101
|
Somers-Edgar TJ, Scandlyn MJ, Stuart EC, Le Nedelec MJ, Valentine SP, Rosengren RJ. The combination of epigallocatechin gallate and curcumin suppresses ER alpha-breast cancer cell growth in vitro and in vivo. Int J Cancer 2008; 122:1966-71. [PMID: 18098290 DOI: 10.1002/ijc.23328] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both epigallocatechin gallate (EGCG) and curcumin have shown efficacy in various in vivo and in vitro models of cancer. This study was designed to determine the efficacy of these naturally derived polyphenolic compounds in vitro and in vivo, when given in combination. Studies in MDA-MB-231 cells demonstrated that EGCG + curcumin was synergistically cytotoxic and that this correlated with G(2)/M-phase cell cycle arrest. After 12 hr, EGCG (25 microM) + curcumin (3 microM) increased the proportion of cells in G(2)/M-phase to 263 +/- 16% of control and this correlated with a 50 +/- 4% decrease in cell number compared to control. To determine if this in vitro result would translate in vivo, athymic nude female mice were implanted with MDA-MB-231 cells and treated with curcumin (200 mg/kg/day, po), EGCG (25 mg/kg/day, ip), EGCG + curcumin, or vehicle control (5 ml/kg/day, po) for 10 weeks. Tumor volume in the EGCG + curcumin treated mice decreased 49% compared to vehicle control mice (p < 0.05), which correlated with a 78 +/- 6% decrease in levels of VEGFR-1 protein expression in the tumors. Curcumin treatment significantly decreased tumor protein levels of EGFR and Akt, however the expression of these proteins was not further decreased following combination treatment. Therefore, these results demonstrate that the combination of EGCG and curcumin is efficacious in both in vitro and in vivo models of ER alpha-breast cancer and that regulation of VEGFR-1 may play a key role in this effect.
Collapse
|
102
|
Shapiro H, Bruck R. Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr Res Rev 2007; 18:212-21. [DOI: 10.1079/nrr2005106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) may be associated with a number of clinical conditions, but it occurs most commonly in patients with insulin resistance. There is as yet no established disease-modifying treatment, and a safe and broadly available agent that targets hepatic steatosis, insulin resistance, inflammation and fibrosis is necessary. The polyphenolic compound curcumin exhibits antioxidant and anti-inflammatory properties, inhibits NF-κB and activates PPAR-γ. In rodents, curcumin prevents dietary-induced hepatic steatosis, hepatic stellate cell activation and production of fibrotic proteins, and ameliorates steatohepatitis induced by the intake of alcohol or a methionine–choline-deficient diet. Indirect evidence suggests that curcumin may improve insulin sensitivity in diabetes and inflammatory states. The present paper reviews the numerous cellular and animal studies indicating that curcumin attenuates many of the pathophysiological processes involved in the development and progression of NASH. It is suggested that basic and clinical studies on curcumin in the development and progression of NASH are indicated.
Collapse
|
103
|
Olszanecki R, Gebska A, Korbut R. The Role of Haem Oxygenase-1 in the Decrease of Endothelial Intercellular Adhesion Molecule-1 Expression by Curcumin. Basic Clin Pharmacol Toxicol 2007; 101:411-5. [DOI: 10.1111/j.1742-7843.2007.00151.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
104
|
Pan CJ, Shao ZY, Tang JJ, Wang J, Huang N. In vitro studies of platelet adhesion, activation, and protein adsorption on curcumin-eluting biodegradable stent materials. J Biomed Mater Res A 2007; 82:740-6. [PMID: 17326229 DOI: 10.1002/jbm.a.31108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A major complication of coronary stenting is in-stent restenosis (ISR) due to thrombus formation. We hypothesized that locally released curcumin from coronary stent surface would inhibit ISR due to thrombus formation because of antithrombosis of curcumin. In the present work, curcumin-eluting polylactic acid-co-glycolic acid (PLGA) films were fabricated and their properties in vitro were investigated. The in vitro platelet adhesion and activation, as well as protein adsorption on curcumin-loading PLGA films were investigated to evaluate the blood compatibility of curcumin-eluting films. The structure of curcumin-eluting PLGA film and control was examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicating that the peaks of curcumin did not shift in curcumin-eluting films. The results of contact angle and surface free energy indicated that loading curcumin in PLGA would make PLGA become more hydrophilic, which contributed to the increase of polar fraction of surface free energy. With the increase of curcumin in films, platelets adhering to the curcumin-eluting films decreased significantly. The number of activation platelets decreased after incorporating curcumin in PLGA films. Loading curcumin in PLGA film can markedly reduce the fibrinogen adsorption. All results indicated that incorporating curcumin in PLGA film can improve the blood compatibility of PLGA films. It can be used to fabricate drug-eluting stent to prevent thrombosis formation.
Collapse
Affiliation(s)
- C J Pan
- School of Materials Science and Engineering, SouthWest Jiaotong University, Chengdu 610031, China
| | | | | | | | | |
Collapse
|
105
|
Pugazhenthi S, Akhov L, Selvaraj G, Wang M, Alam J. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells. Am J Physiol Endocrinol Metab 2007; 293:E645-55. [PMID: 17535857 DOI: 10.1152/ajpendo.00111.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Curcumin (diferuloylmethane), a component of turmeric, has been shown to have therapeutic properties. Induction of phase 2 detoxifying enzymes is a potential mechanism through which some of the actions of curcumin could proceed. Heme oxygenase-1 (HO-1), an antioxidant phase 2 enzyme, has been reported to have cytoprotective effects in pancreatic beta-cells. Curcumin on further purification yields demethoxy curcumin (DMC) and bisdemethoxy curcumin (BDMC). The objective of the present study was to determine the mechanism by which these purified curcuminoids induce HO-1 in MIN6 cells, a mouse beta-cell line. Demethoxy curcuminoids induced HO-1 promoter linked to the luciferase reporter gene more effectively than curcumin. The induction was dependent on the presence of antioxidant response element (ARE) sites containing enhancer regions (E1 and E2) in HO-1 promoter and nuclear translocation of nuclear factor-E2-related factor (Nrf2), the transcription factor that binds to ARE. Curcuminoids stimulated multiple signaling pathways that are known to induce HO-1. Inhibition of specific signaling pathways with pharmacological inhibitors and cotransfection experiments suggested the involvement of phosphotidylinositol 3-kinase and Akt. Real-time quantitative RT-PCR analysis showed significant elevation in the mRNA levels of HO-1 and two other phase 2 enzymes, the regulatory subunit of glutamyl cysteine ligase, which is needed for the synthesis of glutathione, and NAD(P)H:quinone oxidoreductase, which detoxifies quinones. DMC and BDMC induced the expression of HO-1 and translocated Nrf2 to nucleus in beta-cells of mouse islets. Our observations suggest that demethoxy curcuminoids could be used to induce a cellular defense mechanism in beta-cells under conditions of stress as seen in diabetes.
