101
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
102
|
An H, Liu Y, Fang L, Shu M, Zhai Q, Chen J. Placenta-specific 8 facilitates the infection of duck hepatitis A virus type 1 by inhibiting the TLR7 MyD88-dependent signaling pathway. Poult Sci 2023; 102:102724. [PMID: 37207573 PMCID: PMC10206183 DOI: 10.1016/j.psj.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
The placenta-specific 8 (PLAC8) gene, also known as ONZIN or C15, codes for a cysteine-rich peptide originally identified in mouse placental tissue and subsequently identified in a variety of epithelial tissues and immune cells. PLAC8 is also expressed in birds, such as ducks, where its functional roles remain unknown. Here, we aimed to determine the mRNA and protein expression profiles and the functional role of duck PLAC8 during the infection of duck hepatitis A virus type 1 (DHAV-1). We found that the duck PLAC8 is also a cysteine-rich polypeptide composed of 114 amino acid residues, with no signal peptide. Duck PLAC8 is highly expressed in the immune organs of young cherry valley ducks, including the thymus, bursa fabricius, and spleen. However, it has negligible expression level in liver, brain, kidney, and heart. Additionally, PLAC8 expression was considerably induced after DHAV-1 infection both in vitro and in vivo, especially in the immune organs of ducklings. This tissue expression distribution and induction upon infection suggest that PLAC8 might play a critical role in innate immunity. Our data showed that PLAC8 significantly suppressed the expression of Toll-like receptor 7 (TLR7), leading to decreased expression of downstream signaling molecules including myeloid differentiation primary response gene 88 (MyD88) and nuclear factor kappa-B (NF-κB). This ultimately resulted in low levels of type I interferon and interleukin 6 (IL-6). Additionally, PLAC8 positively regulated DHAV-1 replication levels. RNAi against PLAC8 in duck embryo fibroblasts considerably inhibited DHAV-1 propagation, while PLAC8 overexpression significantly facilitated DHAV-1 replication.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang 261042, Shandong, China.
| |
Collapse
|
103
|
Chen N, Wang YL, Sun HF, Wang ZY, Zhang Q, Fan FY, Ma YC, Liu FX, Zhang YK. Potential regulatory effects of stem cell exosomes on inflammatory response in ischemic stroke treatment. World J Stem Cells 2023; 15:561-575. [PMID: 37424949 PMCID: PMC10324506 DOI: 10.4252/wjsc.v15.i6.561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023] Open
Abstract
The high incidence and disability rates of stroke pose a heavy burden on society. Inflammation is a significant pathological reaction that occurs after an ischemic stroke. Currently, therapeutic methods, except for intravenous thrombolysis and vascular thrombectomy, have limited time windows. Mesenchymal stem cells (MSCs) can migrate, differentiate, and inhibit inflammatory immune responses. Exosomes (Exos), which are secretory vesicles, have the characteristics of the cells from which they are derived, making them attractive targets for research in recent years. MSC-derived exosomes can attenuate the inflammatory response caused by cerebral stroke by modulating damage-associated molecular patterns. In this review, research on the inflammatory response mechanisms associated with Exos therapy after an ischemic injury is discussed to provide a new approach to clinical treatment.
Collapse
Affiliation(s)
- Na Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hui-Fang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhuo-Ya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fei-Yan Fan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yu-Cheng Ma
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fei-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yun-Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
104
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
105
|
Silva MJA, Silva CS, da Silva Vieira MC, dos Santos PAS, Frota CC, Lima KVB, Lima LNGC. The Relationship between TLR3 rs3775291 Polymorphism and Infectious Diseases: A Meta-Analysis of Case-Control Studies. Genes (Basel) 2023; 14:1311. [PMID: 37510216 PMCID: PMC10379146 DOI: 10.3390/genes14071311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
As the host's first line of defense against pathogens, Toll-like receptors (TLRs), such as the TLR3, are genes encoding transmembrane receptors of the same name. Depending on their expression, TLRs cause a pro- or anti-inflammatory response. The purpose of the article was to determine whether there is an association between the Toll-like receptor 3 (TLR3) rs3775291 Single Nucleotide Polymorphism-SNP and susceptibility to infections. This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and was registered in PROSPERO under the code CRD42023429533. A systematic search for relevant studies was performed using PubMed, Scopus, SciELO, Google Scholar, and Science Direct by the MeSH descriptors and the Boolean Operator "AND": "Infections"; "TLR3"; "SNP", between January 2005 and July 2022. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison assuming a dominant genetic model (CT + TT vs. CC). A meta-analysis of 18 studies consisting of 3118 cases and 4368 controls found a significant association for risk between the presence of the TLR3 SNP rs3775291 and infections as part of the general analysis (OR = 1.16, 95% CI = 1.04-1.28, p = 0.004). In the subgroups of continents, the SNP had a protective role in Europe for 1044 cases and 1471 controls (OR = 0.83, 95% CI = 0.70-0.99, p = 0.04); however, the Asian (for 1588 patients and 2306 controls) and American (for 486 patients and 591 controls) continents had an increase in infectious risk (OR = 1.37, 95% CI = 1.19-1.58, p < 0.001; OR = 1.42, 95% CI = 1.08-1.86, and p = 0.01, respectively). Heterogeneity between studies was detected (I2 = 58%) but was explained in meta-regression by the subgroup of continents itself and publication bias was not evident. The results of the meta-analysis suggest a significant association between the TLR3 rs3775291 polymorphism and susceptibility to infections. Thus, when analyzing subgroups, the Asian and American continents showed that this SNP confers a higher risk against infections in a dominant genotypic model. Therefore, more studies are necessary to fully elucidate the role of TLR3 rs3775291 in infections.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | - Caroliny Soares Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Marcelo Cleyton da Silva Vieira
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Pabllo Antonny Silva dos Santos
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Cristiane Cunha Frota
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60441-750, CE, Brazil;
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | | |
Collapse
|
106
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
107
|
Valdés-López JF, Urcuqui-Inchima S. Antiviral response and immunopathogenesis of interleukin 27 in COVID-19. Arch Virol 2023; 168:178. [PMID: 37310504 DOI: 10.1007/s00705-023-05792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
108
|
