101
|
Xu J, Jia YF, Tapadar S, Weaver JD, Raji IO, Pithadia DJ, Javeed N, García AJ, Choi DS, Matveyenko AV, Oyelere AK, Shin CH. Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Sci Rep 2018; 8:15587. [PMID: 30349097 PMCID: PMC6197228 DOI: 10.1038/s41598-018-33875-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
β-cell proliferation induction is a promising therapeutic strategy to restore β-cell mass. By screening small molecules in a transgenic zebrafish model of type 1 diabetes, we identified inhibitors of non-canonical IκB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε), as enhancers of β-cell regeneration. The most potent β-cell regeneration enhancer was a cinnamic acid derivative (E)-3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA), which, acting through the cAMP-dependent protein kinase A (PKA), stimulated β-cell-specific proliferation by increasing cyclic AMP (cAMP) levels and mechanistic target of rapamycin (mTOR) activity. A combination of PIAA and cilostamide, an inhibitor of β-cell-enriched cAMP hydrolyzing enzyme phosphodiesterase (PDE) 3, enhanced β-cell proliferation, whereas overexpression of PDE3 blunted the mitogenic effect of PIAA in zebrafish. PIAA augmented proliferation of INS-1β-cells and β-cells in mammalian islets including human islets with elevation in cAMP levels and insulin secretion. PIAA improved glycemic control in streptozotocin (STZ)-induced diabetic mice with increases in β-cell proliferation, β-cell area, and insulin content in the pancreas. Collectively, these data reveal an evolutionarily conserved and critical role of TBK1/IKKε suppression in expanding functional β-cell mass.
Collapse
Affiliation(s)
- Jin Xu
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Idris O Raji
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Deeti J Pithadia
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chong Hyun Shin
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
102
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
103
|
Zang L, Maddison LA, Chen W. Zebrafish as a Model for Obesity and Diabetes. Front Cell Dev Biol 2018; 6:91. [PMID: 30177968 PMCID: PMC6110173 DOI: 10.3389/fcell.2018.00091] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity and diabetes now considered global epidemics. The prevalence rates of diabetes are increasing in parallel with the rates of obesity and the strong connection between these two diseases has been coined as “diabesity.” The health risks of overweight or obesity include Type 2 diabetes mellitus (T2DM), coronary heart disease and cancer of numerous organs. Both obesity and diabetes are complex diseases that involve the interaction of genetics and environmental factors. The underlying pathogenesis of obesity and diabetes are not well understood and further research is needed for pharmacological and surgical management. Consequently, the use of animal models of obesity and/or diabetes is important for both improving the understanding of these diseases and to identify and develop effective treatments. Zebrafish is an attractive model system for studying metabolic diseases because of the functional conservation in lipid metabolism, adipose biology, pancreas structure, and glucose homeostasis. It is also suited for identification of novel targets associated with the risk and treatment of obesity and diabetes in humans. In this review, we highlight studies using zebrafish to model metabolic diseases, and discuss the advantages and disadvantages of studying pathologies associated with obesity and diabetes in zebrafish.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Lisette A Maddison
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
104
|
Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ 2018; 60:393-399. [DOI: 10.1111/dgd.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
- Department of Biomedical Sciences; College of Life Sciences; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|
105
|
Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Curr Biol 2018; 28:2527-2535.e8. [PMID: 30078569 DOI: 10.1016/j.cub.2018.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Trevor S Smith
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Curr Biol 2018; 28:2445-2451.e3. [PMID: 30057306 DOI: 10.1016/j.cub.2018.06.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
Deficits in social engagement are diagnostic of multiple neurodevelopmental disorders, including autism and schizophrenia [1]. Genetically tractable animal models like zebrafish (Danio rerio) could provide valuable insight into developmental factors underlying these social impairments, but this approach is predicated on the ability to accurately and reliably quantify subtle behavioral changes. Similarly, characterizing local molecular and morphological phenotypes requires knowledge of the neuroanatomical correlates of social behavior. We leveraged behavioral and genetic tools in zebrafish to both refine our understanding of social behavior and identify brain regions important for driving it. We characterized visual social interactions between pairs of adult zebrafish and discovered that they perform a stereotyped orienting behavior that reflects social attention [2]. Furthermore, in pairs of fish, the orienting behavior of one individual is the primary factor driving the same behavior in the other individual. We used manual and genetic lesions to investigate the forebrain contribution to this behavior and identified a population of neurons in the ventral telencephalon whose ablation suppresses social interactions, while sparing other locomotor and visual behaviors. These neurons are cholinergic and express the gene encoding the transcription factor Lhx8a, which is required for development of cholinergic neurons in the mouse forebrain [3]. The neuronal population identified in zebrafish lies in a region homologous to mammalian forebrain regions implicated in social behavior such as the lateral septum [4]. Our data suggest that an evolutionarily conserved population of neurons controls social orienting in zebrafish.
Collapse
Affiliation(s)
- Sarah J Stednitz
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Erin M McDermott
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Denver Ncube
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alexandra Tallafuss
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
107
|
Janjuha S, Pal Singh S, Ninov N. Analysis of Beta-cell Function Using Single-cell Resolution Calcium Imaging in Zebrafish Islets. J Vis Exp 2018. [PMID: 30035763 PMCID: PMC6102039 DOI: 10.3791/57851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pancreatic beta-cells respond to increasing blood glucose concentrations by secreting the hormone insulin. The dysfunction of beta-cells leads to hyperglycemia and severe, life-threatening consequences. Understanding how the beta-cells operate under physiological conditions and what genetic and environmental factors might cause their dysfunction could lead to better treatment options for diabetic patients. The ability to measure calcium levels in beta-cells serves as an important indicator of beta-cell function, as the influx of calcium ions triggers insulin release. Here we describe a protocol for monitoring the glucose-stimulated calcium influx in zebrafish beta-cells by using GCaMP6s, a genetically encoded sensor of calcium. The method allows monitoring the intracellular calcium dynamics with single-cell resolution in ex vivo mounted islets. The glucose-responsiveness of beta-cells within the same islet can be captured simultaneously under different glucose concentrations, which suggests the presence of functional heterogeneity among zebrafish beta-cells. Furthermore, the technique provides high temporal and spatial resolution, which reveals the oscillatory nature of the calcium influx upon glucose stimulation. Our approach opens the doors to use the zebrafish as a model to investigate the contribution of genetic and environmental factors to beta-cell function and dysfunction.
