101
|
Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, Eng CLP, Macalinao DC, Kahraman M, Srinivasan H, Lakshmanan V, Verbandt S, Tsantoulis P, Gunn N, Venkatesh PN, Poh ZW, Nahar R, Oh HLJ, Loo JM, Chia S, Cheow LF, Cheruba E, Wong MT, Kua L, Chua C, Nguyen A, Golovan J, Gan A, Lim WJ, Guo YA, Yap CK, Tay B, Hong Y, Chong DQ, Chok AY, Park WY, Han S, Chang MH, Seow-En I, Fu C, Mathew R, Toh EL, Hong LZ, Skanderup AJ, DasGupta R, Ong CAJ, Lim KH, Tan EKW, Koo SL, Leow WQ, Tejpar S, Prabhakar S, Tan IB. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet 2022; 54:963-975. [PMID: 35773407 PMCID: PMC9279158 DOI: 10.1038/s41588-022-01100-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F). A single-cell transcriptomic analysis of 63 patients with colorectal cancer classifies tumor cells into two epithelial subtypes. An improved tumor classification based on epithelial subtype, microsatellite stability and fibrosis reveals differences in pathway activation and metastasis.
Collapse
Affiliation(s)
- Ignasius Joanito
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nancy Zhao
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zahid Nawaz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Grace Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | - Christine L P Eng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Merve Kahraman
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Harini Srinivasan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Sara Verbandt
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Petros Tsantoulis
- Hôpitaux Universitaires de Genève, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Nicole Gunn
- National Cancer Centre, Singapore, Singapore
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhong Wee Poh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rahul Nahar
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | | | - Jia Min Loo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shumei Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Elsie Cheruba
- National University of Singapore, Singapore, Singapore
| | | | - Lindsay Kua
- National Cancer Centre, Singapore, Singapore
| | | | | | | | - Anna Gan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wan-Jun Lim
- National Cancer Centre, Singapore, Singapore
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brenda Tay
- National Cancer Centre, Singapore, Singapore
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Dawn Qingqing Chong
- National Cancer Centre, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Aik-Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Shuting Han
- National Cancer Centre, Singapore, Singapore
| | - Mei Huan Chang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Cherylin Fu
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ronnie Mathew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ee-Lin Toh
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore.,EL Toh Colorectal & Minimally Invasive Surgery, Singapore, Singapore
| | - Lewis Z Hong
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Emile K W Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Si-Lin Koo
- National Cancer Centre, Singapore, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,National Cancer Centre, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
102
|
Won JH, Choi JS, Jun JI. CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation. Nat Commun 2022; 13:3117. [PMID: 35660741 PMCID: PMC9166801 DOI: 10.1038/s41467-022-30851-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αvβ3/αvβ5. Mice that delete Ccn1 in Lgr5 + ISCs or express mutant CCN1 unable to bind integrins αvβ3/αvβ5 exhibited exuberant ISC expansion and enhanced differentiation into secretory cells at the expense of absorptive enterocytes in the small intestine, leading to nutrient malabsorption. Analysis of crypt organoids revealed that through integrins αvβ3/αvβ5, CCN1 induces NF-κB-dependent Jag1 expression to regulate Notch activation for differentiation and promotes Src-mediated YAP activation and Dkk1 expression to control Wnt signaling for proliferation. Moreover, CCN1 and YAP amplify the activities of each other in a regulatory loop. These findings establish CCN1 as a niche factor in the intestinal crypts, providing insights into how matrix signaling exerts overarching control of ISC homeostasis. Intestinal stem cells contribute to homeostasis through a balance between self-renewal and differentiation. Here the authors show that CCN1 is an intestinal stem cell niche factor that activates integrin αvβ3/αvβ5 signaling to regulate proliferation and differentiation through distinct downstream pathways.
Collapse
Affiliation(s)
- Jong Hoon Won
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Jacob S Choi
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.,Department of Medicine, Northwestern University, 676 North St. Clair street Arkes Suite 2330, Chicago, IL, 60611, USA
| | - Joon-Il Jun
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.
| |
Collapse
|
103
|
Vadakke‐Madathil S, Chaudhry HW. Concepts of Cell Therapy and Myocardial Regeneration. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
104
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
105
|
Albers JJ, Pelka K. Listening in on Multicellular Communication in Human Tissue Immunology. Front Immunol 2022; 13:884185. [PMID: 35634333 PMCID: PMC9136009 DOI: 10.3389/fimmu.2022.884185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Immune responses in human tissues rely on the concerted action of different cell types. Inter-cellular communication shapes both the function of the multicellular interaction networks and the fate of the individual cells that comprise them. With the advent of new methods to profile and experimentally perturb primary human tissues, we are now in a position to systematically identify and mechanistically dissect these cell-cell interactions and their modulators. Here, we introduce the concept of multicellular hubs, functional modules of immune responses in tissues. We outline a roadmap to discover multicellular hubs in human tissues and discuss how emerging technologies may further accelerate progress in this field.
