hydroxybutyric acid levels from day 7 after calving. The levels of serum biochemical indices were measured at three time points using commercial kits. Ten cows in the ketosis group (KET-7) and 10 healthy cows (HEA-7) were randomly selected 7 days before calving for metabolome and 16S rRNA amplicon sequencing. Results No significant differences in serum energy-related indices were observed 7 days before calving. The major bile acids in the feces of the KET-7 group were non-conjugated secondary bile acids (UnconSBA). Differential bile acids were primarily derived from UnconSBA. The potential ketosis warning metabolite in feces for 7 days before delivery was isodeoxycholic acid. The abundance of Rikenellaaceae-RC9-gut-group in the KET-7 group increased, whereas the abundance of Oscillospiraceae UCG-010 bacteria significantly decreased. Lactobacillus and Prevotella-9 in feces were potential warning biomarkers for ketosis in dairy cows 7 days before calving. The variation in differential bile acids in the plasma, consistent with the feces, was mainly derived from UnconSBA. Lithocholic acid in the plasma was a potential ketosis warning metabolite 7 days before delivery. Conclusion Ketotic cows experienced bile acid metabolism disorders 7 days before calving, and the gut microbiota was closely related to bile acid metabolism disorders. Future studies should investigate the relationship between secondary bile acids and the development of ketosis.
Collapse
Affiliation(s)
- Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
111
|
Xiao Y, Wang W, Peng S, Lu Y, Du J, Cai W. Farnesoid X receptor agonist tropifexor detoxifies ammonia by regulating the glutamine metabolism and urea cycles in cholestatic livers. Eur J Pharmacol 2024; 966:176334. [PMID: 38286357 DOI: 10.1016/j.ejphar.2024.176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Hyperammonemia refers to elevated levels of ammonia in the blood, which is an important pathological feature of liver cirrhosis and hepatic failure. Preclinical studies suggest tropifexor (TXR), a novel non-bile acid agonist of Farnesoid X Receptor (FXR), has shown promising effects on reducing hepatic steatosis, inflammation, and fibrosis. This study evaluates the impact of TXR on hyperammonemia in a piglet model of cholestasis. We here observed blood ammonia significantly elevated in patients with biliary atresia (BA) and was positively correlated with liver injury. Targeted metabolomics and immunblotting showed glutamine metabolism and urea cycles were impaired in BA patients. Next, we observed that TXR potently suppresses bile duct ligation (BDL)-induced injuries in liver and brain with improving the glutamine metabolism and urea cycles. Within the liver, TXR enhances glutamine metabolism and urea cycles by up-regulation of key regulatory enzymes, including glutamine synthetase (GS), carbamoyl-phosphate synthetase 1 (CPS1), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). In primary mice hepatocytes, TXR detoxified ammonia via increasing ureagenesis. Mechanically, TXR activating FXR to increase express enzymes that regulating ureagenesis and glutamine synthesis through a transcriptional approach. Together, these results suggest that TXR may have therapeutic implications for hyperammonemic conditions in cholestatic livers.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
112
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
113
|
Wei S, Wang L, Evans PC, Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today 2024; 29:103910. [PMID: 38301798 DOI: 10.1016/j.drudis.2024.103910] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-β (THRβ) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.
Collapse
Affiliation(s)
- Shulin Wei
- School of Life Sciences, Jilin University, Changchun, China; Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
114
|
Mio K, Iida-Tanaka N, Togo-Ohno M, Tadenuma N, Yamanaka C, Aoe S. Barley consumption under a high-fat diet suppresses lipogenic genes through altered intestinal bile acid composition. J Nutr Biochem 2024; 125:109547. [PMID: 38081474 DOI: 10.1016/j.jnutbio.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
We evaluated whether barley flour consumption in a high-fat environment affects lipid metabolism through signals mediated by bile acids. Four-week-old mice were fed a high-fat diet supplemented with cellulose (HC) or β-glucan-rich barley flour (HB) for 12 weeks. Bile acid composition in the intestinal tract and feces was measured by GC/MS. Gene expression levels involved in bile acid metabolism in the liver and intestinal tract were determined by RT-PCR. Similar parameters were measured in mice treated with antibiotics (antibiotics-cellulose [AC] and antibiotics-barley [AB]) to reduce the activity of intestinal bacteria. The Results showed that the HB group had lower liver blood cholesterol and triglyceride levels than the HC group. The HB group showed a significant decrease in primary bile acids in the gastrointestinal tract compared to the HC group. On the other hand, the concentration of secondary bile acids relatively increased in the cecum and feces. In the liver, Fxr activation suppressed gene expression levels in synthesizing bile acids and lipids. Furthermore, in the gastrointestinal tract, Tgr5 was activated by increased secondary bile acids. Correspondingly, AMP levels were increased in the HB group compared to the HC group, AMPK was phosphorylated in the liver, and gene expression involved in lipid synthesis was downregulated. A comparison of the AC and AB groups treated with antibiotics did not confirm these effects of barley intake. In summary, our results suggest that the prevention of lipid accumulation by barley consumption involves signaling through changes in bile acid composition in the intestinal tract.
Collapse
Affiliation(s)
- Kento Mio
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Naoko Iida-Tanaka
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Marina Togo-Ohno
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Natsuki Tadenuma
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Seiichiro Aoe
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan.
| |
Collapse
|
115
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
116
|
Bendixen SM, Jakobsgaard PR, Hansen D, Hejn KH, Terkelsen MK, Bjerre FA, Thulesen AP, Eriksen NG, Hallenborg P, Geng Y, Dam TV, Larsen FT, Wernberg CW, Vijayathurai J, Scott EAH, Marcher AB, Detlefsen S, Grøntved L, Dimke H, Berdeaux R, de Aguiar Vallim TQ, Olinga P, Lauridsen MM, Krag A, Blagoev B, Ravnskjaer K. Single cell-resolved study of advanced murine MASH reveals a homeostatic pericyte signaling module. J Hepatol 2024; 80:467-481. [PMID: 37972658 DOI: 10.1016/j.jhep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.
Collapse
Affiliation(s)
- Sofie M Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Peter R Jakobsgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Daniel Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kamilla H Hejn
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Mike K Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik A Bjerre
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Annemette P Thulesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Niels G Eriksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Trine V Dam
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik T Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Charlotte W Wernberg
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Janusa Vijayathurai
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Emma A H Scott
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Henrik Dimke
- Department of Molecular Medicine, University of Southern Denmark, Denmark; Department of Nephrology, Odense University Hospital, Denmark
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health Houston, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Mette M Lauridsen
- Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark.
| |
Collapse
|
117
|
Cai H, Zhang J, Liu C, Le TN, Lu Y, Feng F, Zhao M. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024; 13:699. [PMID: 38472812 DOI: 10.3390/foods13050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.
