101
|
Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice. J Control Release 2019; 310:188-197. [DOI: 10.1016/j.jconrel.2019.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
102
|
Glomerular Collagen Deposition and Lipocalin-2 Expression Are Early Signs of Renal Injury in Prediabetic Obese Rats. Int J Mol Sci 2019; 20:ijms20174266. [PMID: 31480394 PMCID: PMC6747173 DOI: 10.3390/ijms20174266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Feeding rats with high-fat diet (HFD) with a single streptozotocin (STZ) injection induced obesity, slightly elevated fasting blood glucose and impaired glucose and insulin tolerance, and caused cardiac hypertrophy and mild diastolic dysfunction as published before by Koncsos et al. in 2016. Here we aimed to explore the renal consequences in the same groups of rats. Male Long-Evans rats were fed normal chow (CON; n = 9) or HFD containing 40% lard and were administered STZ at 20 mg/kg (i.p.) at week four (prediabetic rats, PRED, n = 9). At week 21 blood and urine samples were taken and kidney and liver samples were collected for histology, immunohistochemistry and for analysis of gene expression. HFD and STZ increased body weight and visceral adiposity and plasma leptin concentration. Despite hyperleptinemia, plasma C-reactive protein concentration decreased in PRED rats. Immunohistochemistry revealed elevated collagen IV protein expression in the glomeruli, and Lcn2 mRNA expression increased, while Il-1β mRNA expression decreased in both the renal cortex and medulla in PRED vs. CON rats. Kidney histology, urinary protein excretion, plasma creatinine, glomerular Feret diameter, desmin protein expression, and cortical and medullary mRNA expression of TGF-β1, Nrf2, and PPARγ were similar in CON and PRED rats. Reduced AMPKα phosphorylation of the autophagy regulator Akt was the first sign of liver damage, while plasma lipid and liver enzyme concentrations were similar. In conclusion, glomerular collagen deposition and increased lipocalin-2 expression were the early signs of kidney injury, while most biomarkers of inflammation, oxidative stress and fibrosis were negative in the kidneys of obese, prediabetic rats with mild heart and liver injury.
Collapse
|
103
|
Abstract
In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella Typhimurium infection. Genetic ablation of leptin receptor or pharmacological antagonization of leptin augmented lysosomal functions in macrophages, reduced S. Typhimurium burden, and diminished inflammation both in vitro and in vivo. Leptin signaling activates mTORC2/Akt pathway through the down-regulation of Phlpp1 phosphatase, thus impairs lysosome-mediated pathogen clearance. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections.
Collapse
|
104
|
Overweight/obesity affects histological features and inflammatory gene signature of synovial membrane of Rheumatoid Arthritis. Sci Rep 2019; 9:10420. [PMID: 31320744 PMCID: PMC6639364 DOI: 10.1038/s41598-019-46927-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Overweight/obesity influence disease burden and clinical outcome of Rheumatoid Arthritis (RA). The impact of overweight/obesity on synovial tissue (ST) inflammation is largely unknown. Here, we investigated the histological and transcriptional signature of ST obtained from RA in different disease phases (disease onset, failure to first-line conventional DMARDs and in sustained clinical and ultrasound remission) finding that overweight/obese DMARDs naive RA showed higher likelihood of follicular synovitis, higher IHC scores for sublining inflammatory cells (CD68+, CD21+ and CD20+) and higher IL-1RA plasma levels than normal weight RA. Regardless to the synovitis pattern, overweight/obese DMARDs naive RA showed a worse clinical response to “Treat-to-target” (T2T) than normal weight RA at 6 and 12 months follow-up. Conversely, MTX-IR RA did not show significant differences in synovial inflammation based on BMI category. Overweight/obese RA in stable clinical and US remission showed higher degree of residual synovitis in terms of sublining CD68+, CD20+ cells and lining and sublining CD3+ compared to normal weight RA. Finally, gene expression profile analysis revealed that ST of overweight/obese DMARDs naive RA is enriched by CCL3 and MyD88 compared to normal weight RA in sustained disease remission, the latter correlating with BMI and IHC scores for synovial CD68+ cells. These findings suggest that indeed overweight/obese RA show higher degree of synovitis at disease onset and after remission achievement that influences the response rate to T2T and should be considered within the management of patients with RA.
Collapse
|
105
|
Fulham MA, Ratna A, Gerstein RM, Kurt-Jones EA, Mandrekar P. Alcohol-induced adipose tissue macrophage phenotypic switching is independent of myeloid Toll-like receptor 4 expression. Am J Physiol Cell Physiol 2019; 317:C687-C700. [PMID: 31268779 DOI: 10.1152/ajpcell.00276.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alcoholic liver disease results from a combination of immune and metabolic pathogenic events. In addition to liver injury, chronic alcohol consumption also causes adipose tissue inflammation. The specific immune mechanisms that drive this process are unknown. Here, we sought to determine the role of the innate immune receptor Toll-like receptor 4 (TLR4) in alcohol-induced adipose tissue inflammation. Using a model of chronic, multiple-binge alcohol exposure, we showed that alcohol-mediated accumulation of proinflammatory adipose tissue macrophages was absent in global TLR4 knockout mice. Proinflammatory macrophage accumulation did not depend on macrophage TLR4 expression; LysMCre-driven deletion of Tlr4 from myeloid cells did not affect circulating endotoxin or the accumulation of M1 macrophages in adipose tissue following alcohol exposure. Proinflammatory cytokine/chemokine production in the adipose stromal vascular fraction also occurred independently of TLR4. Finally, the levels of other adipose immune cells, such as dendritic cells, neutrophils, B cells, and T cells, were modulated by chronic, multiple-binge alcohol and the presence of TLR4. Together, these data indicate that TLR4 expression on cells, other than myeloid cells, is important for the alcohol-induced increase in proinflammatory adipose tissue macrophages.
Collapse
Affiliation(s)
- Melissa A Fulham
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anuradha Ratna
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rachel M Gerstein
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Evelyn A Kurt-Jones
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pranoti Mandrekar
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
106
|
Ryan S, Arnaud C, Fitzpatrick SF, Gaucher J, Tamisier R, Pépin JL. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev 2019; 28:28/152/190006. [PMID: 31243096 PMCID: PMC9488701 DOI: 10.1183/16000617.0006-2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a major health concern worldwide and adversely affects multiple organs and systems. OSA is associated with obesity in >60% of cases and is independently linked with the development of numerous comorbidities including hypertension, arrhythmia, stroke, coronary heart disease and metabolic dysfunction. The complex interaction between these conditions has a significant impact on patient care and mortality. The pathophysiology of cardiometabolic complications in OSA is still incompletely understood; however, the particular form of intermittent hypoxia (IH) observed in OSA, with repetitive short cycles of desaturation and re-oxygenation, probably plays a pivotal role. There is fast growing evidence that IH mediates some of its detrimental effects through adipose tissue inflammation and dysfunction. This article aims to summarise the effects of IH on adipose tissue in experimental models in a comprehensive way. Data from well-designed controlled trials are also reported with the final goal of proposing new avenues for improving phenotyping and personalised care in OSA. Fast growing evidence strongly suggests that cardiovascular and metabolic alterations induced by intermittent hypoxia in OSA are mediated through adipose tissue inflammation and dysfunction.bit.ly/2W929Pe
Collapse
Affiliation(s)
- Silke Ryan
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,Joint first authors
| | - Claire Arnaud
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,Joint first authors
| | - Susan F Fitzpatrick
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jonathan Gaucher
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
107
|
Gheibi S, Gouvarchin Ghaleh HE, Motlagh BM, Azarbayjani AF, Zarei L. Therapeutic effects of curcumin and ursodexycholic acid on non-alcoholic fatty liver disease. Biomed Pharmacother 2019; 115:108938. [PMID: 31071511 DOI: 10.1016/j.biopha.2019.108938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is commonly associated with inflammation, oxidative stress and apoptosis of hepatocytes. This study was designed to investigate the combinational therapeutic effects of curcumin (CMN) and Ursodeoxycholic acid (UDCA) on non-alcoholic fatty liver disease (NAFLD). Male Wistar rats were divided into 8 groups: NAFLD-induced rats, NAFLD-induced rats + CMN, NAFLD-induced rats + UDCA, and NAFLD-induced rats that received CMN + UDCA. CMN (200 mg/kg) and UDCA (80 mg/kg) was administered orally for 14 and 28 consecutive days. Biochemical and histopathological analysis were conducted in all the groups. It was seen that co-administration of CMN and UDCA significantly reduced fatty degeneration, cellular necrosis, edema, and immune cell infiltration compared to non-treated NAFLD-induced rats. Whereas, combinational therapy caused a significant decrease in levels of SGOT and SGPT enzymes and expression of p53, caspase III, iNOS and bcl-2 mRNA and proteins, in variant with the treatment of CMN and UDCA, respectively. Co-administration of CMN and UDCA was also associated with the restoration of the levels of serum TG and HDL-C however, had no effect on LDL-C. It also resulted in an in TAC, GSH- PX, and SOD and decrease in MDA level. Our study concludes that combinational therapy of CMN and UDCA is effective for the treatment of NAFLD, as compared to their solo treatment.