Collapse
Affiliation(s)
- Julian J. Albers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Gladstone-University of California San Francisco (UCSF) Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, United States
| |
Collapse
|
106
|
Abstract
Adult tissues in Metazoa dynamically remodel their structures in response to environmental challenges including sudden injury, pathogen infection, and nutritional fluctuation, while maintaining quiescence under homoeostatic conditions. This characteristic, hereafter referred to as adult tissue plasticity, can prevent tissue dysfunction and improve the fitness of organisms in continuous and/or severe change of environments. With its relatively simple tissue structures and genetic tools, studies using the fruit fly Drosophila melanogaster have provided insights into molecular mechanisms that control cellular responses, particularly during regeneration and nutrient adaptation. In this review, we present the current understanding of cellular mechanisms, stem cell proliferation, polyploidization, and cell fate plasticity, all of which enable adult tissue plasticity in various Drosophila adult organs including the midgut, the brain, and the gonad, and discuss the organismal strategy in response to environmental changes and future directions of the research.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
107
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
108
|
Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res 2022; 32:555-569. [PMID: 35379903 DOI: 10.1038/s41422-022-00645-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) reside within specialized niches at the crypt base and harbor self-renewal and differentiation capacities. ISCs in the crypt base are sustained by their surrounding niche for precise modulation of self-renewal and differentiation. However, how intestinal cells in the crypt niche and microbiota in enteric cavity coordinately regulate ISC stemness remains unclear. Here, we show that ISCs are regulated by microbiota and niche enteric serotonergic neurons. The gut microbiota metabolite valeric acid promotes Tph2 expression in enteric serotonergic neurons via blocking the recruitment of the NuRD complex onto Tph2 promoter. 5-hydroxytryptamine (5-HT) in turn activates PGE2 production in a PGE2+ macrophage subset through its receptors HTR2A/3 A; and PGE2 via binding its receptors EP1/EP4, promotes Wnt/β-catenin signaling in ISCs to promote their self-renewal. Our findings illustrate a complex crosstalk among microbiota, intestinal nerve cells, intestinal immune cells and ISCs, revealing a new layer of ISC regulation by niche cells and microbiota.
Collapse
|
109
|
Kellett MP, Jatko JT, Darling CL, Ventrello SW, Bain LJ. Arsenic Exposure Impairs Intestinal Stromal Cells. Toxicol Lett 2022; 361:54-63. [PMID: 35378173 PMCID: PMC9038714 DOI: 10.1016/j.toxlet.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
Arsenic is a toxicant commonly found in drinking water. Even though its main route of exposure is oral, little is known of the impact of in vivo arsenic exposure on small intestine. In vitro studies have shown that arsenic decreases differentiation of stem and progenitor cells in several different tissues. Thus, small intestinal organoids were used to assess if arsenic exposure would also impair intestinal stem cell differentiation. Unexpectedly, no changes in markers of differentiated epithelial cells were seen. However, exposing mice to 100 ppb arsenic in drinking water for 5 weeks impaired distinct populations of intestinal stromal cells. Arsenic reduced the width of the pericryptal lamina propria by 1.6-fold, and reduced Pdgfra mRNA expression, which is expressed in intestinal telocytes and trophocytes, by 4.2-fold. The height or extension of Pdgfra+ telopodes into the villus tip was also significantly reduced. Transcript expression of several other stromal cell markers, such as Grem1, Gli, CD81, were reduced by 1.9-, 2.3-, and 1.4-fold, respectively. Further, significant correlations exist between levels of Pdgfra and Gli1, Grem1, and Bmp4. Our results suggest arsenic impairs intestinal trophocytes and telocytes, leading to alterations in the Bmp signaling pathway.
Collapse
|
110
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
111
|
Ma L, Yu J, Zhang H, Zhao B, Zhang J, Yang D, Luo F, Wang B, Jin B, Liu J. Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Rev Rep 2022; 18:2296-2314. [DOI: 10.1007/s12015-022-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
112
|
Kwon O, Yu WD, Son YS, Jung KB, Lee H, Son MY. Generation of Highly Expandable Intestinal Spheroids Composed of Stem Cells. Int J Stem Cells 2022; 15:104-111. [PMID: 35220296 PMCID: PMC8889332 DOI: 10.15283/ijsc21209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Many of early findings regarding intestinal stem cells (ISCs) and their niche in the human intestine have relied on colorectal cancer cell lines and labor-intensive and time-consuming mouse models. However, these models cannot accurately recapitulate the physiologically relevant aspects of human ISCs. In this study, we demonstrate a reliable and robust culture method for 3D expanding intestinal spheroids (InSexp) mainly comprising ISCs and progenitors, which can be derived from 3D human intestinal organoids (HIOs). We did functional chararcterization of InSexp derived from 3D HIOs, differentiated from human pluripotent stem cells, and optimization culture methods. Our results indicate that InSexp can be rapidly expanded and easily passaged, and show enhanced growth rates via WNT pathway activation. InSexp are capable of exponential cell expansion and cryopreservation. Furthermore, in vitro-matured HIO-derived InSexp proliferate faster than immature HIO-derived InSexp with preservation of the parental HIO characteristics. These findings may facilitate the development of scalable culture systems for the long-term maintenance of human ISCs and provide an alternative platform for studying ISC biology.