Collapse
Affiliation(s)
- Sharan Janjuha
- Center for Molecular and Cellular Bioengineering, TU Dresden; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden
| | | | - Nikolay Ninov
- Center for Molecular and Cellular Bioengineering, TU Dresden; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden;
| |
Collapse
|
108
|
Ellett F, Pazhakh V, Pase L, Benard EL, Weerasinghe H, Azabdaftari D, Alasmari S, Andrianopoulos A, Lieschke GJ. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathog 2018; 14:e1007063. [PMID: 29883484 PMCID: PMC6010348 DOI: 10.1371/journal.ppat.1007063] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei's opportunity for macrophage parasitism and thereby enhancing this pathogen's exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.
Collapse
Affiliation(s)
- Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Erica L. Benard
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Denis Azabdaftari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
109
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
110
|
Bergemann D, Massoz L, Bourdouxhe J, Carril Pardo CA, Voz ML, Peers B, Manfroid I. Nifurpirinol: A more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations. Wound Repair Regen 2018; 26:238-244. [PMID: 29663654 DOI: 10.1111/wrr.12633] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.
Collapse
Affiliation(s)
- David Bergemann
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Jordane Bourdouxhe
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Claudio A Carril Pardo
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Marianne L Voz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| |
Collapse
|
111
|
Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, Kimmel RA. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development 2018; 145:dev158477. [PMID: 29386244 PMCID: PMC5818004 DOI: 10.1242/dev.158477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - José A Iglesias
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck Austria
| | - Armin Wilfinger
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
112
|
Wyett G, Gibert Y, Ellis M, Castillo HA, Aston-Mourney K. Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish. Endocrine 2018; 59:419-425. [PMID: 29274062 DOI: 10.1007/s12020-017-1502-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Type 1 and 2 diabetes are characterized by a loss of insulin-producing beta-cells. Current treatments help maintain blood glucose levels but cannot provide a cure. As such, a vital target for the cure of diabetes is a way to restore beta-cell mass. The drug metformin can protect cultured beta-cells/islets from hyperglycemia-induced dysfunction and death. Further, treatment of pregnant mice with metformin results in an enhanced beta-cell fraction in the embryos; however, whether this occurs via a direct effect is unknown. METHODS We utilized the external embryogenesis of the zebrafish to determine the direct effect of metformin treatment on the pancreas of the developing embryo and following beta-cell ablation. RESULTS During development metformin did not alter beta-cell or alpha-cell mass but had a small effect to increase delta-cell mass as measured by in situ hybridization. Further metformin significantly increased beta-cell number. Following beta-cell ablation, both glucagon and somatostatin expression were upregulated (>2-fold). Additionally, while metformin showed no effect to alter beta-cell mass or number, somatostatin expression was further increased (>5-fold). CONCLUSIONS We showed that direct exposure to metformin during embryogenesis does not increase insulin-expressing area but does increase beta-cell number. Further, we identified novel consequences of beta-cell ablation to alter the expression of other pancreatic hormones that were enhanced by metformin. Therefore, this study provides a greater understanding of the beta-cell development/regenerative processes and the effect of metformin, bringing us closer to identifying how to increase beta-cells in humans.
Collapse
Affiliation(s)
- Georgia Wyett
- Metabolic Research Unit, School of Medicine, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC, 3216, Australia
| | - Yann Gibert
- Metabolic Research Unit, School of Medicine, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC, 3216, Australia
| | - Megan Ellis
- Metabolic Research Unit, School of Medicine, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC, 3216, Australia
| | - Hozana A Castillo
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Brazilian Biosciences National Laboratory, Brazilian Center of Research in Energy and Materials, Campinas, Brazil
| | - Kathryn Aston-Mourney
- Metabolic Research Unit, School of Medicine, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
113
|
Zhou L, Feng Y, Wang F, Dong X, Jiang L, Liu C, Zhao Q, Li K. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development. Sci Rep 2018; 8:1834. [PMID: 29382876 PMCID: PMC5789895 DOI: 10.1038/s41598-018-20039-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023] Open
Abstract
Production of all-male and sterile fish may not only substantially improve yield but also be crucial for the application of genome modified species in aquaculture. Previously, it was reported that the fish lacking primordial germ cells (PGCs) becomes infertile, and nitroreductase, an enzyme converting non-toxic metronidazole (MTZ) into toxic metabolites, induces targeted toxicity to kill the cells expressing it. In this study, we generated a transgenic zebrafish line of Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) in which the NfsB nitroreductase is solely expressed in PGCs. Treating the embryos derived from the female transgenic zebrafish with MTZ from 0 through 2 dpf (days post fertilization), we found that the germ cells were completely eliminated in the ones older than 2.5 dpf. At 20 dpf, the MTZ-treated juvenile had no germ cells in their gonads. At 100 dpf, the MTZ-treated adult exhibited male-like morphology and showed normal mating behaviors although they had no germ cells but only supporting cells in their gonads. Taken together, our results demonstrated that conditional elimination of PGCs during early development make the zebrafish male-like and infertile. It may provide an alternative strategy to make sterile and all-male farmed fish that is good for increasing aquaculture yield and preventing the genome modified species from potential ecological risks.