Collapse
Affiliation(s)
- Subbiah Pugazhenthi
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, P.O. Box 6511, Mail Stop 8106, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
106
|
Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:185-95. [PMID: 17569211 DOI: 10.1007/978-0-387-46401-5_7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis, the formation of new blood vessels from host vasculature, is critical for tumor growth and metastases. -Curcumin, a novel small-molecular-weight compound, has been shown to inhibit carcinogenesis in different organs and the common link between these actions is its antiangiogenic effect. Curcumin is a direct inhibitor of angiogenesis and also downregulates various proangiogenic proteins like vascular endothelial growth factor and basic fibroblast growth factor. Curcumin's antiangiogenic effect is also in part due to its inhibitory effect on signal transduction pathways, including those involving protein kinase C and the transcription factors NF-kappaB and AP-1. Curcumin has an inhibitory effect on two groups of proteinases involved in angiogenesis that are the members of the matrix metalloproteinase family and the urokinase plasminogen activator family. Cell adhesion molecules are upregulated in active angiogenesis and curcumin can block'this effect, adding further dimensions to curcumin's antiangiogenic effect. Curcumin shows a dose-dependent inhibition on tumor necrosis factor, a versatile cytokine, which has its effect on angiogenesis through the signal transduction pathways, expression of proangiogenic factors, and cell adhesion molecules. Curcumin's effect on the overall process of angiogenesis compounds its enormous potential as an antiangiogenic drug.
Collapse
Affiliation(s)
- Sulochana S Bhandarkar
- Department of Dermatology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA.
| | | |
Collapse
|
107
|
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|
108
|
Abstract
Three kinds of curcumin-loaded films (3wt%, 5wt%, 8wt%) were prepared using
poly(lactic acid-co-glycol acid (PLGA) as the carrier of curcumin, and studied. The result of Fourier
transform infrared spectroscopy (FTIR) and X-ray electron spectroscopy (XPS) show that the
curcumin is dispersed in the PLGA films. High performance liquid chromatography (HPLC)
analysis suggests that the release of curcumin can last 22-43 days. A fewer number of adhered and
activated platelets are observed on the curcumin-loaded PLGA films. The activated partial
thromboplastin time (APTT) increases for all curcumin-loaded films.
Collapse
|
109
|
Wieser F, Cohen M, Gaeddert A, Yu J, Burks-Wicks C, Berga SL, Taylor RN. Evolution of medical treatment for endometriosis: back to the roots? Hum Reprod Update 2007; 13:487-99. [PMID: 17575287 DOI: 10.1093/humupd/dmm015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental evidence is accumulating to suggest that medicinal botanicals have anti-inflammatory and pain-alleviating properties and hold promise for treatment of endometriosis. Herein, we present a systematic review of clinical and experimental data on the use of medicinal herbs in the treatment of endometriosis. Although there is a general lack of evidence from clinical studies on the potential efficacy of medicinal herbs for the treatment of endometriosis-associated symptoms, our review highlights the anti-inflammatory and pain-alleviating mechanisms of action of herbal remedies. Medicinal herbs and their active components exhibit cytokine-suppressive, COX-2-inhibiting, antioxidant, sedative and pain-alleviating properties. Each of these mechanisms of action would be predicted to have salutary effects in endometriosis. Better understanding of the mechanisms of action, toxicity and herb-herb and herb-drug interactions permits the optimization of design and execution of complementary alternative medicine trials for endometriosis-associated pain. A potential benefit of herbal therapy is the likelihood of synergistic interactions within individual or combinations of plants. In this sense, phytotherapies may be analogous to nutraceuticals or whole food nutrition. We encourage the development of herbal analogues and establishment of special, simplified registration procedures for certain medicinal products, particularly herbal derivates with a long tradition of safe use.
Collapse
Affiliation(s)
- Fritz Wieser
- Division of Gynecological Endocrinology and Reproductive Medicine, University of Vienna, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
110
|
Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 2007; 67:3853-3861. [PMID: 17440100 DOI: 10.1158/0008-5472.can-06-4257] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gemcitabine is currently the best treatment available for pancreatic cancer, but the disease develops resistance to the drug over time. Agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are needed for the treatment of pancreatic cancer. Curcumin, a component of turmeric (Curcuma longa), is one such agent that has been shown to suppress the transcription factor nuclear factor-kappaB (NF-kappaB), which is implicated in proliferation, survival, angiogenesis, and chemoresistance. In this study, we investigated whether curcumin can sensitize pancreatic cancer to gemcitabine in vitro and in vivo. In vitro, curcumin inhibited the proliferation of various pancreatic cancer cell lines, potentiated the apoptosis induced by gemcitabine, and inhibited constitutive NF-kappaB activation in the cells. In vivo, tumors from nude mice injected with pancreatic cancer cells and treated with a combination of curcumin and gemcitabine showed significant reductions in volume (P = 0.008 versus control; P = 0.036 versus gemcitabine alone), Ki-67 proliferation index (P = 0.030 versus control), NF-kappaB activation, and expression of NF-kappaB-regulated gene products (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis protein-1, cyclooxygenase-2, matrix metalloproteinase, and vascular endothelial growth factor) compared with tumors from control mice treated with olive oil only. The combination treatment was also highly effective in suppressing angiogenesis as indicated by a decrease in CD31(+) microvessel density (P = 0.018 versus control). Overall, our results suggest that curcumin potentiates the antitumor effects of gemcitabine in pancreatic cancer by suppressing proliferation, angiogenesis, NF-kappaB, and NF-kappaB-regulated gene products.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
111
|
Jiang Z, Shukla A, Miller BL, Espino DR, Tao M, Berceli SA, Ozaki CK. Tumor necrosis factor-alpha and the early vein graft. J Vasc Surg 2007; 45:169-76. [PMID: 17210403 DOI: 10.1016/j.jvs.2006.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/23/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-alpha) has been implicated in the blood vessel wall response to hemodynamic forces. We hypothesized that TNF-alpha activity drives neointimal hyperplasia (NIH) during vein graft arterialization and that anti-TNF-alpha therapy would inhibit NIH. METHODS Rabbits underwent bilateral vein grafting using jugular vein. All distal branches except the occipital artery were unilaterally ligated to create distinct flow environments between the bilateral grafts. Vein grafts were harvested sequentially up to 28 days for TNF-alpha messenger RNA (mRNA) quantitation. In separate experiments, animals received short-term or long-term dosing with pegylated soluble TNF-alpha type I receptor (PEG sTNF-RI) or vehicle. After 14 to 28 days, grafts were analyzed for morphometry, proliferation, apoptosis, and PEG sTNF-RI distribution. RESULTS Quantitative mRNA assay (TaqMan) revealed shear-dependent (P < .001) and time-dependent (P < .001) TNF-alpha expression. TNF-alpha induction was maximal at day 1 and gradually decreased over time, but was persistently elevated even 4 weeks later (P < .001). Low shear (associated with increased NIH) resulted in significantly higher TNF-alpha mRNA expression (P = .03). PEG sTNF-RI was found in high concentrations in the serum and localized to NIH. The high-flow and low-flow vein grafts from treated animals demonstrated similar volumes of NIH compared with controls. PEG-sTNF-RI had only modest impact on vascular wall cell turnover, as reflected by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling (P = .064) and anti-Ki-67 (P = .12) assays. CONCLUSIONS Placement of a vein into the arterial circulation acutely upregulates TNF-alpha; this expression level correlates with the degree of subsequent NIH. Pharmacologic interruption of this signaling pathway has no significant impact on NIH or wall cellular proliferation/apoptosis, suggesting that early vein graft adaptations can proceed via TNF-alpha-independent mechanisms.