Collapse
Affiliation(s)
- Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Won Dong Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Ye Seul Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
113
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
114
|
Parigi SM, Larsson L, Das S, Ramirez Flores RO, Frede A, Tripathi KP, Diaz OE, Selin K, Morales RA, Luo X, Monasterio G, Engblom C, Gagliani N, Saez-Rodriguez J, Lundeberg J, Villablanca EJ. The spatial transcriptomic landscape of the healing mouse intestine following damage. Nat Commun 2022; 13:828. [PMID: 35149721 PMCID: PMC8837647 DOI: 10.1038/s41467-022-28497-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.
Collapse
Affiliation(s)
- Sara M Parigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Annika Frede
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Katja Selin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Nicola Gagliani
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- I. Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
115
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
116
|
Gu W, Wang H, Huang X, Kraiczy J, Singh PNP, Ng C, Dagdeviren S, Houghton S, Pellon-Cardenas O, Lan Y, Nie Y, Zhang J, Banerjee KK, Onufer EJ, Warner BW, Spence J, Scherl E, Rafii S, Lee RT, Verzi MP, Redmond D, Longman R, Helin K, Shivdasani RA, Zhou Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell 2022; 29:101-115.e10. [PMID: 34582804 PMCID: PMC8741647 DOI: 10.1016/j.stem.2021.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Hua Wang
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Pratik N. P. Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Charles Ng
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Sean Houghton
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ying Lan
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yaohui Nie
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jason Spence
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ellen Scherl
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - David Redmond
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Randy Longman
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200 Denmark,The Novo Nordisk Foundation for Stem Cell Biology (Danstem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA,Lead Contact ()
| |
Collapse
|
117
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
118
|
Sasidharan V, Sánchez Alvarado A. The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harb Perspect Biol 2021; 14:a040931. [PMID: 34750171 PMCID: PMC9438785 DOI: 10.1101/cshperspect.a040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate. However, we still have a very incomplete understanding of how broadly regenerative abilities may be dispersed across species and whether or not such properties share a common evolutionary origin, which may have emerged independently or both. Understanding regeneration, therefore, will require rigorously practiced fundamental, curiosity-driven, discovery research. Expanding the number of research organisms used to study regeneration allows us to uncover aspects of this problem we may not yet know exist and simultaneously increases our chances of solving this long-standing problem of biology.
Collapse
|
119
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
120
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
121
|
Emerging roles of the Hedgehog signalling pathway in inflammatory bowel disease. Cell Death Discov 2021; 7:314. [PMID: 34702800 PMCID: PMC8548344 DOI: 10.1038/s41420-021-00679-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway plays a critical role in the growth and patterning during embryonic development and maintenance of adult tissue homeostasis. Emerging data indicate that Hh signalling is implicated in the pathogenesis of inflammatory bowel disease (IBD). Current therapeutic treatments for IBD require optimisation, and novel effective drugs are warranted. Targeting the Hh signalling pathway may pave the way for successful IBD treatment. In this review, we introduce the molecular mechanisms underlying the Hh signalling pathway and its role in maintaining intestinal homeostasis. Then, we present interactions between the Hh signalling and other pathways involved in IBD and colitis-associated colorectal cancer (CAC), such as the Wnt and nuclear factor-kappa B (NF-κB) pathways. Furthermore, we summarise the latest research on Hh signalling associated with the occurrence and progression of IBD and CAC. Finally, we discuss the future directions for research on the role of Hh signalling in IBD pathogenesis and provide viewpoints on novel treatment options for IBD by targeting Hh signalling. An in-depth understanding of the complex role of Hh signalling in IBD pathogenesis will contribute to the development of new effective therapies for IBD patients.
Collapse
|
122
|
Chachar S, Chen J, Qin Y, Wu X, Yu H, Zhou Q, Fan X, Wang C, Brownell I, Xiao Y. Reciprocal signals between nerve and epithelium: how do neurons talk with epithelial cells? AMERICAN JOURNAL OF STEM CELLS 2021; 10:56-67. [PMID: 34849302 PMCID: PMC8610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Most epithelium tissues continuously undergo self-renewal through proliferation and differentiation of epithelial stem cells (known as homeostasis), within a specialized stem cell niche. In highly innervated epithelium, peripheral nerves compose perineural niche and support stem cell homeostasis by releasing a variety of neurotransmitters, hormones, and growth factors and supplying trophic factors to the stem cells. Emerging evidence has shown that both sensory and motor nerves can regulate the fate of epithelial stem cells, thus influencing epithelium homeostasis. Understanding the mechanism of crosstalk between epithelial stem cells and neurons will reveal the important role of the perineural niche in physiological and pathological conditions. Herein, we review recent discoveries of the perineural niche in epithelium mainly in tissue homeostasis, with a limited touch in wound repair and pathogenesis.