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023; 18:e0286224. [PMID: 37220125 PMCID: PMC10205007 DOI: 10.1371/journal.pone.0286224] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide; however, there is no specific vaccine against MPXV. In this study, therefore, we employed computational approaches to design a multi-epitope vaccine against MPXV. Initially, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes were predicted from the cell surface-binding protein and envelope protein A28 homolog, both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine. The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide population. The designed vaccine construct was found to be highly antigenic, non-allergenic, soluble, and to have acceptable physicochemical properties. The 3D structure of the vaccine and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular dynamics (MD) simulation confirmed the vaccine's high stability in complex with TLR4. Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vaccine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encouraging; however, in vitro and animal studies are needed to ensure the potency and safety of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Elham Raeisi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
109
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
110
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
111
|
Sun PP, Li D, Su M, Ren Q, Guo WP, Wang JL, Du LY, Xie GC. Cell membrane-bound toll-like receptor-1/2/4/6 monomers and -2 heterodimer inhibit enterovirus 71 replication by activating the antiviral innate response. Front Immunol 2023; 14:1187035. [PMID: 37207203 PMCID: PMC10189127 DOI: 10.3389/fimmu.2023.1187035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Host immune activation is critical for enterovirus 71 (EV71) clearance and immunopathogenesis. However, the mechanism of innate immune activation, especially of cell membrane-bound toll-like receptors (TLRs), against EV71 remains unknown. We previously demonstrated that TLR2 and its heterodimer inhibit EV71 replication. In this study, we systematically investigated the effects of TLR1/2/4/6 monomers and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) on EV71 replication and innate immune activation. We found that the overexpression of human- or mouse-derived TLR1/2/4/6 monomers and TLR2 heterodimer significantly inhibited EV71 replication and induced the production of interleukin (IL)-8 via activation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways. Furthermore,human-mouse chimeric TLR2 heterodimer inhibited EV71 replication and activated innate immunity. Dominant-negative TIR-less (DN)-TLR1/2/4/6 did not exert any inhibitory effects, whereas DN-TLR2 heterodimer inhibited EV71 replication. Prokaryotic expression of purified recombinant EV71 capsid proteins (VP1, VP2, VP3, and VP4) or overexpression of EV71 capsid proteins induced the production of IL-6 and IL-8 via activation of the PI3K/AKT and MAPK pathways. Notably, two types of EV71 capsid proteins served as pathogen-associated molecular patterns for TLR monomers (TLR2 and TLR4) and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) and activated innate immunity. Collectively, our results revealed that membrane TLRs inhibited EV71 replication via activation of the antiviral innate response, providing insights into the EV71 innate immune activation mechanism.
Collapse
Affiliation(s)
- Ping-Ping Sun
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Meng Su
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Qing Ren
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jiang-Li Wang
- Department of Microbiology Laboratory, Chengde Center for Disease Control and Prevention, Chengde, Hebei, China
| | - Luan-Ying Du
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Guang-Cheng Xie
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
- Institute of Basic Medicine, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
112
|
Yuen MF, Balabanska R, Cottreel E, Chen E, Duan D, Jiang Q, Patil A, Triyatni M, Upmanyu R, Zhu Y, Canducci F, Gane EJ. TLR7 agonist RO7020531 versus placebo in healthy volunteers and patients with chronic hepatitis B virus infection: a randomised, observer-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:496-507. [PMID: 36509100 DOI: 10.1016/s1473-3099(22)00727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Toll-like receptor 7 (TLR7) agonists augment immune activity and have potential for the treatment of chronic hepatitis B virus (HBV) infection. We aimed to assess the safety and tolerability of RO7020531 (also called RG7854), a prodrug of the TLR7 agonist RO7011785, in healthy volunteers and patients with chronic HBV infection. METHODS This randomised, observer-blind, placebo-controlled, phase 1 study was done in two parts. Part 1 was done at one site in New Zealand and part 2 was done at 12 sites in Bulgaria, Hong Kong, Italy, New Zealand, the Netherlands, Taiwan, Thailand, and the UK. In part 1, healthy volunteers were randomly assigned (4:1) within one of eight dose cohorts (3 mg, 10 mg, 20 mg, 40 mg, 60 mg, 100 mg, 140 mg, or 170 mg) to receive a single RO7020531 dose or placebo or randomly assigned (4:1) within one of three dose cohorts (100 mg, 140 mg, or 170 mg) to receive either RO7020531 or placebo every other day for 13 days. In part 2, nucleoside or nucleotide analogue-suppressed patients with chronic HBV infection were randomly assigned (4:1) within cohorts 1-3 (150 mg, 150 mg, or 170 mg) to receive either RO7020531 or placebo and treatment-naive patients with chronic HBV infection were randomly assigned (3:1) in cohort 4 to receive either 150 mg of RO7020531 or placebo. Patients were treated every other day for 6 weeks. Study medication was administered orally to participants after they had fasted. Study participants and investigational staff were masked to treatment allocation. The primary outcome was the safety and tolerability of RO7020531, as measured by the incidence and severity of adverse events and the incidence of laboratory, vital sign, and electrocardiogram abnormalities, and was analysed in all participants who received at least one dose of the study medication. This trial is registered with ClinicalTrials.gov, NCT02956850, and the study is complete. FINDINGS Between Dec 12, 2016, and March 21, 2021, 340 healthy volunteers were screened in part 1, of whom 80 were randomly assigned in the single ascending dose study (eight assigned RO7020531 in each cohort and 16 assigned placebo) and 30 were randomly assigned in the multiple ascending dose study (eight assigned RO7020531 in each cohort and six assigned placebo), and 110 patients were screened in part 2, of whom 30 were randomly assigned in cohorts 1-3 (16 assigned RO7020531 150 mg, eight assigned RO7020531 170 mg, and six assigned placebo) and 20 were randomly assigned in cohort 4 (15 assigned RO7020531 and five assigned placebo). All randomly assigned participants received at least one dose of a study drug and were included in the safety analysis. All tested doses of RO7020531 were safe and had acceptable tolerability in healthy volunteers and patients. The most frequent treatment-related adverse events among the total study population were headache (15 [9%] of 160 participants), influenza-like illness (seven [4%] of 160 participants), and pyrexia (ten [6%] of 160 participants). Most adverse events were mild and transient. There were no severe or serious adverse events in healthy volunteers. In the patient cohorts, there was one severe adverse event (influenza-like illness with 170 mg of RO7020531) and one serious adverse event (moderate influenza-like illness with a 3-day hospitalisation in a treatment-naive patient receiving RO7020531). There were no treatment-related deaths. INTERPRETATION Due to acceptable safety and tolerability, RO7020531 should continue to be developed for the treatment of patients with chronic HBV infection. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rozalina Balabanska
- Clinic of Gastroenterology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Emmanuelle Cottreel
