101
|
Chen JK, Chen J, Thomas G, Kozma SC, Harris RC. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 2009; 297:F585-93. [PMID: 19474189 DOI: 10.1152/ajprenal.00186.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Removal of one kidney stimulates synthesis of RNA and protein, with minimal DNA replication, in all nephron segments of the remaining kidney, resulting in cell growth (increase in cell size) with minimal cell proliferation (increase in cell number). In addition to the compensatory renal hypertrophy caused by nephron loss, pathophysiological renal hypertrophy can occur as a consequence of early uncontrolled diabetes. However, the molecular mechanism underlying renal hypertrophy in these conditions remains unclear. In the present study, we report that deletion of S6 kinase 1 (S6K1) inhibited renal hypertrophy seen following either contralateral nephrectomy or induction of diabetes. In wild-type mice, hypertrophic stimuli increased phosphorylation of 40S ribosomal protein S6 (rpS6), a known target of S6K1. Immunoblotting analysis revealed that S6K1(-/-) mice exhibited moderately elevated basal levels of rpS6, which did not increase further in response to the hypertrophic stimuli. Northern blotting indicated a moderate upregulation of S6K2 expression in the kidneys of S6K1(-/-) mice. Phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1, another downstream target of the mammalian target of rapamycin (mTOR), was stimulated to equivalent levels in S6K1(-/-) and S6K1(+/+) littermates during renal hypertrophy, indicating that mTOR was still activated in the S6K1(-/-) mice. The highly selective mTOR inhibitor, rapamycin, inhibited increased phosphorylation of rpS6 and blocked 60-70% of the hypertrophy seen in wild-type mice but failed to prevent the approximately 10% hypertrophy seen in S6K1(-/-) mice in response to uninephrectomy (UNX) although it did inhibit the basal rpS6 phosphorylation. Thus the present study provides the first genetic evidence that S6K1 plays a major role in the development of compensatory renal hypertrophy as well as diabetic renal hypertrophy and indicates that UNX- and diabetes-mediated mTOR activation can selectively activate S6K1 without activating S6K2.
Collapse
|
102
|
Ruvinsky I, Katz M, Dreazen A, Gielchinsky Y, Saada A, Freedman N, Mishani E, Zimmerman G, Kasir J, Meyuhas O. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One 2009; 4:e5618. [PMID: 19479038 PMCID: PMC2682700 DOI: 10.1371/journal.pone.0005618] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 04/21/2009] [Indexed: 12/13/2022] Open
Abstract
Background Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6P−/−), are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic β-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. Methodology/Principal Findings A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET) and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6P−/− muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a) a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b) a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG) in the muscle. Conclusions/Significance This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar role has been assigned for ribosomal protein S6 kinase 1, even though it regulates myoblast growth in an rpS6 phosphorylation-independent fashion.
Collapse
Affiliation(s)
- Igor Ruvinsky
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maximiliano Katz
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Avigail Dreazen
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Gielchinsky
- Department of Obstetrics and Gynecology, Hadassah Medical Center, Jerusalem, Israel
| | - Ann Saada
- Metabolic Disease Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Nanette Freedman
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Eyal Mishani
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Gabriel Zimmerman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Judith Kasir
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
103
|
Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM. Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 2009; 100:1406-14. [PMID: 19401700 PMCID: PMC2694420 DOI: 10.1038/sj.bjc.6605019] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chordomas are radio- and chemo-resistant tumours and metastasise in as many as 40% of patients. The aim of this study was to identify potential molecular targets for the treatment of chordoma. In view of the reported association of chordoma and tuberous sclerosis complex syndrome, and the available therapeutic agents against molecules in the PI3K/AKT/TSC1/TSC2/mTOR pathway, a tissue microarray of 50 chordoma cases was analysed for expression of active molecules involved in this signalling pathway by immunohistochemistry and a selected number by western blot analysis. Chordomas were positive for p-AKT (92%), p-TSC2 (96%), p-mTOR (27%), total mTOR (75%), p-p70S6K (62%), p-RPS6 (22%), p-4E-BP1 (96%) and eIF-4E (98%). Phosphatase and tensin homologue deleted on chromosome 10 expression was lost in 16% of cases. Mutations failed to be identified in PI3KCA and RHEB1 in the 23 cases for which genomic DNA was available. Fluorescence in situ hybridisation analysis for mTOR and RPS6 loci showed that 11 of 33 and 21 of 44 tumours had loss of one copy of the respective genes, results which correlated with the loss of the relevant total proteins. Fluorescence in situ hybridisation analysis for loci containing TSC1 and TSC2 revealed that all cases analysed harboured two copies of the respective genes. On the basis of p-mTOR and or p-p70S6K expression there is evidence indicating that 65% of the chordomas studied may be responsive to mTOR inhibitors, rapamycin or its analogues, and that patients may benefit from combined therapy including drugs that inhibit AKT.
Collapse
Affiliation(s)
- N Presneau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Inoki K, Guan KL. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet 2009; 18:R94-100. [PMID: 19297407 PMCID: PMC2657945 DOI: 10.1093/hmg/ddp032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a relatively rare autosomal dominant disorder characterized by widespread benign tumor formation in a variety of organs. Mutations in either TSC1 or TSC2 tumor suppressor gene are responsible for TSC. The gene products of TSC1 and TSC2, also known as hamartin and tuberin, respectively, form a physical and functional complex and inhibit the mammalian target of rapamycin complex 1 (mTORC1) signaling. The mTORC1 pathway is an evolutionarily conserved growth promoting pathway. mTORC1 plays an essential role in a wide array of cellular processes including translation, transcription, trafficking and autophagy. In this review, we will discuss recent progresses in the TSC-mTOR field and their physiological functions and alterations of this pathway in pathophysiology.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, USA
| |
Collapse
|
105
|
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307-18. [DOI: 10.1038/nrm2672] [Citation(s) in RCA: 1955] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
106
|
Kim D, Akcakanat A, Singh G, Sharma C, Meric-Bernstam F. Regulation and localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors 2009; 27:12-21. [PMID: 19085255 DOI: 10.1080/08977190802556986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), a critical mediator of cell growth, is overexpressed in breast cancer and is associated with poor prognosis. S6K1 has two known isoforms, p85(S6K1) and p70(S6K1). p85(S6K1) is characterized by 23 additional amino acids in the N-terminus of p70(S6K1). This is thought to target p85(S6K1) to the nucleus, while p70(S6K1) is mainly cytoplasmic. We sought to determine the activation, regulation, and function of p70(S6K1) and p85(S6K1) in breast cancer. We found that most breast cancer cell lines expressed both isoforms. Mitogen-dependent pathways concordantly regulated phosphorylation on T389, S371, and T421/S424. Phosphorylation of both isoforms was inhibited by PI3K/mTOR inhibitors. Mitogen-dependent pathways concordantly regulated the phosphorylation of the two isoforms on T389, S371, and T421/S424. Both isoforms had S6 kinase activity. We also detected a p60 isoform with antibodies to the p70(S6K1) C-terminal but not the N-terminal. Further studies on S6K1 isoforms are warranted for therapeutically targeting this pathway.