Collapse
Affiliation(s)
- Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Mansori Motlagh
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | | - Leila Zarei
- Razi Herbal Medicines Research Center, Lorestan Univercity of Medical Sciences, Khorramabad, Iran; Department of Anatomical Sciences, Faculty of Medicine Sciences, Lorestan Univercity of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
108
|
Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. J Invest Dermatol 2019; 139:1002-1009. [DOI: 10.1016/j.jid.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
|
109
|
Rakhshandehroo M, van Eijkeren RJ, Gabriel TL, de Haar C, Gijzel SMW, Hamers N, Ferraz MJ, Aerts JMFG, Schipper HS, van Eijk M, Boes M, Kalkhoven E. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1157-1167. [PMID: 31051284 DOI: 10.1016/j.bbalip.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. β-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert J van Eijkeren
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin de Haar
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sanne M W Gijzel
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nicole Hamers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Henk S Schipper
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Marianne Boes
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
110
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
111
|
Coronary Artery Disease Is Associated with an Increased Amount of T Lymphocytes in Human Epicardial Adipose Tissue. Mediators Inflamm 2019; 2019:4075086. [PMID: 30881222 PMCID: PMC6383418 DOI: 10.1155/2019/4075086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Immunocompetent cells including lymphocytes play a key role in the development of adipose tissue inflammation and obesity-related cardiovascular complications. The aim of the study was to explore the relationship between epicardial adipose tissue lymphocytes and coronary artery disease (CAD). To this end, we studied the content and phenotype of lymphocytes in peripheral blood, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT) in subjects with and without CAD undergoing elective cardiac surgery. Eleven subjects without CAD (non-CAD group) and 22 age-, BMI-, and HbA1C-matched individuals with CAD were included into the study. Blood, SAT, and EAT samples were obtained at the beginning of surgery. Lymphocyte populations were quantified as % of CD45+ cells using flow cytometry. Subjects with CAD had a higher total lymphocyte amount in EAT compared with SAT (32.24 ± 7.45 vs. 11.22 ± 1.34%, p = 0.025) with a similar trend observed in non-CAD subjects (29.68 ± 7.61 vs. 10.13 ± 2.01%, p = 0.067). T (CD3+) cells were increased (75.33 ± 2.18 vs. 65.24 ± 4.49%, p = 0.032) and CD3- cells decreased (21.17 ± 2.26 vs. 31.64 ± 4.40%, p = 0.028) in EAT of CAD relative to the non-CAD group. In both groups, EAT showed an elevated percentage of B cells (5.22 ± 2.43 vs. 0.96 ± 0.21%, p = 0.039 for CAD and 12.49 ± 5.83 vs. 1.16 ± 0.19%, p = 0.016 for non-CAD) and reduced natural killer (NK) cells (5.96 ± 1.32 vs. 13.22 ± 2.10%, p = 0.012 for CAD and 5.32 ± 1.97 vs. 13.81 ± 2.72%, p = 0.022 for non-CAD) relative to SAT. In conclusion, epicardial adipose tissue in subjects with CAD shows an increased amount of T lymphocytes relative to non-CAD individuals as well as a higher number of total and B lymphocytes and reduced NK cells as compared with corresponding SAT. These changes could contribute to the development of local inflammation and coronary atherosclerosis.
Collapse
|
112
|
Wang LH, Huang W, Wei D, Ding DG, Liu YR, Wang JJ, Zhou ZY. Mechanisms of Acupuncture Therapy for Simple Obesity: An Evidence-Based Review of Clinical and Animal Studies on Simple Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5796381. [PMID: 30854010 PMCID: PMC6378065 DOI: 10.1155/2019/5796381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Simple obesity is a worldwide epidemic associated with rapidly growing morbidity and mortality which imposes an enormous burden on individual and public health. As a part of Traditional Chinese Medicine (TCM), acupuncture has shown the positive efficacy in the management of simple obesity. In this article, we comprehensively review the clinical and animal studies that demonstrated the potential mechanisms of acupuncture treatment for simple obesity. Clinical studies suggested that acupuncture regulates endocrine system, promotes digestion, attenuates oxidative stress, and modulates relevant molecules of metabolism in patients of simple obesity. Evidence from laboratory indicated that acupuncture regulates lipid metabolism, modulates inflammatory responses, and promotes white adipose tissue browning. Acupuncture also suppresses appetite through regulating appetite regulatory hormones and the downstream signaling pathway. The evidence from clinical and animal studies indicates that acupuncture induces multifaceted regulation through complex mechanisms and moreover a single factor may not be enough to explain the beneficial effects against simple obesity.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Dan Wei
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - De-Guang Ding
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
113
|
Fernandes MS, Barbisan F, Azzolin VF, do Prado-Lima PAS, Teixeira CF, da Cruz Jung IE, Assmann CE, Riffel RT, Duarte MMMF, Aguiar- Ribeiro EM, da Cruz IBM. Lithium is able to minimize olanzapine oxidative-inflammatory induction on macrophage cells. PLoS One 2019; 14:e0209223. [PMID: 30695037 PMCID: PMC6350970 DOI: 10.1371/journal.pone.0209223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
Background Olanzapine (OLZ) is a second-generation antipsychotic drug used for treatment of schizophrenia, bipolar disorder, and other neuropsychiatric conditions. Undesirable side effects of OLZ include metabolic alterations associated with chronic oxidative-inflammation events. It is possible that lithium (Li), a mood modulator that exhibits anti-inflammatory properties may attenuate OLZ-induced oxi-inflammatory effects. Methodology To test this hypothesis we activated RAW 264.7 immortalized macrophages with OLZ and evaluated oxidation and inflammation at the gene and protein levels. Li and OLZ concentrations were determined using estimated plasma therapeutic concentrations. Results OLZ triggered a significant increase in macrophage proliferation at 72 h. Higher levels of oxidative markers and proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with a concomitant reduction in IL-10, were observed in OLZ-exposed macrophages. Lithium (Li) exposure triggered a short and attenuated inflammatory response demonstrated by elevation of superoxide anion (SA), reactive oxygen species (ROS), IL-1β, and cellular proliferation followed by elevation of anti-inflammatory IL-10 levels. Li treatment of OLZ-supplemented macrophages was able to reverse elevation of oxidative and inflammatory markers and increase IL-10 levels. Conclusions Despite methodological limitations related to in vitro protocols, results suggested that Li may attenuate OLZ-induced oxidative and inflammatory responses that result from metabolic side effects associated with OLZ.