Collapse
Affiliation(s)
- Li Zhou
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Yongyong Feng
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Fang Wang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China
| | - Lan Jiang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Chun Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Qinshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China.
| | - Kaibin Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China.
| |
Collapse
|
114
|
Hui SP, Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, Hesselson D, Kikuchi K. Zebrafish Regulatory T Cells Mediate Organ-Specific Regenerative Programs. Dev Cell 2017; 43:659-672.e5. [DOI: 10.1016/j.devcel.2017.11.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
|
115
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
116
|
Transient cardiomyocyte fusion regulates cardiac development in zebrafish. Nat Commun 2017; 8:1525. [PMID: 29142194 PMCID: PMC5688123 DOI: 10.1038/s41467-017-01555-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cells can sacrifice their individuality by fusing, but the prevalence and significance of this process are poorly understood. To approach these questions, here we generate transgenic reporter lines in zebrafish to label and specifically ablate fused cells. In addition to skeletal muscle cells, the reporters label cardiomyocytes starting at an early developmental stage. Genetic mosaics generated by cell transplantation show cardiomyocytes expressing both donor- and host-derived transgenes, confirming the occurrence of fusion in larval hearts. These fusion events are transient and do not generate multinucleated cardiomyocytes. Functionally, cardiomyocyte fusion correlates with their mitotic activity during development as well as during regeneration in adult animals. By analyzing the cell fusion-compromised jam3b mutants, we propose a role for membrane fusion in cardiomyocyte proliferation and cardiac function. Together, our findings uncover the previously unrecognized process of transient cardiomyocyte fusion and identify its potential role in cardiac development and function. Cell fusion regulates several physiological events, for example, fusion of myoblasts in skeletal muscle formation, but it is unclear if this process occurs in the heart. Here, the authors use transgenic reporters in zebrafish to show transient cardiomyocyte fusion, modulating cardiac development and function.
Collapse
|
117
|
Ando K, Shibata E, Hans S, Brand M, Kawakami A. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Dev Cell 2017; 43:643-650.e3. [PMID: 29103952 DOI: 10.1016/j.devcel.2017.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Stefan Hans
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Michael Brand
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
118
|
Zhang D, Gates KP, Barske L, Wang G, Lancman JJ, Zeng XXI, Groff M, Wang K, Parsons MJ, Crump JG, Dong PDS. Endoderm Jagged induces liver and pancreas duct lineage in zebrafish. Nat Commun 2017; 8:769. [PMID: 28974684 PMCID: PMC5626745 DOI: 10.1038/s41467-017-00666-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
Liver duct paucity is characteristic of children born with Alagille Syndrome (ALGS), a disease associated with JAGGED1 mutations. Here, we report that zebrafish embryos with compound homozygous mutations in two Notch ligand genes, jagged1b (jag1b) and jagged2b (jag2b) exhibit a complete loss of canonical Notch activity and duct cells within the liver and exocrine pancreas, whereas hepatocyte and acinar pancreas development is not affected. Further, animal chimera studies demonstrate that wild-type endoderm cells within the liver and pancreas can rescue Notch activity and duct lineage specification in adjacent cells lacking jag1b and jag2b expression. We conclude that these two Notch ligands are directly and solely responsible for all duct lineage specification in these organs in zebrafish. Our study uncovers genes required for lineage specification of the intrahepatopancreatic duct cells, challenges the role of duct cells as progenitors, and suggests a genetic mechanism for ALGS ductal paucity.The hepatopancreatic duct cells connect liver hepatocytes and pancreatic acinar cells to the intestine, but the mechanism for their lineage specification is unclear. Here, the authors reveal that Notch ligands Jagged1b and Jagged2b induce duct cell lineage in the liver and pancreas of the zebrafish.
Collapse
Affiliation(s)
- Danhua Zhang
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Guangliang Wang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Megan Groff
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Kasper Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael J Parsons
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
119
|
Matsuda H, Mullapudi ST, Zhang Y, Hesselson D, Stainier DYR. Thyroid Hormone Coordinates Pancreatic Islet Maturation During the Zebrafish Larval-to-Juvenile Transition to Maintain Glucose Homeostasis. Diabetes 2017; 66:2623-2635. [PMID: 28698262 DOI: 10.2337/db16-1476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/24/2017] [Indexed: 11/13/2022]
Abstract
Thyroid hormone (TH) signaling promotes tissue maturation and adult organ formation. Developmental transitions alter an organism's metabolic requirements, and it remains unclear how development and metabolic demands are coordinated. We used the zebrafish as a model to test whether and how TH signaling affects pancreatic islet maturation, and consequently glucose homeostasis, during the larval to juvenile transition. We found that exogenous TH precociously activates the β-cell differentiation genes pax6b and mnx1 while downregulating arxa, a master regulator of α-cell development and function. Together, these effects induced hypoglycemia, at least in part by increasing insulin and decreasing glucagon expression. We visualized TH target tissues using a novel TH-responsive reporter line and found that both α- and β-cells become targets of endogenous TH signaling during the larval-to-juvenile transition. Importantly, endogenous TH is required during this transition for the functional maturation of α- and β-cells in order to maintain glucose homeostasis. Thus, our study sheds new light on the regulation of glucose metabolism during major developmental transitions.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
120
|
Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. J Neurosci 2017; 37:11353-11365. [PMID: 28972121 PMCID: PMC5700419 DOI: 10.1523/jneurosci.1711-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5–7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior. SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.