Collapse
Affiliation(s)
- Doyil Kim
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
107
|
Abstract
Messenger RNA export from the nucleus to the cytoplasm plays an essential role in linking transcription to translation and consequently regulation of protein expression. mRNA export requires a series of events: pre-mRNA processing, ribonucleoprotein targeting to the NPC (nuclear pore complexes), and translocation through nuclear pores to the cytoplasm. Interestingly, the conventional nuclear export machinery, exportins and the Ran GTPase, is not required for mRNA export. Instead, a protein complex consisting of a number of RNA binding proteins is essential for this event including the Aly/REF protein. Phosphoinositide signaling regulates a variety of cellular functions including pre-mRNA splicing and mRNA export. In fact, a phospholipase C-dependent inositol polyphosphate kinase pathway is required for efficient mRNA export. Recently, we showed that Aly is a physiological target of nuclear phosphoinositide-3-kinase (PI3K) signaling, which regulates Aly localization as well as Aly function in cell proliferation and mRNA export through nuclear Akt-mediated phosphorylation and phosphoinositide association. Hence, water-soluble inositol polyphosphates and phosphatidylinositol lipids play pivotal roles in modulating mRNA export.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Anatomy & Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | | |
Collapse
|
108
|
Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK. S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 2008; 284:6361-9. [PMID: 19112174 DOI: 10.1074/jbc.m807532200] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 40 S ribosomal S6 kinase 1 (S6K1) acts downstream of mTOR (mammalian target of rapamycin) and is sensitive to inhibition by rapamycin. The chromosomal region 17q23 containing the RPS6KB1 gene is frequently amplified in breast cancer cells, leading to S6K1 overexpression. The role of S6K1 in disease development and progression is supported by the observation that S6K1 overexpression is associated with poor prognosis in breast cancer patients. However, the identity of mammary cell-specific S6K1 targets is not well understood. In this study, we report that overexpression of S6K1 endows breast cancer cells with a proliferative advantage in low serum conditions and enhanced sensitivity to rapamycin. We investigate the molecular mechanism behind this observation to show that S6K1 regulates estrogen receptor alpha (ERalpha) by phosphorylating it on serine 167, leading to transcriptional activation of ERalpha. By contributing to the activation of ERalpha, S6K1 promotes ERalpha-mediated cell proliferation and may be a target of therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Rachel L Yamnik
- Department of Biology, Stern College for Women of Yeshiva University, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
109
|
Rhoads JM, Liu Y, Niu X, Surendran S, Wu G. Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J Nutr 2008; 138:1652-1657. [PMID: 18716165 DOI: 10.1093/jn/138.9.1652] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In intestinal cells, arginine (Arg) is 1 of the 2 most potent amino acid activators of p70(s6k), a key regulator of 5'- terminal oligopyrimidine mRNA translation, a necessary condition for increased cell migration. To investigate the mechanism of response to Arg, we used the rat crypt cell line cdx2-transformed IEC-6 cells (cdx2-IEC) and measured cell migration, immunocytochemical analysis of p70(s6k) activation in response to Arg, and production of nitric oxide (NO). When treated with Arg, cdx2-IEC increased in phosphorylation on Thr-389 of p70(s6k) (pp70(s6k)) compared with control (P < 0.01). Phospho-Thr-421/Ser-424-p70(s6k) was located in the nucleus shortly after Arg treatment. Arg enhanced pp70(s6k), cell migration (55% wound coverage), and NO production. In comparison, the branched-chain amino acid leucine (Leu) activated pp70(s6k), was a weaker stimulator of migration (23% coverage), and did not increase NO. A total of 25 micromol/L DETA-NONOate (DETA/NO) did not significantly enhance phosphorylation of p70(s6k) but enhanced the rate of cell migration by approximately 25%. Wound coverage with Leu plus DETA/NO (25 micromol/L) was greater than coverage with DETA/NO alone (P < 0.01). These and our previous studies lead to a model in which Arg must stimulate both pp70(s6k) (in the nucleus) and NO release to enhance intestinal epithelial cell migration, which may be relevant to diseases that involve intestinal villous injury.
Collapse
Affiliation(s)
- J Marc Rhoads
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
110
|
Avila J, Acosta E, Machargo MDV, Arteaga MF, Gallego E, Cañete H, García-Pérez JJ, Martín-Vasallo P. Autoantigenic nuclear proteins of a clinically atypical renal vasculitis. JOURNAL OF AUTOIMMUNE DISEASES 2008; 5:3. [PMID: 18625050 PMCID: PMC2483274 DOI: 10.1186/1740-2557-5-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 07/14/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Systemic vasculitides constitute a heterogeneous group of diseases of autoimmunological origin characterized by inflammation of blood vessels and antibodies that react against autoantigens in a process that ultimately affects blood vessel walls. An important number of these patients present kidney disease. An endeavour of this area of research is the identification of autoantigens involved in these diseases. Accordingly, we used serum from a patient suffering from a microscopic polyangiitis, P-ANCA positive, manifesting a clinically atypical renal necrotizing glomerulonephritis and interstitial nephropathy for the identification of autoantigens; we also determined the prevalence of corresponding autoantibodies in other vasculitides, diabetic microangiopathy and in general population. METHODS The patient's serum was used as a probe for the immunoscreening method SEREX to screen a human brain cDNA expression library. RESULTS Four positive clones were isolated and sequenced. Clones Jos002 code for protein HDAC5, Jos014 for TFC4, Jos107 for RTF1, and Jos313 for POLDIP3 polymerase. The four proteins are of nuclear localization. None of them had been reported as autoantigen. Recombinant proteins were synthesised and checked as antigens by western blot with different sera from controls and patients affected with other vasculitides and diabetic microangiopathy as well. Only the serum from the patient origin of this study recognized all recombinant proteins. CONCLUSION We identify four nuclear proteins, HDAC5, TFC4, RTF1 and POLDIP3 polymerase as new autoantigens that could be used as markers in the diagnosis of subfamilies in immune diseases, although we cannot determine the role of these proteins in the aetiopathogenic process.
Collapse
Affiliation(s)
- Julio Avila
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Biología del Desarrollo, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
111
|
SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008; 133:303-13. [PMID: 18423201 DOI: 10.1016/j.cell.2008.02.031] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/26/2007] [Accepted: 02/04/2008] [Indexed: 11/20/2022]
Abstract
Different protein complexes form on newly spliced mRNA to ensure the accuracy and efficiency of eukaryotic gene expression. For example, the exon junction complex (EJC) plays an important role in mRNA surveillance. The EJC also influences the first, or pioneer round of protein synthesis through a mechanism that is poorly understood. We show that the nutrient-, stress-, and energy-sensing checkpoint kinase, mTOR, contributes to the observed enhanced translation efficiency of spliced over nonspliced mRNAs. We demonstrate that, when activated, S6K1 is recruited to the newly synthesized mRNA by SKAR, which is deposited at the EJC during splicing, and that SKAR and S6K1 increase the translation efficiency of spliced mRNA. Thus, SKAR-mediated recruitment of activated S6K1 to newly processed mRNPs serves as a conduit between mTOR checkpoint signaling and the pioneer round of translation when cells exist in conditions supportive of protein synthesis.
Collapse
|
112
|
Abstract
In mammalian cells, the splicing machinery deposits the exon junction complex (EJC) on mRNA splice junctions. Two studies in this issue now link the EJC to different aspects of translational control. Ma et al. (2008) show that the EJC activates translation downstream of the mTOR signaling pathway, whereas Isken et al. (2008) establish that translation is repressed by partners of the EJC that are implicated in nonsense mediated decay (NMD).