Collapse
Affiliation(s)
- Marcelo Soares Fernandes
- Pharmacology Graduate Program, Federal University of Santa Maria, Santa Maria, RS,Brazil
- Federal University of the Southern Frontier, Passo Fundo, RS, Brazil
| | - Fernanda Barbisan
- Gerontology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | - Charles Elias Assmann
- Biochemical Toxicology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rogerio Tomasi Riffel
- Federal University of the Southern Frontier, Passo Fundo, RS, Brazil
- Hospital of Clinics of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | - Ivana Beatrice Mânica da Cruz
- Pharmacology Graduate Program, Federal University of Santa Maria, Santa Maria, RS,Brazil
- Gerontology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
- * E-mail:
| |
Collapse
|
114
|
Pérez MM, Martins LMS, Dias MS, Pereira CA, Leite JA, Gonçalves ECS, de Almeida PZ, de Freitas EN, Tostes RC, Ramos SG, de Zoete MR, Ryffel B, Silva JS, Carlos D. Interleukin-17/interleukin-17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in high-fat diet-induced metabolic syndrome model. Immunology 2018; 156:339-355. [PMID: 30472727 DOI: 10.1111/imm.13028] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Sound evidence supports a role for interleukin-17 (IL-17) -producing γδ T cells and IL-17-producing helper T (Th17) cells in intestinal homeostasis, especially in intestinal barrier integrity. In the present study, we aimed to evaluate the role of IL-17 cytokine in the regulation of intestinal immunity and obesity-induced metabolic syndrome (MetS) in an experimental murine model. C57BL/6 wild-type (WT) mice and mice lacking the IL-17 cytokine receptor (IL-17RA-/- ) were fed either a control diet (CD) or a high-fat diet (HFD) for 9 weeks. Our data demonstrate that IL-17RA-/- mice are protected against obesity, but develop hyperglycemia, hyperinsulinemia and insulin resistance. In parallel, HFD-fed IL-17RA-/- mice display intense inflammation in the ileum compared with WT mice on the HFD. IL-17RA-/- mice fed the HFD exhibit impaired neutrophil migration to the intestinal mucosa and reduced gene expression of the CXCL-1 chemokine and CXCR-2 receptor in the ileum. Interestingly, the populations of neutrophils (CD11b+ Ly6G+ ) and anti-inflammatory macrophages (CD11b+ CX3CR1+ ) are increased in the mesenteric lymph nodes of these mice. IL-17RA-/- mice on the HFD also display increased commensal bacterial translocation into the bloodstream and elevated lipopolysaccharide (LPS) levels in the visceral adipose tissue (VAT). Metagenomic analysis of bacterial 16S gene revealed increased Proteobacteria and Bacteroidetes phyla, the main representatives of Gram-negative bacteria, and reduced Akkermansia muciniphila in the fecal samples of IL-17RA-/- mice fed the HFD. Together, these data indicate that the IL-17/IL-17R axis drives intestinal neutrophil migration, limits gut dysbiosis and attenuates LPS translocation to VAT, resulting in protection to MetS.
Collapse
Affiliation(s)
- Malena M Pérez
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Larissa M S Martins
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Murilo S Dias
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enrico C S Gonçalves
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paula Z de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Emanuelle N de Freitas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Simone G Ramos
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Bernhard Ryffel
- Molecular Immunology, CNRS, INEM, UMR6218, University of Orleans, Orleans, France.,IDM, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
115
|
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol 2018; 9:1-58. [PMID: 30549014 DOI: 10.1002/cphy.c170040] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this comprehensive review is to summarize and discuss the available evidence of how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, chronic adipose tissue inflammation is characterized by infiltration of macrophages and other immune cell populations into adipose tissue, and a shift toward more proinflammatory subtypes of leukocytes. The infiltration of proinflammatory cells in adipose tissue is associated with an increased production of key chemokines such as C-C motif chemokine ligand 2, proinflammatory cytokines including tumor necrosis factor α and interleukins 1β and 6 as well as reduced expression of the key insulin-sensitizing adipokine, adiponectin. In both rodent models and humans, adipose tissue inflammation is consistently associated with excess fat mass and insulin resistance. In humans, associations with insulin resistance are stronger and more consistent for inflammation in visceral as opposed to subcutaneous fat. Further, genetic alterations in mouse models of obesity that reduce adipose tissue inflammation are-almost without exception-associated with improved insulin sensitivity. However, a dissociation between adipose tissue inflammation and insulin resistance can be observed in very few rodent models of obesity as well as in humans following bariatric surgery- or low-calorie-diet-induced weight loss, illustrating that the etiology of insulin resistance is multifactorial. Taken together, adipose tissue inflammation is a key factor in the development of insulin resistance and type 2 diabetes in obesity, along with other factors that likely include inflammation and fat accumulation in other metabolically active tissues. © 2019 American Physiological Society. Compr Physiol 9:1-58, 2019.
Collapse
Affiliation(s)
- Maggie S Burhans
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Derek K Hagman
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica N Kuzma
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelsey A Schmidt
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mario Kratz
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
116
|
Costantino E, Actis AB. Dietary Fatty Acids and Other Nutrients in Relation to Inflammation and Particularly to Oral Mucosa Inflammation. A Literature Review. Nutr Cancer 2018; 71:718-730. [PMID: 30450980 DOI: 10.1080/01635581.2018.1521439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is site of inflammatory process development. When they are chronic, they provide a microenvironment based on cytokines and inflammatory mediators that contribute to cancer initiation, progression, invasion, and metastasis. Certain dietary fatty acids (FAs) have immunomodulatory, inflammatory, and antiinflammatory effects. This review examined the literature on inflammation, mainly referred to the oral mucosa, and its association with dietary FAs and other nutrients. A Pubmed search of studies published in English until June 2018 was carried out. N-3 FAs have shown immunomodulatory and antiinflammatory activity in certain human diseases. These FAs and their mediators may inhibit inflammation, angiogenesis, and cancer via multiple mechanisms. Studies on cellular models of murine and human intestinal mucosa indicate association between dietary n-3 FA intake and the inflammatory state of mucosa membranes. Nevertheless scarce information on the association between dietary FAs and oral inflammation could be found. Based on the evidence, we hypothesize that n-3 FAs reduce the oral mucosa inflammation thus decreasing the risk of developing precancerous lesions and cancer. Molecular and clinical studies referred to this topic should be carried out as a contribution to the oral cancer prevention.