Collapse
Affiliation(s)
- Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Thanh Ninh Le
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
118
|
Xu H, Yuan M, Niu K, Yang W, Jiang M, Zhang L, Zhou J. Involvement of Bile Acid Metabolism and Gut Microbiota in the Amelioration of Experimental Metabolism-Associated Fatty Liver Disease by Nobiletin. Molecules 2024; 29:976. [PMID: 38474489 DOI: 10.3390/molecules29050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1β and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.
Collapse
Affiliation(s)
- Hongling Xu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingming Yuan
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Kailin Niu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Yang
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Jing Zhou
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|
119
|
Huang K, Chu G, Yang P, Liu Y, Zhang Y, Guan X, Li S, Song H, Zhang Y. Benefits of Monascus anka solid-state fermentation for quinoa polyphenol bioaccessibility and the anti-obesity effect linked with gut microbiota. Food Funct 2024; 15:2208-2220. [PMID: 38317482 DOI: 10.1039/d3fo04555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In our previous study, a polyphenol-utilization targeted quinoa product was developed via solid-state fermentation with Monascus anka. In this study, we investigated the polyphenol-related novel functions of the fermented product further. Compared with unfermented quinoa, M. anka fermented quinoa alleviated the trapping effect of the macromolecules, especially in the colonic fermentation stage, resulting in enhanced polyphenol bioaccessibility. Lachnoclostridium, Megasphaera, Megamonas, Dialister, and Phascolarctobacterium might contribute to polyphenol liberation and metabolism in fermented quinoa. Additionally, fermented quinoa polyphenols presented an efficient anti-obesity effect by enhancing hepatic antioxidant enzyme activities, suppressing fatty acid synthesis, accelerating fatty acid oxidation, and improving bile acid synthesis. Moreover, fermented quinoa polyphenol supplementation alleviated gut microbiota disorder induced by a high-fat diet, resulting in a decreased ratio of Firmicutes/Bacteroidota, and increased relative abundances of Lactobacillus and Lachnoclostridium. The obtained results suggested that the principal anti-obesity effect of fermented quinoa polyphenols might act through the AMPK/PPARα/CPT-1 pathway. In conclusion, M. anka solid-state fermentation effectively enhanced the bioaccessibility of quinoa, and the fermented quinoa polyphenols showed considerable anti-obesity effect. Our findings provide new perspectives for the development of dietary polyphenol-based satiety-enhancing functional foods.
Collapse
Affiliation(s)
- Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Guoqiang Chu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Pei Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
120
|
Tang X, Liao Q, Li Q, Jiang L, Li W, Xu J, Xiong A, Wang R, Zhao J, Wang Z, Ding L, Yang L. Lusianthridin ameliorates high fat diet-induced metabolic dysfunction-associated fatty liver disease via activation of FXR signaling pathway. Eur J Pharmacol 2024; 965:176196. [PMID: 38006926 DOI: 10.1016/j.ejphar.2023.176196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease, but there are few specific medications for it. Lusianthridin, a major phenanthrene component that originates from Dendrobium Sonia, has various in vitro biological functions. In this study, we aimed to evaluate the therapeutic effects of lusianthridin on high-fat diet (HFD)-induced MAFLD as well as to examine the mechanism of its effects. We fed male mice high-fat-diet for 12 weeks to induce MAFLD and then continued to feed them, either with or without lusianthridin, for another six weeks. We found that lusianthridin decreased serum triacylglycerol, hepatic triacylglycerol, and serum low density lipoprotein cholesterol. It also reduced hepatic lipid accumulation based on the results of morphology analysis. Besides, it improved hepatic inflammation as well, including a decrease in serum alanine aminotransferase and a reduction in macrophage and neutrophil infiltration. Mechanistically, surface plasmon resonance, cell thermal shift assay and dual-luciferase report system results suggested that lusianthridin combined with farnesoid X receptor (FXR) ligand binding region and activated its transcriptional activity. Lusianthridin also decreased de no lipogenesis though inhibiting Srebp1c and downstream Scd-1, Lpin1 and Dgat2 expression in a FXR-dependent manner in oleic acid treated L02 cells. Correspondingly, lusianthridin inhibited Srebp1c and downstream lipogenesis in MAFLD liver tissues of mice at both of genetic and protein levels. Finally, the protective effects of lusianthridin on hepatic steaotosis were abolished in Fxr-/- mice. Taken together, our results suggested that lusianthridin attenuated high-fat-diet induced MAFLD via activation the FXR signaling pathway.
Collapse
Affiliation(s)
- Xiaowen Tang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Liao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qinqin Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linshan Jiang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rufeng Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 999078, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
121
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
122
|
Liu C, Du MX, Xie LS, Wang WZ, Chen BS, Yun CY, Sun XW, Luo X, Jiang Y, Wang K, Jiang MZ, Qiao SS, Sun M, Cui BJ, Huang HJ, Qu SP, Li CK, Wu D, Wang LS, Jiang C, Liu HW, Liu SJ. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat Microbiol 2024; 9:434-450. [PMID: 38233647 DOI: 10.1038/s41564-023-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Meng-Xuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Li-Sheng Xie
- College of Life Science, Hebei University, Baoding, P. R. China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bao-Song Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Chu-Yu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Yu Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Shan-Shan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Min Sun
- The Second Hospital of Shandong University, Jinan, P. R. China
| | - Bao-Juan Cui
- The Second Hospital of Shandong University, Jinan, P. R. China
| | - Hao-Jie Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | | | | | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Lu-Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, P. R. China.
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
123
|
Hashimoto N, Nagata R, Han KH, Wakagi M, Ishikawa-Takano Y, Fukushima M. Involvement of the vagus nerve and hepatic gene expression in serum adiponectin concentrations in mice. J Physiol Biochem 2024; 80:99-112. [PMID: 37837567 DOI: 10.1007/s13105-023-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice.
Collapse
Affiliation(s)
- Naoto Hashimoto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan.