Collapse
|
121
|
Hsu AY, Wang D, Gurol T, Zhou W, Zhu X, Lu HY, Deng Q. Overexpression of microRNA-722 fine-tunes neutrophilic inflammation by inhibiting Rac2 in zebrafish. Dis Model Mech 2017; 10:1323-1332. [PMID: 28954734 PMCID: PMC5719257 DOI: 10.1242/dmm.030791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/23/2017] [Indexed: 12/30/2022] Open
Abstract
Neutrophilic inflammation is essential for defending against invading pathogens, but can also be detrimental in many clinical settings. The hematopoietic-specific small Rho-GTPase Rac2 regulates multiple pathways that are essential for neutrophil activation, including adhesion, migration, degranulation and production of reactive oxygen species. This study tested the hypothesis that partially suppressing rac2 in zebrafish neutrophils by using a microRNA (miRNA) would inhibit neutrophil migration and activation, which would reduce the immunological damage caused by systemic inflammation. We have generated a transgenic zebrafish line that overexpresses microRNA-722 (miR-722) in neutrophils. Neutrophil motility and chemotaxis to tissue injury or infection are significantly reduced in this line. miR-722 downregulates the transcript level of rac2 through binding to seed-matching sequence in the rac2 3′UTR. Furthermore, miR-722-overexpressing larvae display improved outcomes in both sterile and bacterial systemic models, which correlates with a robust upregulation of the anti-inflammatory cytokines in the whole larvae and isolated neutrophils. Finally, an miR-722 mimic protects zebrafish from lethal lipopolysaccharide challenge. Together, these results provide evidence for and the mechanism of an anti-inflammatory miRNA that restrains detrimental systemic inflammation. Summary: Identification of a microRNA that suppresses Rac2 expression and regulates neutrophil migration and systemic inflammation. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Decheng Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Theodore Gurol
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoguang Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Hsiu-Yi Lu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
122
|
Matsuoka RL, Rossi A, Stone OA, Stainier DYR. CNS-resident progenitors direct the vascularization of neighboring tissues. Proc Natl Acad Sci U S A 2017; 114:10137-10142. [PMID: 28855341 PMCID: PMC5617242 DOI: 10.1073/pnas.1619300114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organ growth requires the coordinated invasion and expansion of blood vessel networks directed by tissue-resident cells and morphogenetic cues. A striking example of this intercellular communication is the vascularization of the central nervous system (CNS), which is driven by neuronal progenitors, including neuroepithelial cells and radial glia. Although the importance of neuronal progenitors in vascular development within the CNS is well recognized, how these progenitors regulate the vasculature outside the CNS remains largely unknown. Here we show that CNS-resident radial glia direct the vascularization of neighboring tissues during development. We find that genetic ablation of radial glia in zebrafish larvae leads to a complete loss of the bilateral vertebral arteries (VTAs) that extend along the ventrolateral sides of the spinal cord. Importantly, VTA formation is not affected by ablation of other CNS cell types, and radial glia ablation also compromises the subsequent formation of the peri-neural vascular plexus (PNVP), a vascular network that surrounds the CNS and is critical for CNS angiogenesis. Mechanistically, we find that radial glia control these processes via Vegfab/Vegfr2 signaling: vegfab is expressed by radial glia, and genetic or pharmacological inhibition of Vegfab/Vegfr2 signaling blocks the formation of the VTAs and subsequently of the PNVP. Moreover, mosaic overexpression of Vegfab in radial glia is sufficient to partially rescue the VTA formation defect in vegfab mutants. Thus, our findings identify a critical function for CNS-resident progenitors in the regulation of vascularization outside the CNS, serving as a paradigm for cross-tissue coordination of vascular morphogenesis and growth.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Oliver A Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
123
|
Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. Int J Mol Sci 2017; 18:ijms18092002. [PMID: 28925940 PMCID: PMC5618651 DOI: 10.3390/ijms18092002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today's medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.
Collapse
|
124
|
Allen JR, Bhattacharyya KD, Asante E, Almadi B, Schafer K, Davis J, Cox J, Voigt M, Viator JA, Chandrasekhar A. Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 2017; 31:128-137. [PMID: 28812416 PMCID: PMC5942883 DOI: 10.1080/01677063.2017.1358270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
The physical act of eating or feeding involves the coordinated action of several organs like eyes and jaws, and associated neural networks. Moreover, the activity of the neural networks controlling jaw movements (branchiomotor circuits) is regulated by the visual, olfactory, gustatory and hypothalamic systems, which are largely well characterized at the physiological level. By contrast, the behavioral output of the branchiomotor circuits and the functional consequences of disruption of these circuits by abnormal neural development are poorly understood. To begin to address these questions, we sought to evaluate the feeding ability of zebrafish larvae, a direct output of the branchiomotor circuits, and developed a qualitative assay for measuring food intake in zebrafish larvae at 7 days post-fertilization. We validated the assay by examining the effects of ablating the branchiomotor neurons. Metronidazole-mediated ablation of nitroreductase-expressing branchiomotor neurons resulted in a predictable reduction in food intake without significantly affecting swimming ability, indicating that the assay is robust. Laser-mediated ablation of trigeminal motor neurons resulted in a significant decrease in food intake, indicating that the assay is sensitive. Importantly, in larvae of a genetic mutant with severe loss of branchiomotor neurons, food intake was abolished. These studies establish a foundation for dissecting the neural circuits driving a motor behavior essential for survival.