Collapse
Affiliation(s)
- Evangelina Costantino
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Adriana Beatriz Actis
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
117
|
Visceral fat and insulin resistance - what we know? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:19-27. [PMID: 30398218 DOI: 10.5507/bp.2018.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
One of the most significant challenges of current medicine is the increasing prevalence of obesity worldwide that is accompanied by a wide range of chronic health complications and increased mortality. White adipose tissue actively contributes to metabolic regulation by production of a variety of hormones and cytokines, commonly referred to as adipokines. The spectrum and quantity of adipokines produced by the adipose tissue of obese patients is directly or indirectly involved in much obesity-related pathology (type 2 diabetes mellitus, cardiovascular disease, inflammatory response). One of the underlying mechanisms linking obesity, diabetes, and cardiovascular complications is subclinical inflammation, primarily arising in visceral adipose tissue. Adipocyte size, number and polarization of lymphocytes and infiltrated macrophages are closely related to metabolic and obesity-related diseases. The storage capacity of hypertrophic adipocytes in obese patients is limited. This results in chronic energy overload and leads to increased apoptosis of adipocytes that in turn stimulates the infiltration of visceral adipose tissue by immune cells, in particular macrophages. These cells produce many proinflammatory factors; while the overall production of anti-inflammatory cytokines and adipokines is decreased. The constant release of proinflammatory factors into the circulation then contributes to a subclinical systemic inflammation, which is directly linked to the metabolic and cardiovascular complications of obesity.
Collapse
|
118
|
Abstract
Low plasma testosterone (T) levels correlated with metabolic syndrome, cardiovascular diseases, and increased mortality risk. T exerts a significant effect on the regulation of adipose tissue accumulation, and in the glucose and lipids metabolism. Adipocytes are the primary source of the most important adipokines responsible for inflammation and chronic diseases. This review aims to analyze the possible effect of T on the regulation of the proinflammatory cytokines secretion. A systematic literature search on MEDLINE, Google Scholar, and Cochrane using the combination of the following keywords: “testosterone” with “inflammation,” “cytokines,” “adiponectin, CRP, IL-1B, IL-6, TNFα, leptin” was conducted. Sixteen articles related to the effect of low T level and 18 to the effect of T therapy on proinflammatory cytokine were found. T exerts a significant inhibitory effect on adipose tissue formation and the expression of various adipocytokines, such as leptin, TNF-α, IL-6, IL-1, and is positively correlated with adiponectin level, whereas a low T level is correlated with increased expression of markers of inflammation. Further studies are necessary to investigate the role of T, integrated with weight loss and physical activity, on its action on the mechanisms of production and regulation of proinflammatory cytokines.
Collapse
|
119
|
Liu X, Long X, Liu W, Yao G, Zhao Y, Hayashi T, Hattori S, Fujisaki H, Ogura T, Tashiro SI, Onodera S, Yamato M, Ikejima T. Differential levels of reactive oxygen species in murine preadipocyte 3T3-L1 cells cultured on type I collagen molecule-coated and gel-covered dishes exert opposite effects on NF-κB-mediated proliferation and migration. Free Radic Res 2018; 52:913-928. [DOI: 10.1080/10715762.2018.1478088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Guodong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Shin-ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
120
|
Manley K, Han W, Zelin G, Lawrence DA. Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
121
|
Curtis KS, McCracken K, Espinosa E, Ong J, Buck DJ, Davis RL. Temporal and Site-Specific Changes in Central Neuroimmune Factors During Rapid Weight Gain After Ovariectomy in Rats. Neurochem Res 2018; 43:1802-1813. [PMID: 30030770 DOI: 10.1007/s11064-018-2596-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
Abstract
Systemic inflammation is present in obesity and emerging evidence, primarily from studies using male rodents fed high-fat diets, suggests neuroimmune signaling also is involved. We investigated early changes in neuroimmune signaling during the weight gain that follows ovariectomy in rats. Ovariectomized (OVX) rats were given standard rat chow and terminated 5 days (baseline), 4 or 8 weeks after ovariectomy. Levels of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in plasma and periuterine adipose were not affected by ovariectomy. In contrast, compared to baseline levels, IL-6 expression in the arcuate nucleus (ARC) and dorsal vagal complex (DVC) decreased by 4 weeks after OVX, but was not affected in the paraventricular nucleus (PVN). MCP-1 expression decreased by 4 weeks in the ARC and by 8 weeks in the PVN, but was not affected in the DVC. Increased glial fibrillary acidic protein (GFAP) expression in the PVN indicated astrocyte activation; decreased toll-like receptor 4 (TLR4) expression in the ARC, but not other regions, suggested early effects on innate immune factors. Importantly, in reproductively intact rats, IL-6 and MCP-1 levels in plasma, periuterine adipose, and brain regions were not affected after 8 weeks. Unlike OVX rats, GFAP expression in the DVC of intact rats was decreased at 8 weeks, and TLR4 expression in the ARC was increased at 8 weeks. Taken together, these dynamic and selective changes in neuroimmune factors co-incident with post-ovariectomy weight gain provide insight into the role of neuroimmune signaling in obesity, particularly in females.
Collapse
Affiliation(s)
- Kathleen S Curtis
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Kelly McCracken
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Enith Espinosa
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Johnson Ong
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Oklahoma State University-Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
122
|
Le Jemtel TH, Samson R, Milligan G, Jaiswal A, Oparil S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Curr Hypertens Rep 2018; 20:77. [PMID: 29992362 DOI: 10.1007/s11906-018-0880-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW Low-grade systemic inflammation increases residual cardiovascular risk. The pathogenesis of low-grade systemic inflammation is not well understood. RECENT FINDINGS Visceral adipose tissue accumulates when the subcutaneous adipose tissue can no longer store excess nutrients. Visceral adipose tissue inflammation initially facilitates storage of nutrients but with time become maladaptive and responsible for low-grade systemic inflammation. Control of low-grade systemic inflammation requires reversal of visceral adipose tissue accumulation with intense and sustained aerobic exercise or bariatric surgery. Alternatively, pharmacologic inhibition of the inflammatory signaling pathway may be considered. Reversal visceral adipose tissue accumulation lowers residual cardiovascular risk.
Collapse
Affiliation(s)
- Thierry H Le Jemtel
- Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Rohan Samson
- Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gregory Milligan
- Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Abhishek Jaiswal
- Department of Cardiology, Hartford Hospital, 85 Jefferson Street, Suite 208, Hartford, CT, 06106, USA
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
123
|
Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front Physiol 2018; 9:858. [PMID: 30038581 PMCID: PMC6046448 DOI: 10.3389/fphys.2018.00858] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complex systemic response evolved to cope with cellular injury, either due to infectious agents or, in general, with sporadic events challenging tissue integrity and function. Researchers involved in different fields have the tendency to look at the inflammatory response with different angles, according to their specific interest. Established its complexity, one of the most evident features of the inflammatory response is the generation of a pro-oxidative environment due to the production of high fluxes of pro-oxidant species. This production begins locally, close to the sites of tissue damage or infection, but eventually becomes a chronic challenge for the organism, if the inflammatory response is not properly controlled. In this review, we focus on this specific aspect of chronic, low-level sub-clinical inflammatory response. We propose the term "OxInflammation" as a novel operative term describing a permanent pro-oxidative feature that interact, in a positive feed-back manner, to a not yet clinically detectable inflammatory process, leading in a long run (chronically) to a systemic/local damage, as a consequence of the cross talk between inflammatory, and oxidative stress mediators. Therefore, it could be useful to analyze inflammatory markers in pathologies where there is an alteration of the redox homeostasis, although an inflammatory status is not clinically evident.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics - Food and Nutrition Research Centre (C.R.E.A.-AN), Rome, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
124
|
Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging (Albany NY) 2018; 9:2069-2082. [PMID: 29040966 PMCID: PMC5680556 DOI: 10.18632/aging.101302] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is implicated in the inflammation in obesity. The aim of the present study was to examine the anti-inflammatory activities of botanical triterpene celastrol against diet-induced obesity. We treated diet-induced obese C57BL/6N male mice with celastrol (5, 7.5 mg/kg/d) for 3 weeks, and investigated macrophage M1/M2 polarization in adipose and hepatic tissues. Celastrol reduced fat accumulation and ameliorated glucose tolerance and insulin sensitivity. Celastrol down-regulated the mRNA levels of macrophage M1 biomarkers (e.g., IL-6, IL-1β, TNF-α, iNOS) in cell culture and in mice. The underlying mechanisms were investigated in murine macrophage RAW264.7 cells. Our results demonstrated that celastrol might control macrophage polarization through modulating the cross-talk between the following three mechanisms: 1) suppressing LPS-induced activation of MAP kinases (e.g., ERK1/2, p38, JNK) in a concentration dependent manner; 2) attenuating LPS-induced nuclear translocation of NF-κB p65 subunit in a time dependent manner; 3) activating Nrf2 and subsequently inducing HO-1 expression. HO-1 inhibitor SnPP diminished the inhibitory effects of celastrol on the activation of NF-κB pathway and the pro-inflammatory M1 macrophage polarization. Taken together, celastrol exhibited anti-obesity effects via suppressing pro-inflammatory M1 macrophage polarization. Thus, our results provide new evidence for the potential of celastrol in the treatment of obesity.