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Ryuji Nagata
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Manabu Wakagi
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yuko Ishikawa-Takano
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
124
|
Huang W, Cao Z, Wang W, Yang Z, Jiao S, Chen Y, Chen S, Zhang L, Li Z. Discovery of LH10, a novel fexaramine-based FXR agonist for the treatment of liver disease. Bioorg Chem 2024; 143:107071. [PMID: 38199141 DOI: 10.1016/j.bioorg.2023.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Farnesoid X receptor (FXR) was considered as a promising drug target in the treatment of cholestasis, drug-induced liver injury, and non-alcoholic steatohepatitis (NASH). However, the existing FXR agonists have shown different degrees of side effects in clinical trials without clear interpretation. MET-409 in clinical phase Ⅲ, has been proven significantly fewer side effects than that of other FXR agonists. This may be due to the completely different structure of FEX and other non-steroidal FXR agonists. Herein, the structure-based drug design was carried out based on FEX, and the more active FXR agonist LH10 (FEX EC50 = 0,3 μM; LH10 EC50 = 0.14 μM)) was screened out by the comprehensive SAR studies. Furthermore, LH10 exhibited robust hepatoprotective activity on the ANIT-induced cholestatic model and APAP-induced acute liver injury model, which was even better than positive control OCA. In the nonalcoholic steatohepatitis (NASH) model, LH10 significantly improved the pathological characteristics of NASH by regulating several major pathways including lipid metabolism, inflammation, oxidative stress, and fibrosis. With the above attractive results, LH10 is worthy of further evaluation as a novel agent for the treatment of liver disorders.
Collapse
Affiliation(s)
- Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
125
|
Ding FF, Li M, Wang T, Zhou NN, Qiao F, Du ZY, Zhang ML. Influence of dietary sodium taurocholate on the growth performance and liver health of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:319-330. [PMID: 36044098 DOI: 10.1007/s10695-022-01116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bile acids (BAs) are a class of cholesterol-derived amphipathic molecules approved as new animal feed additives. However, the functional researches mainly focused on BAs mixture, and the influence of the individual BA on fishes was still limited. In the present study, Nile tilapia were fed basal diet with three levels of sodium taurocholate at 0 mg/kg (CON), 300 mg/kg (TCAL), and 600 mg/kg (TCAH) for 8 weeks. The results indicated that addition of sodium taurocholate did not significantly influence the growth performance. Instead, TCAH group had higher cholesterol accumulation with liver fibrosis. In TCAH group, the level of nuclear factor E2-related factor 2 (nrf2) signaling-associated oxidative stress factors significantly increased in the liver. Additionally, fish in TCAH group had the highest expression level of genes encoding endoplasmic reticulum (ER) stress and inflammatory cytokines in the liver. In conclusion, 300 mg/kg of sodium taurocholate did not significantly influence the growth performance of fish, while 600 mg/kg of sodium taurocholate markedly induced cholesterol accumulation and liver injury, suggesting that the application of taurocholic acid in aquafeed should be re-evaluated.
Collapse
Affiliation(s)
- Fei-Fei Ding
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Miao Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tong Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan-Nan Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
126
|
Su C, Wang J, Luo H, Chen J, Lin F, Mo J, Xiong F, Zha L. Gut Microbiota Plays Essential Roles in Soyasaponin's Preventive Bioactivities against Steatohepatitis in the Methionine and Choline Deficient (MCD) Diet-Induced Non-Alcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2024; 68:e2300561. [PMID: 38234006 DOI: 10.1002/mnfr.202300561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/24/2023] [Indexed: 01/19/2024]
Abstract
SCOPE Gut microbiota (GM) is involved in nonalcoholic steatohepatitis (NASH) development. Phytochemicals soyasaponins can prevent NASH possibly by modulating GM. This study aims to investigate the preventive bioactivities of soyasaponin monomers (SS-A1 and SS-Bb) against NASH and explores the mechanisms by targeting GM. METHODS AND RESULTS Male C57BL/6 mice are fed with methionine and choline deficient (MCD) diet containing SS-A1 , SS-Bb, or not for 16 weeks. Antibiotics-treated pseudo germ-free (PGF) mice are fed with MCD diet containing SS-A1 , SS-Bb, or not for 8 weeks. GM is determined by 16S rRNA amplicon sequencing. Bile acids (BAs) are measured by UPLC-MS/MS. In NASH mice, SS-A1 and SS-Bb alleviate steatohepatitis and fibrosis, reduce ALT, AST, and LPS in serum, decrease TNF-α, IL-6, α-SMA, triglycerides, and cholesterol in liver. SS-A1 and SS-Bb decrease Firmicutes, Erysipelotrichaceae, unidentified-Clostridiales, Eggerthellaceae, Atopobiaceae, Aerococcus, Jeotgalicoccus, Gemella, Rikenella, increase Proteobacteria, Verrucomicrobia, Akkermansiaceae, Romboutsia, and Roseburia. SS-A1 and SS-Bb alter BAs composition in liver, serum, and feces, activate farnesoid X receptor (FXR) in liver and ileum, increase occludin and ZO-1 in intestine. However, GM clearance abrogates the preventive bioactivities of SS-A1 and SS-Bb against NASH. CONCLUSION GM plays essential roles in soyasaponin's preventive bioactivities against steatohepatitis in MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
127
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
128
|
Xie Q, Hu X, Zhao X, Xiang Z, Chen Q, Xie Z, Wang H, Zhao Y, Cheng X, Wang C. Effects and mechanism of extracts rich in phenylpropanoids-polyacetylenes and polysaccharides from Codonopsis Radix on improving scopolamine-induced memory impairment of mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117106. [PMID: 37652198 DOI: 10.1016/j.jep.2023.117106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a progressive developmental neurodegenerative disease that primarily develops in old age. Memory impairment is an important manifestation of AD. It has been demonstrated that inflammation and oxidative stress are important mediators in the development and progression of AD. Codonopsis Radix (CR) has a long history of consumption, exhibiting lots of beneficial health effects, including anti-ageing, antioxidant, and anti-inflammatory properties. However, studies on the effects of CR on scopolamine-induced amnesia have rarely been reported. AIM OF THE STUDY The aim of this study was to investigate the ameliorative effect of macromolecular portion (polysaccharides, POL) and small molecule portion (fine extract rich in phenylpropanoids-polyacetylenes, EPP) from CR on improving scopolamine-induced memory impairment and to elucidate the potential mechanism of action. MATERIALS AND METHODS C57BL/6 mice were pretreated with EPP (0.2, 0.4, and 0.6 g/kg), POL (0.3, 0.6, and 0.9 g/kg), and donepezil (5 mg/kg) by gavage for 7 days, followed by intraperitoneal injection of scopolamine (1 mg/kg) to induce memory impairment. The 16S rRNA gene sequencing, histopathological, western blotting, and biochemical analysis (various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation) were performed to further elucidate the mechanism of action. Moreover, the acetylcholinesterase (AChE) inhibitory activities of POL, EPP, and its main compounds tangshenoside I, lobetyol, lobetyolin, and lobetyolinin were evaluated. RESULTS Experiments have confirmed that both POL and EPP from CR could improve scopolamine-induced spatial learning memory deficits. Both of them could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities. They also could enhance antioxidant defense via increasing the activities of superoxide dismutase and glutathione peroxidase, and anti-inflammatory function through suppressing inflammatory factors (nitric oxide, TNF-α, and IL-6) and regulating gut flora. Besides, in vitro experiments demonstrated that four monomeric compounds and EPP, except POL, exhibited inhibition of AChE activity. CONCLUSION EPP and POL from CR exert a beneficial effect on learning and memory processes in mice with scopolamine-induced memory impairment. CR may be a promising medicine for preventing and improving learning memory.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Qianping Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yonglin Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