Collapse
Affiliation(s)
- Hervé Le Hir
- Equipe Labelisée La Ligue, Centre de Génétique Moléculaire, CNRS UPR 2167, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
113
|
mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice. Mol Cell Biol 2008; 28:2996-3007. [PMID: 18316404 DOI: 10.1128/mcb.00201-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in the hippocampus requires rapid protein synthesis, which suggests that mGluR activation is coupled to signaling pathways that regulate translation. Herein, we have investigated the signaling pathways that couple group I mGluRs to ribosomal S6 protein phosphorylation and 5'oligopyrimidine tract (5'TOP)-encoded protein synthesis during mGluR-LTD. We found that mGluR-LTD was associated with increased phosphorylation of p70S6 kinase (S6K1) and S6, as well as the synthesis of the 5'TOP-encoded protein elongation factor 1A (EF1A). Moreover, we found that LTD-associated increases in S6K1 phosphorylation, S6 phosphorylation, and levels of EF1A were sensitive to inhibitors of phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular signal-regulated kinase (ERK). However, mGluR-LTD was normal in S6K1 knockout mice and enhanced in both S6K2 knockout mice and S6K1/S6K2 double knockout mice. In addition, we observed that LTD-associated increases in S6 phosphorylation were still increased in S6K1- and S6K2-deficient mice, whereas basal levels of EF1A were abnormally elevated. Taken together, these findings indicate that mGluR-LTD is associated with PI3K-, mTOR-, and ERK-dependent alterations in the phosphorylation of S6 and S6K. Our data also suggest that S6Ks are not required for the expression of mGluR-LTD and that the synthesis of 5'TOP-encoded proteins is independent of S6Ks during mGluR-LTD.
Collapse
|
114
|
Duchêne S, Audouin E, Berri C, Dupont J, Tesseraud S. Tissue-specific regulation of S6K1 by insulin in chickens divergently selected for growth. Gen Comp Endocrinol 2008; 156:190-8. [PMID: 18237733 DOI: 10.1016/j.ygcen.2007.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
In chickens, insulin injection leads to the activation of the early steps of insulin receptor signaling in liver but not in muscles. Paradoxically, muscle p70 S6 kinase (S6K1), a kinase controlling protein synthesis and growth, was markedly activated in response to insulin. The aim of this study was to further investigate S6K1 regulation and activation using chickens divergently selected for growth, i.e. fast- (FGL) and slow- (SGL) growing lines. In the Pectoralis major muscle, insulin stimulated S6K1 phosphorylation on T389 in FGL and SGL chickens, whereas S6K1 phosphorylation on T421/S424 was increased by insulin only in FGL chickens. Moreover, insulin-related increase in muscle S6K1 activity was greater in FGL chickens than in SGL chickens. Surprisingly, liver S6K1 was insulin insensitive in the two genotypes. Such difference of regulation between tissues and between genotypes was not observed for the protein kinase B, which is involved in insulin signaling upstream of S6K1, or for eukaryotic initiation factor 4E-binding protein. Interestingly, insulin-activated a S6K1 downstream target, the ribosomal protein S6, irrespective of tissue, suggesting that a pathway different of the S6K1 cascade may be involved in S6 phosphorylation in chicken liver. In conclusion, the regulation of S6K1 differs between the liver and muscle and between chickens divergently selected for growth. Our results suggest a potential involvement of S6K1 in the control of muscle growth and an open issue concerning S6K1 function in chicken liver.
Collapse
Affiliation(s)
- S Duchêne
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
115
|
Glynn EL, Lujan HL, Kramer VJ, Drummond MJ, DiCarlo SE, Rasmussen BB. A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle. Appl Physiol Nutr Metab 2008; 33:93-101. [PMID: 18347658 PMCID: PMC2706125 DOI: 10.1139/h07-149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A chronic increase in physical activity and (or) endurance training can improve insulin sensitivity in insulin-resistant skeletal muscle. Cellular mechanisms responsible for the development of insulin resistance are unclear, though one proposed mechanism is that nutrient overload chronically increases available energy, over-activating the mammalian target of rapamycin (mTOR) and ribosomal S6 kinase 1 (S6K1) signaling pathway leading to increased phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1). The objective of this study was to determine if increased physical activity would inhibit mTOR/S6K1 signaling and reduce IRS-1 serine phosphorylation in rat skeletal muscle. Soleus muscle was collected from fed male Sprague-Dawley sedentary rats (Inactive) and rats with free access to running wheels for 9 weeks (Active). Immunoblotting methods were used to measure phosphorylation status of mTOR, S6K1, IRS-1, and PKB/Akt (protein kinase B/AKT), and total abundance of proteins associated with the mTOR pathway. Muscle citrate synthase activity and plasma insulin and glucose concentrations were measured. Phosphorylation of mTOR (Ser2448), S6K1 (Thr389), and IRS-1 (Ser636-639) was reduced in Active rats (p<0.05). Total protein abundance of mTOR, S6K1, IRS-1, 4E-BP1, eEF2, PKB/Akt and AMPKalpha, and phosphorylation of PKB/Akt were unaffected (p>0.05). Total SKAR protein, a downstream target of S6K1, and citrate synthase activity increased in Active rats (p<0.05), though plasma insulin and glucose levels were unchanged (p>0.05). Reduced mTOR/S6K1 signaling during chronic increases in physical activity may play an important regulatory role in the serine phosphorylation of IRS-1, which should be examined as a potential mechanism for attenuation of insulin resistance associated with increased IRS-1 serine phosphorylation.
Collapse
Affiliation(s)
- Erin L Glynn
- Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | | | |
Collapse
|
116
|
Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, Schuman EM, Rosenblum K, Klann E. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem 2008; 15:29-38. [PMID: 18174371 DOI: 10.1101/lm.661908] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and synaptic plasticity. We have tested this hypothesis with genetically engineered mice deficient for either S6K1 or S6K2. We have found that S6K1-deficient mice express an early-onset contextual fear memory deficit within one hour of training, a deficit in conditioned taste aversion (CTA), impaired Morris water maze acquisition, and hypoactive exploratory behavior. In contrast, S6K2-deficient mice exhibit decreased contextual fear memory seven days after training, a reduction in latent inhibition of CTA, and normal spatial learning in the Morris water maze. Surprisingly, neither S6K1- nor S6K2-deficient mice exhibited alterations in protein synthesis-dependent late-phase long-term potentiation (L-LTP). However, removal of S6K1, but not S6K2, compromised early-phase LTP expression. Furthermore, we observed that S6K1-deficient mice have elevated basal levels of Akt phosphorylation, which is further elevated following induction of L-LTP. Taken together, our findings demonstrate that removal of S6K1 leads to a distinct array of behavioral and synaptic plasticity phenotypes that are not mirrored by the removal of S6K2. Our observations suggest that neither gene by itself is required for L-LTP but instead may be required for other types of synaptic plasticity required for cognitive processing.