Collapse
Affiliation(s)
- Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yumeng Guo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuanyuan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
125
|
Gkikas I, Palikaras K, Tavernarakis N. The Role of Mitophagy in Innate Immunity. Front Immunol 2018; 9:1283. [PMID: 29951054 PMCID: PMC6008576 DOI: 10.3389/fimmu.2018.01283] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Collapse
Affiliation(s)
- Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
126
|
Martins LMS, Perez MM, Pereira CA, Costa FRC, Dias MS, Tostes RC, Ramos SG, de Zoete MR, Ryffel B, Silva JS, Carlos D. Interleukin-23 promotes intestinal T helper type17 immunity and ameliorates obesity-associated metabolic syndrome in a murine high-fat diet model. Immunology 2018; 154:624-636. [PMID: 29722014 PMCID: PMC6050211 DOI: 10.1111/imm.12946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
We addressed the role of interleukin-23 (IL-23) in driving the intestinal T helper type 17 (Th17) response during obesity and metabolic syndrome progression induced by a high-fat diet (HFD). Diet-induced obese and lean mice received HFD or control diet (CTD), respectively, for 20 weeks. The nutritional, metabolic and immune parameters were examined at weeks 9 and 20. Gene and protein IL-23p19 and IL-23 receptor expression was increased in the ileum of obese wild-type mice (WT) fed the HFD for 9 weeks. Mice lacking IL-23 and fed the HFD exhibited greater weight gain, higher fat accumulation, adipocyte hypertrophy and hepatic steatosis. Notably, these mice had more glucose intolerance, insulin resistance and associated metabolic alterations, such as hyperinsulinaemia and hyperlipidaemia. IL-23 deficiency also significantly reduced protein levels of IL-17, CCL20 and neutrophil elastase in the ileum and reduced Th17 cell expansion in the mesenteric lymph nodes of the HFD mice. Of importance, IL-23-deficient mice exhibited increased gut permeability and blood bacterial translocation compared with WT mice fed HFD. Finally, metagenomics analysis of gut microbiota revealed a dramatic outgrowth of Bacteroidetes over Firmicutes phylum with the prevalence of Bacteroides genera in the faeces of IL-23-deficient mice after HFD. In summary, IL-23 appears to maintain the Th17 response and neutrophil migration into the intestinal mucosa, minimizing the gut dysbiosis and protecting against obesity and metabolic disease development in mice.
Collapse
Affiliation(s)
- Larissa M. S. Martins
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Malena M. Perez
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Camila A. Pereira
- Department of PharmacologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Frederico R. C. Costa
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Murilo S. Dias
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Rita C. Tostes
- Department of PharmacologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Simone G. Ramos
- Department of Pathology and Legal MedicineRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Marcel R. de Zoete
- Department of Infectious Diseases and ImmunologyUtrecht UniversityUtrechtThe Netherlands
| | - Bernhard Ryffel
- Molecular ImmunologyUniversity of Orleans and CNRSINEMUMR6218OrleansFrance
- IDMInstitute of Infectious Diseases and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - João S. Silva
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
- Present address:
Fiocruz ‐ Bi‐Institutional Translational Medicine Project
| | - Daniela Carlos
- Departments of Biochemistry and ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
127
|
Żelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. Mast cells participate in chronic low-grade inflammation within adipose tissue. Obes Rev 2018; 19:686-697. [PMID: 29334696 DOI: 10.1111/obr.12670] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022]
Abstract
Obesity is reckoned as one of the civilization diseases, posing a considerable global health issue. Evidence points towards a contribution of multitude immune cell populations in obesity pathomechanism and the development of chronic low-grade inflammation in the expanded adipose tissue. Notably, adipose tissue is a reservoir of mast cells which number in individuals with obesity particularly increased. Some of them tend to degranulation what generate secretion of strong pro-inflammatory and regulatory mediators, as well as cytokines/chemokines. Several lines of evidence suggest that mast cells are strictly associated with pro-inflammatory status in adipose tissue by their indirect impact on immune cell attraction and activation. Furthermore, mast cells affect adipose tissue remodelling and fibrosis by adipocyte differentiation, fibroblast proliferation and enhancing extracellular matrix proteins expression. This review will summarize current knowledge on mast cell features and their role in the development of chronic low-grade inflammation within adipose tissue.
Collapse
Affiliation(s)
- P Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - J Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - E Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
128
|
Abu Bakar MH, Sarmidi MR. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. MOLECULAR BIOSYSTEMS 2018; 13:1838-1853. [PMID: 28726959 DOI: 10.1039/c7mb00333a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | | |
Collapse
|
129
|
Del Cornò M, D'Archivio M, Conti L, Scazzocchio B, Varì R, Donninelli G, Varano B, Giammarioli S, De Meo S, Silecchia G, Pennestrì F, Persiani R, Masella R, Gessani S. Visceral fat adipocytes from obese and colorectal cancer subjects exhibit distinct secretory and ω6 polyunsaturated fatty acid profiles and deliver immunosuppressive signals to innate immunity cells. Oncotarget 2018; 7:63093-63105. [PMID: 27494857 PMCID: PMC5325349 DOI: 10.18632/oncotarget.10998] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023] Open
Abstract
Obesity is a low-grade chronic inflammatory state representing an important risk factor for colorectal cancer (CRC). Adipocytes strongly contribute to inflammation by producing inflammatory mediators. In this study we investigated the role of human visceral fat adipocytes in regulating the functions of innate immunity cells. Adipocyte-conditioned media (ACM) from obese (n = 14) and CRC (lean, n = 14; obese, n = 13) subjects released higher levels of pro-inflammatory/immunoregulatory factors as compared to ACM from healthy lean subjects (n = 13). Dendritic cells (DC), differentiated in the presence of ACM from obese and CRC subjects, expressed elevated levels of the inhibitory molecules PD-L1 and PD-L2, and showed a reduced IL-12/IL-10 ratio in response to both TLR ligand- and γδ T lymphocyte-induced maturation. Furthermore, CRC patient-derived ACM inhibited DC-mediated γδ T cell activation. The immunosuppressive signals delivered by ACM from obese and CRC individuals were associated with a pro-inflammatory secretory and ω6 polyunsaturated fatty acid profile of adipocytes. Interestingly, STAT3 activation in adipocytes correlated with dihomo-γlinolenic acid content and was further induced by arachidonic acid, which conversely down-modulated PPARγ. These results provide novel evidence for a cross-talk between human adipocytes and innate immunity cells whose alteration in obesity and CRC may lead to immune dysfunctions, thus setting the basis for cancer development.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo D'Archivio
- Departments of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Conti
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Scazzocchio
- Departments of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Rosaria Varì
- Departments of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Donninelli
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Varano
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Giammarioli
- Departments of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Simone De Meo
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotecnologies, Sapienza University of Rome, Rome, Italy
| | | | | | - Roberta Masella
- Departments of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Departments of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
130
|
Abstract
Adipose tissue is a special tissue environment due to its high lipid content. Adipose tissue macrophages (ATMs) help maintain adipose tissue homeostasis in steady state by clearing dead adipocytes. However, adipose tissue changes drastically during obesity, resulting in a state of chronic low grade inflammation and a shift in the adipose immune landscape. In this review we will discuss how these changes influence the polarization of ATMs.