Collapse
Affiliation(s)
- Sadaruddin Chachar
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Biotechnology, Faculty of Crop Production, Sindh Agriculture UniversityTandojam 70060, Pakistan
| | - Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Yumei Qin
- School of Food Science and Bioengineering, Zhejiang Gongshang UniversityHangzhou 310018, Zhejiang, China
| | - Xia Wu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Xiaojiao Fan
- School of Pharmacy, Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Isaac Brownell
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda 20892, Maryland, USA
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
123
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
124
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
125
|
Wei L, Wen XS, Xian CJ. Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-like Receptor Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179474. [PMID: 34502383 PMCID: PMC8431669 DOI: 10.3390/ijms22179474] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40–100% of patients undergoing chemotherapy, can reduce the patients’ quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.
Collapse
Affiliation(s)
- Ling Wei
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Xue-Sen Wen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| | - Cory J. Xian
- UniSA Clinical & Health Science, City West Campus, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| |
Collapse
|
126
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
127
|
Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients 2021; 13:nu13092910. [PMID: 34578802 PMCID: PMC8466099 DOI: 10.3390/nu13092910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
It is urgent to seek new potential targets for the prevention or relief of gastrointestinal syndrome in clinical radiation therapy for cancers. Vitamin D, mediated through the vitamin D receptor (VDR), has been identified as a protective nutrient against ionizing radiation (IR)-induced damage. This study investigated whether VDR could inhibit IR-induced intestinal injury and explored underlying mechanism. We first found that vitamin D induced VDR expression and inhibited IR-induced DNA damage and apoptosis in vitro. VDR was highly expressed in intestinal crypts and was critical for crypt stem/progenitor cell proliferation under physiological conditions. Next, VDR-deficient mice exposed to IR significantly increased DNA damage and crypt stem/progenitor cell apoptosis, leading to impaired intestinal regeneration as well as shorter survival time. Furthermore, VDR deficiency activated the Pmaip1-mediated apoptotic pathway of intestinal crypt stem/progenitor cells in IR-treated mice, whereas inhibition of Pmaip1 expression by siRNA transfection protected against IR-induced cell apoptosis. Therefore, VDR protects against IR-induced intestinal injury through inhibition of crypt stem/progenitor cell apoptosis via the Pmaip1-mediated pathway. Our results reveal the importance of VDR level in clinical radiation therapy, and targeting VDR may be a useful strategy for treatment of gastrointestinal syndrome.
Collapse
|
128
|
He Y, Ayansola H, Hou Q, Liao C, Lei J, Lai Y, Jiang Q, Masatoshi H, Zhang B. Genistein Inhibits Colonic Goblet Cell Loss and Colorectal Inflammation Induced by Salmonella Typhimurium Infection. Mol Nutr Food Res 2021; 65:e2100209. [PMID: 34146390 DOI: 10.1002/mnfr.202100209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/12/2021] [Indexed: 12/28/2022]
Abstract
SCOPE Salmonella is the main food-borne pathogen, which can infect intestinal epithelial cells and causes colitis. Genistein has a variety of biological activities that alleviates colitis induced by sodium dextran sulfate in a variety of ways, but its protective effects on colitis caused by pathogenic bacteria are still unknown. METHODS AND RESULTS This study explores the protective effect of genistein in reducing colitis caused by Salmonella infection. Salmonella causes colon inflammation through activating cyclooxygenase-2/prostaglandin E2, and genistein inhibits colitis caused by Salmonella typhimurium infection. Salmonella infection increases colonic mucosal damage, proliferating cells, and goblet cell loss, while the administration of genistein solves these pathological changes. In addition, it is further proved that Salmonella causes severe colitis related to goblet cell loss and activates the host crypt stem cells to repair the damaged epithelium. Salmonella infection inhibites the host mammalian target of rapamycin, activates light chain 3 II pathways to induce autophagy to eliminate pathogenic bacteria. Genistein increases Lactobacillus in feces and reduces Salmonella colonization to inhibit colitis induces by Salmonella infection. CONCLUSION This study demonstrates genistein alleviated colitis and inhibites the goblet cell loss causes by Salmonella infection through regulating the gut bacteria and intestinal stem cell development.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Yujiao Lai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| |
Collapse
|
129
|
Jatko JT, Darling CL, Kellett MP, Bain LJ. Arsenic exposure in drinking water reduces Lgr5 and secretory cell marker gene expression in mouse intestines. Toxicol Appl Pharmacol 2021; 422:115561. [PMID: 33957193 PMCID: PMC11931411 DOI: 10.1016/j.taap.2021.115561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Arsenic is a global health concern that causes toxicity through ingestion of contaminated water and food. In vitro studies suggest that arsenic reduces stem and progenitor cell differentiation. Thus, this study determined if arsenic disrupted intestinal stem cell (ISC) differentiation, thereby altering the number, location, and/or function of intestinal epithelial cells. Adult male C57BL/6 mice were exposed to 0 or 100 ppb sodium arsenite (AsIII) through drinking water for 5 weeks. Duodenal sections were collected to assess changes in morphology, proliferation, and cell types. qPCR analysis revealed a 40% reduction in Lgr5 transcripts, an ISC marker, in the arsenic-exposed mice, although there were no changes in the protein expression of Olfm4. Secretory cell-specific transcript markers of Paneth (Defa1), Goblet (Tff3), and secretory transit amplifying (Math1) cells were reduced by 51%, 44%, and 30% respectively, in the arsenic-exposed mice, indicating significant impacts on the Wnt-dependent differentiation pathway. Further, protein levels of phosphorylated β-catenin were reduced in the arsenic-exposed mice, which increased the expression of Wnt-dependent transcripts CD44 and c-myc. PCA analysis, followed by MANOVA and regression analyses, revealed significant changes and correlations between Lgr5 and the transit amplifying (TA) cell markers Math1 and Hes1, which are in the secretory cell pathway. Similar comparisons between Math1 and Defa1 show that terminal differentiation into Paneth cells is also reduced in the arsenic-exposed mice. The data suggests that ISCs are not lost following arsenic exposure, but rather, specific Wnt-dependent progenitor cell formation and terminal differentiation in the small intestine is reduced.