Collapse
Affiliation(s)
- James R. Allen
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kiran D. Bhattacharyya
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Badr Almadi
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kyle Schafer
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy Davis
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jane Cox
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Voigt
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John A. Viator
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
125
|
Facchinello N, Tarifeño-Saldivia E, Grisan E, Schiavone M, Peron M, Mongera A, Ek O, Schmitner N, Meyer D, Peers B, Tiso N, Argenton F. Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Sci Rep 2017; 7:9605. [PMID: 28851992 PMCID: PMC5575064 DOI: 10.1038/s41598-017-09867-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from β-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on β-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations.
Collapse
Affiliation(s)
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, I-35131, Padova, Italy
| | - Marco Schiavone
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Margherita Peron
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | | | - Olivier Ek
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Nicole Schmitner
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy.
| | | |
Collapse
|
126
|
Chlebowski AC, La Du JK, Truong L, Massey Simonich SL, Tanguay RL. Investigating the application of a nitroreductase-expressing transgenic zebrafish line for high-throughput toxicity testing. Toxicol Rep 2017; 4:202-210. [PMID: 28758069 PMCID: PMC5527975 DOI: 10.1016/j.toxrep.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nitroreductase enzymes are responsible for the reduction of nitro functional groups to amino functional groups, and are found in a range of animal models, zebrafish (Danio rerio) excluded. Transgenic zebrafish models have been developed for tissue-specific cell ablation, which use nitroreductase to ablate specific tissues or cell types following exposure to the non-toxic pro-drug metronidazole (MTZ). When metabolized by nitroreductase, MTZ produces a potent cytotoxin, which specifically ablates the tissue in which metabolism occurs. Uses, beyond tissue-specific cell ablation, are possible for the hepatocyte-specific Tg(l-fabp:CFP-NTR)s891 zebrafish line, including investigations of the role of nitroreductase in the toxicity of nitrated compounds. The hepatic ablation characteristics of this transgenic line were explored, in order to expand its potential uses. Embryos were exposed at 48, 72, or 96 hours post fertilization (hpf) to a range of MTZ concentrations, and the ablation profiles were compared. Ablation occurred at a 10-fold lower concentration than previously reported. Embryos were exposed to a selection of other compounds, with and without MTZ, in order to investigate alternative uses for this transgenic line. Test compounds were selected based on: their ability to undergo nitroreduction, known importance of hepatic metabolism to toxicity, and known pharmaceutical hepatotoxins. Selected compounds included nitrated polycyclic aromatic hydrocarbons (nitro-PAHs), the PAHs retene and benzo[a]pyrene, and the pharmaceuticals acetaminophen and flutamide. The results suggest a range of potential roles of the liver in the toxicity of these compounds, and highlight the additional uses of this transgenic model in toxicity testing.
Collapse
Affiliation(s)
- Anna C Chlebowski
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331.,Department of Chemistry, Oregon State University, Corvallis, OR, 97331
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331
| |
Collapse
|
127
|
Wu J, Choi TY, Shin D. tomm22 Knockdown-Mediated Hepatocyte Damages Elicit Both the Formation of Hybrid Hepatocytes and Biliary Conversion to Hepatocytes in Zebrafish Larvae. Gene Expr 2017; 17:237-249. [PMID: 28251883 PMCID: PMC5542045 DOI: 10.3727/105221617x695195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver has a highly regenerative capacity. In the normal liver, hepatocytes proliferate to restore lost liver mass. However, when hepatocyte proliferation is impaired, biliary epithelial cells (BECs) activate and contribute to hepatocytes. We previously reported in zebrafish that upon severe hepatocyte ablation, BECs extensively contribute to regenerated hepatocytes. It was also speculated that BEC-driven liver regeneration might occur in another zebrafish liver injury model in which temporary knockdown of the mitochondrial import gene tomm22 by morpholino antisense oligonucleotides (MO) induces hepatocyte death. Given the importance of multiple BEC-driven liver regeneration models for better elucidating the mechanisms underlying innate liver regeneration in the diseased liver, we hypothesized that BECs would contribute to hepatocytes in tomm22 MO-injected larvae. In this MO-based liver injury model, by tracing the lineage of BECs, we found that BECs significantly contributed to hepatocytes. Moreover, we found that surviving, preexisting hepatocytes become BEC-hepatocyte hybrid cells in tomm22 MO-injected larvae. Intriguingly, both the inhibition of Wnt/β-catenin signaling and macrophage ablation suppressed the formation of the hybrid hepatocytes. This new liver injury model in which both hepatocytes and BECs contribute to regenerated hepatocytes will aid in better understanding the mechanisms of innate liver regeneration in the diseased liver.
Collapse
Affiliation(s)
- Jianchen Wu
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- †Tsinghua University School of Medicine, Beijing, P.R. China
| | - Tae-Young Choi
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
128
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
129
|
Gerri C, Marín-Juez R, Marass M, Marks A, Maischein HM, Stainier DYR. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat Commun 2017; 8:15492. [PMID: 28524872 PMCID: PMC5493593 DOI: 10.1038/ncomms15492] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/01/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM. The molecular mechanism regulating macrophage interaction with endothelial cells during development is unclear. Here, the authors show that in zebrafish mutation of hypoxia-inducible factor-1α impairs macrophage mobilization from the aorta-gonad-mesonephros, causing defects in angiogenesis and vessel repair.