Collapse
Affiliation(s)
- Leen Catrysse
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
131
|
|
132
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
133
|
Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Gan M, Yang Q, Ma J, Jiang A, Tang G, Jiang Y, Jin L, Li M, Bai L, Li X, Wang J, Zhang S, Zhu L. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018; 10:E131. [PMID: 29373534 PMCID: PMC5852707 DOI: 10.3390/nu10020131] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced obese mice. This might be due to betaine preventing the formation of new white fat (WAT), and guiding the original WAT to burn through stimulated mitochondrial biogenesis and promoting browning of WAT. Furthermore, dietary betaine supplementation decreases intramyocellular lipid accumulation in HFD-induced obese mice. Further analysis shows that betaine supplementation reduced intramyocellular lipid accumulation might be associated with increasing polyunsaturated fatty acids (PUFA), fatty acid oxidation, and the inhibition of fatty acid synthesis in muscle. Notably, by performing insulin-tolerance tests (ITTs) and glucose-tolerance tests (GTTs), dietary betaine supplementation could be observed for improvement of obesity and non-obesity induced insulin resistance. Together, these findings could suggest that inhibiting WAT production, intramyocellular lipid accumulation and inflammation, betaine supplementation limits HFD-induced obesity and improves insulin resistance.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adiposity
- Animals
- Animals, Outbred Strains
- Anti-Obesity Agents/therapeutic use
- Betaine/adverse effects
- Betaine/therapeutic use
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Female
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Weight Gain
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xue Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yan Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mailing Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, China.
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| |
Collapse
|
134
|
Abstract
Adipose tissue represents a large volume of biologically active tissue that exerts substantial systemic effects in health and disease. Alcohol consumption can profoundly disturb the normal functions of adipose tissue by inducing adipocyte death and altering secretion of adipokines, pro-inflammatory mediators and free fatty acids from adipose tissue, which have important direct and indirect effects on the pathogenesis of alcoholic liver disease (ALD). Cessation of alcohol intake quickly reverses inflammatory changes in adipose tissue, and pharmacological treatment that normalizes adipose tissue function improves experimental ALD. Obesity exacerbates liver injury induced by chronic or binge alcohol consumption, and obesity and alcohol can synergize to increase risk of ALD and progression. Physicians who care for individuals with ALD should be aware of the effects of adipose tissue dysfunction on liver function, and consider strategies to manage obesity and insulin resistance. This Review examines the effect of alcohol on adiposity and adipose tissue and the relationship between alcohol, adipose tissue and the liver.
Collapse
|
135
|
Shen H, Zhao J, Liu Y, Sun G. Interactions between and Shared Molecular Mechanisms of Diabetic Peripheral Neuropathy and Obstructive Sleep Apnea in Type 2 Diabetes Patients. J Diabetes Res 2018; 2018:3458615. [PMID: 30116739 PMCID: PMC6079583 DOI: 10.1155/2018/3458615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/26/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2D) accounts for about 90% of all diabetes patients and incurs a heavy global public health burden. Up to 50% of T2D patients will eventually develop neuropathy as T2D progresses. Diabetic peripheral neuropathy (DPN) is a common diabetic complication and one of the main causes of increased morbidity and mortality of T2D patients. Obstructive sleep apnea (OSA) affects over 15% of the general population and is associated with a higher prevalence of T2D. Growing evidence also indicates that OSA is highly prevalent in T2D patients probably due to diabetic peripheral neuropathy. However, the interrelations among diabetic peripheral neuropathy, OSA, and T2D hitherto have not been clearly elucidated. Numerous molecular mechanisms have been documented that underlie diabetic peripheral neuropathy and OSA, including oxidative stress, inflammation, endothelin-1, vascular endothelial growth factor (VEGF), accumulation of advanced glycation end products, protein kinase C (PKC) signaling, poly ADP ribose polymerase (PARP), nitrosative stress, plasminogen activator inhibitor-1, and vitamin D deficiency. In this review, we seek to illuminate the relationships among T2D, diabetic peripheral neuropathy, and OSA and how they interact with one another. In addition, we summarize and explain the shared molecular mechanisms involved in diabetic peripheral neuropathy and OSA for further mechanistic investigations and novel therapeutic strategies for attenuating and preventing the development and progression of diabetic peripheral neuropathy and OSA in T2D.
Collapse
Affiliation(s)
- Hong Shen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Junrong Zhao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ying Liu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
136
|
Roh HC, Tsai LTY, Lyubetskaya A, Tenen D, Kumari M, Rosen ED. Simultaneous Transcriptional and Epigenomic Profiling from Specific Cell Types within Heterogeneous Tissues In Vivo. Cell Rep 2017; 18:1048-1061. [PMID: 28122230 DOI: 10.1016/j.celrep.2016.12.087] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/28/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce "NuTRAP," a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq) using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Linus T-Y Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Danielle Tenen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
137
|
Lee F, Lawrence DA. From Infections to Anthropogenic Inflicted Pathologies: Involvement of Immune Balance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 21:24-46. [PMID: 29252129 DOI: 10.1080/10937404.2017.1412212] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A temporal trend can be seen in recent human history where the dominant causes of death have shifted from infectious to chronic diseases in industrialized societies. Human influences in the current "Anthropocene" epoch are exponentially impacting the environment and consequentially health. Changing ecological niches are suggested to have created health transitions expressed as modifications of immune balance from infections inflicting pathologies in the Holocene epoch (12,000 years ago) to human behaviors inflicting pathologies beginning in the Anthropocene epoch (300 years ago). A review of human immune health and adaptations responding to environmental (biological, chemical, physical, and psychological) stresses, which are influenced by social conditions, emphasize the involvement of fluctuations in immune cell subsets affecting influential gene-environment interactions. The literature from a variety of fields (anthropological, immunological, and environmental) is incorporated to present an expanded perspective on shifts in diseases within the context of immune balance and function and environmental immunology. The influences between historical and contemporary human ecology are examined in relation to human immunity. Several examples of shifts in human physiology and immunity support the premise that increased incidences of chronic diseases are a consequence of human modification of environment and lifestyle. Although the development of better health care and a broader understanding of human health have helped with better life quality and expectancy, the transition of morbidity and mortality rates from infections to chronic diseases is a cause for concern. Combinations of environmental stressors/pollutants and human behaviors and conditions are modulating the immune-neuroendocrine network, which compromises health benefits.