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ethan Chen
- Roche Pharma Product Development China, Shanghai, China
| | - Dan Duan
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Qiudi Jiang
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Avinash Patil
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Miriam Triyatni
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ruchi Upmanyu
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Yonghong Zhu
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Filippo Canducci
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| | - Edward J Gane
- Faculty of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
113
|
Thesnim P, Jangra S, Kumar M, Ghosh A. Effect of silencing Bemisia tabaci TLR3 and TOB1 on fitness and begomovirus transmission. FRONTIERS IN PLANT SCIENCE 2023; 14:1136262. [PMID: 36998692 PMCID: PMC10043976 DOI: 10.3389/fpls.2023.1136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important invasive pests worldwide. It infests several vegetables, legumes, fiber, and ornamental crops. Besides causing direct damage by sucking plant sap, B. tabaci is the principal vector of begomoviruses. Chilli leaf curl virus (ChiLCV, Begomovirus) transmitted by B. tabaci is a major constraint in chilli production. B. tabaci genes associated with metabolism, signaling pathways, cellular processes, and organismal systems are highly enriched in response to ChiLCV infection. The previous transcriptome study suggested the association of B. tabaci Toll-like receptor 3 (TLR3) and transducer of erbB2.1 (TOB1) in ChiLCV infection. In the present study, B. tabaci TLR3 and TOB1 were silenced using double-stranded RNA (dsRNA) and the effect on fitness and begomovirus transmission has been reported. Oral delivery of dsRNA at 3 µg/mL reduced the expression of B. tabaci TLR3 and TOB1 by 6.77 and 3.01-fold, respectively. Silencing of TLR3 and TOB1 induced significant mortality in B. tabaci adults compared to untreated control. The ChiLCV copies in B. tabaci significantly reduced post-exposure to TLR3 and TOB1 dsRNAs. The ability of B. tabaci to transmit ChiLCV also declined post-silencing TLR3 and TOB1. This is the first-ever report of silencing B. tabaci TLR3 and TOB1 to induce mortality and impair virus transmission ability in B. tabaci. B. tabaci TLR3 and TOB1 would be novel genetic targets to manage B. tabaci and restrict the spread of begomovirus.
Collapse
Affiliation(s)
- Pathukandathil Thesnim
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manish Kumar
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
114
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
115
|
Sun Y, Yu CL, Yan YL, Zhang FL, Chen J, Hu ZY, He J, Meng XY, Wu QF. Inhibitory Effects and Related Molecular Mechanisms of Huanglian-Ganjiang Combination Against H1N1 Influenza Virus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2023; 33:514-522. [PMID: 37151218 PMCID: PMC9994783 DOI: 10.1007/s43450-023-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Influenza is an infectious acute respiratory disease with complications and a high mortality rate; the effective medicines for influenza therapy are limited. "Huanglian" or Coptidis Rhizoma, Coptis chinensis Franch., Ranunculaceae, and "ganjiang" or Zingiberis Rhizoma, Zingiber officinale Roscoe, Zingiberaceae, combination is clinically used for treating respiratory diseases. HPLC was applied for the quantification of berberine hydrochloride (1.101 mg/ml) and 6-gingerol (38.41 μg/ml) in the H2O-soluble extract of the herbal formulation. In this study, the effect of "huanglian"- "ganjiang" extract on influenza virus H1N1-induced acute pulmonary inflammation was evaluated, in addition to the investigation of its anti-influenza mechanism in a mouse model. The analyzed herbal combination inhibited the expression of cytokine IL-6 and stimulated the expression of IL-2 in the serum of influenza virus-infected mice. Meanwhile, the herbal combination downregulated the gene and protein expression levels of TLR3, TLR7, MyD88, RIG-I, MAVS, TRAF3, and NF-κB p65, which are key targets of toll-like and RIG-I-like receptor signaling pathways in mice. In addition, the herbal combination could also promote the combination of intracellular autophagosomes and lysosomes in autophagosome-lysosome formation and improve impaired fusion of autophagosomes and lysosomes by influenza virus. This study suggested that the "huanglian"- "ganjiang" extract may be a candidate therapeutic strategy for the treatment of H1N1 influenza. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00372-z.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-ling Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun-liang Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng-ling Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-yi Hu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia He
- No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Xiong-yu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao-feng Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
116
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
117
|
Tyrkalska SD, Martínez-López A, Pedoto A, Candel S, Cayuela ML, Mulero V. The Spike protein of SARS-CoV-2 signals via Tlr2 in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104626. [PMID: 36587712 PMCID: PMC9800328 DOI: 10.1016/j.dci.2022.104626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 05/31/2023]
Abstract
One of the most studied defense mechanisms against invading pathogens, including viruses, are Toll-like receptors (TLRs). Among them, TLR3, TLR7, TLR8 and TLR9 detect different forms of viral nucleic acids in endosomal compartments, whereas TLR2 and TLR4 recognize viral structural and nonstructural proteins outside the cell. Although many different TLRs have been shown to be involved in SARS-CoV-2 infection and detection of different structural proteins, most studies have been performed in vitro and the results obtained are rather contradictory. In this study, we report using the unique advantages of the zebrafish model for in vivo imaging and gene editing that the S1 domain of the Spike protein from the Wuhan strain (S1WT) induced hyperinflammation in zebrafish larvae via a Tlr2/Myd88 signaling pathway and independently of interleukin-1β production. In addition, S1WT also triggered emergency myelopoiesis, but in this case through a Tlr2/Myd88-independent signaling pathway. These results shed light on the mechanisms involved in the fish host responses to viral proteins.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alicia Martínez-López
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Annamaria Pedoto
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
118
|
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been associated with substantial global morbidity and mortality. Despite a tropism that is largely confined to the airways, COVID-19 is associated with multiorgan dysfunction and long-term cognitive pathologies. A major driver of this biology stems from the combined effects of virus-mediated interference with the host antiviral defences in infected cells and the sensing of pathogen-associated material by bystander cells. Such a dynamic results in delayed induction of type I and III interferons (IFN-I and IFN-III) at the site of infection, but systemic IFN-I and IFN-III priming in distal organs and barrier epithelial surfaces, respectively. In this Review, we examine the relationship between SARS-CoV-2 biology and the cellular response to infection, detailing how antagonism and dysregulation of host innate immune defences contribute to disease severity of COVID-19.