129
|
Yang D, Lyu C, He K, Pang K, Guo Z, Wu D. Bile Acid Diarrhea: From Molecular Mechanisms to Clinical Diagnosis and Treatment in the Era of Precision Medicine. Int J Mol Sci 2024; 25:1544. [PMID: 38338820 PMCID: PMC10855108 DOI: 10.3390/ijms25031544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bile acid diarrhea (BAD) is a multifaceted intestinal disorder involving intricate molecular mechanisms, including farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and Takeda G protein-coupled receptor 5 (TGR5). Current diagnostic methods encompass bile acid sequestrants (BAS), 48-h fecal bile acid tests, serum 7α-hydroxy-4-cholesten-3-one (C4), fibroblast growth factor 19 (FGF19) testing, and 75Selenium HomotauroCholic acid test (75SeHCAT). Treatment primarily involves BAS and FXR agonists. However, due to the limited sensitivity and specificity of current diagnostic methods, as well as suboptimal treatment efficacy and the presence of side effects, there is an urgent need to establish new diagnostic and treatment methods. While prior literature has summarized various diagnostic and treatment methods and the pathogenesis of BAD, no previous work has linked the two. This review offers a molecular perspective on the clinical diagnosis and treatment of BAD, with a focus on FXR, FGFR4, and TGR5, emphasizing the potential for identifying additional molecular mechanisms as treatment targets and bridging the gap between diagnostic and treatment methods and molecular mechanisms for a novel approach to the clinical management of BAD.
Collapse
Affiliation(s)
- Daiyu Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (D.Y.); (K.P.); (Z.G.)
| | - Chengzhen Lyu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (C.L.); (K.H.)
| | - Kun He
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (C.L.); (K.H.)
| | - Ke Pang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (D.Y.); (K.P.); (Z.G.)
| | - Ziqi Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (D.Y.); (K.P.); (Z.G.)
| | - Dong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (C.L.); (K.H.)
| |
Collapse
|
130
|
Zhang L, Chen J, Yang X, Shen C, Huang J, Zhang D, Liu N, Liu C, Zhong Y, Chen Y, Tang K, Guo J, Cui T, Duan S, Li J, Huang S, Pan H, Zhang H, Tang X, Chang Y, Gao Y. Hepatic Zbtb18 (Zinc Finger and BTB Domain Containing 18) alleviates hepatic steatohepatitis via FXR (Farnesoid X Receptor). Signal Transduct Target Ther 2024; 9:20. [PMID: 38263084 PMCID: PMC10806020 DOI: 10.1038/s41392-023-01727-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
A lasting imbalance between fatty acid synthesis and consumption leads to non-alcoholic fatty liver disease (NAFLD), coupled with hepatitis and insulin resistance. Yet the details of the underlying mechanisms are not fully understood. Here, we unraveled that the expression of the transcription factor Zbtb18 is markedly decreased in the livers of both patients and murine models of NAFLD. Hepatic Zbtb18 knockout promoted NAFLD features like impaired energy expenditure and fatty acid oxidation (FAO), and induced insulin resistance. Conversely, hepatic Zbtb18 overexpression alleviated hepato-steatosis, insulin resistance, and hyperglycemia in mice fed on a high-fat diet (HFD) or in diabetic mice. Notably, in vitro and in vivo mechanistic studies revealed that Zbtb18 transcriptional activation of Farnesoid X receptor (FXR) mediated FAO and Clathrin Heavy Chain (CLTC) protein hinders NLRP3 inflammasome activity. This key mechanism by which hepatocyte's Zbtb18 expression alleviates NAFLD and consequent liver fibrosis was further verified by FXR's deletion and forced expression in mice and cultured mouse primary hepatocytes (MPHs). Moreover, CLTC deletion significantly abrogated the hepatic Zbtb18 overexpression-driven inhibition of NLRP3 inflammasome activity in macrophages. Altogether, Zbtb18 transcriptionally activates the FXR-mediated FAO and CLTC expression, which inhibits NLRP3 inflammasome's activity alleviating inflammatory stress and insulin resistance, representing an attractive remedy for hepatic steatosis and fibrosis.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jiabing Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chuangpeng Shen
- Department of Endocrinology, The First Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jiawen Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Naihua Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaonan Liu
- Department of Endocrinology, The First Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yadi Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjian Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaijia Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqi Cui
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyi Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| | - Yong Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
131
|
Chen C, Zhang B, Tu J, Peng Y, Zhou Y, Yang X, Yu Q, Tan X. Discovery of 4-aminophenylacetamide derivatives as intestine-specific farnesoid X receptor antagonists for the potential treatment of nonalcoholic steatohepatitis. Eur J Med Chem 2024; 264:115992. [PMID: 38043493 DOI: 10.1016/j.ejmech.2023.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, lipid and glucose metabolism and is emerging as a promising therapeutic target for nonalcoholic steatohepatitis (NASH). Emerging evidence suggested that intestine-specific FXR antagonists exhibited remarkable metabolic improvements and slowed NASH progression. In this study, we discovered several potent FXR antagonists using a multistage ligand- and structure-based virtual screening approach. Notably, compound V023-9340, which possesses a 4-aminophenylacetamide scaffold, emerged as the most potent FXR antagonist with an IC50 value of 4.27 μM. In vivo, V023-9340 demonstrated selective accumulation in the intestine, substantially ameliorating high-fat diet (HFD)-induced NASH in mice by mitigating hepatic steatosis and inflammation. Mechanistic studies revealed that V023-9340 strongly inhibited intestinal FXR while concurrently feedback-activated hepatic FXR. Further structure-activity relationship optimization employing V023-9340 has resulted in the synthesis of a more efficacious compound V02-8 with an IC50 value of 0.89 μM, which exhibited a 4.8-fold increase in FXR antagonistic activity compared to V023-9340. In summary, 4-aminophenylacetamide derivative V023-9340 represented a novel intestine-specific FXR antagonist and showed improved effects against HFD-induced NASH in mice, which may serve as a promising lead in discovering potential therapeutic drugs for NASH treatment.