Collapse
Affiliation(s)
- Florence Lee
- a Department of Anthropology , University at Albany , Albany , NY , USA
| | - David A Lawrence
- b Wadsworth Center/New York State Department of Health , Albany , NY , USA
- c Biomedical Sciences and Environmental Health Sciences , University at Albany, School of Public Health , Albany , NY , USA
| |
Collapse
|
138
|
Gallot YS, McMillan JD, Xiong G, Bohnert KR, Straughn AR, Hill BG, Kumar A. Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget 2017; 8:112565-112583. [PMID: 29348847 PMCID: PMC5762532 DOI: 10.18632/oncotarget.22575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation, adipocyte hypertrophy, and glucose intolerance are common features of obesity and a risk factor for cancer. Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is an adaptor protein that also possesses a non-conventional E3 ubiquitin ligase activity. In response to receptor-mediated events, TRAF6 activates transforming growth factor-activated kinase 1 (TAK1), which leads to activation of the MAPK and nuclear factor-kappa B (NF-κB) signaling pathways. However, the roles of TRAF6 and TAK1 in the regulation of adipocyte function remain less understood. Here, we demonstrate that adipocyte-specific deletion of TAK1, but not TRAF6, in mice reduces the survival of adipocytes and abundance of white adipose tissue (WAT). Adipocyte-specific ablation of TAK1, but not TRAF6, increases the expression for markers of beige/brown fat in WAT. Deletion of TAK1 in WAT increases phosphorylation of AMPK, abundance of PGC-1α, non-canonical NF-κB signaling, markers of M2 macrophages, and diminishes phosphorylation of JNK and canonical NF-κB signaling. Levels of TRAF6 and enzymatic activity of TAK1 are increased in WAT of mice fed with high-fat diet (HFD). Our results demonstrate that ablation of TAK1 drastically reduces HFD-induced obesity and improves energy expenditure and glucose metabolism. In contrast, adipocyte-specific ablation of TRAF6 has a minimal effect on HFD-induced obesity. Collectively, our results suggest that even though TRAF6 is an upstream activator of TAK1 in many signaling cascades, inactivation of TAK1, but not TRAF6, regulates adipocyte survival, energy expenditure, and HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Yann S Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Joseph D McMillan
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Kyle R Bohnert
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Alex R Straughn
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
139
|
Lee SE, Kang SG, Choi MJ, Jung SB, Ryu MJ, Chung HK, Chang JY, Kim YK, Lee JH, Kim KS, Kim HJ, Lee HK, Yi HS, Shong M. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes 2017; 66:2774-2788. [PMID: 28874416 DOI: 10.2337/db17-0333] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
140
|
van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 2017; 153:179-189. [PMID: 28898395 DOI: 10.1111/imm.12839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
The global obesity epidemic and its associated co-morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their 'classical' function in energy storage and release, adipocytes interact with adipose-tissue-resident immune cells, among which are lipid-responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen-presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti-inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non-professional antigen-presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with 'environmental factors' such as tissue/organ environment and co-stimulatory signals, are able to influence the fate of adipose-tissue-resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.
Collapse
Affiliation(s)
- Robert J van Eijkeren
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olga Krabbe
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Henk S Schipper
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
141
|
Zhang J, Zhang L, Zhang S, Yu Q, Xiong F, Huang K, Wang CY, Yang P. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol 2017; 454:103-111. [PMID: 28619625 DOI: 10.1016/j.mce.2017.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Obesity has emerged as an imminent global public health concern over the past several decades. It has now become evident that obesity is characterized by the persistent and low-grade inflammation in the adipose tissue, and serves as an independent risk factor for many metabolic disorders such as diabetes and cardiovascular disease. Particularly, adipocytes originated from obese mice and humans likely predominate necrosis upon stressful insults, leading to passive release of cellular contents including the high mobility group box 1 (HMGB1) into the extracellular milieu. Extracellular HMGB1 acts as an innate alarmin to stimulate the activation of resident immune cells in the adipose tissue. Upon activation, those resident immune cells actively secrete additional HMGB1, which in turn activates/recruits additional immune cells, and induces adipocyte death. This review summarizes those novel discoveries in terms of HMGB1 in the initiation and maintenance of chronic inflammatory state in adipose tissue in obesity, and discusses its potential application in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| |
Collapse
|
142
|
Liu B, Yu H, Sun G, Sun X, Jin H, Zhang C, Shi W, Tian D, Liu K, Xu H, Li X, Yin J, Hong X, Zhang D. OX40 promotes obesity-induced adipose inflammation and insulin resistance. Cell Mol Life Sci 2017; 74:3827-3840. [PMID: 28612217 PMCID: PMC11107569 DOI: 10.1007/s00018-017-2552-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
Adaptive immunity plays a critical role in IR and T2DM development; however, the biological mechanisms linking T cell costimulation and glucose metabolism have not been fully elucidated. In this study, we demonstrated that the costimulatory molecule OX40 controls T cell activation and IR development. Inflammatory cell accumulation and enhanced proinflammatory gene expression, as well as high OX40 expression levels on CD4+ T cells, were observed in the adipose tissues of mice with diet-induced obesity. OX40-KO mice exhibited significantly less weight gain and lower fasting glucose levels than those of WT mice, without obvious adipose tissue inflammation. The effects of OX40 on IR are mechanistically linked to the promotion of T cell activation, Th1 cell differentiation and proliferation-as well as the attenuation of Treg suppressive activity and the enhancement of proinflammatory cytokine production-in adipose tissues. Furthermore, OX40 expression on T cells was positively associated with obesity in humans, suggesting that our findings are clinically relevant. In summary, our study revealed that OX40 in CD4+ T cells is crucial for adipose tissue inflammation and IR development. Therefore, the OX40 signaling pathway may be a new target for preventing or treating obesity-related IR and T2DM.
Collapse
Affiliation(s)
- Bing Liu
- Endocrinology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
| | - Hengchi Yu
- Endocrinology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
| | - Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Xinmin Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China
| | - Jie Yin
- Endocrinology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Xu Hong
- Endocrinology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing, 100050, People's Republic of China.
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, People's Republic of China.
- Beijing Clinical Research Institute, Beijing, 100050, People's Republic of China.
| |
Collapse
|
143
|
T-cell profile and systemic cytokine levels in overweight-obese patients with moderate to very-severe COPD. Respir Physiol Neurobiol 2017; 247:74-79. [PMID: 28963085 DOI: 10.1016/j.resp.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 01/12/2023]
Abstract
This study aimed to evaluate the immune profile of lean and overweight-obese COPD patients. Forty patients with moderate to very severe COPD were divided into lean group (n=20; aged 62.00±8.91years; BMI 22.26±1.65kg/m2) or overweight-obese group (n=20; aged 65.40±6.69years; BMI 29.19±3.55kg/m2). The cytokine profile (IL-2, IL-4, IL-6, IL-10, INF-γ, and TNF-α) was evaluated through the Cytometric Bead Array technique, and the expression of CD4, CD8, CD25, CD45ra, CD45ro, CD69, CD195(CCr5) and HLA-DR were evaluated in CD3+ T-cells. Overweight-obese COPD group had lower levels of IL-2 (p=0.01) and higher INF-γ levels (p=0.02) and IL-6 (p=0.003) than lean COPD. Lean COPD patients had higher CD25+ (p=0.01), CCr5 (p=0.04) and HLA-DR (p=0.007) expression on T cell surface compared to overweight-obese COPD participants. These changes are related to immune dysfunction of obesity, and excess of fat mass in COPD can be a key factor to low T-cells activation.