Collapse
Affiliation(s)
- Judith M Minkoff
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
119
|
Xu C, Huang J, Jiang Y, He S, Zhang C, Pu K. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat Biomed Eng 2023; 7:298-312. [PMID: 36550302 DOI: 10.1038/s41551-022-00978-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Molecular imaging via afterglow luminescence minimizes tissue autofluorescence and increases the signal-to-noise ratio. However, the induction of afterglow requires the prior irradiation of light, which is attenuated by scattering and absorption in tissue. Here we report the development of organic nanoparticles producing ultrasound-induced afterglow, and their proof-of-concept application in cancer immunotheranostics. The 'sonoafterglow' nanoparticles comprise a sonosensitizer acting as an initiator to produce singlet oxygen and subsequently activate a substrate for the emission of afterglow luminescence, which is brighter and detectable at larger tissue depths (4 cm) than previously reported light-induced afterglow. We formulated sonoafterglow nanoparticles containing a singlet-oxygen-cleavable prodrug for the immune-response modifier imiquimod that specifically turn on in the presence of the inflammation biomarker peroxynitrite, which is overproduced by tumour-associated M1-like macrophages. Systemic delivery of the nanoparticles allowed for sonoafterglow-guided treatment of mice bearing subcutaneous breast cancer tumours. The high sensitivity and depth of molecular sonoafterglow imaging may offer advantages for the real-time in vivo monitoring of physiopathological processes.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yuyan Jiang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
120
|
Pro-Viral and Anti-Viral Roles of the RNA-Binding Protein G3BP1. Viruses 2023; 15:v15020449. [PMID: 36851663 PMCID: PMC9959972 DOI: 10.3390/v15020449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Viruses depend on host cellular resources to replicate. Interaction between viral and host proteins is essential for the pathogens to ward off immune responses as well as for virus propagation within the infected cells. While different viruses employ unique strategies to interact with diverse sets of host proteins, the multifunctional RNA-binding protein G3BP1 is one of the common targets for many viruses. G3BP1 controls several key cellular processes, including mRNA stability, translation, and immune responses. G3BP1 also serves as the central hub for the protein-protein and protein-RNA interactions within a class of biomolecular condensates called stress granules (SGs) during stress conditions, including viral infection. Increasing evidence suggests that viruses utilize distinct strategies to modulate G3BP1 function-either by degradation, sequestration, or redistribution-and control the viral life cycle positively and negatively. In this review, we summarize the pro-viral and anti-viral roles of G3BP1 during infection among different viral families.
Collapse
|
121
|
Ali Z, Cardoza JV, Basak S, Narsaria U, Singh VP, Isaac SP, França TCC, LaPlante SR, George SS. Computational design of candidate multi-epitope vaccine against SARS-CoV-2 targeting structural (S and N) and non-structural (NSP3 and NSP12) proteins. J Biomol Struct Dyn 2023; 41:13348-13367. [PMID: 36744449 DOI: 10.1080/07391102.2023.2173297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zeeshan Ali
- Krupanidhi College of Physiotherapy, Bangalore, India
| | | | | | | | - Vijay Pratap Singh
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal academy of higher education, Mangalore, Manipal, India
| | | | - Tanos C C França
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | |
Collapse
|
122
|
Gunne S, Schwerdtner M, Henke M, Schneider AK, Keutmann L, Böttcher-Friebertshäuser E, Schiffmann S. TMPRSS2 Impacts Cytokine Expression in Murine Dendritic Cells. Biomedicines 2023; 11:biomedicines11020419. [PMID: 36830955 PMCID: PMC9952936 DOI: 10.3390/biomedicines11020419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The transmembrane protease serine 2 (TMPRSS2) proteolytically activates the envelope proteins of several viruses for viral entry via membrane fusion and is therefore an interesting and promising target for the development of broad-spectrum antivirals. However, the use of a host protein as a target may lead to potential side effects, especially on the immune system. We examined the effect of a genetic deletion of TMPRSS2 on dendritic cells. METHODS Bone marrow cells from wild-type (WT) and TMPRSS2-deficient mice (TMPRSS2-/-) were differentiated to plasmacytoid dendritic cells (pDCs) and classical DCs (cDCs) and activated with various toll-like receptor (TLR) agonists. We analyzed the released cytokines and the mRNA expression of chemokine receptors, TLR7, TLR9, IRF7 and TCF4 stimulation. RESULTS In cDCs, the lack of TMPRSS2 led to an increase in IL12 and IFNγ in TLR7/8 agonist resiquimod or TLR 9 agonist ODN 1668-activated cells. Only IL-10 was reduced in TMPRSS2-/- cells in comparison to WT cells activated with ODN 1668. In resiquimod-activated pDCs, the lack of TMPRSS2 led to a decrease in IL-6, IL-10 and INFγ. ODN 1668 activation led to a reduction in IFNα. The effect on receptor expression in pDCs and cDCs was low. CONCLUSION The effect of TMPRSS2 on pDCS and cDCs depends on the activated TLR, and TMPRSS2 seems to affect cytokine release differently in pDCs and cDCs. In cDCs, TMPRSS2 seems to suppress cytokine release, whereas in pDCS TMPRSS2 possibly mediates cytokine release.