Collapse
Affiliation(s)
- Zhihua Jiang
- University of Florida College of Medicine, Gainesville, FL. USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol 2007; 73:1434-45. [PMID: 17291458 DOI: 10.1016/j.bcp.2007.01.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/22/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022]
Abstract
Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) play a key role in the pathogenesis of osteoarthritis (OA). Anti-inflammatory agents capable of suppressing the production and catabolic actions of these cytokines may have therapeutic potential in the treatment of OA and a range of other osteoarticular disorders. The purpose of this study was to examine the effects of curcumin (diferuloylmethane), a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in human articular chondrocytes maintained in vitro. The effects of curcumin were studied in cultures of human articular chondrocytes treated with IL-1beta and TNF-alpha for up to 72h. Expression of collagen type II, integrin beta1, cyclo-oxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) was monitored by western blotting. The effects of curcumin on the expression, phosphorylation and nuclear translocation of protein components of the NF-kappaB system were studied by western blotting and immunofluorescence, respectively. Treatment of chondrocytes with curcumin suppressed IL-1beta-induced NF-kappaB activation via inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation and p65 nuclear translocation. Curcumin inhibited the IL-1beta-induced stimulation of up-stream protein kinase B Akt. These events correlated with down-regulation of NF-kappaB targets including COX-2 and MMP-9. Similar results were obtained in chondrocytes stimulated with TNF-alpha. Curcumin also reversed the IL-1beta-induced down-regulation of collagen type II and beta1-integrin receptor expression. These results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
113
|
Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Andoh A, Tsujikawa T, Fujiyama Y, Mitsuyama K, Sata M, Yamada M, Iwaoka Y, Kanke K, Hiraishi H, Hirayama K, Arai H, Yoshii S, Uchijima M, Nagata T, Koide Y. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006; 4:1502-6. [PMID: 17101300 DOI: 10.1016/j.cgh.2006.08.008] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Curcumin is a biologically active phytochemical substance present in turmeric and has pharmacologic actions that might benefit patients with ulcerative colitis (UC). The aim in this trial was to assess the efficacy of curcumin as maintenance therapy in patients with quiescent ulcerative colitis (UC). METHODS Eighty-nine patients with quiescent UC were recruited for this randomized, double-blind, multicenter trial of curcumin in the prevention of relapse. Forty-five patients received curcumin, 1g after breakfast and 1g after the evening meal, plus sulfasalazine (SZ) or mesalamine, and 44 patients received placebo plus SZ or mesalamine for 6 months. Clinical activity index (CAI) and endoscopic index (EI) were determined at entry, every 2 months (CAI), at the conclusion of 6-month trial, and at the end of 6-month follow-up. RESULTS Seven patients were protocol violators. Of 43 patients who received curcumin, 2 relapsed during 6 months of therapy (4.65%), whereas 8 of 39 patients (20.51%) in the placebo group relapsed (P=.040). Recurrence rates evaluated on the basis of intention to treat showed significant difference between curcumin and placebo (P=.049). Furthermore, curcumin improved both CAI (P=.038) and EI (P=.0001), thus suppressing the morbidity associated with UC. A 6-month follow-up was done during which patients in both groups were on SZ or mesalamine. Eight additional patients in the curcumin group and 6 patients in the placebo group relapsed. CONCLUSIONS Curcumin seems to be a promising and safe medication for maintaining remission in patients with quiescent UC. Further studies on curcumin should strengthen our findings.
Collapse
Affiliation(s)
- Hiroyuki Hanai
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, and Center for Gastroenterology, Hamamatsu South Hospital, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, Kang JH, Kim SH, Hong S, Kang SY. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci 2006; 79:2022-31. [PMID: 16934299 DOI: 10.1016/j.lfs.2006.06.048] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the modulatory effect of curcumin on the functional activation of primary microglial cells, brain mononuclear phagocytes causing the neuronal damage, largely remains unknown. The current study examined whether curcumin influenced NO production in rat primary microglia and investigated its underlying signaling pathways. Curcumin decreased NO production in LPS-stimulated microglial cells in a dose-dependent manner, with an IC(50) value of 3.7 microM. It also suppressed both mRNA and protein levels of inducible nitric oxide synthase (iNOS), indicating that this drug may affect iNOS gene expression process. Indeed, curcumin altered biochemical patterns induced by LPS such as phosphorylation of all mitogen-activated protein kinases (MAPKs), and DNA binding activities of nuclear factor-kappaB (NF-kappaB) and activator protein (AP)-1, assessed by reporter gene assay. By analysis of inhibitory features of specific MAPK inhibitors, a series of signaling cascades including c-Jun N-terminal kinase (JNK), p38 and NF-kappaB was found to play a critical role in curcumin-mediated NO inhibition in microglial cells. The current results suggest that curcumin is a promising agent for the prevention and treatment of both NO and microglial cell-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ki Kyung Jung
- Pharmacology Department, National Institute of Toxicological Research, KFDA, Seoul 122-704, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Pan CJ, Tang JJ, Weng YJ, Wang J, Huang N. Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents. J Control Release 2006; 116:42-9. [PMID: 17046093 DOI: 10.1016/j.jconrel.2006.08.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/10/2006] [Accepted: 08/29/2006] [Indexed: 11/24/2022]
Abstract
Curcumin is pharmaceutically active in many ways, having properties including anticoagulation, anti-proliferation, anti-inflammatory, and may be used to fabricate drug-eluting stents to treat in-stent restenosis after stent implantation. Here we describe our investigations of curcumin-eluting PLGA coatings formed using the biodegradable polymer PLGA (polylactic acid-co-glycolic acid) as drug carrier and uniformly fabricated on the surface of 316L stainless steel stents by an ultrasonic spray method. Three doses were explored--low dose ( approximately 140 microg per stent or 115 microg/cm(2)), moderate dose ( approximately 280 microg per stent or 230 microg/cm(2)), and high dose ( approximately 490 microg per stent or 408 microg/cm(2)). Pre- and post-expansion morphologies of the stent coating were examined by optical microscopy (OM) and scanning electron microscopy (SEM), indicating that the coating not only was very smooth and uniform but also had the ability to withstand the compressive and tensile strains imparted without cracking from the stent during the expansion process. Atomic force microscopy (AFM) images indicated the topography of the PLGA-only and moderate dose curcumin-eluting stent that showed an average roughness below 1 nm; no drug particles could be seen on the stent surface, indicating that curcumin can be mixed with PLGA at the molecular level using an ultrasonic atomization spray method. The structure of the coating films was characterized by Fourier Transform Infrared (FTIR) spectroscopy and X-ray electron spectroscopy (XPS), with results suggesting that there was no chemical reaction between curcumin and the drug. The results of in vitro measurements of drug release from curcumin-eluting stents showed that all the curcumin-eluting stents studied exhibited a nearly linear sustained-release profile with no significant burst releases within the measurement period. The in vitro anticoagulation behavior of curcumin-eluting stents was investigated by static platelet adhesion and APTT (activated partial thromboplastin time) tests, revealing that the anticoagulation properties of curcumin-eluting stents are superior to those for stainless steel stents and PLGA-only-coated stents. The anticoagulation behavior of curcumin stents improved significantly as the drug dose was increased.