Collapse
Affiliation(s)
- Cong Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Bing Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanfen Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yihuan Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xinping Yang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Qiming Yu
- Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
132
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
133
|
Shibo C, Sili W, Yanfang Q, Shuxiao G, Susu L, Xinlou C, Yongsheng Z. Emerging trends and hotspots in the links between the bile acids and NAFLD from 2002 to 2022: A bibliometric analysis. Endocrinol Diabetes Metab 2024; 7:e460. [PMID: 37941122 PMCID: PMC10782058 DOI: 10.1002/edm2.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome of the liver, and its incidence is increasing worldwide. Accumulating evidence suggests that bile acids are associated with NAFLD. Although many studies on bile acids and NAFLD have been published over the past 20 years, the authors of this study have not found a relevant bibliometric analysis in this field. Therefore, this study aimed to evaluate the trend of publications, summarize current research hotspots and predict future research directions through bibliometric analysis in this field. METHOD Articles related to bile acids and NAFLD published between 2002 and 2022 were obtained from the Science Citation Index-Expanded of Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer and Bibliometric Online Analysis Platform were used to analyse the publication trends and research hotspots in this field. RESULTS Among the articles published between 2002 and 2022, we retrieved 1284 articles related to bile acids and NAFLD, and finally included 568 articles. The USA was dominant until 2020, after which China surpassed the USA to become the dominant force. These two countries cooperate the most closely, and are also the most active in international cooperation. The University of California (UCL) was the most published institution, with a total of 31 publications. There were six authors who have published nine articles and ranked first. The keywords cluster labels show the 10 main clusters: #0fatty liver, #1obeticholic acid, #2oxidative stress, #37 alpha hydroxy 4 cholesten 3 one, #4deoxycholic acid, #5nonalcoholic fatty liver disease, #6mouse model, #7fibroblast growth factor 21, #8animal models, #9high-fat diet. Keywords burst analysis revealed a higher intensity of study for the nuclear receptor, FXR, and metabolic syndrome. CONCLUSION Bile acids have become an important research direction in the field of NAFLD, and the intervention of gut microbiota in NAFLD by acting on bile acids may become a potential hotspot for future research. This study provides reference and guidance for future research, and will help scholars better explore the field and innovatively discover the mechanisms and treatments of NAFLD.
Collapse
Affiliation(s)
- Cong Shibo
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Wang Sili
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Qiao Yanfang
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Gu Shuxiao
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Liu Susu
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Chai Xinlou
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Zhang Yongsheng
- Beijing University of Chinese Medicine, Dongfang HospitalBeijingChina
| |
Collapse
|
134
|
Yang Z, Danzeng A, Liu Q, Zeng C, Xu L, Mo J, Pingcuo C, Wang X, Wang C, Zhang B, Zhang B. The Role of Nuclear Receptors in the Pathogenesis and Treatment of Non-alcoholic Fatty Liver Disease. Int J Biol Sci 2024; 20:113-126. [PMID: 38164174 PMCID: PMC10750283 DOI: 10.7150/ijbs.87305] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health burden closely linked to insulin resistance, obesity, and type 2 diabetes. The complex pathophysiology of NAFLD involves multiple cellular pathways and molecular factors. Nuclear receptors (NRs) have emerged as crucial regulators of lipid metabolism and inflammation in NAFLD, offering potential therapeutic targets for NAFLD. Targeting PPARs and FXRs has shown promise in ameliorating NAFLD symptoms and halting disease progression. However, further investigation is needed to address side effects and personalize therapy approaches. This review summarizes the current understanding of the involvement of NRs in the pathogenesis of NAFLD and explores their therapeutic potential. We discuss the role of several NRs in modulating lipid homeostasis in the liver, including peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), REV-ERB, hepatocyte nuclear factor 4α (HNF4α), constitutive androstane receptor (CAR) and pregnane X receptor (PXR).The expanding knowledge of NRs in NAFLD offers new avenues for targeted therapies, necessitating exploration of novel treatment strategies and optimization of existing approaches to combat this increasingly prevalent disease.
Collapse
Affiliation(s)
- Zhenhua Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Awang Danzeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Ciren Pingcuo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Xiaojing Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430030, Hubei Province, China
| |
Collapse
|
135
|
Cano L, Desquilles L, Ghukasyan G, Angenard G, Landreau C, Corlu A, Clément B, Turlin B, Le Ferrec E, Aninat C, Massart J, Musso O. SARS-CoV-2 receptor ACE2 is upregulated by fatty acids in human MASH. JHEP Rep 2024; 6:100936. [PMID: 38074511 PMCID: PMC10698276 DOI: 10.1016/j.jhepr.2023.100936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) results in steatosis, inflammation (steatohepatitis), and fibrosis. Patients with MASLD more likely develop liver injury in coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As viral RNA has been identified in liver tissues, we studied expression levels and cellular sources of the viral receptor angiotensin-converting enzyme 2 (ACE2) and coreceptors in MASLD and fibroinflammatory liver diseases. METHODS We built a transcriptomic MASLD meta-dataset (N = 243) to study SARS-CoV-2 receptor expression and verified results in 161 additional cases of fibroinflammatory liver diseases. We assessed the fibroinflammatory microenvironment by deconvoluting immune cell populations. We studied the cellular sources of ACE2 by multiplex immunohistochemistry followed by high-resolution confocal microscopy (N = 9 fatty livers; N = 7 controls), meta-analysis of two single-cell RNA sequencing datasets (N = 5 cirrhotic livers; N = 14 normal livers), and bulk transcriptomics from 745 primary cell samples. In vitro, we tested ACE2 mRNA expression in primary human hepatocytes treated with inflammatory cytokines, bacterial lipopolysaccharides, or long-chain fatty acids. RESULTS We detected ACE2 at the apical and basal poles of hepatocyte chords, in CLEC4M+ liver sinusoidal endothelial cells, the lumen of ABCC2+ bile canaliculi, HepPar-1+-TMPRSS2+ hepatocytes, cholangiocytes, and CD34+ capillary vessels. ACE2 steeply increased between 30 and 50 years of age; was related to liver fat area, inflammation, high immune reactivity, and fibrogenesis; and was upregulated in steatohepatitis. Although ACE2 mRNA was unmodified in alcoholic or viral hepatitis, it was upregulated in fibroinflammatory livers from overweight patients. In vitro, treatment of primary human hepatocytes with inflammatory cytokines alone downregulated but long chain fatty acids upregulated ACE2 mRNA expression. CONCLUSIONS Lipid overload in fatty liver disease leads to an increased availability of ACE2 receptors. IMPACT AND IMPLICATIONS COVID-19 can be a deadly disease in vulnerable individuals. Patients with fatty liver disease are at a higher risk of experiencing severe COVID-19 and liver injury. Recent studies have indicated that one of the reasons for this vulnerability is the presence of a key cell surface protein called ACE2, which serves as the main SARS-CoV-2 virus receptor. We describe the cellular sources of ACE2 in the liver. In patients with fatty liver disease, ACE2 levels increase with age, liver fat content, fibroinflammatory changes, enhanced positive immune checkpoint levels, and innate immune reactivity. Moreover, we show that long chain fatty acids can induce ACE2 expression in primary human hepatocytes. Understanding the cellular sources of ACE2 in the liver and the factors that influence its availability is crucial. This knowledge will guide further research and help protect potentially vulnerable patients through timely vaccination boosters, dietary adjustments, and improved hygiene practices.