Collapse
Affiliation(s)
- Marcia D Antion
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Meyuhas O. Physiological roles of ribosomal protein S6: one of its kind. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:1-37. [PMID: 18703402 DOI: 10.1016/s1937-6448(08)00801-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The phosphorylation of ribosomal protein S6 (rpS6), which occurs in response to a wide variety of stimuli on five evolutionarily conserved serine residues, has attracted much attention since its discovery more than three decades ago. However, despite a large body of information on the respective kinases and the signal transduction pathways, the role of this phosphorylation remained obscure. It is only recent that targeting the genes encoding rpS6, the phosphorylatable serine residues or the respective kinases that the unique role of rpS6 and its posttranslational modification have started to be elucidated. This review focuses primarily on the critical role of rpS6 for mouse development, the pathways that transduce various signals into rpS6 phosphorylation, and the physiological functions of this modification. The mechanism(s) underlying the diverse effects of rpS6 phosphorylation on cellular and organismal physiology has yet to be determined. However, a model emerging from the currently available data suggests that rpS6 phosphorylation operates, at least partly, by counteracting positive signals simultaneously induced by rpS6 kinase, and thus might be involved in fine-tuning of the cellular response to these signals.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
118
|
Dreyer HC, Glynn EL, Lujan HL, Fry CS, DiCarlo SE, Rasmussen BB. Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway. J Appl Physiol (1985) 2008; 104:27-33. [PMID: 17885021 PMCID: PMC2715299 DOI: 10.1152/japplphysiol.00736.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribosomal S6 kinase 1 (S6K1) is a downstream component of the mammalian target of rapamycin (mTOR) signaling pathway and plays a regulatory role in translation initiation, protein synthesis, and muscle hypertrophy. AMP-activated protein kinase (AMPK) is a cellular energy sensor, a negative regulator of mTOR, and an inhibitor of protein synthesis. The purpose of this study was to determine whether the hypertrophy/cell growth-associated mTOR pathway was downregulated during muscle atrophy associated with chronic paraplegia. Soleus muscle was collected from male Sprague-Dawley rats 10 wk following complete T(4)-T(5) spinal cord transection (paraplegic) and from sham-operated (control) rats. We utilized immunoprecipitation and Western blotting techniques to measure upstream [AMPK, Akt/protein kinase B (PKB)] and downstream components of the mTOR signaling pathway [mTOR, S6K1, SKAR, 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor (eIF) 4G and 2alpha]. Paraplegia was associated with significant soleus muscle atrophy (174 +/- 8 vs. 240 +/- 13 mg; P < 0.05). There was a reduction in phosphorylation of mTOR, S6K1, and eIF4G (P < 0.05) with no change in Akt/PKB or 4E-BP1 (P > 0.05). Total protein abundance of mTOR, S6K1, eIF2alpha, and Akt/PKB was decreased, and increased for SKAR (P < 0.05), whereas 4E-BP1 and eIF4G did not change (P > 0.05). S6K1 activity was significantly reduced in the paraplegic group (P < 0.05); however, AMPKalpha2 activity was not altered (3.5 +/- 0.4 vs. 3.7 +/- 0.5 pmol x mg(-1) x min(-1), control vs. paraplegic rats). We conclude that paraplegia-induced muscle atrophy in rats is associated with a general downregulation of the mTOR signaling pathway. Therefore, in addition to upregulation of atrophy signaling during muscle wasting, downregulation of muscle cell growth/hypertrophy-associated signaling appears to be an important component of long-term muscle loss.
Collapse
Affiliation(s)
- Hans C Dreyer
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, Texas 77555-1144, USA
| | | | | | | | | | | |
Collapse
|
119
|
Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67:10804-12. [PMID: 18006825 DOI: 10.1158/0008-5472.can-07-2310] [Citation(s) in RCA: 729] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, McGill Cancer Centre, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
120
|
Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D. Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 2007; 43:754-66. [PMID: 17976640 PMCID: PMC2170873 DOI: 10.1016/j.yjmcc.2007.09.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/14/2007] [Accepted: 09/25/2007] [Indexed: 11/29/2022]
Abstract
Activation of both mTOR and its downstream target, S6K1 (p70 S6 kinase) have been implicated to affect cardiac hypertrophy. Our earlier work, in a feline model of 1-48 h pressure overload, demonstrated that mTOR/S6K1 activation occurred primarily through a PKC/c-Raf pathway. To further delineate the role of specific PKC isoforms on mTOR/S6K1 activation, we utilized primary cultures of adult feline cardiomyocytes in vitro and stimulated with endothelin-1 (ET-1), phenylephrine (PE), TPA, or insulin. All agonist treatments resulted in S2248 phosphorylation of mTOR and T389 and S421/T424 phosphorylation of S6K1, however only ET-1 and TPA-stimulated mTOR/S6K1 activation was abolished with infection of a dominant negative adenoviral c-Raf (DN-Raf) construct. Expression of DN-PKC(epsilon) blocked ET-1-stimulated mTOR S2448 and S6K1 S421/T424 and T389 phosphorylation but had no effect on insulin-stimulated S6K1 phosphorylation. Expression of DN-PKC(delta) or pretreatment of cardiomyocytes with rottlerin, a PKC(delta) specific inhibitor, blocked both ET-1 and insulin stimulated mTOR S2448 and S6K1 T389 phosphorylation. However, treatment with Gö6976, a specific classical PKC (cPKC) inhibitor did not affect mTOR/S6K1 activation. These data indicate that: (i) PKC(epsilon) is required for ET-1-stimulated T421/S424 phosphorylation of S6K1, (ii) both PKC(epsilon) and PKC(delta) are required for ET-1-stimulated mTOR S2448 and S6K1 T389 phosphorylation, (iii) PKC(delta) is also required for insulin-stimulated mTOR S2448 and S6K1 T389 phosphorylation. Together, these data delineate both distinct and combinatorial roles of specific PKC isoforms on mTOR and S6K1 activation in adult cardiac myocytes following hypertrophic stimulation.
Collapse
Affiliation(s)
- Phillip C. Moschella
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Vijay U. Rao
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Paul J. McDermott
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29425-2221
| | - Dhandapani Kuppuswamy
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29425-2221
| |
Collapse
|
121
|
Rossi R, Pester JM, McDowell M, Soza S, Montecucco A, Lee-Fruman KK. Identification of S6K2 as a centrosome-located kinase. FEBS Lett 2007; 581:4058-64. [PMID: 17678899 PMCID: PMC2397023 DOI: 10.1016/j.febslet.2007.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/23/2007] [Accepted: 07/02/2007] [Indexed: 12/15/2022]
Abstract
Ribosomal S6 kinase 2 (S6K2) acts downstream of the mammalian target of rapamycin (mTOR). Here, we show that some S6K2 localize at the centrosome throughout the cell cycle. S6K2 is found in the pericentriolar area of the centrosome. S6K2 centrosomal localization is unaffected by serum withdrawal or treatment with rapamycin, wortmannin, U0126, or phorbol-12-myristate-13-acetate (PMA). Unlike S6K2, S6 kinase 1 (S6K1) does not localize at the centrosome, suggesting the two kinases may also have nonoverlapping functions. Our data suggest that centrosomal S6K2 may have a role in the phosphoinositide-3-kinase (PI3K)/Akt/mTOR signaling pathway that has also been detected in the centrosome.
Collapse
Affiliation(s)
- Rossella Rossi
- Istituto di Genetica Molecolare (IGM) – CNR, 27100 Pavia, Italy
| | - John M. Pester
- Department of Biological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA
| | - Mitch McDowell
- Department of Biological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA
| | - Samuela Soza
- Istituto di Genetica Molecolare (IGM) – CNR, 27100 Pavia, Italy
| | | | - Kay K. Lee-Fruman
- Department of Biological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
122
|
Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007; 25:209-26. [PMID: 18092230 DOI: 10.1080/08977190701779101] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | |
Collapse
|
123
|
Mieulet V, Roceri M, Espeillac C, Sotiropoulos A, Ohanna M, Oorschot V, Klumperman J, Sandri M, Pende M. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 2007; 293:C712-22. [PMID: 17494629 DOI: 10.1152/ajpcell.00499.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR.
Collapse
MESH Headings
- Animals
- Autophagy
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Elongation Factor 2 Kinase
- Eukaryotic Initiation Factors/metabolism
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Insulin/metabolism
- Leucine/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/growth & development
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Development
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Biosynthesis/drug effects
- Protein Kinases/metabolism
- Ribosomal Protein S6/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/deficiency
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Ubiquitin-Protein Ligases/metabolism
Collapse
|
124
|
Abstract
Recent work has shown that the mTOR (mammalian target of rapamycin) pathway is an integral cell growth regulator. The mTOR pathway involves two functional complexes, TORC1 and TORC2, which have been defined by both their association with raptor or rictor, respectively, and their sensitivity to short-term rapamycin inhibition. Loss of tumor suppressors TSC1 or TSC2 leads to aberrant activation of TORC1, which has been implicated in the control of cell size. As a result, both physiologic and pathologic tissue hypertrophy are associated with TORC1 activation. Some clinical examples include skeletal and cardiac muscle hypertrophy, vascular restenosis, and compensatory nephrotic hypertrophy. Clarification of the mTOR pathway may lead to increased understanding of both the etiology and consequences of aberrant cell size regulation. This review covers some of the biochemical regulation of the mTOR pathway that may be important to the regulation of cell size, and it will present several potential clinical applications where the control of cell size may be biologically significant.