Collapse
Affiliation(s)
- Sandra Gunne
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69870025073
| | - Marie Schwerdtner
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marina Henke
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lucas Keutmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | | | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
123
|
Liu S, Li M, Sun F, Zhang J, Liu F. Enhancing the immune effect of oHSV-1 therapy through TLR3 signaling in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:901-912. [PMID: 36030435 DOI: 10.1007/s00432-022-04272-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, with patients having a low overall survival rate. Oncolytic viruses (OVs) have been shown effective as monotherapy or combined with immunotherapy in the treatment of UM. Oncolytic herpes simplex type I virus (oHSV-1) was found to alter gene expression and immune function in UMs. We investigated whether a combination treatment would be more effective in treating UM and reactive immune cells. METHODS RNA sequencing analysis were used to identify the effect of oHSV-1 infection in UM cells and protein changes were validated by western blot. Cell viability assays were performed through UM cell lines (MUM2B, 92.1, and MP41) and retinal pigment epithelial cell line (ARPE-19) to identify the efficacy and safety of the combination treatment. Western blot, qRT-PCR, cell viability assay and immunocytochemistry were performed to discover the reactivation of immune cells (U937 and HMC3). RESULTS Through RNA sequencing analysis and in vitro molecular biology assays, this study tested the ability of oHSV-1 combined with the TLR3 agonist poly(I:C) to re-activate the TLR3 meditated NF-ƙB signaling pathway and further increase the anti-tumor activity of UM cells and macrophages, including the stimulation of macrophage polarization and proliferation. CONCLUSIONS These findings indicate that the treatment of UM with a combination of oHSV-1 and poly(I:C) generates immune responses and enhances anti-tumoral activity, suggesting the need for further investigations and clinical trials of this combination.
Collapse
Affiliation(s)
- Sisi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiao Minxiang 1, Dongcheng District, Beijing, 100730, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Fengqiao Sun
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Shengming Kexueyuan 1, Changping District, Beijing, 102206, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
124
|
Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm-mediated nasal antiviral immunity. J Allergy Clin Immunol 2023; 151:509-525.e8. [PMID: 36494212 DOI: 10.1016/j.jaci.2022.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human upper respiratory tract is the first site of contact for inhaled respiratory viruses and elaborates an array of innate immune responses. Seasonal variation in respiratory viral infections and the importance of ambient temperature in modulating immune responses to infections have been well recognized; however, the underlying biological mechanisms remain understudied. OBJECTIVE We investigated the role of nasal epithelium-derived extracellular vesicles (EVs) in innate Toll-like receptor 3 (TLR3)-dependent antiviral immunity. METHODS We evaluated the secretion and composition of nasal epithelial EVs after TLR3 stimulation in human autologous cells and fresh human nasal mucosal surgical specimens. We also explored the antiviral activity and mechanisms of TLR3-stimulated EVs against respiratory viruses as well as the effect of cool ambient temperature on TLR3-dependent antiviral immunity. RESULTS We found that polyinosinic:polycytidylic acid, aka poly(I:C), exposure induced a swarm-like increase in the secretion of nasal epithelial EVs via the TLR3 signaling. EVs participated in TLR3-dependent antiviral immunity, protecting the host from viral infections through both EV-mediated functional delivery of miR-17 and direct virion neutralization after binding to virus ligands via surface receptors, including LDLR and ICAM-1. These potent antiviral immune defense functions mediated by TLR3-stimulated EVs were impaired by cold exposure via a decrease in total EV secretion as well as diminished microRNA packaging and antiviral binding affinity of individual EV. CONCLUSION TLR3-dependent nasal epithelial EVs exhibit multiple innate antiviral mechanisms to suppress respiratory viral infections. Furthermore, our study provides a direct quantitative mechanistic explanation for seasonal variation in upper respiratory tract infection prevalence.
Collapse
Affiliation(s)
- Di Huang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Maie S Taha
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass.
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
125
|
Zhang J, Zao X, Zhang J, Guo Z, Jin Q, Chen G, Gan D, Du H, Ye Y. Is it possible to intervene early cirrhosis by targeting toll-like receptors to rebalance the intestinal microbiome? Int Immunopharmacol 2023; 115:109627. [PMID: 36577151 DOI: 10.1016/j.intimp.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Cirrhosis is a progressive chronic liver disease caused by one or more causes and characterized by diffuse fibrosis, pseudolobules, and regenerated nodules. Once progression to hepatic decompensation, the function of the liver and other organs is impaired and almost impossible to reverse and recover, which often results in hospitalization, impaired quality of life, and high mortality. However, in the early stage of cirrhosis, there seems to be a possibility of cirrhosis reversal. The development of cirrhosis is related to the intestinal microbiota and activation of toll-like receptors (TLRs) pathways, which could regulate cell proliferation, apoptosis, expression of the hepatomitogen epiregulin, and liver inflammation. Targeting regulation of intestinal microbiota and TLRs pathways could affect the occurrence and development of cirrhosis and its complications. In this paper, we first reviewed the dynamic change of intestinal microbiota and TLRs during cirrhosis progression. And further discussed the interaction between them and potential therapeutic targets to reverse early staged cirrhosis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da'nan Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
126
|
Stocker N, Radzikowska U, Wawrzyniak P, Tan G, Huang M, Ding M, Akdis CA, Sokolowska M. Regulation of angiotensin-converting enzyme 2 isoforms by type 2 inflammation and viral infection in human airway epithelium. Mucosal Immunol 2023; 16:5-16. [PMID: 36642382 PMCID: PMC9836991 DOI: 10.1016/j.mucimm.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.