Collapse
Affiliation(s)
- Ch J Pan
- Key Laboratory for Advanced Technologies of Materials, The Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | | | | | | | | |
Collapse
|
116
|
Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog 2006; 45:320-32. [PMID: 16526022 DOI: 10.1002/mc.20170] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Curcumin (diferuloyl methane), the major yellow pigment from the rhizomes of turmeric (Curcuma longa Linn), has anticancer properties. Infection with high-risk human papillomaviruses (HPV) leads to development of cervical carcinoma, predominantly through the action of viral oncoproteins E6 and E7. The present study aims at analyzing the antitumor and antiviral properties of curcumin, on HPV associated cervical cancer cells. Our findings indicate curcumin to be cytotoxic to cervical cancer cells in a concentration-dependent and time-dependent manner. The cytotoxic activity was selectively more in HPV16 and HPV18 infected cells compared to non-HPV infected cells. Balance between tumor cell proliferation and spontaneous cell death via apoptosis had an important role in regulation of tumor cell growth. Curcumin-induced apoptosis in cervical cancer cells. Morphological hallmarks of apoptosis such as nuclear fragmentation and internucleosomal fragmentation of DNA were observed. Curcumin also selectively inhibited expression of viral oncogenes E6 and E7, evident from RT-PCR and Western blotting data. Electrophoretic mobility shift assay revealed that activation of NFkappaB-induced by TNFalpha is down regulated by curcumin. Curcumin blocked IkBalpha phosphorylation and degradation, leading to abrogation of NFkappaB activation. Curcumin also down regulated the expression of COX-2, a gene regulated by NFkappaB. Binding of AP-1, an indispensable component for efficient epithelial tissue-specific gene expression of HPV was also selectively down regulated by curcumin. These results provide attractive data for the possible use of curcumin in the management of HPV associated tumors.
Collapse
Affiliation(s)
- Chandrasekhar S Divya
- Department of Molecular Medicine, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
117
|
Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs 2006; 13:1327-38. [PMID: 15461561 DOI: 10.1517/13543784.13.10.1327] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three decades of research have revealed that cancer is easier to prevent than to treat and that consumption of certain fruits and vegetables can reduce the risk of cancer. Whereas chemotherapy is designed to destroy cancer after it appears, chemoprevention involves the abrogation or delay in the onset of cancer. Regardless of whether a chemopreventive or chemotherapeutic approach is taken, cancer is a multifactorial disease that requires modulation of multiple pathways and multiple targets. Various molecular targets of chemoprevention are also relevant to the therapy of cancer. These targets include the activation of apoptosis; suppression of growth factor expression or signalling; downregulation of antiapoptotic proteins; suppression of phosphatidylinositol-3'-kinase/Akt, NF-kappaB, Janus kinase-signal transducer and activator of transcription and activator protein-1 signalling pathways; and downregulation of angiogenesis through inhibition of vascular endothelial growth factor expression, cyclooxygenase-2, matrix metalloproteinase-9, urokinase-type plasminogen activator, adhesion molecules and cyclin D1. Pharmacologically safe phytochemicals that have been identified from plants or their variant forms can modulate these molecular targets. These phytochemicals include genistein, resveratrol, dially sulfide, S-ally cysteine, allicin, lycopene, capsaicin, curcumin, 6-gingerol, ellagic acid, ursolic acid, betulinic acid, flavopiridol, silymarin, anethol, catechins and eugenol. Recent work has shown that these phytochemicals also can reverse chemoresistance and radioresistance. Because of their pharmacological safety, these agents can be used alone to prevent cancer and in combination with chemotherapy to treat cancer.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- The University of Texas M.D. Anderson Cancer Center, Cytokine Research Section, Department of Experimental Therapeutics, PO Box 143, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
118
|
Rushworth SA, Ogborne RM, Charalambos CA, O'Connell MA. Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 2006; 341:1007-16. [PMID: 16460683 DOI: 10.1016/j.bbrc.2006.01.065] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/24/2022]
Abstract
The Nrf2/antioxidant response element (ARE) signaling pathway plays a key role in activating cellular antioxidants, including heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO1), and glutathione. Protein kinase C (PKC) may also regulate these antioxidants, as PKC phosphorylates Nrf2 in vitro. This study examined the role of PKC in ARE-mediated gene regulation in human monocytes by curcumin, a potent inducer of the Nrf2/ARE pathway. Curcumin increased HO-1 and glutamyl cysteine ligase modulator (GCLM) expression and stimulated Nrf2 binding to the ARE. Curcumin also rapidly stimulated PKC phosphorylation and Ro-31-8220, a pan-PKC inhibitor, decreased curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Rottlerin (a PKC delta inhibitor) and PKC delta antisense oligonucleotides significantly inhibited curcumin-induced GCLM and HO-1 mRNA expression and ARE binding. Furthermore, a p38 MAP kinase inhibitor reduced GCLM and HO-1 expression and rottlerin inhibited curcumin-induced p38 phosphorylation. In summary, curcumin activates ARE-mediated gene expression in human monocytes via PKC delta, upstream of p38 and Nrf2.
Collapse
Affiliation(s)
- Stuart A Rushworth
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK
| | | | | | | |
Collapse
|
119
|
Aggarwal BB, Shishodia S, Takada Y, Jackson-Bernitsas D, Ahn KS, Sethi G, Ichikawa H. TNF blockade: an inflammatory issue. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:161-86. [PMID: 16331857 DOI: 10.1007/3-540-37673-9_10] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tumor necrosis factor (TNF), initially discovered as a result of its antitumor activity, has now been shown to mediate tumor initiation, promotion, and metastasis. In addition, dysregulation of TNF has been implicated in a wide variety of inflammatory diseases including rheumatoid arthritis, Crohn's disease, multiple sclerosis, psoriasis, scleroderma, atopic dermatitis, systemic lupus erythematosus, type II diabetes, atherosclerosis, myocardial infarction, osteoporosis, and autoimmune deficiency disease. TNF, however, is a critical component of effective immune surveillance and is required for proper proliferation and function of NK cells, T cells, B cells, macrophages, and dendritic cells. TNF activity can be blocked, either by using antibodies (Remicade and Humira) or soluble TNF receptor (Enbrel), for the symptoms of arthritis and Crohn's disease to be alleviated, but at the same time, such treatment increases the risk of infections, certain type of cancers, and cardiotoxicity. Thus blockers of TNF that are safe and yet efficacious are urgently needed. Some evidence suggests that while the transmembrane form of TNF has beneficial effects, soluble TNF mediates toxicity. In most cells, TNF mediates its effects through activation of caspases, NF-kappaB, AP-1, c-jun N-terminal kinase, p38 MAPK, and p44/p42 MAPK. Agents that can differentially regulate TNF expression or TNF signaling can be pharmacologically safe and effective therapeutics. Our laboratory has identified numerous such agents from natural sources. These are discussed further in detail.