Collapse
Affiliation(s)
- Chung-Han Lee
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
125
|
Bayani J, Squire JA. Application and interpretation of FISH in biomarker studies. Cancer Lett 2007; 249:97-109. [PMID: 17287077 DOI: 10.1016/j.canlet.2006.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 12/24/2022]
Abstract
Emerging genomic and proteomic data is creating new opportunities to identify novel biomarkers that will have pathway-specific therapeutic impact on cancer progression. Molecular cytogenetic and fluorescence in situ hybridization (FISH) methods have been primarily used in discovery genetic research laboratories until recently. New automated analytical platforms based on FISH technologies and tissue microarray methods are providing a rapid means to determine the impact of consistent genomic aberrations in clinical trials, and in studies designed to investigate differential chemotherapeutic response.
Collapse
Affiliation(s)
- Jane Bayani
- Division of Applied Molecular Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Room 9-717, Toronto, Ont., Canada M5G 2M9
| | | |
Collapse
|
126
|
Rhoads JM, Corl BA, Harrell R, Niu X, Gatlin L, Phillips O, Blikslager A, Moeser A, Wu G, Odle J. Intestinal ribosomal p70(S6K) signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G913-G922. [PMID: 17138969 DOI: 10.1152/ajpgi.00468.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent identification of the mammalian target of rapamycin (mTOR) pathway as an amino acid-sensing mechanism that regulates protein synthesis led us to investigate its role in rotavirus diarrhea. We hypothesized that malnutrition would reduce the jejunal protein synthetic rate and mTOR signaling via its target, ribosomal p70 S6 kinase (p70(S6K)). Newborn piglets were artificially fed from birth and infected with porcine rotavirus on day 5 of life. Study groups included infected (fully fed and 50% protein calorie malnourished) and noninfected fully fed controls. Initially, in "worst-case scenario studies," malnourished infected piglets were killed on days 1, 3, 5, and 11 postinoculation, and jejunal samples were compared with controls to determine the time course of injury and p70(S6K) activation. Using a 2 x 2 factorial design, we subsequently determined if infection and/or malnutrition affected mTOR activation on day 3. Western blot analysis and immunohistochemistry were used to measure total and phosphorylated p70(S6K); [(3)H]phenylalanine incorporation was used to measure protein synthesis; and lactase specific activity and villus-crypt dimensions were used to quantify injury. At the peak of diarrhea, the in vitro jejunal protein synthetic rate increased twofold (compared with the rate in the uninfected pig jejunum), concomitant with increased jejunal p70(S6K) phosphorylation (4-fold) and an increased p70(S6K) level (3-fold, P < 0.05). Malnutrition did not alter the magnitude of p70(S6K) activation. Immunolocalization revealed that infection produced a major induction of cytoplasmic p70(S6K) and nuclear phospho-p70(S6K), mainly in the crypt. A downregulation of semitendinosus muscle p70(S6K) phosphorylation was seen at days 1-3 postinoculation. In conclusion, intestinal activation of p70(S6K) was not inhibited by malnutrition but was strongly activated during an active state of mucosal regeneration.
Collapse
Affiliation(s)
- J Marc Rhoads
- Department of Pediatrics, Ochsner Clinic Foundation and Ochsner Children's Research Institute, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Yoshimoto M, Cutz JC, Nuin PAS, Joshua AM, Bayani J, Evans AJ, Zielenska M, Squire JA. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. ACTA ACUST UNITED AC 2006; 169:128-37. [PMID: 16938570 DOI: 10.1016/j.cancergencyto.2006.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Prostate cancer (CaP) is characterized by the accumulation of both genetic and epigenetic alterations that transform premalignant lesions to invasive carcinoma. However, the molecular events underlying this critical transition are poorly understood. One of the important genes that might play a role in CaP development is the PTEN gene. At the present time, there has been no systematic analysis of the incidence of genomic PTEN deletion by fluorescence in situ hybridization (FISH) in CaP and associated preneoplastic histologic lesions. This study assesses the frequency of PTEN deletion by interphase FISH analysis in CaP and prostatic intra-epithelial neoplasia (PIN). Dual-color FISH was performed using DNA probes for bands 10q23.3 (PTEN locus) and chromosome 10 centromere using 35 radical prostatectomy specimens. PTEN deletions were not found in 3/3 of stroma, 6/6 samples of benign glandular epithelium, and 12/12 samples of low-grade PIN. However, PTEN deletions were found in 3/13 (23%) of high-grade PIN and 24/35 (68%) of CaP. Concordance was observed between PTEN deletion status and the overall cellular PTEN protein expression levels, as assessed by immunohistochemistry. The high frequency of PTEN deletion observed in CaP versus precursor lesions implicates a pivotal role for PTEN haploinsufficiency in the transition from preneoplastic PIN to CaP. Moreover, this observation is an important consideration for novel therapeutic trials in CaP in which biologic efficacy is influenced by the activity level of PTEN. These findings draw attention to the usefulness of this relatively simple FISH assay for future applications in clinical laboratories.
Collapse
Affiliation(s)
- Maisa Yoshimoto
- Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, 610 University Ave., Room 9-721, Toronto, Ontario, M5G 2M9 Canada
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Affiliation(s)
- Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.
| | | |
Collapse
|
129
|
Smyk A, Szuminska M, Uniewicz KA, Graves LM, Kozlowski P. Human enhancer of rudimentary is a molecular partner of PDIP46/SKAR, a protein interacting with DNA polymerase delta and S6K1 and regulating cell growth. FEBS J 2006; 273:4728-41. [PMID: 16984396 DOI: 10.1111/j.1742-4658.2006.05477.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhancer of rudimentary (ER) is a small protein that has a unique amino acid sequence and structure. Its highly conserved gene has been found in all eukaryotic kingdoms with the exception of fungi. ER was proposed to be involved in the metabolism of pyrimidines and was reported to act as a transcriptional repressor in a cell type-specific manner. To further elucidate ER functions, we performed the yeast two-hybrid screen of the human lung cDNA library for clones encoding proteins interacting with the human ER protein. The screen yielded polymerase delta interacting protein 46 or S6K1 Aly/REF-like target (PDIP46/SKAR), a protein possessing one RNA recognition motif (RRM) and being a protein partner of both the p50 subunit of DNA polymerase delta and p70 ribosomal protein S6 kinase 1 (S6K1). This interaction was further confirmed in vitro by the glutathione S-transferase-ER pull-down of a protein of 46 kDa from a nuclear extract from human cells which was identified as PDIP46/SKAR by tandem mass spectrometry. The bipartite region of PDIP46/SKAR interacting with ER comprising residues 274-421 encompasses the docking site for S6K1 within the RRM and two serines phosphorylated by S6K1. ER and both isoforms of PDIP46/SKAR share the same nuclear localization in the mammalian cells and their genes display a ubiquitous pattern of expression in a variety of human tissues, so the interaction between ER and PDIP46/SKAR has an opportunity to occur universally in mammalian cells. Because PDIP46/SKAR is involved in the regulation of cell growth its interaction with ER may suggest some function for ER in that control.