Collapse
Affiliation(s)
- Jordan T Jatko
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Caitlin L Darling
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Michael P Kellett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
130
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
131
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater Sci Eng 2021; 7:2803-2813. [PMID: 33905240 DOI: 10.1021/acsbiomaterials.0c01775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of microfabrication techniques for the development of innovative constructs for tissue regeneration is a growing area of research. This area comprises both manufacturing and biological approaches for the development of smart materials aiming to control and direct cell behavior to enhance tissue healing. Many groups have focused their efforts on introducing complexity within these innovative constructs via the inclusion of nano- and microtopographical cues mimicking physical and biological aspects of the native stem cell niche. Specifically, in the area of skin tissue engineering, seminal work has reported replicating the microenvironments located in the dermal-epithelial junction, which are known as rete ridges. The rete ridges are key for both stem cell control and the physiological performance of the skin. In this work, we have introduced complexity within electrospun membranes to mimic the morphology of the rete ridges in the skin. We designed and tested three different patterns, characterized them, and explored their performance in vitro, using 3D skin models. One of the studied patterns (pattern B) was shown to aid in the development of an in vitro rite-ridgelike skin model that resulted in the expression of relevant epithelial markers such as collagen IV and integrin β1. In summary, we have developed a new skin model including synthetic rete-ridgelike structures that replicate both morphology and function of the native dermal-epidermal junction and that offer new insights for the development of smart skin tissue engineering constructs.
Collapse
Affiliation(s)
- David H Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
| |
Collapse
|
132
|
Yu Q, Kilik U, Holloway EM, Tsai YH, Harmel C, Wu A, Wu JH, Czerwinski M, Childs CJ, He Z, Capeling MM, Huang S, Glass IA, Higgins PDR, Treutlein B, Spence JR, Camp JG. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 2021; 184:3281-3298.e22. [PMID: 34019796 PMCID: PMC8208823 DOI: 10.1016/j.cell.2021.04.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
Collapse
Affiliation(s)
- Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Umut Kilik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christoph Harmel
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter D R Higgins
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
133
|
Zeng R, Wang J, Zhuo Z, Luo Y, Sha W, Chen H. Stem cells and exosomes: promising candidates for necrotizing enterocolitis therapy. Stem Cell Res Ther 2021; 12:323. [PMID: 34090496 PMCID: PMC8180168 DOI: 10.1186/s13287-021-02389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
134
|
Zhang YJ, Jimenez L, Azova S, Kremen J, Chan YM, Elhusseiny AM, Saeed H, Goldsmith J, Al-Ibraheemi A, O'Connell AE, Kovbasnjuk O, Rodan L, Agrawal PB, Thiagarajah JR. Novel variants in the stem cell niche factor WNT2B define the disease phenotype as a congenital enteropathy with ocular dysgenesis. Eur J Hum Genet 2021; 29:998-1007. [PMID: 33526876 PMCID: PMC8187348 DOI: 10.1038/s41431-021-00812-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
WNT2B is a member of the Wnt family, a group of signal transduction proteins involved in embryologic development and stem cell renewal and maintenance. We recently reported homozygous nonsense variants in WNT2B in three individuals with severe, neonatal-onset diarrhea, and intestinal failure. Here we present a fourth case, from a separate family, with neonatal diarrhea associated with novel compound heterozygous WNT2B variants. One of the two variants was a frameshift variant (c.423del [p.Phe141fs]), while the other was a missense change (c.722 G > A [p.G241D]) that we predict through homology modeling to be deleterious, disrupting post-translational acylation. This patient presented as a neonate with severe diet-induced (osmotic) diarrhea and growth failure resulting in dependence on parenteral nutrition. Her gastrointestinal histology revealed abnormal cellular architecture particularly in the stomach and colon, including oxyntic atrophy, abnormal distribution of enteroendocrine cells, and a paucity of colonic crypt glands. In addition to her gastrointestinal findings, she had bilateral corneal clouding and atypical genital development later identified as a testicular 46,XX difference/disorder of sexual development. Upon review of the previously reported cases, two others also had anterior segment ocular anomalies though none had atypical genital development. This growing case series suggests that variants in WNT2B are associated with an oculo-intestinal (and possibly gonadal) syndrome, due to the protein's putative involvement in multiple developmental and stem cell maintenance pathways.