Collapse
Affiliation(s)
- Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
130
|
Zang L, Shimada Y, Nishimura N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci Rep 2017; 7:1461. [PMID: 28469250 PMCID: PMC5431185 DOI: 10.1038/s41598-017-01432-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023] Open
Abstract
Obesity is a major cause of type 2 diabetes mellitus (T2DM) in mammals. We have previously established a zebrafish model of diet-induced obesity (DIO zebrafish) by overfeeding Artemia. Here we created DIO zebrafish using a different method to induce T2DM. Zebrafish were overfed a commercially available fish food using an automated feeding system. We monitored the fasting blood glucose levels in the normal-fed group (one feed/day) and overfed group (six feeds/day) over an 8-week period. The fasting blood glucose level was significantly increased in DIO zebrafish compared with that of normal-fed zebrafish. Intraperitoneal and oral glucose tolerance tests showed impaired glucose tolerance by overfeeding. Insulin production, which was determined indirectly by measuring the EGFP signal strength in overfed Tg(−1.0ins:EGFP)sc1 zebrafish, was increased in DIO zebrafish. The anti-diabetic drugs metformin and glimepiride ameliorated hyperglycaemia in the overfed group, suggesting that this zebrafish can be used as a model of human T2DM. Finally, we conducted RNA deep sequencing and found that the gene expression profiling of liver-pancreas revealed pathways common to human T2DM. In summary, we developed a zebrafish model of T2DM that shows promise as a platform for mechanistic and therapeutic studies of diet-induced glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan.
| | - Yasuhito Shimada
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| |
Collapse
|
131
|
Siegerist F, Zhou W, Endlich K, Endlich N. 4D in vivo imaging of glomerular barrier function in a zebrafish podocyte injury model. Acta Physiol (Oxf) 2017; 220:167-173. [PMID: 27414464 DOI: 10.1111/apha.12754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 01/15/2023]
Abstract
AIM Zebrafish larvae with their simplified pronephros are an ideal model to study glomerular physiology. Although several groups use zebrafish larvae to assess glomerular barrier function, temporary or slight changes are still difficult to measure. The aim of this study was to investigate the potential of in vivo two-photon microscopy (2-PM) for long-term imaging of glomerular barrier function in zebrafish larvae. METHODS As a proof of principle, we adapted the nitroreductase/metronidazole model of targeted podocyte ablation for 2-PM. Combination with a strain, which expresses eGFP-vitamin D-binding protein in the blood plasma, led to a strain that allowed induction of podocyte injury with parallel assessment of glomerular barrier function. We used four-dimensional (4D) 2-PM to assess eGFP fluorescence over 26 h in the vasculature and in tubules of multiple zebrafish larvae (5 days post-fertilization) simultaneously. RESULTS By 4D 2-PM, we observed that, under physiological conditions, eGFP fluorescence was retained in the vasculature and rarely detected in proximal tubule cells. Application of metronidazole induced podocyte injury and cell death as shown by TUNEL staining. Induction of podocyte injury resulted in a dramatic decrease of eGFP fluorescence in the vasculature over time (about 50% and 90% after 2 and 12 h respectively). Loss of vascular eGFP fluorescence was paralleled by an endocytosis-mediated accumulation of eGFP fluorescence in proximal tubule cells, indicating proteinuria. CONCLUSION We established a microscopy-based method to monitor the dynamics of glomerular barrier function during induction of podocyte injury in multiple zebrafish larvae simultaneously over 26 h.
Collapse
Affiliation(s)
- F. Siegerist
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| | - W. Zhou
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor MI USA
| | - K. Endlich
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| | - N. Endlich
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
132
|
Carvalho FR, Fernandes AR, Cancela ML, Gavaia PJ. Improved regeneration and de novo bone formation in a diabetic zebrafish model treated with paricalcitol and cinacalcet. Wound Repair Regen 2017; 25:432-442. [PMID: 28380670 DOI: 10.1111/wrr.12536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
Bone changes related to diabetes have been well stablished, but few strategies have been developed to prevent this growing health problem. In our work, we propose to investigate the effects of calcitriol as well as of a vitamin D analog (paricalcitol) and a calcimimetic (cinacalcet), in fin regeneration and de novo mineralization in a zebrafish model of diabetes. Following exposure of diabetic transgenic Tg(ins:nfsb-mCherry) zebrafish to calcitriol, paricalcitol and cinacalcet, caudal fins were amputated to assess their effects on tissue regeneration. Caudal fin mineralized and regenerated areas were quantified by in vivo alizarin red staining. Quantitative real-time PCR was performed using RNA from the vertebral column. Diabetic fish treated with cinacalcet and paricalcitol presented increased regenerated and mineralized areas when compared with non-treated diabetic group, while no significant increase was observed in non-diabetic fish treated with both drugs. Gene expression analysis showed an up-regulation for runt-related transcription factor 2b (runx2b), bone gamma-carboxyglutamic acid-containing protein (bglap), insulin a (insa) and insulin b (insb) and a trend of increase for sp7 transcription factor (sp7) in diabetic groups treated with cinacalcet and paricalcitol. Expression of insra and vdra was up-regulated in both diabetic and nondiabetic fish treated with cinacalcet. In nondiabetic fish treated with paricalcitol and cinacalcet a similar increase in gene expression could be observed but not so pronounced. The increased mineralization and regeneration in diabetic zebrafish treated with cinacalcet and paricalcitol can be explained by increased osteoblastic differentiation and increased insulin expression indicating pro-osteogenic potential of both drugs.