Collapse
Affiliation(s)
- Amelia Smyk
- Institute of Biochemistry, Warsaw University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
130
|
Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, Bowen F, Parker PJ, Filonenko VV, Gout IT, Sebire N, Marais R, Downward J, Seckl MJ. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J 2006; 25:3078-88. [PMID: 16810323 PMCID: PMC1500980 DOI: 10.1038/sj.emboj.7601198] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 05/29/2006] [Indexed: 11/09/2022] Open
Abstract
Patients with small cell lung cancer (SCLC) die because of chemoresistance. Fibroblast growth factor-2 (FGF-2) increases the expression of antiapoptotic proteins, XIAP and Bcl-X(L), and triggers chemoresistance in SCLC cells. Here we show that these effects are mediated through the formation of a specific multiprotein complex comprising B-Raf, PKCepsilon and S6K2. S6K1, Raf-1 and other PKC isoforms do not form similar complexes. RNAi-mediated downregulation of B-Raf, PKCepsilon or S6K2 abolishes FGF-2-mediated survival. In contrast, overexpression of PKCepsilon increases XIAP and Bcl-X(L) levels and chemoresistance in SCLC cells. In a tetracycline-inducible system, increased S6K2 kinase activity triggers upregulation of XIAP, Bcl-X(L) and prosurvival effects. However, increased S6K1 kinase activity has no such effect. Thus, S6K2 but not S6K1 mediates prosurvival/chemoresistance signalling.
Collapse
Affiliation(s)
- Olivier E Pardo
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | - Claudia Wellbrock
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | - Umme K Khanzada
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Muriel Aubert
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Imanol Arozarena
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Sally Davidson
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Frances Bowen
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratories, Cancer Research UK London Research Institute, London, UK
| | - V V Filonenko
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | - Ivan T Gout
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | - Neil Sebire
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
| | - Richard Marais
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | - Julian Downward
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
- Signal Transduction, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK. Tel.: +44 20 7269 3533; Fax: +44 20 7269 3094; E-mail:
| | - Michael J Seckl
- Lung Cancer Biology Group, Cancer Research UK, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK
- Lung Cancer Biology Group, Cancer Research UK, Cyclotron Building, Imperial College London, Hammersmith Hospitals Campus, Du Cane Road, London, UK. Tel.: +44 20 8846 1421; Fax: +44 20 8383 5577; E-mail:
| |
Collapse
|
131
|
Chalhoub N, Kozma SC, Baker SJ. S6k1 is not required for Pten-deficient neuronal hypertrophy. Brain Res 2006; 1100:32-41. [PMID: 16777079 DOI: 10.1016/j.brainres.2006.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
The tumor suppressor PTEN (phosphatase and tensin homolog) plays a critical role in the development and maintenance of the mammalian nervous system. Effects of inherited mutation of PTEN are highly variable and include macrocephaly, Lhermitte-Duclos disease (LDD) caused by a hamartomatous enlargement of the cerebellum, ataxia, seizures and autism, in addition to cancer predisposition. In the mouse, selective inactivation of Pten in post-mitotic granule neurons of the cerebellum and dentate gyrus showed that Pten was required for proper regulation of neuronal nuclear and soma size. Hypertrophy of Pten-deficient neurons required the activity of the serine-threonine kinase mTor. mTor is a master regulator of cell and organ growth which can trigger a cascade of downstream signaling pathways involving, in part, components of the translational machinery, including S6k1 and its substrate the ribosomal protein S6. Deletion of S6k1 in mice results in decreased size. Therefore, to determine the relative contribution of S6k1 to Pten-deficient neuronal hypertrophy in vivo, we crossed Pten brain-conditional knockouts with S6k1 null mice. Double mutant mice show no reversion or improvement in their Pten-related size and neurological defects including enlarged cerebella and dentate gyri with increased size of neuronal nuclei and somata, ataxia, and premature death. The hypertrophic Pten/S6k1-deficient neurons contained high levels of phosphorylated S6, similar to Pten-deficient neurons, suggesting that the mTor/S6k/S6 branch of the pathway was still active. Thus, we conclude that S6k1 is not required to cause hypertrophy of Pten-deficient neurons. This study reveals a cell type-dependent role for S6k1 in PI3K-dependent hypertrophy.
Collapse
Affiliation(s)
- Nader Chalhoub
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | |
Collapse
|
132
|
Um SH, D'Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006; 3:393-402. [PMID: 16753575 DOI: 10.1016/j.cmet.2006.05.003] [Citation(s) in RCA: 536] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 05/01/2006] [Accepted: 05/03/2006] [Indexed: 12/13/2022]
Abstract
Nutrient overload leads to obesity, insulin resistance, and often type 2 diabetes. Whereas increased fat intake is commonly cited as the major factor in diet-induced dysmetabolic states, increased protein consumption also contributes, through elevated circulating amino acids. Recent studies have revealed that ribosomal protein S6 kinase 1, S6K1, an effector of mTOR, is sensitive to both insulin and nutrients, including amino acids. Although S6K1 is an effector of growth, recent reports show that amino acids also negatively affect insulin signaling through mTOR/S6K1 phosphorylation of IRS1. Moreover, rather than signaling through the class 1 PI3K pathway, amino acids appear to mediate mTOR activation through class 3 PI3K, or hVps34. Consistent with this, infusion of amino acids into humans leads to S6K1 activation, inhibition of insulin-induced class 1 PI3K activation, and insulin resistance. Thus, S6K1 may mediate deleterious effects, like insulin resistance, and potentially type 2 diabetes in the face of nutrient excess.
Collapse
Affiliation(s)
- Sung Hee Um
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
133
|
Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006; 31:342-8. [PMID: 16679021 DOI: 10.1016/j.tibs.2006.04.003] [Citation(s) in RCA: 622] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/14/2006] [Accepted: 04/21/2006] [Indexed: 11/20/2022]
Abstract
Recent studies are beginning to disclose a signaling network involved in regulating cell size. Although many links and effectors are still unknown, central components of this network include the mammalian target of rapamycin (mTOR) and its downstream effectors - the ribosomal protein S6 kinase (S6K) and the translational repressor eukaryotic initiation factor 4E-binding protein. Until recently, the role of S6K and its many substrates in cell-size control remained obscure; however, a knockin mouse carrying mutations at all phosphorylation sites in the primary S6K substrate, ribosomal protein S6 (rpS6), has provided insight into the physiological role of this protein phosphorylation event. In addition to its role in glucose homeostasis in the whole mouse, phosphorylation of rpS6 is essential for regulating the size of at least some cell types, but is dispensable for translational control of mRNAs with a 5' terminal oligopyrimidine tract (TOP mRNAs) - its previously assigned targets. It therefore seems that establishing the function of the phosphorylation of other effectors of mTOR or S6K will inevitably require genetic manipulation of the respective sites within these targets.
Collapse
Affiliation(s)
- Igor Ruvinsky
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
134
|
Brönstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 2006; 1:503-12. [PMID: 15966845 DOI: 10.1586/14789450.1.4.503] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The strong need for quantitative information in proteomics has fueled the development of mass spectrometry-based analytical methods that are able to determine protein abundances. This article reviews mass spectrometry experiments aimed at providing an absolute quantification of proteins. The experiments make use of the isotope-dilution concept by spiking a known amount of synthetic, isotope-labeled reference peptide into the analyte sample. Quantification is achieved by comparing the mass spectrometry signal intensities of the reference with an endogenous peptide that is generated upon proteolytic cleavage of the target protein. In an analogous manner, the level of post-translational modification at a distinct residue within a target protein can be determined. Among the strengths of absolute quantification are low detection limits reaching subfemtomole levels, a high dynamic range spanning approximately five orders of magnitude, low requirements for sample clean-up, and a fast and straightforward method development. Recent studies have demonstrated the compatibility of absolute quantification with various mass spectrometry readout techniques and sample purification steps such as 1D gel electrophoresis, size-exclusion chromatography, isoelectric peptide focusing, strong cation exchange and reversed phase or affinity chromatography. Under ideal conditions, quantification errors and coefficients of variation below 5% have been reported. However, the fact that at the start of the experiment the analyte is a protein and the internal standard is a peptide, severe quantification errors may result due to the selection of unsuitable reference peptides and/or imperfect protein proteolysis. Within the ensemble of mass spectrometry-based quantification methods, absolute quantification is the method of choice in cases where absolute numbers, many repetitive experiments or precise levels of post-translational modifications are required for a few, preselected species of interest. Consequently, prominent application areas include biomarker quantification, the study of post-translational modifications such as phosphorylation or ubiquitination and the comparison of concentrations of interacting proteins.