Collapse
|
144
|
Evans SF, Beebe M, Mahmood M, Janthachotikun S, Eldoumi H, Peterson S, Payton M, Perkins-Veazie P, Smith BJ, Lucas EA. Mango Supplementation Has No Effects on Inflammatory Mediators in Obese Adults. Nutr Metab Insights 2017; 10:1178638817731770. [PMID: 28983188 PMCID: PMC5621662 DOI: 10.1177/1178638817731770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
This pilot study examined the effects of freeze-dried mango (Mangifera indica L.) supplementation on anthropometric measurements, lipid parameters, and inflammatory mediators in obese individuals. A total of 20 obese (body mass index [BMI]: 30-35 kg/m2) adults (11 men and 9 women), aged 20 to 50 years, received 10 g/d of ground freeze-dried mango pulp for 12 weeks. Anthropometrics, lipids, and inflammatory mediators were assessed at baseline and after 12 weeks of mango supplementation. There were no differences between baseline and final visits in inflammatory mediators, lipids, diet, physical activity, and anthropometrics. Relationships were present at baseline and final visits between adiponectin and high-density lipoprotein cholesterol and between leptin and fat mass. Correlations were found after 12 weeks of mango supplementation between leptin and the following variables: waist-to-height ratio, BMI, percent fat, and fat mass. Our findings demonstrate that 12-week consumption of freeze-dried mango by obese individuals has no impact on obesity-related inflammation.
Collapse
Affiliation(s)
- Shirley F Evans
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Maureen Beebe
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Maryam Mahmood
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Heba Eldoumi
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Sandra Peterson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mark Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK, USA
| | - Penelope Perkins-Veazie
- Department of Horticulture Science, North Carolina Research Campus, North Carolina State University, Kannapolis, NC
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
145
|
Lee Y, Yi HS, Kim HR, Joung KH, Kang YE, Lee JH, Kim KS, Kim HJ, Ku BJ, Shong M. The Eosinophil Count Tends to Be Negatively Associated with Levels of Serum Glucose in Patients with Adrenal Cushing Syndrome. Endocrinol Metab (Seoul) 2017; 32:353-359. [PMID: 28956365 PMCID: PMC5620032 DOI: 10.3803/enm.2017.32.3.353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cushing syndrome is characterized by glucose intolerance, cardiovascular disease, and an enhanced systemic inflammatory response caused by chronic exposure to excess cortisol. Eosinopenia is frequently observed in patients with adrenal Cushing syndrome, but the relationship between the eosinophil count in peripheral blood and indicators of glucose level in patients with adrenal Cushing syndrome has not been determined. METHODS A retrospective study was undertaken of the clinical and laboratory findings of 40 patients diagnosed with adrenal Cushing syndrome at Chungnam National University Hospital from January 2006 to December 2016. Clinical characteristics, complete blood cell counts with white blood cell differential, measures of their endocrine function, description of imaging studies, and pathologic findings were obtained from their medical records. RESULTS Eosinophil composition and count were restored by surgical treatment of all of the patients with adrenal Cushing disease. The eosinophil count was inversely correlated with serum and urine cortisol, glycated hemoglobin, and inflammatory markers in the patients with adrenal Cushing syndrome. CONCLUSION Smaller eosinophil populations in patients with adrenal Cushing syndrome tend to be correlated with higher levels of blood sugar and glycated hemoglobin. This study suggests that peripheral blood eosinophil composition or count may be associated with serum glucose levels in patients with adrenal Cushing syndrome.
Collapse
Affiliation(s)
- Younghak Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyon Seung Yi
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea.
| | - Hae Ri Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
146
|
Lepreux S, Villeneuve J, Dewitte A, Bérard AM, Desmoulière A, Ripoche J. CD40 signaling and hepatic steatosis: Unanticipated links. Clin Res Hepatol Gastroenterol 2017; 41:357-369. [PMID: 27989689 DOI: 10.1016/j.clinre.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Obesity predisposes to an increased risk of nonalcoholic fatty liver disease (NAFLD). Hepatic steatosis is the key pathological feature of NAFLD and has emerged as a metabolic disorder in which innate and adaptive arms of the immune response play a central role in disease pathogenesis. Recent studies have revealed unexpected relationships between CD40 signaling and hepatic steatosis in high fat diet rodent models. CD154, the ligand of CD40, is a mediator of inflammation and controls several critical events of innate and adaptive immune responses. In the light of these reports, we discuss potential links between CD40 signaling and hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, 33600 Pessac, France
| | - Annie M Bérard
- Service de Biochimie, CHU de Bordeaux, 33000 Bordeaux, France
| | | | - Jean Ripoche
- INSERM U1026, Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
147
|
Damouche A, Pourcher G, Pourcher V, Benoist S, Busson E, Lataillade JJ, Le Van M, Lazure T, Adam J, Favier B, Vaslin B, Müller-Trutwin M, Lambotte O, Bourgeois C. High proportion of PD-1-expressing CD4 + T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur J Immunol 2017; 47:2113-2123. [PMID: 28762530 DOI: 10.1002/eji.201747060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 11/11/2022]
Abstract
We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4+ T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4+ T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4+ T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Guillaume Pourcher
- Department of Digestive Diseases, Obesity center, Institut Mutualiste Montsouris, Paris-sud University, Paris, France
| | - Valérie Pourcher
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Sorbonne Universités, UPMC Université Paris 06, France
| | - Stéphane Benoist
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie Digestive et Oncologique, Le Kremlin-Bicêtre, France
| | - Elodie Busson
- Hôpital d'Instruction des Armées Percy, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Hôpital d'Instruction des Armées Percy, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Mélanie Le Van
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Thierry Lazure
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service d'anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Julien Adam
- Institut Gustave Roussy, Plateforme d'évaluation préclinique, Villejuif, France
| | - Benoit Favier
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| | | | - Olivier Lambotte
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Univ Paris Sud, UMR INSERM 1184, Le Kremlin-Bicêtre, France.,CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
| |
Collapse
|
148
|
Cildir G, Pant H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med 2017; 214:2491-2506. [PMID: 28811324 PMCID: PMC5584128 DOI: 10.1084/jem.20170910] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cildir et al. discuss the recent findings in transcriptional regulation of mast cell development and activation and provide insights into the plasticity and clinical targeting of mast cell functions. Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Harshita Pant
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia .,Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
149
|
Obesity and Asthma: A Missing Link. Int J Mol Sci 2017; 18:ijms18071490. [PMID: 28696379 PMCID: PMC5535980 DOI: 10.3390/ijms18071490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.
Collapse
|
150
|
Revêchon G, Viceconte N, McKenna T, Sola Carvajal A, Vrtačnik P, Stenvinkel P, Lundgren T, Hultenby K, Franco I, Eriksson M. Rare progerin-expressing preadipocytes and adipocytes contribute to tissue depletion over time. Sci Rep 2017; 7:4405. [PMID: 28667315 PMCID: PMC5493617 DOI: 10.1038/s41598-017-04492-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulation of progerin is believed to underlie the pathophysiology of Hutchinson-Gilford progeria syndrome, a disease characterized by clinical features suggestive of premature aging, including loss of subcutaneous white adipose tissue (sWAT). Although progerin has been found in cells and tissues from apparently healthy individuals, its significance has been debated given its low expression levels and rare occurrence. Here we demonstrate that sustained progerin expression in a small fraction of preadipocytes and adipocytes of mouse sWAT (between 4.4% and 6.7% of the sWAT cells) results in significant tissue pathology over time, including fibrosis and lipoatrophy. Analysis of sWAT from mice of various ages showed senescence, persistent DNA damage and cell death that preceded macrophage infiltration, and systemic inflammation. Our findings suggest that continuous progerin expression in a small cell fraction of a tissue contributes to aging-associated diseases, the adipose tissue being particularly sensitive.
Collapse
Affiliation(s)
- Gwladys Revêchon
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Tomás McKenna
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Agustín Sola Carvajal
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Peter Vrtačnik
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Torbjörn Lundgren
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, 14183, Stockholm, Sweden
| | - Irene Franco
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden.
| |
Collapse
|