Collapse
Affiliation(s)
- Filipe R Carvalho
- Center of Marine Sciences (CCMAR), Faro, Portugal.,PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Ana R Fernandes
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Center of Marine Sciences (CCMAR), Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Center of Marine Sciences (CCMAR), Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
133
|
Minchin JEN, Rawls JF. A classification system for zebrafish adipose tissues. Dis Model Mech 2017; 10:797-809. [PMID: 28348140 PMCID: PMC5482999 DOI: 10.1242/dmm.025759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
The zebrafish model system offers significant utility for in vivo imaging of adipose tissue (AT) dynamics and for screening to identify chemical and genetic modifiers of adiposity. In particular, AT can be quantified accurately in live zebrafish using fluorescent lipophilic dyes. Although this methodology offers considerable promise, the comprehensive identification and classification of zebrafish ATs has not been performed. Here, we use fluorescent lipophilic dyes and in vivo imaging systematically to identify, classify and quantify the zebrafish AT pool. We identify 34 regionally distinct zebrafish ATs, including five visceral ATs and 22 subcutaneous ATs. For each of these ATs, we describe detailed morphological characteristics to aid their identification in future studies. Furthermore, we quantify the areas for each AT and construct regression models to allow prediction of expected AT size and variation across a range of developmental stages. Finally, we demonstrate the utility of this resource for identifying effects of strain variation and high-fat diet on AT growth. Altogether, this resource provides foundational information on the identity, dynamics and expected quantities of zebrafish ATs for use as a reference for future studies. Summary: A standardized nomenclature and classification system for zebrafish adipose tissues and regression models to predict expected adipose size during the course of zebrafish development.
Collapse
Affiliation(s)
- James E N Minchin
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC 27710, USA .,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John F Rawls
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
134
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|
135
|
Maddison LA, Chen W. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Front Endocrinol (Lausanne) 2017; 8:9. [PMID: 28184214 PMCID: PMC5266698 DOI: 10.3389/fendo.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population.
Collapse
Affiliation(s)
- Lisette A. Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
136
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
137
|
Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM, Grosse AS, Kaur H, Lawson ND, Herzog W, Stainier DY. Radial glia regulate vascular patterning around the developing spinal cord. eLife 2016; 5:20253. [PMID: 27852438 PMCID: PMC5123865 DOI: 10.7554/elife.20253] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI:http://dx.doi.org/10.7554/eLife.20253.001
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Avdesh Avdesh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann S Grosse
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Harmandeep Kaur
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Wiebke Herzog
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
138
|
Otis JP, Farber SA. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J Vis Exp 2016. [PMID: 27842350 DOI: 10.3791/54735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Embryology, Carnegie Institution for Science
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science; Department of Biology, Johns Hopkins University;
| |
Collapse
|
139
|
Liu H, Chen S, Huang K, Kim J, Mo H, Iovine R, Gendre J, Pascal P, Li Q, Sun Y, Dong Z, Arkin M, Guo S, Huang B. A High-Content Larval Zebrafish Brain Imaging Method for Small Molecule Drug Discovery. PLoS One 2016; 11:e0164645. [PMID: 27732643 PMCID: PMC5061318 DOI: 10.1371/journal.pone.0164645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023] Open
Abstract
Drug discovery in whole-organisms such as zebrafish is a promising approach for identifying biologically-relevant lead compounds. However, high content imaging of zebrafish at cellular resolution is challenging due to the difficulty in orienting larvae en masse such that the cell type of interest is in clear view. We report the development of the multi-pose imaging method, which uses 96-well round bottom plates combined with a standard liquid handler to repose the larvae within each well multiple times, such that an image in a specific orientation can be acquired. We have validated this method in a chemo-genetic zebrafish model of dopaminergic neuron degeneration. For this purpose, we have developed an analysis pipeline that identifies the larval brain in each image and then quantifies neuronal health in CellProfiler. Our method achieves a SSMD* score of 6.96 (robust Z’-factor of 0.56) and is suitable for screening libraries up to 105 compounds in size.
Collapse
Affiliation(s)
- Harrison Liu
- Joint Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Jeffrey Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Han Mo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Raffael Iovine
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Julie Gendre
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Pauline Pascal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Qiang Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Yaping Sun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhiqiang Dong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Michelle Arkin
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (SG); (BH)
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (SG); (BH)
| |
Collapse
|
140
|
Cigliola V, Thorel F, Chera S, Herrera PL. Stress-induced adaptive islet cell identity changes. Diabetes Obes Metab 2016; 18 Suppl 1:87-96. [PMID: 27615136 PMCID: PMC5021189 DOI: 10.1111/dom.12726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas.
Collapse
Affiliation(s)
- V Cigliola
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - F Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - S Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - P L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
141
|
Huang W, Beer RL, Delaspre F, Wang G, Edelman HE, Park H, Azuma M, Parsons MJ. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 2016; 418:28-39. [PMID: 27565026 DOI: 10.1016/j.ydbio.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing β cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated β-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults.
Collapse
Affiliation(s)
- Wei Huang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hannah E Edelman
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Michael J Parsons
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA; Department of Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
142
|
Lu J, Liu KC, Schulz N, Karampelias C, Charbord J, Hilding A, Rautio L, Bertolino P, Östenson CG, Brismar K, Andersson O. IGFBP1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation. EMBO J 2016; 35:2026-44. [PMID: 27516442 PMCID: PMC5116948 DOI: 10.15252/embj.201592903] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole‐genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β‐cell regeneration. We then tested the proteins' ability to potentiate β‐cell regeneration in zebrafish at supraphysiological levels. One protein, insulin‐like growth factor (Igf) binding‐protein 1 (Igfbp1), potently promoted β‐cell regeneration by potentiating α‐ to β‐cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1's effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co‐expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type‐2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β‐cell regeneration and highlight its clinical importance in diabetes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nadja Schulz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Hilding
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Rautio
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Lyon 1, Lyon, France
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
143
|
Masselink W, Cole NJ, Fenyes F, Berger S, Sonntag C, Wood A, Nguyen PD, Cohen N, Knopf F, Weidinger G, Hall TE, Currie PD. A somitic contribution to the apical ectodermal ridge is essential for fin formation. Nature 2016; 535:542-6. [DOI: 10.1038/nature18953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
|
144
|
Casano A, Albert M, Peri F. Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain. Cell Rep 2016; 16:897-906. [DOI: 10.1016/j.celrep.2016.06.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/11/2016] [Accepted: 06/03/2016] [Indexed: 01/15/2023] Open
|
145
|
Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB, Velez CM, Schneider C, Sakai C, Pathak N, Anderson K, Stein R, Devoto SH, Mumm JS, Barresi MJF. Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 2016; 64:1170-89. [PMID: 27100776 PMCID: PMC4918407 DOI: 10.1002/glia.22990] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/12/2022]
Abstract
Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.