Collapse
Affiliation(s)
- Luis Cano
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Lise Desquilles
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Gevorg Ghukasyan
- Univ Rennes 1, CNRS, INSERM, UMS Biosit, Core Facility H2P2, Rennes, France
| | - Gaëlle Angenard
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Clémence Landreau
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Anne Corlu
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Clément
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Turlin
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes 1, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) UMR_S 1085, Rennes, France
| | - Caroline Aninat
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Julie Massart
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Orlando Musso
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| |
Collapse
|
136
|
Tzur Y, Winek K, Madrer N, Dubnov S, Bennett ER, Greenberg DS, Hanin G, Gammal A, Tam J, Arkin IT, Paldor I, Soreq H. Lysine tRNA fragments and miR-194-5p co-regulate hepatic steatosis via β-Klotho and perilipin 2. Mol Metab 2024; 79:101856. [PMID: 38141848 PMCID: PMC10805669 DOI: 10.1016/j.molmet.2023.101856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Yonat Tzur
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Katarzyna Winek
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Nimrod Madrer
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Serafima Dubnov
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - David S Greenberg
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Geula Hanin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isaiah T Arkin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Iddo Paldor
- Shaare Zedek Medical Center, The Neurosurgery Department, Main Building, 10th Floor, 12 Shmu'el Bait Street, Jerusalem, 9103102 Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
137
|
Yang J, Chen X, Liu T, Shi Y. Potential role of bile acids in the pathogenesis of necrotizing enterocolitis. Life Sci 2024; 336:122279. [PMID: 37995935 DOI: 10.1016/j.lfs.2023.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common acute gastrointestinal diseases in preterm infants. Recent studies have found that NEC is not only caused by changes in the intestinal environment but also by the failure of multiple systems and organs, including the liver. The accumulation of bile acids (BAs) in the ileum and the disorder of ileal BA transporters are related to the ileum injury of NEC. Inflammatory factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-18 secreted by NEC also play an important role in regulating intrahepatic BA transporters. As an important link connecting the liver and intestinal circulation, the bile acid metabolic pathway plays an important role in the regulation of intestinal microbiota, cell proliferation, and barrier protection. In this review, we focus on how bile acids explore the dynamic changes of bile acid metabolism in necrotizing enterocolitis and the potential therapeutic value of targeting the bile acid signaling pathways.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
138
|
Kunst RF, Bolt I, van Dasselaar RD, Nijmeijer BA, Beuers U, Oude Elferink RP, van de Graaf SF. Combined inhibition of bile salt synthesis and intestinal uptake reduces cholestatic liver damage and colonic bile salts in mice. JHEP Rep 2024; 6:100917. [PMID: 38074508 PMCID: PMC10701132 DOI: 10.1016/j.jhepr.2023.100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND & AIMS Intestine-restricted inhibitors of the apical sodium-dependent bile acid transporter (ASBT, or ileal bile acid transporter) are approved as treatment for several inheritable forms of cholestasis but are also associated with abdominal complaints and diarrhoea. Furthermore, blocking ASBT as a single therapeutic approach may be less effective in moderate to severe cholestasis. We hypothesised that interventions that lower hepatic bile salt synthesis in addition to intestinal bile salt uptake inhibition provide added therapeutic benefit in the treatment of cholestatic disorders. Here, we test combination therapies of intestinal ASBT inhibition together with obeticholic acid (OCA), cilofexor, and the non-tumorigenic fibroblast growth factor 15 (Fgf15)/fibroblast growth factor 19 (FGF19) analogue aldafermin in a mouse model of cholestasis. METHODS Wild-type male C57Bl6J/OlaHsd mice were fed a 0.05% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and received daily oral gavage with 10 mg/kg OCA, 30 mg/kg cilofexor, 10 mg/kg ASBT inhibitor (Linerixibat; ASBTi), or a combination. Alternatively, wild-type male C57Bl6J/OlaHsd mice were injected with adeno-associated virus vector serotype 8 (AAV8) to express aldafermin, to repress bile salt synthesis, or to control AAV8. During a 3-week 0.05% DDC diet, mice received daily oral gavage with 10 mg/kg ASBTi or placebo control. RESULTS Combination therapy of OCA, cilofexor, or aldafermin with ASBTi effectively reduced faecal bile salt excretion. Compared with ASBTi monotherapy, aldafermin + ASBTi further lowered plasma bile salt levels. Cilofexor + ASBTi and aldafermin + ASBTi treatment reduced plasma alanine transaminase and aspartate transaminase levels and fibrotic liver immunohistochemistry stainings. The reduction in inflammation and fibrogenesis in mice treated with cilofexor + ASBTi or aldafermin + ASBTi was confirmed by gene expression analysis. CONCLUSIONS Combining pharmacological intestinal bile salt uptake inhibition with repression of bile salt synthesis may form an effective treatment strategy to reduce liver injury while dampening the ASBTi-induced colonic bile salt load. IMPACT AND IMPLICATIONS Combined treatment of intestinal ASBT inhibition with repression of bile salt synthesis by farnesoid X receptor agonism (using either obeticholic acid or cilofexor) or by expression of aldafermin ameliorates liver damage in cholestatic mice. In addition, compared with ASBT inhibitor monotherapy, combination treatments lower colonic bile salt load.