Collapse
Affiliation(s)
- B B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Hospital 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 2005; 44:97-111. [PMID: 15116757 DOI: 10.1080/10408690490424702] [Citation(s) in RCA: 474] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcuminoids, a group of phenolic compounds isolated from the roots of Curcuma longa (Zingiberaceae), exhibit a variety of beneficial effects on health and on events that help in preventing certain diseases. A vast majority of these studies were carried out with curcumin (diferuloyl methane), which is a major curcuminoid. The most detailed studies using curcumin include anti-inflammatory, antioxidant, anticarcinogenic, antiviral, and antiinfectious activities. In addition, the wound healing and detoxifying properties of curcumin have also received considerable attention. As a result of extensive research on the therapeutic properties of curcumin, some understanding on the cellular, molecular, and biochemical mechanism of action of curcumin is emerging. These findings are summarized in this review.
Collapse
Affiliation(s)
- B Joe
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Block Health Science Building, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA.
| | | | | |
Collapse
|
121
|
Nan B, Yang H, Yan S, Lin PH, Lumsden AB, Yao Q, Chen C. C-reactive protein decreases expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Surgery 2005; 138:212-22. [PMID: 16153429 DOI: 10.1016/j.surg.2005.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND C-reactive protein (CRP) is associated with atherosclerosis and thrombosis. However, it is unclear whether CRP has direct effects on the antithrombogenic properties of endothelial cells. The objective of the present study was to determine the effect of CRP on the expression of thrombomodulin (TM) and the endothelial protein C receptor (EPCR) in human endothelial cells. METHODS Human coronary artery endothelial cells (HCAECs) were treated with CRP in a dose- and time-dependent manner. The messenger RNA levels of TM and EPCR were determined by real-time polymerase chain reaction. Anti-CD32 antibody and curcumin were used to block the potential effects of CRP. RESULTS In HCAECs, CRP (10 and 25 microg/mL) significantly reduced TM messenger RNA levels by 18 and 30%, respectively, compared with controls (P < .05). This effect was also confirmed in other types of human endothelial cells from umbilical veins and skin microvessels. The cells treated with CRP (10 and 25 microg/mL) showed significant reductions of EPCR mRNA levels by 34% and 33%, respectively (P < .05). Anti-CD32 antibody partially blocked CRP-induced downregulation of TM and EPCR in HCAECs. Furthermore, curcumin (5 and 10 microM) in combination with CRP (10 microg/mL) significantly increased TM mRNA levels by 45 and 100%, respectively, and increased EPCR mRNA levels by 24 and 45%, respectively, compared with those in CRP-treated cells (P < .05). CONCLUSIONS CRP significantly decreases the expression of TM and EPCR in human endothelial cells, thereby promoting thrombogenic conditions. This effect is partially mediated by CD32. Curcumin completely blocks CRP-induced downregulation of TM and EPCR in HCAECs.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibodies/pharmacology
- Antigens, CD
- Aorta/cytology
- C-Reactive Protein/pharmacology
- Cells, Cultured
- Curcumin/pharmacology
- Endothelial Protein C Receptor
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Gene Expression/drug effects
- Glycoproteins/genetics
- Humans
- RNA, Messenger/metabolism
- Receptors, Cell Surface
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Thrombomodulin/genetics
Collapse
Affiliation(s)
- Bicheng Nan
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys 2005; 440:123-32. [PMID: 16036212 DOI: 10.1016/j.abb.2005.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/10/2005] [Indexed: 02/06/2023]
Abstract
The role of tissue factor (TF) in inflammation is mediated by blood coagulation. TF initiates the extrinsic blood coagulation that proceeds as an extracellular signaling cascade by a series of active serine proteases: FVIIa, FXa, and thrombin (FIIa) for fibrin clot production in the presence of phospholipids and Ca2+. TF upregulation resulting from its enhanced exposure to clotting factor FVII/FVIIa often manifests not only hypercoagulable but also inflammatory state. Coagulant mediators (FVIIa, FXa, and FIIa) are proinflammatory, which are largely transmitted by protease-activated receptors (PAR) to elicit inflammation including the expression of tissue necrosis factor, interleukins, adhesion molecules (MCP-1, ICAM-1, VCAM-1, selectins, etc.), and growth factors (VEGF, PDGF, bFGF, etc.). In addition, fibrin, and its fragments are also able to promote inflammation. In the event of TF hypercoagulability accompanied by the elevations in clotting signals including fibrin overproduction, the inflammatory consequence could be enormous. Antagonism to coagulation-dependent inflammation includes (1) TF downregulation, (2) anti-coagulation, and (3) PAR blockade. TF downregulation and anti-coagulation prevent and limit the proceeding of coagulation cascade in the generation of proinflammatory coagulant signals, while PAR antagonists block the transmission of such signals. These approaches are of significance in interrupting the coagulation-inflammation cycle in contribution to not only anti-inflammation but also anti-thrombosis for cardioprotection.
Collapse
Affiliation(s)
- Arthur J Chu
- MRC, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
123
|
Jurrmann N, Brigelius-Flohé R, Böl GF. Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 2005; 135:1859-64. [PMID: 16046709 DOI: 10.1093/jn/135.8.1859] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Curcumin is a dietary compound with diverse anti-inflammatory and anticarcinogenic effects in several experimental models. A mechanism by which curcumin exerts these actions might be the direct modification of protein thiols, thereby altering the activity of the affected proteins. An early event in inflammatory signaling cascades is the recruitment of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) to the IL-1 receptor (IL-1RI) upon stimulation with IL-1. IRAK recruitment was shown recently to be inhibited by agents that modify thiols of IRAK. We asked, therefore, whether IRAK is also a target for curcumin. Curcumin indeed blocked IRAK thiols in a murine T-cell line stably overexpressing IRAK (EL-4(IRAK)), which resulted in the inhibition of IRAK recruitment to the IL-1RI and phosphorylation of IRAK and IL-1RI-associated proteins. Inhibitory effects were not reversible by thiol-reducing agents. Thus, modification by curcumin did not occur by oxidation but rather by alkylation, as is typical for electrophilic compounds reacting as Michael addition acceptors. The block in one of the earliest events in the IL-1 signaling cascade can explain the often observed inhibition of IL-1-mediated signaling steps by curcumin further downstream. Hence, thiol modification might be a crucial step in the anti-inflammatory functions of curcumin.
Collapse
Affiliation(s)
- Nadine Jurrmann
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Biochemistry of Micronutrients, Nuthetal
| | | | | |
Collapse
|
124
|
Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 2005; 1030:434-41. [PMID: 15659827 DOI: 10.1196/annals.1329.054] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activation of nuclear transcription factor kappaB has now been linked with a variety of inflammatory diseases, including cancer, atherosclerosis, myocardial infarction, diabetes, allergy, asthma, arthritis, Crohn's disease, multiple sclerosis, Alzheimer's disease, osteoporosis, psoriasis, septic shock, and AIDS. Extensive research in the last few years has shown that the pathway that activates this transcription factor can be interrupted by phytochemicals derived from spices such as turmeric (curcumin), red pepper (capsaicin), cloves (eugenol), ginger (gingerol), cumin, anise, and fennel (anethol), basil and rosemary (ursolic acid), garlic (diallyl sulfide, S-allylmercaptocysteine, ajoene), and pomegranate (ellagic acid). For the first time, therefore, research provides "reasoning for seasoning."