Collapse
Affiliation(s)
- Kimberly Johnson
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Jessica Barragan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Sarah Bashiruddin
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Cody J Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Chelsea Tyrrell
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Michael J Parsons
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Rosemarie Doris
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Gerald B Downes
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Carla M Velez
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Caitlin Schneider
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Catalina Sakai
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Narendra Pathak
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Katrina Anderson
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rachael Stein
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michael J F Barresi
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
146
|
Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JMN, Berger S, Ratnayake D, Hersey L, Berger J, Verkade H, Hall TE, Currie PD. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 2016; 353:aad9969. [PMID: 27198673 DOI: 10.1126/science.aad9969] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.
Collapse
Affiliation(s)
- David B Gurevich
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Phong Dang Nguyen
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ashley L Siegel
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ophelia V Ehrlich
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M N Phan
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Joachim Berger
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Heather Verkade
- School of Biological Sciences, Building 18, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas E Hall
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia. European Molecular Biology Laboratory Australia Melbourne Node, Level 1, Building 75, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
147
|
Filosa A, Barker AJ, Dal Maschio M, Baier H. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum. Neuron 2016; 90:596-608. [PMID: 27146269 DOI: 10.1016/j.neuron.2016.03.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/27/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alison J Barker
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marco Dal Maschio
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
148
|
O'Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA. Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of β-Cell Mass Deficits. Mol Endocrinol 2016; 30:429-45. [PMID: 26963759 DOI: 10.1210/me.2015-1243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) has been associated with a large number of genomic loci, many of which encompass multiple genes without a definitive causal gene. This complexity has hindered efforts to clearly identify functional candidate genes and interpret their role in mediating susceptibility to disease. Here we examined the relevance of individual genes found at T2D-associated loci by assessing their potential contribution to a phenotype relevant to the disease state: production and maintenance of β-cell mass. Using transgenic zebrafish in which β-cell mass could be rapidly visualized in vivo, we systematically suppressed the expression of orthologs of genes found at T2D-associated genomic loci. Overall, we tested 67 orthologs, many of which had no known relevance to β-cell mass, at 62 human T2D-associated loci, including eight loci with multiple candidate genes. In total we identified 25 genes that were necessary for proper β-cell mass, providing functional evidence for their role in a physiological phenotype directly related to T2D. Of these, 16 had not previously been implicated in the regulation of β-cell mass. Strikingly, we identified single functional candidate genes at the majority of the loci for which multiple genes were analyzed. Further investigation into the contribution of the 25 genes to the adaptive capacity of β-cells suggested that the majority of genes were not required for glucose-induced expansion of β-cell mass but were significantly necessary for the regeneration of β-cells. These findings suggest that genetically programmed deficiencies in β-cell mass may be related to impaired maintenance. Finally, we investigated the relevance of our findings to human T2D onset in diabetic individuals from the Old Order Amish and found that risk alleles in β-cell mass genes were associated with significantly younger age of onset and lower body mass index. Taken together, our study offers a functional approach to assign relevance to genes at T2D-associated loci and offers experimental evidence for the defining role of β-cell mass maintenance in genetic susceptibility to T2D onset.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Laura M Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - James A Perry
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
149
|
Xu J, Cui J, Del Campo A, Shin CH. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration. PLoS Genet 2016; 12:e1005831. [PMID: 26845333 PMCID: PMC4741517 DOI: 10.1371/journal.pgen.1005831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. Lineage-specific multipotent progenitors play crucial roles in embryonic development, regeneration in adult tissues, and diseases such as cancer. Bone morphogenetic protein (Bmp) signaling is critical for regulating the cell fate choice of liver versus pancreas, two essential organs of body metabolism. Through transcriptome profiling of endodermal tissues exposed to increased or decreased Bmp2b signaling, we have discovered the zebrafish gene four and a half LIM domains 1b (fhl1b) as a novel target of Bmp2b signaling. fhl1b is primarily expressed in the prospective liver anlage. Loss- and gain-of-function analyses indicate that Fhl1b suppresses specification of the pancreas and induces the liver. By single-cell lineage tracing, we showed that depletion of fhl1b caused a liver-to-pancreas fate switch, while fhl1b overexpression redirected pancreatic progenitors to become liver cells. At later stages, Fhl1b regulates regeneration of insulin-secreting β-cells by directly or indirectly modulating pdx1 and neurod expression in the hepatopancreatic ductal system. Therefore, our work provides a novel paradigm of how Bmp signaling regulates the hepatic versus pancreatic fate decision and β-cell regeneration through its novel target Fhl1b.
Collapse
Affiliation(s)
- Jin Xu
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jiaxi Cui
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Chong Hyun Shin
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
150
|
Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat Commun 2016; 7:10590. [PMID: 26838932 PMCID: PMC4742908 DOI: 10.1038/ncomms10590] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage. Neurons in the zebrafish retina regenerate. Here, Yoshimatsu and colleagues show that retinal horizontal cells maintain their synaptic preferences for a limited period before circuit remodeling is triggered after photoreceptor loss.
Collapse
|