Collapse
Affiliation(s)
- Yanjia Jason Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA
| | - Svetlana Azova
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Kremen
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hajirah Saeed
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Kovbasnjuk
- Department of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
135
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
136
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
137
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
138
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
139
|
Ichinose M, Suzuki N, Wang T, Wright JA, Lannagan TRM, Vrbanac L, Kobayashi H, Gieniec KA, Ng JQ, Hayakawa Y, García-Gallastegui P, Monsalve EM, Bauer SR, Laborda J, García-Ramírez JJ, Ibarretxe G, Worthley DL, Woods SL. Stromal DLK1 promotes proliferation and inhibits differentiation of the intestinal epithelium during development. Am J Physiol Gastrointest Liver Physiol 2021; 320:G506-G520. [PMID: 33470182 DOI: 10.1152/ajpgi.00445.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
The stem/progenitor cells of the developing intestine are biologically distinct from their adult counterparts. Here, we examine the microenvironmental cues that regulate the embryonic stem/progenitor population, focusing on the role of Notch pathway factor delta-like protein-1 (DLK1). mRNA-seq analyses of intestinal mesenchymal cells (IMCs) collected from embryonic day 14.5 (E14.5) or adult IMCs and a novel coculture system with E14.5 intestinal epithelial organoids were used. Following addition of recombinant DLK1 (rDLK) or Dlk1 siRNA (siDlk1), epithelial characteristics were compared using imaging, replating efficiency assays, qPCR, and immunocytochemistry. The intestinal phenotypes of littermate Dlk1+/+ and Dlk1-/- mice were compared using immunohistochemistry. Using transcriptomic analyses, we identified morphogens derived from the embryonic mesenchyme that potentially regulate the developing epithelial cells, to focus on Notch family candidate DLK1. Immunohistochemistry indicated that DLK1 was expressed exclusively in the intestinal stroma at E14.5 at the top of emerging villi, decreased after birth, and shifted to the intestinal epithelium in adulthood. In coculture experiments, addition of rDLK1 to adult IMCs inhibited organoid differentiation, whereas Dlk1 knockdown in embryonic IMCs increased epithelial differentiation to secretory lineage cells. Dlk1-/- mice had restricted Ki67+ cells in the villi base and increased secretory lineage cells compared with Dlk1+/+ embryos. Mesenchyme-derived DLK1 plays an important role in the promotion of epithelial stem/precursor expansion and prevention of differentiation to secretory lineages in the developing intestine.NEW & NOTEWORTHY Using a novel coculture system, transcriptomics, and transgenic mice, we investigated differential molecular signaling between the intestinal epithelium and mesenchyme during development and in the adult. We show that the Notch pathway factor delta-like protein-1 (DLK1) is stromally produced during development and uncover a new role for DLK1 in the regulation of intestinal epithelial stem/precursor expansion and differentiation to secretory lineages.
Collapse
Affiliation(s)
- Mari Ichinose
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Nobumi Suzuki
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tongtong Wang
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Josephine A Wright
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Tamsin R M Lannagan
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Laura Vrbanac
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Hiroki Kobayashi
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Krystyna A Gieniec
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jia Q Ng
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, Bizkaia, Spain
| | - Eva M Monsalve
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - J J García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, Bizkaia, Spain
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Susan L Woods
- School of Medicine, The University of Adelaide, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
140
|
Ichinose M, Suzuki N, Wang T, Wright JA, Lannagan TRM, Vrbanac L, Kobayashi H, Gieniec K, Ng JQ, Ihara S, Mavrangelos C, Hayakawa Y, Hughes P, Worthley DL, Woods SL. Delineating proinflammatory microenvironmental signals by ex vivo modeling of the immature intestinal stroma. Sci Rep 2021; 11:7200. [PMID: 33785826 PMCID: PMC8010037 DOI: 10.1038/s41598-021-86675-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The intestinal stroma provides an important microenvironment for immune cell activation. The perturbation of this tightly regulated process can lead to excessive inflammation. We know that upregulated Toll-like receptor 4 (TLR4) in the intestinal epithelium plays a key role in the inflammatory condition of preterm infants, such as necrotizing enterocolitis (NEC). However, the surrounding stromal contribution to excessive inflammation in the pre-term setting awaits careful dissection. Ex vivo co-culture of embryonic day 14.5 (E14.5) or adult murine intestinal stromal cells with exogenous monocytes was undertaken. We also performed mRNAseq analysis of embryonic and adult stromal cells treated with vehicle control or lipopolysaccharide (LPS), followed by pathway and network analyses of differentially regulated transcripts. Cell characteristics were compared using flow cytometry and pHrodo red phagocytic stain, candidate gene analysis was performed via siRNA knockdown and gene expression measured by qPCR and ELISA. Embryonic stromal cells promote the differentiation of co-cultured monocytes to CD11bhighCD11chigh mononuclear phagocytes, that in turn express decreased levels of CD103. Global mRNAseq analysis of stromal cells following LPS stimulation identified TLR signaling components as the most differentially expressed transcripts in the immature compared to adult setting. We show that CD14 expressed by CD11b+CD45+ embryonic stromal cells is a key inducer of TLR mediated inflammatory cytokine production and phagocytic activity of monocyte derived cells. We utilise transcriptomic analyses and functional ex vivo modelling to improve our understanding of unique molecular cues provided by the immature intestinal stroma.