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
125
|
Delhalle S, Blasius R, Dicato M, Diederich M. A beginner's guide to NF-kappaB signaling pathways. Ann N Y Acad Sci 2005; 1030:1-13. [PMID: 15659775 DOI: 10.1196/annals.1329.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) belongs to a family of heterodimeric transcription factors that play a key role in inflammatory and stress responses as well as in tumor cell resistance to apoptosis. These effects are due to the NF-kappaB-dependent transcription of many proinflammatory and antiapoptotic genes, whose products ensure various cell responses to environmental conditions. The signal transduction pathways leading to NF-kappaB activation are well characterized, and the different steps implicated in these pathways involve proteins that could constitute targets for NF-kappaB inhibition. Several inhibitors aiming to prevent NF-kappaB activity and thus the transcription of target genes are studied, and a few compounds seem particularly promising. We try here to summarize the advantages that can issue from various studies on NF-kappaB.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
126
|
Okazaki Y, Iqbal M, Okada S. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim Biophys Acta Mol Basis Dis 2005; 1740:357-66. [PMID: 15949703 DOI: 10.1016/j.bbadis.2004.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to act as a biological response modifier in various disorders. We have reported previously that the dietary supplementation of curcumin enhances the activities of antioxidant and phase II metabolizing enzymes in mice (M. Iqbal, S.D. Sharma, Y. Okazaki, M. Fujisawa, S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY mice: possible role in protection against chemical carcinogenesis and toxicity, Pharmacol and Toxicol. 92 (2003) 33_38.) and inhibits ferric nitrilotriacetate (Fe-NTA) induced oxidative injury of lipids and DNA in vitro (M. Iqbal, Y. Okazaki, S. Okada, In vitro curcumin modulates Ferric Nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H(2)O(2))-induced peroxidation of microsomal membrane lipids and DNA damage, Teratogenesis Carcinogenesis and Mutagenesis Supplement 23 (2003) 151-160.). In our present study, Fe-NTA, a known complete renal carcinogen, which generate ROS in vivo, was given intraperitoneally to mice and curcumin was tested for its ability to inhibits oxidative stress and the activity of ornithine decarboxylase (ODC) as well as histopathological changes in the kidney. Substantial changes in glutathione, antioxidant enzymes as well as changes in phase II metabolizing enzymes were observed in the kidney at 12 h after treatment with Fe-NTA (9.0 mg Fe/kg body weight). Effect of oxidative stress induced by Fe-NTA were also demonstrated by the increase in lipid peroxidation as monitored by formation of thiobarbituric acid-reactive substances and 4-hydroxy-2-nonenal (HNE)-modified proteins in kidney. Likewise, the level of protein carbonyl contents, an indicator of protein oxidation was also increased after Fe-NTA administration. However, the changes in these parameters were restored to normal in curcumin-pretreated mice. The ODC activity in the kidney was significantly increased by Fe-NTA, while the increased ODC activity induced by Fe-NTA was normalized in curcumin-pretreated mice. In addition, curcumin pretreatment almost completely prevented kidney biomolecules from oxidative damage and protected the tissue against observed histopathological alterations.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathological Research, Faculty of Medicine, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | |
Collapse
|
127
|
Jian YT, Mai GF, Wang JD, Zhang YL, Luo RC, Fang YX. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 2005; 11:1747-52. [PMID: 15793857 PMCID: PMC4305867 DOI: 10.3748/wjg.v11.i12.1747] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To ascertain the molecule mechanism of nuclear factor-κB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats’ colitis induced by trinitrobenzene sulfonic acid (TNBS).
METHODS: Sixty rats with TNBS-induced colitis were treated with 2.0% curcumin in the diet. Thirty positive control rats were treated with 0.5% sulfasalazine (SASP). Thirty negative control rats and thirty model rats were treated with general diet. Changes of body weight together with histological scores were evaluated. Survival rates were also evaluated. Cell nuclear NF-κB activity in colonic mucosa was evaluated by using electrophoretic mobility shift assay. Cytoplasmic IκB protein in colonic mucosa was detected by using Western Blot analysis. Cytokine messenger expression in colonic tissue was assessed by using semiquantitative reverse-transcription polymerase chain reaction.
RESULTS: Treatment with curcumin could prevent and treat both wasting and histopathologic signs of rats with TNBS-induced intestinal inflammation. In accordance with these findings, NF-κB activation in colonic mucosa was suppressed in the curcumin-treated groups. Degradations of cytoplasmic IκB protein in colonic mucosa were blocked by curcumin treatment. Proinflammatory cytokine messenger RNA expression in colonic mucosa was also suppressed.
CONCLUSION: This study shows that NF-κB inhibitor curcumin could prevent and improve experimental colitis in murine model with inflammatory bowel disease (IBD). The findings suggest that NF-κB inhibitor curcumin could be a potential target for the patients with IBD.