Collapse
Affiliation(s)
- Mark Brönstrup
- Sanofi-Aventis, Building G878, D-65926 Frankfurt, Germany.
| |
Collapse
|
135
|
Dann SG, Thomas G. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 2006; 580:2821-9. [PMID: 16684541 DOI: 10.1016/j.febslet.2006.04.068] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The target of rapamycin (TOR) is an ancient effector of cell growth that integrates signals from growth factors and nutrients. Two downstream effectors of mammalian TOR, the translational components S6K1 and 4EBP1, are commonly used as reporters of mTOR activity. The conical signaling cascade initiated by growth factors is mediated by PI3K, PKB, TSC1/2 and Rheb. However, the process through which nutrients, i.e., amino acids, activate mTOR remains largely unknown. Evidence exists for both an intracellular and/or a membrane bound sensor for amino acid mediated mTOR activation. Research in eukaryotic models, has implicated amino acid transporters as nutrient sensors. This review describes recent advances in nutrient signaling that impinge on mTOR and its targets including hVps34, class III PI3K, a transducer of nutrient availability to mTOR.
Collapse
Affiliation(s)
- Stephen G Dann
- University of Cincinnati Genome Research Institute, 2180 East Galbraith Road, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
136
|
Abstract
The mTOR/S6K/4E-BP1 pathway integrates extracellular signals derived from growth factors, and intracellular signals, determined by the availability of nutrients like amino acids and glucose. Activation of this pathway requires inhibition of the tumor suppressor complex TSC1/2. TSC2 is a GTPase-activating protein for the small GTPase Ras homologue enriched in brain (Rheb), GTP loading of which activates mTOR by a yet unidentified mechanism. The level at which this pathway senses the availability of amino acids is unknown but is suggested to be at the level of TSC2. Here, we show that amino-acid depletion completely blocks insulin- and TPA-induced Rheb activation. This indicates that amino-acid sensing occurs upstream of Rheb. Despite this, amino-acid depletion can still inhibit mTOR/S6 kinase signaling in TSC2-/- fibroblasts. Since under these conditions Rheb-GTP levels remain high, a second level of amino-acid sensing exists, affecting mTOR activity in a Rheb-independent fashion.
Collapse
Affiliation(s)
- M Roccio
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | |
Collapse
|
137
|
Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 2006; 26:63-76. [PMID: 16354680 PMCID: PMC1317643 DOI: 10.1128/mcb.26.1.63-76.2006] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling.
Collapse
|
138
|
Anand P, Gruppuso PA. Rapamycin inhibits liver growth during refeeding in rats via control of ribosomal protein translation but not cap-dependent translation initiation. J Nutr 2006; 136:27-33. [PMID: 16365054 PMCID: PMC1386153 DOI: 10.1093/jn/136.1.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We examined the role of the mammalian target of rapamycin (mTOR) in hepatic cell growth. To dissociate cell growth from cell proliferation, we employed an in vivo model of nonproliferative liver growth in rats, refeeding after 48 h of food deprivation. Starvation resulted in a decrease in liver mass, liver protein, and cell size, all of which were largely restored after 24 h of refeeding. Administration of the mTOR inhibitor, rapamycin, before the refeeding period partially inhibited the restoration of liver protein content. Refeeding was also associated with an increase in ribosomal protein S6 phosphorylation and phosphorylation of the eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1). 4E-BP1 phosphorylation was accompanied by a decrease in the abundance of the complex containing 4E-BP1 with eIF4E. These changes were prevented by rapamycin administration. However, association of eIF4E and eIF4G and eIF2alpha phosphorylation, both of which are stimulated by refeeding, were insensitive to rapamycin. The functional importance of these observations was confirmed by polysome fractionation, which showed that translation initiation of 5' oligopyrimidine tract-containing mRNAs, which encode ribosomal proteins, was inhibited by rapamycin, whereas translation of signal transducer and activator of transcription 1 (STAT1), a cap-dependent mRNA, was unaffected. The abundance of ribosomal proteins paralleled total protein content during refeeding in both control and rapamycin-injected rats. We conclude that accretion of liver protein during refeeding is dependent on mTOR-mediated activation of the translation of ribosomal proteins but not dependent on mTOR-mediated activation of cap-dependent translation initiation.
Collapse
Affiliation(s)
- Padmanabhan Anand
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI 02903, USA
| | | |
Collapse
|
139
|
Cruz R, Hedden L, Boyer D, Kharas MG, Fruman DA, Lee-Fruman KK. S6 kinase 2 potentiates interleukin-3-driven cell proliferation. J Leukoc Biol 2005; 78:1378-85. [PMID: 16204634 PMCID: PMC2424256 DOI: 10.1189/jlb.0405225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interleukin-3 (IL-3) mediates hematopoietic cell survival and proliferation via several signaling pathways such as the Janus kinase/signal transducer and activator of transcription pathway, mitogen-activated protein kinase (MAPK) pathway, and phosphoinositide-3 kinase (PI-3K) pathway. Mammalian target of rapamycin (mTOR) is one of the downstream targets of the PI-3K pathway, and it plays an important role in hematopoiesis and immune cell function. To better elucidate how mTOR mediates proliferation signals from IL-3, we assessed the role of S6 kinase 2 (S6K2), one of the downstream targets of mTOR, in IL-3 signaling. We show that S6K2 is activated by IL-3 in the IL-3-dependent Ba/F3 cell line and that this is mediated by mTOR and its upstream activator PI-3K but not by the MAPK kinase/extracellular signal-regulated kinase pathway. S6K2 is also activated in primary mouse bone marrow-derived mast cells upon IL-3 stimulation. Expression of a rapamycin-resistant form of S6K2, T388E, in Ba/F3 cells provides a proliferation advantage in the absence or presence of rapamycin, indicating that S6K2 can potentiate IL-3-mediated mitogenic signals. In cells expressing T388E, rapamycin still reduces proliferation at all doses of rapamycin, showing that mTOR targets other than S6K2 play an important role in IL-3-dependent proliferation. Cell-cycle analysis shows that T388E-expressing Ba/F3 cells enter S phase earlier than the control cells, indicating that the proliferation advantage may be mediated by a shortened G1 phase. This is the first indication that S6K2 plays a role in IL-3-dependent cell proliferation.