Collapse
Affiliation(s)
- Roni F. Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Isabelle Bolt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
139
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
140
|
Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024; 16:2331460. [PMID: 38512763 PMCID: PMC10962615 DOI: 10.1080/19490976.2024.2331460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity, insulin resistance (IR), and the gut microbiome intricately interplay in Metabolic-associated Steatotic Liver Disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease (NAFLD), a growing health concern. The complex progression of MASLD extends beyond the liver, driven by "gut-liver axis," where diet, genetics, and gut-liver interactions influence disease development. The pathophysiology of MASLD involves excessive liver fat accumulation, hepatocyte dysfunction, inflammation, and fibrosis, with subsequent risk of hepatocellular carcinoma (HCC). The gut, a tripartite barrier, with mechanical, immune, and microbial components, engages in a constant communication with the liver. Recent evidence links dysbiosis and disrupted barriers to systemic inflammation and disease progression. Toll-like receptors (TLRs) mediate immunological crosstalk between the gut and liver, recognizing microbial structures and triggering immune responses. The "multiple hit model" of MASLD development involves factors like fat accumulation, insulin resistance, gut dysbiosis, and genetics/environmental elements disrupting the gut-liver axis, leading to impaired intestinal barrier function and increased gut permeability. Clinical management strategies encompass dietary interventions, physical exercise, pharmacotherapy targeting bile acid (BA) metabolism, and microbiome modulation approaches through prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). This review underscores the complex interactions between diet, metabolism, microbiome, and their impact on MASLD pathophysiology and therapeutic prospects.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
141
|
Peloso A, Lacotte S, Gex Q, Slits F, Moeckli B, Oldani G, Tihy M, Hautefort A, Kwak B, Rubbia-Brandt L, Toso C. Portosystemic shunting prevents hepatocellular carcinoma in non-alcoholic fatty liver disease mouse models. PLoS One 2023; 18:e0296265. [PMID: 38157359 PMCID: PMC10756526 DOI: 10.1371/journal.pone.0296265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is one of the leading cause of hepatocellular carcinoma (HCC). This association is supported by the translocation of bacteria products into the portal system, which acts on the liver through the gut-liver axis. We hypothesize that portosystemic shunting can disrupt this relationship, and prevent NAFLD-associated HCC. METHODS HCC carcinogenesis was tested in C57BL/6 mice fed a high-fat high-sucrose diet (HFD) and injected with diethylnitrosamine (DEN) at two weeks of age, and in double transgenic LAP-tTA and TRE-MYC (LAP-Myc) mice fed a methionine-choline-deficient diet. Portosystemic shunts were established by transposing the spleen to the sub-cutaneous tissue at eight weeks of age. RESULTS Spleen transposition led to a consistent deviation of part of the portal flow and a significant decrease in portal pressure. It was associated with a decrease in the number of HCC in both models. This effect was supported by the presence of less severe liver steatosis after 40 weeks, and lower expression levels of liver fatty acid synthase. Also, shunted mice exhibited lower liver oxygen levels, a key factor in preventing HCC as confirmed by the development of less HCCs in mice with hepatic artery ligation. CONCLUSIONS The present data show that portosystemic shunting prevents NAFLD-associated HCC, utilizing two independent mouse models. This effect is supported by the development of less steatosis, and a restored liver oxygen level. Portal pressure modulation and shunting deserve further exploration as potential prevention/treatment options for NAFLD and HCC.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Beat Moeckli
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| |
Collapse
|
142
|
Zhang H, Zhu H, Wu S, Tang H, Zhang W, Gong X, Wang T, Wang Y, Yang Q. Assessment of the Purity of IMM-H014 and Its Related Substances for the Treatment of Metabolic-Associated Fatty Liver Disease Using Quantitative Nuclear Magnetic Resonance Spectroscopy. Int J Mol Sci 2023; 24:17508. [PMID: 38139337 PMCID: PMC10744271 DOI: 10.3390/ijms242417508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
An accurate, rapid, and selective quantitative nuclear magnetic resonance method was developed and validated to assess the purity of IMM-H014, a novel drug for the treatment of metabolic-associated fatty liver disease (MAFLD), and four related substances (impurities I, II, III, and IV). In this study, we obtained spectra of IMM--H014 and related substances in deuterated chloroform using dimethyl terephthalate (DMT) as the internal standard reference. Quantification was performed using the 1H resonance signals at δ 8.13 ppm for DMT and δ 6.5-7.5 ppm for IMM-H014 and its related substances. Several key experimental parameters were investigated and optimized, such as pulse angle and relaxation delay. Methodology validation was conducted based on the International Council for Harmonization guidelines and verified with satisfactory specificity, precision, linearity, accuracy, robustness, and stability. In addition, the calibration results of the samples were consistent with those obtained from the mass balance method. Thus, this research provides a reliable and practical protocol for purity analysis of IMM-H014 and its critical impurities and contributes to subsequent clinical quality control research.
Collapse
Affiliation(s)
- Hanyilan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Haowen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Haoyang Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Xiaoliang Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Tiesong Wang
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China;
| | - Yinghong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (H.Z.); (S.W.); (H.T.); (W.Z.); (X.G.)