Collapse
Affiliation(s)
- Yan-Ting Jian
- Chinese PLA Institute of Digestive Disease, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
128
|
Ramaswami G, Chai H, Yao Q, Lin PH, Lumsden AB, Chen C. Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005; 40:1216-22. [PMID: 15622377 DOI: 10.1016/j.jvs.2004.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Curcumin, a yellow polyphenolic compound from the plant Curcuma ionga , is a commonly used spice and coloring agent with beneficial effects of anti-tumor, anti-inflammatory, and antioxidant activities. The objective of this study was to determine the effect of curcumin on homocysteine-induced endothelial dysfunction in a porcine coronary artery model. METHODS Porcine coronary arteries were cut into 5-mm rings, which were incubated for 24 hours either as control rings, with homocysteine (50 micromol/L), curcumin (5 micromol/L), or a combination of curcumin (5 micromol/L) and homocysteine (50 micromol/L). Myograph tension analysis was performed in response to vessel active drugs including thromboxane A2 analog U466419 (contraction), endothelium-dependent vasorelaxation (bradykinin), and endothelium-independent vasorelaxation (sodium nitroprusside). Immunohistochemical staining was performed for endothelial nitric oxide synthase (eNOS). In addition, superoxide anion production was determined by lucigenin-enhanced chemiluminescence. RESULTS All groups of porcine coronary artery rings showed no difference in maximal contraction after U46619 challenge. However, endothelium-dependent vasorelaxation in response to 10(-5) mol/L bradykinin was 40% in the homocysteine-treated group, as compared to 73% in the control group (P = .03). Of importance, curcumin could effectively block homocysteine-induced impairment of endothelium-dependent vasorelaxation. All groups showed no difference in endothelium-independent vasorelaxation. In addition, eNOS immunoreactivity was reduced in the homocysteine group, but the combined homocysteine and curcumin group showed eNOS levels comparable to those in the control group. Furthermore, superoxide anion levels of the endothelial layer were significantly increased by 2-fold in homocysteine-treated vessels as compared to control vessels (P = .02), whereas curcumin could block the effect of homocysteine on superoxide anion production. CONCLUSION These data demonstrate that curcumin effectively reverses the endothelial dysfunction induced by homocysteine. In addition, curcumin significantly blocked homocysteine-induced superoxide anion production and eNOS down-regulation. This study suggests a therapeutic role for dietary curcumin in patients with homocysteinemia, thereby reducing cardiovascular morbidity and mortality. CLINICAL RELEVANCE Hyperhomocysteinemia is a significant clinical problem. It is an independent risk factor for cardiovascular diseases. This study provides new information for better understanding the molecular mechanisms of homocysteine-induced vascular injury. More importantly, curcumin, a natural substance, can effectively block the detrimental effect of homocysteine on the vascular system. Thus curcumin could be used in patients with hyperhomocysteinemia, and to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Ganesh Ramaswami
- Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
129
|
Phan PV, Sohrabi A, Polotsky A, Hungerford DS, Lindmark L, Frondoza CG. Ginger extract components suppress induction of chemokine expression in human synoviocytes. J Altern Complement Med 2005; 11:149-54. [PMID: 15750374 DOI: 10.1089/acm.2005.11.149] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Ginger has a long history of medicinal use, particularly as an anti-inflammatory agent for a wide variety of diseases such as arthritis. Suppression of inflammation in arthritis is attributed to suppression of proinflammatory cytokines and chemokines produced by synoviocytes, chondrocytes, and leukocytes. OBJECTIVE This study aimed to elucidate the effect of a combination ginger extract and its individual components on chemokine expression in human synoviocytes. METHODS Human synoviocytes were incubated with 100 microg/mL combination ginger extract (GE) of Alpinia galanga (AG) and Zingiber officinale (ZO); AG extract alone; ZO extract alone; or control media, for 1 hour at 37 degrees C, 5% CO2. Cells were next activated with 1 ng/mL of tumor necrosis factor alpha (TNF-alpha) for 1 hour to determine macrophage chemotactic factor (MCP-1) and interferon-gamma activated protein (IP-10) mRNA levels using reverse transcriptase polymerase chain reaction (RT-PCR). Secreted MCP-1 and IP-10 were quantified by enzyme-linked immunosorbent assay (ELISA) following a 24 hour incubation period. RESULTS The GE combination was consistently more effective in decreasing chemokine mRNA and chemokine secreted protein levels than its individual components ZO or AG. In comparison, ZO was more effective than AG in suppressing chemokine expression. CONCLUSION The present study demonstrates that GE inhibits chemokine expression, and that the combination of ZO and AG components acts synergistically. This ginger formulation may be useful for suppressing inflammation due to arthritis.
Collapse
Affiliation(s)
- Phong V Phan
- Department of Orthopedic Surgery, Division of Arthritis Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
130
|
Sukkar SG, Rossi E. Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun Rev 2005; 3:199-206. [PMID: 15110232 DOI: 10.1016/j.autrev.2003.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 09/03/2003] [Indexed: 12/12/2022]
Abstract
The hypothesis that oxidative stress favours flogistic and immune processes inducing autoimmune rheumatic diseases (ARDs) and their complications is still under discussion. In this review we take into consideration both the aetiopathological role of the diet in such diseases and the possible efficacy of dietary supports as adjuvants for the usual specific therapies. Moreover, we shall examine the hypothetical pathophysiological role of oxidative stress on ARDs and their complications, the methods for its evaluation and the possibility of intervening on oxidative pathways by means of nutritional modulation. It is possible that in the future we will be able to control connective pathology by associating an immuno-modulating therapy ('re-educating') with natural products having an anti-oxidant activity to current immunosuppressive treatment (which has potentially toxic effects).
Collapse
Affiliation(s)
- Samir G Sukkar
- Dietetics and Clinical Nutrition Unit, University-Hospital San Martino, Largo Rosanna Benzi 10, Genoa, Italy.
| | | |
Collapse
|
131
|
Nan B, Lin P, Lumsden AB, Yao Q, Chen C. Effects of TNF-α and curcumin on the expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Thromb Res 2005; 115:417-26. [PMID: 15733976 DOI: 10.1016/j.thromres.2004.10.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/16/2004] [Accepted: 10/26/2004] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effects of tumor necrosis factor-alpha (TNF-alpha) on the expression of thrombomodulin (TM) and endothelial protein C receptor (EPCR) in human endothelial cells as well as the effect of curcumin, a spice and coloring food compound, as a potential therapeutic agent. Human umbilical vein endothelial cells (HUVECs) treated with TNF-alpha (2.0 ng/ml) showed reduced TM mRNA levels by 80%, 97%, 94%, and 97% at 3, 6, 12, and 24 h, respectively (P<0.05), by real-time PCR analysis. Dose-dependent study showed that TM mRNA levels of HUVECs were decreased by 86%, 89%, 91%, and 94% after treatment of TNF-alpha (0, 0.25, 0.5, 1, and 2 ng/ml) for 6 h, respectively (P<0.05). TM protein levels in HUVECs were significantly reduced by 69% in TNF-alpha-treated cells as compared to controls (P<0.05) by Western blot analysis. Secreted protein and activity of TM of HUVEC cultures were also significantly reduced in TNF-alpha-treated cells. In addition, EPCR mRNA levels of HUVECs were significantly reduced in TNF-alpha-treated group as compared to controls (P<0.05). Furthermore, these effects were observed in other types of endothelial cells from human coronary arteries, lung, and skin. Curcumin effectively blocked these effects of TNF-alpha on downregulation of TM and EPCR. These data demonstrate that TNF-alpha significantly decreases expression of TM and EPCR at both mRNA and protein levels in several human endothelial cells. Curcumin can effectively block TNF-alpha-induced endothelial dysfunction. This study suggests a new molecular mechanism of inflammation-induced thrombosis and a new therapeutic strategy to prevent this clinical problem.
Collapse
Affiliation(s)
- Bicheng Nan
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Mail stop: NAB-2010, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
132
|
Bava SV, Puliyappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 2004; 280:6301-8. [PMID: 15590651 DOI: 10.1074/jbc.m410647200] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Taxol is the best anticancer agent that has ever been isolated from plants, but its major disadvantage is its dose-limiting toxicity. In this study, we report with mechanism-based evidence that curcumin, a nontoxic food additive commonly used by the Indian population, sensitizes tumor cells more efficiently to the therapeutic effect of Taxol. A combination of 5 nm Taxol with 5 microm curcumin augments anticancer effects more efficiently than Taxol alone as evidenced by increased cytotoxicity and reduced DNA synthesis in HeLa cells. Furthermore, our results reveal that this combination at the cellular level augments activation of caspases and cytochrome c release. This synergistic effect was not observed in normal cervical cells, 293 cells (in which Taxol down-regulates nuclear factor-kappaB (NF-kappaB)), or HeLa cells transfected with inhibitor kappaBalpha double mutant (IkappaBalpha DM), although the transfection itself sensitized the cells to Taxol-induced cytotoxicity. Evaluation of signaling pathways common to Taxol and curcumin reveals that this synergism was in part related to down-regulation of NF-kappaB and serine/threonine kinase Akt pathways by curcumin. An electrophoretic mobility shift assay revealed that activation of NF-kappaB induced by Taxol is down-regulated by curcumin. We also noted that curcumin-down-regulated Taxol induced phosphorylation of the serine/threonine kinase Akt, a survival signal which in many instances is regulated by NF-kappaB. Interestingly, tubulin polymerization and cyclin-dependent kinase Cdc2 activation induced by Taxol was not affected by curcumin. Altogether, our observations indicate that Taxol in combination with curcumin may provide a superior therapeutic index and advantage in the clinic for the treatment of refractory tumors.