Collapse
Affiliation(s)
- Mari Ichinose
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nobumi Suzuki
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tongtong Wang
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Josephine A Wright
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Tamsin R M Lannagan
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Laura Vrbanac
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Hiroki Kobayashi
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Krystyna Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jia Q Ng
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Souzaburo Ihara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chris Mavrangelos
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Patrick Hughes
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
141
|
Barnett AM, Mullaney JA, Hendriks C, Le Borgne L, McNabb WC, Roy NC. Porcine colonoids and enteroids keep the memory of their origin during regeneration. Am J Physiol Cell Physiol 2021; 320:C794-C805. [PMID: 33760661 DOI: 10.1152/ajpcell.00420.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell types (stem cells, enterocytes, goblet, and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin and colonoids with enteroids. Colonoids derived from three healthy pigs formed multilobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem cell markers Sox9 and Lgr5 encoding sex-determining region Y-box 9 and leucine-rich repeat-containing G protein-coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1, respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga, and Muc2 encoding atonal homolog 1, chromogranin A, and mucin 2, respectively, were decreased in colonoids, whereas Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A, respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell types with decreased barrier maturation relative to their tissues of origin.
Collapse
Affiliation(s)
- Alicia M Barnett
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Charlotte Hendriks
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lisa Le Borgne
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Nutrition, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
142
|
Yokoi Y, Adachi T, Sugimoto R, Kikuchi M, Ayabe T, Nakamura K. Simultaneous real-time analysis of Paneth cell and intestinal stem cell response to interferon-γ by a novel stem cell niche tracking method. Biochem Biophys Res Commun 2021; 545:14-19. [PMID: 33529805 DOI: 10.1016/j.bbrc.2021.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Paneth cells and Lgr5+ intestinal stem cells (Lgr5+ ISCs) constitute the stem cell niche and maintain small intestinal epithelial integrity by recognizing various niche factors derived from subepithelial cells and external antigens. Although it has been known that interferon-γ (IFN-γ), a Th1 cytokine, is associated with intestinal epithelial disruption during inflammation as a niche factor, dynamics of Paneth cells and Lgr5+ ISCs in response to IFN-γ remain to be understood. Here we show that CAG-tdTomato;Lgr5-EGFP (CT-LE) mice generated in this study enable to identify Paneth cells and Lgr5+ ISCs separately by fluorescence signals. Lgr5+ ISCs underwent cell death a little earlier than Paneth cells in response to IFN-γ by simultaneous tracking using CT-LE mice. In addition, the timing of cell death in most Paneth cells overlapped with Lgr5+ ISCs, suggesting that Paneth cell depletion is induced directly by IFN-γ. Taken together, we established a novel simultaneous stem cell niche tracking method and clarified the involvement of both Paneth cells and Lgr5+ ISCs in stem cell niche damage induced by IFN-γ, further contribute to understanding the mechanism for maintaining intestinal homeostasis by stem cell niche.
Collapse
Affiliation(s)
- Yuki Yokoi
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Rina Sugimoto
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mani Kikuchi
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan; Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan; Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
143
|
Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochem J 2021; 478:975-995. [PMID: 33661278 DOI: 10.1042/bcj20200902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Dietary nutrients absorbed in the proximal small intestine and assimilated in different tissues have a profound effect on overall energy homeostasis, determined by a balance between body's energy intake and expenditure. In obesity, altered intestinal absorption and consequently tissue assimilation of nutrients may disturb the energy balance leading to metabolic abnormalities at the cellular level. The absorption of nutrients such as sugars, amino acids and fatty acids released from food digestion require high-capacity transporter proteins expressed in the intestinal epithelial absorptive cells. Furthermore, nutrient sensing by specific transporters/receptors expressed in the epithelial enteroendocrine cells triggers release of gut hormones involved in regulating energy homeostasis via their effects on appetite and food intake. Therefore, the intestinal epithelial cells play a pivotal role in the pathophysiology of obesity and associated complications. Over the past decade, gut microbiota has emerged as a key factor contributing to obesity via its effects on digestion and absorption of nutrients in the small intestine, and energy harvest from dietary fiber, undigested component of food, in the large intestine. Various mechanisms of microbiota effects on obesity have been implicated. However, the impact of obesity-associated microbiota on the intestinal nutrient transporters needs extensive investigation. This review marshals the limited studies addressing the altered structure and function of the gut epithelium in obesity with special emphasis on nutrient transporters and role of diet and microbiota. The review also discusses the thoughts and controversies and research gaps in this field.