Collapse
Affiliation(s)
- Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
127
|
Sun H, Chan JFW, Yuan S. Cellular Sensors and Viral Countermeasures: A Molecular Arms Race between Host and SARS-CoV-2. Viruses 2023; 15:352. [PMID: 36851564 PMCID: PMC9962416 DOI: 10.3390/v15020352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic that has caused disastrous effects on the society and human health globally. SARS-CoV-2 is a sarbecovirus in the Coronaviridae family with a positive-sense single-stranded RNA genome. It mainly replicates in the cytoplasm and viral components including RNAs and proteins can be sensed by pattern recognition receptors including toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors (NLRs) that regulate the host innate and adaptive immune responses. On the other hand, the SARS-CoV-2 genome encodes multiple proteins that can antagonize the host immune response to facilitate viral replication. In this review, we discuss the current knowledge on host sensors and viral countermeasures against host innate immune response to provide insights on virus-host interactions and novel approaches to modulate host inflammation and antiviral responses.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Jasper Fuk-Woo Chan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
128
|
Bagheri-Hosseinabadi Z, Mohammadizadeh Ranjbar F, Nassiri M, Amiri A, Abbasifard M. Nasopharyngeal epithelial cells from patients with coronavirus disease 2019 express abnormal levels of Toll-like receptors. Pathog Glob Health 2023; 117:401-408. [PMID: 36651678 PMCID: PMC10177669 DOI: 10.1080/20477724.2023.2166378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aberrant activation of the immune system has been attributed with etiology and pathogenesis of coronavirus disease 2019 (COVID-19). Here, the transcript levels of toll-like receptors (TLRs) were measured in the nasopharyngeal epithelial cells obtained from COVID-19 patients to assess the involvement of these molecules in the clinical outcome of COVID-19 patients. Nasopharyngeal swab samples were used to obtain epithelial cells from 120 COVID-19 patients and 100 healthy controls. COVID-19 cases were classified into those having clinical symptoms/needing for hospitalization, having clinical symptoms/not needing for hospitalization, and those without clinical symptoms. The mRNA expression levels of TLRs were measured in the nasopharyngeal epithelial cells. Overall, mRNA expression of TLR1, TLR2, TLR4, and TLR6 was significantly higher in COVID-19 cases compared to controls. The mRNA expression of TLRs were all higher significantly in the samples from COVID-19 patients having clinical symptoms and needing hospitalization as well as in those with clinical symptoms/not needing for hospitalization in comparison to controls. TLR expression was significantly higher in those with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization compared to COVID-19 cases without clinical symptoms. In cases with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization, there was a correlation between TLR expression and clinicopathological findings. In conclusion, aberrant expression of TLRs in the nasopharyngeal epithelial cells from COVID-19 cases may predict the severity of the diseases and necessity for supportive cares in the hospital.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammad Nassiri
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Amiri
- Department of Orthodontics, College of Stomatology, The First Affiliated Stomatological Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
129
|
Andrade CBV, Lopes LVA, Ortiga-Carvalho TM, Matthews SG, Bloise E. Infection and disruption of placental multidrug resistance (MDR) transporters: Implications for fetal drug exposure. Toxicol Appl Pharmacol 2023; 459:116344. [PMID: 36526072 DOI: 10.1016/j.taap.2022.116344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.
Collapse
Affiliation(s)
- C B V Andrade
- Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L V A Lopes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Obstetrics & Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - E Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
130
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
131
|
Liu W, Ma J, Chen J, Huang B, Liu F, Li L, Fan N, Li F, Zheng Y, Zhang X, Wang X, Wang X, Wei L, Liu Y, Zhang M, Han Y, Wang X. A novel TBK1/IKKϵ is involved in immune response and interacts with MyD88 and MAVS in the scallop Chlamys farreri. Front Immunol 2023; 13:1091419. [PMID: 36713402 PMCID: PMC9879056 DOI: 10.3389/fimmu.2022.1091419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Inhibitor of κB kinase (IKK) family proteins are key signaling molecules in the animal innate immune system and are considered master regulators of inflammation and innate immunity that act by controlling the activation of transcription factors such as NF-κB. However, few functional studies on IKK in invertebrates have been conducted, especially in marine mollusks. In this study, we cloned the IKK gene in the Zhikong scallop Chlamys farreri and named it CfIKK3. CfIKK3 encodes a 773-amino acid-long protein, and phylogenetic analysis showed that CfIKK3 belongs to the invertebrate TBK1/IKKϵ protein family. Quantitative real-time PCR analysis showed that CfIKK3 mRNA is ubiquitously expressed in all tested scallop tissues. The expression of CfIKK3 transcripts was significantly induced after challenge with lipopolysaccharide, peptidoglycan, or poly(I:C). Co-immunoprecipitation (co-IP) assays confirmed the direct interaction of CfIKK3 with MyD88 (the key adaptor in the TLR pathway) and MAVS (the key adaptor in the RLR pathway), suggesting that this IKK protein plays a crucial role in scallop innate immune signal transduction. In addition, the CfIKK3 protein formed homodimers and bound to CfIKK2, which may be a key step in the activation of its own and downstream transcription factors. Finally, in HEK293T cells, dual-luciferase reporter gene experiments showed that overexpression of CfIKK3 protein activated the NF-κB reporter gene in a dose-dependent manner. In conclusion, our experimental results confirmed that CfIKK3 could respond to PAMPs challenge and participate in scallop TLR and RLR pathway signaling, ultimately activating NF-κB. Therefore, as a key signaling molecule and modulator of immune activity, CfIKK3 plays an important role in the innate immune system of scallops.
Collapse
Affiliation(s)
- Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China,*Correspondence: Baoyu Huang, ; Xiaotong Wang,
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China,Ocean School, Yantai University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China,*Correspondence: Baoyu Huang, ; Xiaotong Wang,
| |
Collapse
|
132
|
Effects of Bacillus subtilis Natto Strains on Antiviral Responses in Resiquimod-Stimulated Human M1-Phenotype Macrophages. Foods 2023; 12:foods12020313. [PMID: 36673407 PMCID: PMC9858497 DOI: 10.3390/foods12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Bacillus subtilis natto is used in the production of natto, a traditional fermented soy food, and has beneficial immunomodulatory effects in humans. Single-stranded RNA (ssRNA) viruses, including influenza and coronavirus, often cause global pandemics. We proposed a human cell culture model mimicking ssRNA viral infection and investigated the ability of B. subtilis natto to induce antiviral effects in the model. The gene expressions were analyzed using quantitative real-time reverse transcription PCR. M1-phenotype macrophages derived from THP-1 cells strongly express the Toll-like receptor 8 (76.2-hold), CD80 (64.2-hold), and CCR7 (45.7-hold) mRNA compared to M0 macrophages. One µg/mL of resiquimod (RSQ)-stimulation induced the expression of IRF3 (1.9-hold), CXCL10 (14.5-hold), IFNβ1 (3.5-hold), ISG20 (4.4-hold), and MxA (1.7-hold) mRNA in the M1-phenotype macrophages. Based on these results, the RSQ-stimulated M1-phenotype macrophages were used as a cell culture model mimicking ssRNA viral infection. Moreover, the B. subtilis natto XF36 strain induced the expression of genes associated with antiviral activities (IFNβ1, IFNλ1, ISG20, and RNase L) and anti-inflammatory activities (IL-10) in the cell culture model. Thus, it is suggested that the XF36 suppresses viral infections and excessive inflammation by inducing the expression of genes involved in antiviral and anti-inflammatory activities.