Collapse
Affiliation(s)
- Rebecca Cruz
- Department of Biological Sciences, California State University at Long Beach
| | - Lee Hedden
- Department of Biological Sciences, California State University at Long Beach
| | - Derek Boyer
- Department of Biological Sciences, California State University at Long Beach
| | - Michael G. Kharas
- Department of Molecular Biology and Biochemistry and Center for Immunology, University of California, Irvine
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry and Center for Immunology, University of California, Irvine
| | - Kay K. Lee-Fruman
- Department of Biological Sciences, California State University at Long Beach
| |
Collapse
|
140
|
Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 2005; 19:2199-211. [PMID: 16166381 PMCID: PMC1221890 DOI: 10.1101/gad.351605] [Citation(s) in RCA: 492] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulated phosphorylation of ribosomal protein (rp) S6 has attracted much attention since its discovery in 1974, yet its physiological role has remained obscure. To directly address this issue, we have established viable and fertile knock-in mice, whose rpS6 contains alanine substitutions at all five phosphorylatable serine residues (rpS6(P-/-)). Here we show that contrary to the widely accepted model, this mutation does not affect the translational control of TOP mRNAs. rpS6(P-/-) mouse embryo fibroblasts (MEFs) display an increased rate of protein synthesis and accelerated cell division, and they are significantly smaller than rpS6(P+/+) MEFs. This small size reflects a growth defect, rather than a by-product of their faster cell division. Moreover, the size of rpS6(P-/-) MEFs, unlike wild-type MEFs, is not further decreased upon rapamycin treatment, implying that the rpS6 is a critical downstream effector of mTOR in regulation of cell size. The small cell phenotype is not confined to embryonal cells, as it also selectively characterizes pancreatic beta-cells in adult rpS6(P-/-) mice. These mice suffer from diminished levels of pancreatic insulin, hypoinsulinemia, and impaired glucose tolerance.
Collapse
Affiliation(s)
- Igor Ruvinsky
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 2005; 14 Spec No. 2:R251-8. [PMID: 16244323 DOI: 10.1093/hmg/ddi260] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is characterized by benign tumors (hamartomas and hamartias) involving multiple organ systems, due to inactivating mutations in TSC1 or TSC2. Here, we review recent advances in our understanding of the growth and signaling functions of the TSC1 and TSC2 proteins. Led by seminal studies in Drosophila, the TSC1/TSC2 complex has been positioned in an ancestrally conserved signaling pathway that regulates cell growth. TSC1/TSC2 receives inputs from at least three major signaling pathways in the form of kinase-mediated phosphorylation events that regulate its function as a GTPase activating protein (GAP): the PI3K-Akt pathway, the ERK1/2-RSK1 pathway and the LKB1-AMPK pathway. TSC1/TSC2 functions as a GAP towards Rheb, which is a major regulator of the mammalian target of rapamycin (mTOR). In the absence of either TSC1 or TSC2, high levels of Rheb-GTP lead to constitutive activation of mTOR-raptor signaling, thereby leading to enhanced and deregulated protein synthesis and cell growth. As a specific inhibitor of mTOR, rapamycin has therapeutic potential for the treatment of TSC hamartomas.
Collapse
Affiliation(s)
- David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Blackfan Circle, 6th Floor, Room 216, Boston, MA 02115, USA.
| | | |
Collapse
|
142
|
Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17:596-603. [PMID: 16226444 DOI: 10.1016/j.ceb.2005.09.009] [Citation(s) in RCA: 1228] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/30/2005] [Indexed: 02/08/2023]
Abstract
The mammalian TOR (mTOR) pathway is a key regulator of cell growth and proliferation and increasing evidence suggests that its deregulation is associated with human diseases, including cancer and diabetes. The mTOR pathway integrates signals from nutrients, energy status and growth factors to regulate many processes, including autophagy, ribosome biogenesis and metabolism. Recent work identifying two structurally and functionally distinct mTOR-containing multiprotein complexes and TSC1/2, rheb, and AMPK as upstream regulators of mTOR is beginning to reveal how mTOR can sense diverse signals and produce a myriad of responses.
Collapse
Affiliation(s)
- Dos D Sarbassov
- Whitehead Institute, MIT Department of Biology, 9 Cambridge Center, Cambridge, Massachussetts 02142, USA
| | | | | |
Collapse
|
143
|
Zhang WG, Shor B, Yu K. Identification and characterization of a constitutively T-loop phosphorylated and active recombinant S6K1: expression, purification, and enzymatic studies in a high capacity non-radioactive TR-FRET Lance assay. Protein Expr Purif 2005; 46:414-20. [PMID: 16213157 DOI: 10.1016/j.pep.2005.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 08/04/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
The p70 S6 ribosomal protein kinase 1 (S6K) is a substrate and effector of the mammalian target of rapamycin (mTOR). The mTOR/S6K pathway is implicated in cancer and metabolic disorders. To study the molecular regulation of S6K and identify specific inhibitors, availability of active recombinant S6K and robust enzyme assays are critically needed. To date, however, expression of active recombinant S6K has not been feasible as S6K activation requires a cascade of phosphorylation events. We have compared several engineered S6K enzymes. Expression of the Flag-S6KDeltaCT(T389E) in HEK293 cells resulted in a highly active S6K that was constitutively phosphorylated on T229 in the activation-loop (T-loop). The active enzyme was readily purified in large scale by anti-Flag affinity chromatography achieving a high purity. We developed a high capacity homogeneous time-resolved fluorescence resonance energy transfer. Lance assay for measurement of substrate phosphorylation and analysis of kinetic parameters. The Michaelis constant (Km) values of S6K for ATP and the Biotin-S6 substrate peptide were determined to be 21.4+/-0.29 and 0.9+/-0.48 microM, respectively. The Lance assay was further validated with a diverse panel of literature inhibitors, in which the PKC inhibitors staurosporine, Ro-318220, and the PKA inhibitor Balanol potently inhibited S6K. Dose-response and inhibition mechanism by these inhibitors were also studied. Our data provide a new simplified strategy to achieve rapid production of active S6K and demonstrate utility of the Lance assay for S6K enzyme screen in searching for specific inhibitors.
Collapse
Affiliation(s)
- Wei-Guo Zhang
- Department of Discovery Oncology, Wyeth Research, Pearl River, NY 10965, USA
| | | | | |
Collapse
|
144
|
Findlay GM, Harrington LS, Lamb RF. TSC1-2 tumour suppressor and regulation of mTOR signalling: linking cell growth and proliferation? Curr Opin Genet Dev 2005; 15:69-76. [PMID: 15661536 DOI: 10.1016/j.gde.2004.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the relationship between growth and proliferation in multicellular organisms requires identification of the key regulators of growth control, and an understanding of how they regulate growth and how growth is linked to cell proliferation. Recent progress in understanding the mechanisms of growth control indicates that the tuberous sclerosis complex tumour-suppressor TSC1-2 serves as a point of integration between growth-stimulatory and growth-suppressive signalling upstream of a small GTPase, Rheb. However, Rheb-induced growth might not explain the additional effects of TSC1-2 upon cell proliferation.
Collapse
Affiliation(s)
- Greg M Findlay
- Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | | |
Collapse
|
145
|
Abstract
Many human diseases occur when the precise regulation of cell growth (cell mass/size) and proliferation (rates of cell division) is compromised. This review highlights those human disorders that occur as a result of inappropriate cellular signal transduction through the mammalian target of rapamycin (mTOR), a major pathway that coordinates proper cell growth and proliferation by regulating ribosomal biogenesis and protein translation. Recent studies reveal that the tuberous sclerosis complex (TSC)-1/2, PTEN, and LKB1 tumor suppressor proteins tightly control mTOR. Loss of these tumor suppressors leads to an array of hamartoma syndromes as a result of heightened mTOR signaling. Since mTOR plays a pivotal role in maintaining proper cell size and growth, dysregulation of mTOR signaling results in these benign tumor syndromes and an array of other human disorders.
Collapse
Affiliation(s)
- Andrew R Tee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
146
|
Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 2004; 280:7570-80. [PMID: 15591312 DOI: 10.1074/jbc.m413732200] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.
Collapse
Affiliation(s)
- Neil Kubica
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|