Collapse
|
144
|
|
145
|
Chen Y, Ye Z, Seidler U, Tian D, Xiao F. Microenvironmental regulation of intestinal stem cells in the inflamed intestine. Life Sci 2021; 273:119298. [PMID: 33667519 DOI: 10.1016/j.lfs.2021.119298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023]
Abstract
The rapid renewal of intestinal epithelium during homeostasis requires balanced proliferation and differentiation of intestinal stem cells (ISCs) at the base of crypt. Upon intestinal inflammation, the vigorous expansion of surviving ISCs is responsible for epithelial repair. However, it is not well depicted how ISCs adapt to the inflammatory conditions within intestinal tissue and support epithelial repair. In the intestinal inflammation, niche cells around ISCs along with their secreted niche factors can facilitate the regeneration of ISCs via niche signals. Additionally, the growth of ISCs can respond to inflammatory cells, inflammatory cytokines, and inflammatory signals. Understanding the adaptive mechanism of ISCs in supporting intestinal epithelial regeneration during inflammation is a focus on the treatment for patients with intestinal inflammation. Here, we aim to present an overview of how ISCs adapt to the acute inflammation to support intestinal repair, with a focus on the roles and interaction of niche signals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhenghao Ye
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Dean Tian
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Xiao
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
146
|
Borrelli C, Valenta T, Handler K, Vélez K, Gurtner A, Moro G, Lafzi A, Roditi LDV, Hausmann G, Arnold IC, Moor AE, Basler K. Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells. Nat Commun 2021; 12:1368. [PMID: 33649334 PMCID: PMC7921392 DOI: 10.1038/s41467-021-21591-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, 4, Czech Republic.
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Karelia Vélez
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Giulia Moro
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
147
|
Kou Z, Dai W. Aryl hydrocarbon receptor: Its roles in physiology. Biochem Pharmacol 2021; 185:114428. [PMID: 33515530 PMCID: PMC8862184 DOI: 10.1016/j.bcp.2021.114428] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Aryl hydrocarbon receptor (AHR) was initially discovered as a cellular protein involved in mediating the detoxification of xenobiotic compounds. Extensive research in the past two decades has identified several families of physiological ligands and uncovered important functions of AHR in normal development and homeostasis. Deficiency in AHR expression disrupts major signaling systems and transcriptional programs, which appear to be responsible for the development of numerous developmental abnormalities including cardiac hypertrophy and epidermal hyperplasia. This mini review primarily summarizes recent advances in our understanding of AHR functions in normal physiology with an emphasis on the cardiovascular, gastrointestinal, integumentary, nervous, and immunomodulatory systems.
Collapse
Affiliation(s)
- Ziyue Kou
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States.
| |
Collapse
|
148
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
149
|
Venkatraman A, Yu W, Nitkin C, Sampath V. Intestinal Stem Cell Development in the Neonatal Gut: Pathways Regulating Development and Relevance to Necrotizing Enterocolitis. Cells 2021; 10:cells10020312. [PMID: 33546361 PMCID: PMC7913590 DOI: 10.3390/cells10020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The intestine is extremely dynamic and the epithelial cells that line the intestine get replaced every 3–5 days by highly proliferative intestinal stem cells (ISCs). The instructions for ISCs to self-renew or to differentiate come as cues from their surrounding microenvironment or their niche. A small number of evolutionarily conserved signaling pathways act as a critical regulator of the stem cells in the adult intestine, and these pathways are well characterized. However, the mechanisms, nutritional, and environmental signals that help establish the stem cell niche in the neonatal intestine are less studied. Deciphering the key signaling pathways that regulate the development and maintenance of the stem cells is particularly important to understanding how the intestine regenerates from necrotizing enterocolitis, a devastating disease in newborn infants characterized by inflammation, tissues necrosis, and stem cell injury. In this review, we piece together current knowledge on morphogenetic and immune pathways that regulate intestinal stem cell in neonates and highlight how the cross talk among these pathways affect tissue regeneration. We further discuss how these key pathways are perturbed in NEC and review the scientific knowledge relating to options for stem cell therapy in NEC gleaned from pre-clinical experimental models of NEC.
Collapse
|
150
|
Creff J, Malaquin L, Besson A. In vitro models of intestinal epithelium: Toward bioengineered systems. J Tissue Eng 2021; 12:2041731420985202. [PMID: 34104387 PMCID: PMC8164551 DOI: 10.1177/2041731420985202] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium, the fastest renewing tissue in human, is a complex
tissue hosting multiple cell types with a dynamic and multiparametric
microenvironment, making it particularly challenging to recreate in
vitro. Convergence of recent advances in cellular biology and
microfabrication technologies have led to the development of various
bioengineered systems to model and study the intestinal epithelium. Theses
microfabricated in vitro models may constitute an alternative
to current approaches for studying the fundamental mechanisms governing
intestinal homeostasis and pathologies, as well as for in vitro
drug screening and testing. Herein, we review the recent advances in
bioengineered in vitro intestinal models.
Collapse
Affiliation(s)
- Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France.,LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|