Collapse
|
133
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
134
|
Lerner A, Benzvi C. SARS-CoV-2 induction and COVID-19 manifestations related to autoimmune gastrointestinal diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:451-469. [DOI: 10.1016/b978-0-443-18566-3.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
135
|
Li F, Liu W, Chen J, Huang B, Zheng Y, Ma J, Cai S, Li L, Liu F, Wang X, Wei L, Liu Y, Zhang M, Han Y, Zhang X, Wang X. CfIRF8-like interacts with the TBK1/IKKε family protein and regulates host antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108497. [PMID: 36539167 DOI: 10.1016/j.fsi.2022.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon β promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.
Collapse
Affiliation(s)
- Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
136
|
Chee J, Chern B, Loh WS, Mullol J, Wang DY. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Curr Allergy Asthma Rep 2023; 23:121-131. [PMID: 36598732 PMCID: PMC9811886 DOI: 10.1007/s11882-022-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW While the predominant cause for morbidity and mortality with SARS-CoV-2 infection is the lower respiratory tract manifestations of the disease, the effects of SARS-CoV-2 infection on the sinonasal tract have also come to the forefront especially with the increased recognition of olfactory symptom. This review presents a comprehensive summary of the mechanisms of action of the SARS-CoV-2 virus, sinonasal pathophysiology of COVID-19, and the correlation with the clinical and epidemiological impact on olfactory dysfunction. RECENT FINDINGS ACE2 and TMPRSS2 receptors are key players in the mechanism of infection of SARS-CoV-2. They are present within both the nasal respiratory as well as olfactory epithelia. There are however differences in susceptibility between different groups of individuals, as well as between the different SARS-CoV-2 variants. The sinonasal cavity is an important route for SARS-CoV-2 infection. While the mechanism of infection of SARS-CoV-2 in nasal respiratory and olfactory epithelia is similar, there exist small but significant differences in the susceptibility of these epithelia and consequently clinical manifestations of the disease. Understanding the differences and nuances in sinonasal pathophysiology in COVID-19 would allow the clinician to predict and counsel patients suffering from COVID-19. Future research into molecular pathways and cytokine responses at different stages of infection and different variants of SARS-CoV-2 would evaluate the individual clinical phenotype, prognosis, and possibly response to vaccines and therapeutics.
Collapse
Affiliation(s)
- Jeremy Chee
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Beverlyn Chern
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Woei Shyang Loh
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore ,grid.4280.e0000 0001 2180 6431Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquim Mullol
- grid.10403.360000000091771775Rhinology Unit & Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Catalonia Spain
| | - De Yun Wang
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
137
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
138
|
In Silico Prediction of Hub Genes Involved in Diabetic Kidney and COVID-19 Related Disease by Differential Gene Expression and Interactome Analysis. Genes (Basel) 2022; 13:genes13122412. [PMID: 36553678 PMCID: PMC9778100 DOI: 10.3390/genes13122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequently chronic kidney pathology derived from diabetes comorbidity. This condition has irreversible damage and its risk factor increases with SARS-CoV-2 infection. The prognostic outcome for diabetic patients with COVID-19 is dismal, even with intensive medical treatment. However, there is still scarce information on critical genes involved in the pathophysiological impact of COVID-19 on DKD. Herein, we characterize differential expression gene (DEG) profiles and determine hub genes undergoing transcriptional reprogramming in both disease conditions. Out of 995 DEGs, we identified 42 shared with COVID-19 pathways. Enrichment analysis elucidated that they are significantly induced with implications for immune and inflammatory responses. By performing a protein-protein interaction (PPI) network and applying topological methods, we determine the following five hub genes: STAT1, IRF7, ISG15, MX1 and OAS1. Then, by network deconvolution, we determine their co-expressed gene modules. Moreover, we validate the conservancy of their upregulation using the Coronascape database (DB). Finally, tissue-specific regulation of the five predictive hub genes indicates that OAS1 and MX1 expression levels are lower in healthy kidney tissue. Altogether, our results suggest that these genes could play an essential role in developing severe outcomes of COVID-19 in DKD patients.