| |
Collapse
|
143
|
Deng C, Li M, Liu Y, Yan C, He Z, Chen ZY, Zhu H. Cholesterol Oxidation Products: Potential Adverse Effect and Prevention of Their Production in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18645-18659. [PMID: 38011512 DOI: 10.1021/acs.jafc.3c05158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cholesterol oxidation products (COPs) are a group of substances formed during food processing. COPs in diet is a health concern because they may affect human health in association with the risk of various diseases including atherosclerosis, Alzheimer's disease, age-related macular degeneration, diabetes, and chronic gastrointestinal inflammatory colitis. Production of COPs in foods can be affected by many factors such as temperature, pH, light, oxygen, water, carbohydrates, fatty acids, proteins, and metal cations. The key issue is preventing its generation in foods. Some COPs can also be produced in vivo by both nonenzymatic and enzymatic-catalyzed oxidation reactions. Currently, a number of natural antioxidants such as catechins, flavonoids, and other polyphenols have been proven to inhibit the generation of COPs. In addition, measures taken during food processing can also minimize the production of COPs, such as the Maillard reaction and marinating food with plant polyphenol-rich seasonings. In conclusion, a comprehensive approach encompassing the suppression on COPs generation and implementation of processing measures is imperative to safeguard human health against the production of COPs in the food chain.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Mingxuan Li
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
- School of Life Sciences, South China Agricultural University, Guangzhou 510000, Guangdong China
| | - Yang Liu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Zouyan He
- School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Hanyue Zhu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| |
Collapse
|
144
|
Axelrod CL, Langohr I, Dantas WS, Heintz EC, Vandanmagsar B, Yang S, Zunica ERM, Leigh Townsend R, Albaugh VL, Berthoud HR, Kirwan JP. Weight-independent effects of Roux-en-Y gastric bypass surgery on remission of nonalcoholic fatty liver disease in mice. Obesity (Silver Spring) 2023; 31:2960-2971. [PMID: 37731222 PMCID: PMC10895705 DOI: 10.1002/oby.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Obesity is a driver of non-alcoholic fatty liver disease (NAFLD), and interventions that decrease body weight, such as bariatric surgery and/or calorie restriction (CR), may serve as effective therapies. This study compared the effects of Roux-en-Y gastric bypass surgery (RYGB) and CR on hepatic function in mice with obesity and NAFLD. METHODS C57BL/6J mice were fed a high-fat diet to promote obesity. At 16 weeks of age, mice were randomized to sham surgery (sham), RYGB, or CR weight matched to RYGB (WM). Body weight/composition, food intake, and energy expenditure (EE) were measured throughout treatment. Liver histopathology was evaluated from H&E-stained sections. Hepatic enzymes and glycogen content were determined by ELISA. Transcriptional signatures were revealed via RNA sequencing. RESULTS RYGB reduced hepatic lipid content and adiposity while increasing EE and lean body mass relative to WM. Hepatic glycogen and bile acid content were increased after RYGB relative to sham and WM. RYGB activated enterohepatic signaling and genes regulating hepatic lipid homeostasis. CONCLUSIONS RYGB improved whole-body composition and hepatic lipid homeostasis to a greater extent than CR in mice. RYGB was associated with discrete remodeling of the hepatic transcriptome, suggesting that surgery may be mechanistically additive to CR.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wagner S. Dantas
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C. Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bolormaa Vandanmagsar
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth R. M. Zunica
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - R. Leigh Townsend
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Vance L. Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Metamor Institute, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Hans-Rudolf Berthoud
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
145
|
Beau A, Benoit B, Le Barz M, Meugnier E, Penhoat A, Calzada C, Pinteur C, Loizon E, Chanon S, Vieille-Marchiset A, Sauvinet V, Godet M, Laugerette F, Holowacz S, Jacouton E, Michalski MC, Vidal H. Inhibition of intestinal FXR activity as a possible mechanism for the beneficial effects of a probiotic mix supplementation on lipid metabolism alterations and weight gain in mice fed a high fat diet. Gut Microbes 2023; 15:2281015. [PMID: 37985749 PMCID: PMC10730200 DOI: 10.1080/19490976.2023.2281015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Supplementation with probiotics has emerged as a promising therapeutic tool to manage metabolic diseases. We investigated the effects of a mix of Bifidobacterium animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 on high-fat (HF) diet -induced metabolic disease in mice. Supplementation with the probiotic mix in HF diet-fed mice (HF-Pr2) reduced weight and fat mass gains, decreased hepatic lipid accumulation, and lowered plasma triglyceride peak during an oral lipid tolerance test. At the molecular level, the probiotic mix protected against HF-induced rise in mRNA levels of genes related to lipid uptake, metabolism, and storage in the liver and white adipose tissues, and strongly decreased mRNA levels of genes related to inflammation in the white adipose tissue and to oxidative stress in the liver. Regarding intestinal homeostasis, the probiotic mix did not prevent HF-induced gut permeability but slightly modified microbiota composition without correcting the dysbiosis induced by the HF diet. Probiotic supplementation also modified the cecal bile acid (BA) profile, leading to an increase in the Farnesoid-X-Receptor (FXR) antagonist/agonist ratio between BA species. In agreement, HF-Pr2 mice exhibited a strong inhibition of FXR signaling pathway in the ileum, which was associated with lipid metabolism protection. This is consistent with recent reports proposing that inhibition of intestinal FXR activity could be a potent mechanism to overcome metabolic disorders. Altogether, our results demonstrate that the probiotic mix evaluated, when administered preventively to HF diet-fed mice could limit obesity and associated lipid metabolism disorders, likely through the inhibition of FXR signaling in the intestinal tract.
Collapse
Affiliation(s)
- Alice Beau
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Bérengère Benoit
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Mélanie Le Barz
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Catherine Calzada
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Claudie Pinteur
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Loizon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Stéphanie Chanon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Aurélie Vieille-Marchiset
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Fabienne Laugerette
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Holowacz
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Elsa Jacouton
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| |
Collapse
|
146
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
147
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
148
|
Xu H, Fang F, Wu K, Song J, Li Y, Lu X, Liu J, Zhou L, Yu W, Yu F, Gao J. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. MICROBIOME 2023; 11:262. [PMID: 38001551 PMCID: PMC10675972 DOI: 10.1186/s40168-023-01709-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.
Collapse
Affiliation(s)
- Hongtao Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kaizhang Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiangping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juncheng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Liuyang Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Medical College, Guangxi University, Nanning, 530004, China
| | - Wenqing Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Medical College, Guangxi University, Nanning, 530004, China
| | - Fei Yu
- Medical College, Guangxi University, Nanning, 530004, China
- The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| |
Collapse
|
149
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
150
|
Li J, Luo T, Li X, Liu X, Deng ZY. Comparison of fresh and browning lotus roots ( Nelumbo nucifera Gaertn.) on modulating cholesterol metabolism via decreasing hepatic cholesterol deposition and increasing fecal bile acid excretion. Curr Res Food Sci 2023; 7:100630. [PMID: 38021260 PMCID: PMC10654003 DOI: 10.1016/j.crfs.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Lotus root (LR) is prone to browning after harvest due to the oxidation of phenolic compounds by polyphenol oxidase (PPO). This study compared the effects of LR extract and BLR extract on cholesterol metabolism in high-fat diet (HFD) mice. Our findings highlighted the innovative potentiality of BLR extract in effectively regulating cholesterol metabolism via inhibiting the intestinal FXR-FGF15 signaling pathway and boosting probiotics in gut microbiota, offering valuable insights for hypercholesterolemia and metabolic disorders. In detail, catechin was the main phenolic compound in LR, while after browning, theaflavin was the main oxidation product of phenolic compounds in BLR. Both the intake of LR extract and BLR extract regulated the disorder of cholesterol metabolism induced by HFD. In particular, BLR extract intake exhibited more robust effects on increasing the BAs contents synthesized in the liver and excreted in feces compared with LR extract intake. Furthermore, the consumption of BLR extract was more effective than that of LR extract in reducing the ileal protein expressions of FXR and FGF15 and shifting BAs biosynthesis from the classical pathway to the alternative pathway. Moreover, LR extract and BLR extract had distinct effects on the gut microbiota in HFD-fed mice: BLR extract significantly elevated probiotics Akkermansia abundance, while LR extract increased Lactobacillus abundance. Therefore, both LR extract and BLR extract improved the cholesterol deposition effectively and BLR extract even showed a stronger effect on regulating key gene and protein expressions of cholesterol metabolism.
Collapse
Affiliation(s)
- Jingfang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|