Collapse
|
139
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
140
|
Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022; 21:1851-1871. [PMID: 33435759 PMCID: PMC7989953 DOI: 10.1080/14760584.2021.1874925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options. METHODS In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2. RESULTS The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine. CONCLUSION If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
141
|
Kar PP, Araveti PB, Kuriakose A, Srivastava A. Design of a multi-epitope protein as a subunit vaccine against lumpy skin disease using an immunoinformatics approach. Sci Rep 2022; 12:19411. [PMID: 36371522 PMCID: PMC9653426 DOI: 10.1038/s41598-022-23272-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Lumpy skin disease (LSD) is a transboundary viral disease of cattle that causes substantial economic loss globally. There is no specific treatment and subunit vaccine for this disease to date. Reports of the global spread of this disease are worrisome. We designed a multi-epitope protein using an immunoinformatics approach in this study. We analyzed the proteome of LSDV and found 32 structural/surface proteins. Four of these 32 proteins were predicted as antigenic and non-homologous to bovine and highly conserved in 26 LSDV isolates. The predicted B-cell epitopes and CTL epitopes were stitched together with the help of an AAY linker leading to the formation of a multi-epitope protein. The in silico study revealed that the modeled subunit vaccine candidate and TLR4 receptor interact with high affinity. This interaction was also found to be stable using a molecular dynamics simulation study. Our study demonstrates a leap towards developing a subunit vaccine against LSD.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- grid.508105.90000 0004 1798 2821National Institute of Animal Biotechnology (NIAB), Gachibowli, Gopanpalli, Hyderabad, 500 032 Telangana India ,grid.502122.60000 0004 1774 5631Regional Centre for Biotechnology (RCB), Faridabad, 121 001 Haryana India
| | - Prasanna Babu Araveti
- grid.508105.90000 0004 1798 2821National Institute of Animal Biotechnology (NIAB), Gachibowli, Gopanpalli, Hyderabad, 500 032 Telangana India ,grid.502122.60000 0004 1774 5631Regional Centre for Biotechnology (RCB), Faridabad, 121 001 Haryana India
| | - Akshay Kuriakose
- grid.508105.90000 0004 1798 2821National Institute of Animal Biotechnology (NIAB), Gachibowli, Gopanpalli, Hyderabad, 500 032 Telangana India
| | - Anand Srivastava
- grid.508105.90000 0004 1798 2821National Institute of Animal Biotechnology (NIAB), Gachibowli, Gopanpalli, Hyderabad, 500 032 Telangana India ,grid.502122.60000 0004 1774 5631Regional Centre for Biotechnology (RCB), Faridabad, 121 001 Haryana India
| |
Collapse
|
142
|
Petrillo F, Petrillo A, Sasso FP, Schettino A, Maione A, Galdiero M. Viral Infection and Antiviral Treatments in Ocular Pathologies. Microorganisms 2022; 10:2224. [PMID: 36363815 PMCID: PMC9694090 DOI: 10.3390/microorganisms10112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2023] Open
Abstract
Ocular viral infections are common and widespread globally. These infectious diseases are a major cause of acute red eyes and vision loss. The eye and its nearby tissues can be infected by several viral agents, causing infections with a short course and limited ocular implications or a long clinical progression and serious consequences for the function and structure of the ocular region. Several surveillance studies underline the increased emergence of drug resistance among pathogenic viral strains, limiting treatment options for these infections. Currently, in the event of resistant infections, topical or systemic corticosteroids are useful in the management of associated immune reactions in the eye, which contribute to ocular dysfunction. Many cases of viral eye infections are misdiagnosed as being of bacterial origin. In these cases, therapy begins late and is not targeted at the actual cause of the infection, often leading to severe ocular compromises, such as corneal infiltrates, conjunctival scarring, and reduced visual acuity. The present study aims at a better understanding of the viral pathogens that cause eye infections, along with the treatment options available.
Collapse
Affiliation(s)
- Francesco Petrillo
- Azienda Ospedaliera Universitaria-Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | | | | | - Antonietta Schettino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
143
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
144
|
Chen C, Liu J, Li B, Wang T, Wang E, Wang G. Isoferulic acid affords the antiviral potential and restrains white spot syndrome virus proliferation in crayfish (Procambarus clarkii). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
145
|
Seadawy MG, Zekri ARN, Saeed AA, San EJ, Ageez AM. Candidate Multi-Epitope Vaccine against Corona B.1.617 Lineage: In Silico Approach. Life (Basel) 2022; 12:1715. [PMID: 36362871 PMCID: PMC9694184 DOI: 10.3390/life12111715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/21/2024] Open
Abstract
Various mutations have accumulated since the first genome sequence of SARS-CoV2 in 2020. Mutants of the virus carrying the D614G and P681R mutations in the spike protein are increasingly becoming dominant all over the world. The two mutations increase the viral infectivity and severity of the disease. This report describes an in silico design of SARS-CoV-2 multi-epitope carrying the spike D614G and P681R mutations. The designed vaccine harbors the D614G mutation that increases viral infectivity, fitness, and the P681R mutation that enhances the cleavage of S to S1 and S2 subunits. The designed multi-epitope vaccine showed an antigenic property with a value of 0.67 and the immunogenicity of the predicted vaccine was calculated and yielded 3.4. The vaccine construct is predicted to be non-allergenic, thermostable and has hydrophilic nature. The combination of the selected CTL and HTL epitopes in the vaccine resulted in 96.85% population coverage globally. Stable interactions of the vaccine with Toll-Like Receptor 4 were tested by docking studies. The multi-epitope vaccine can be a good candidate against highly infecting SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mohamed G. Seadawy
- Biological Prevention Department, Chemical Warfare, 4.5 km Suez-Cairo Rd, Almaza, Cairo 11351, Egypt
| | | | - Aya A. Saeed
- National Cancer Institute, Cairo University, Giza 12613, Egypt
| | - Emmanuel James San
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Amr M. Ageez
- Faculty of Biotechnology, MSA University, 6 October City 12451, Egypt
| |
Collapse
|
146
|
Abstract
Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
147
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
148
|
Halajian EA, LeBlanc EV, Gee K, Colpitts CC. Activation of TLR4 by viral glycoproteins: A double-edged sword? Front Microbiol 2022; 13:1007081. [PMID: 36246240 PMCID: PMC9557975 DOI: 10.3389/fmicb.2022.1007081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recognition of viral infection by pattern recognition receptors is paramount for a successful immune response to viral infection. However, an unbalanced proinflammatory response can be detrimental to the host. Recently, multiple studies have identified that the SARS-CoV-2 spike protein activates Toll-like receptor 4 (TLR4), resulting in the induction of proinflammatory cytokine expression. Activation of TLR4 by viral glycoproteins has also been observed in the context of other viral infection models, including respiratory syncytial virus (RSV), dengue virus (DENV) and Ebola virus (EBOV). However, the mechanisms involved in virus-TLR4 interactions have remained unclear. Here, we review viral glycoproteins that act as pathogen-associated molecular patterns to induce an immune response via TLR4. We explore the current understanding of the mechanisms underlying how viral glycoproteins are recognized by TLR4 and discuss the contribution of TLR4 activation to viral pathogenesis. We identify contentious findings and research gaps that highlight the importance of understanding viral glycoprotein-mediated TLR4 activation for potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
149
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
150
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|