Collapse
Affiliation(s)
- Smitha V Bava
- Division of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695014, India
| | | | | | | | | | | |
Collapse
|
133
|
Aggarwal B, Kumar A, Aggarwal M, Shishodia S. Curcumin Derived from Turmeric ( Curcuma longa ). PHYTOPHARMACEUTICALS IN CANCER CHEMOPREVENTION 2004. [DOI: 10.1201/9780203506707.ch23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
134
|
Nguyen KT, Shaikh N, Shukla KP, Su SH, Eberhart RC, Tang L. Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Biomaterials 2004; 25:5333-46. [PMID: 15130718 DOI: 10.1016/j.biomaterials.2003.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 12/07/2003] [Indexed: 11/25/2022]
Abstract
A major complication of coronary stenting is restenosis, often accompanied by inflammatory reactions and smooth muscle cell proliferation. Curcumin has been shown to possess anti-inflammatory and anti-proliferative properties, thus we hypothesize that locally released curcumin by coronary stent would diminish in-stent restenosis. As a first test of this hypothesis, curcumin-eluting PLLA films (C-PLLA) were produced and the anti-inflammatory and anti-proliferative properties were then tested using peritoneal phagocytes and human coronary artery smooth muscle cell (hCASMCs) culture systems. We find that the addition of curcumin reduced phagocyte accumulation and activation on C-PLLA films. On the other hand, C-PLLA significantly reduced the proliferation, but not the adhesion, of hCASMCs. The molecular responses of hCASMCs to C-PLLA were further assessed by cDNA microarray analysis. Curcumin up-regulated genes related to apoptosis and enhanced the expression of anti-proliferative and anti-inflammatory factors, and of antioxidants. Equally important, C-PLLA inhibited the cell cycle progression of adherent hCASMCs. The results suggest that curcumin regulates gene expression and cell function through the protein kinase (PK) and mitogen-activated protein kinase (MAPK) pathways. These results support the use of curcumin to inhibit in-stent restenosis.
Collapse
Affiliation(s)
- Kytai T Nguyen
- Department of Biomedical Engineering, University of Texas at Arlington, 214 Engineering Laboratory Building, 501 W 1st Street, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|
135
|
Bharti AC, Takada Y, Aggarwal BB. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2004; 172:5940-7. [PMID: 15128775 DOI: 10.4049/jimmunol.172.10.5940] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.
Collapse
Affiliation(s)
- Alok C Bharti
- Cytokine Research Section, Department of Bioimmunotherapy, Unit 143, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
136
|
Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 2004; 111:679-92. [PMID: 15252836 DOI: 10.1002/ijc.20333] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Increased expression of proinflammatory and proangiogenic factors are associated with aggressive tumor growth and decreased survival of patients with head and neck squamous cell carcinoma (HNSCC). In as much as genes that are regulated by nuclear factor NF-kappaB suppress apoptosis, induce proliferation, and mediate inflammation, angiogenesis and tumor metastasis, agents that suppress NF-kappaB activation have potential as treatment for various cancers including HNSCC. We demonstrate that all HNSCC cell lines expressed constitutively active NF-kappaB and IkappaBalpha kinase (IKK), which is needed for NF-kappaB activation. Treatment of MDA 686LN cells with curcumin (diferuloylmethane), a pharmacologically safe chemopreventive agent, inhibited NF-kappaB activation through abrogation of IKK. As a result expression of various cell survival and cell proliferative genes including Bcl-2, cyclin D1, IL-6, COX-2 and MMP-9 was suppressed. This, in turn, inhibits proliferation of all HNSCC cell lines, arrests cell cycle in G1/S phase (MDA 686LN) and induces apoptosis as indicated by upstream and downstream caspase activation, PARP cleavage, annexin V staining in MDA 686LN cells. Suppression of NF-kappaB by cell-permeable p65-based peptide and NBD peptide also inhibited the proliferation and induced apoptosis in these cells. Our results indicate that curcumin is a potent inhibitor of cell proliferation and an inducer of apoptosis in HNSCC through suppression of IKK-mediated NF-kappaB activation and of NF-kappaB-regulated gene expression.
Collapse
Affiliation(s)
- Sita Aggarwal
- Cytokine Research Laboratory, Department of Bioimmunotheraphy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
137
|
Curcumin sensitizes prostate cancer cells to tumor necrosis factor–related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-κB through suppression of IκBα phosphorylation. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.803.3.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Epidemiologic studies suggest that diet rich in plant-derived foods plays an important role in the prevention of prostate cancer. Curcumin, the yellow pigment in the spice turmeric, has been shown to exhibit chemopreventive and growth inhibitory activities against multiple tumor cell lines. We have shown previously that curcumin and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)/Apo2L interact to induce cytotoxicity in the LNCaP prostate cancer cell line. In this study, we investigated the mechanism by which curcumin augments TRAIL-induced cytotoxicity in LNCaP cells. Subtoxic concentrations of the curcumin-TRAIL combination induced strong apoptotic response in LNCaP cells as demonstrated by the binding of Annexin V-FITC and cleavage of procaspase-3. Furthermore, LNCaP cells express constitutively active nuclear factor-κB (NF-κB), which is inhibited by curcumin. Because NF-κB has been shown to mediate resistance to TRAIL-induced apoptosis in tumor cells, we investigated whether there is a relationship between NF-κB activation and resistance to TRAIL in LNCaP prostate cancer cells. Pretreatment with curcumin inhibited the activation of NF-κB and sensitized LNCaP cells to TRAIL. A similar increase in the sensitivity of LNCaP cells to TRAIL-induced apoptosis was observed following inhibition of NF-κB by dominant negative mutant IκBα, an inhibitor of NF-κB. Finally, curcumin was found to inhibit NF-κB by blocking phosphorylation of IκBα. We conclude that NF-κB mediates resistance of LNCaP cells to TRAIL and that curcumin enhances the sensitivity of these tumor cells to TRAIL by inhibiting NF-κB activation by blocking phosphorylation of IκBα and its degradation.
Collapse
|
138
|
Jeong WS, Kim IW, Hu R, Kong ANT. Modulatory Properties of Various Natural Chemopreventive Agents on the Activation of NF-κB Signaling Pathway. Pharm Res 2004; 21:661-70. [PMID: 15139523 DOI: 10.1023/b:pham.0000022413.43212.cf] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To study and compare effects of selected natural chemopreventive agents on the transcription activation of nuclear factor-kappa B (NF-kappaB) in human HT-29 colon cancer cells. METHODS The natural chemopreventive compounds isothiocyanates (ITCs) found in cruciferous vegetables, flavonoids found in green tea, resveratrol (RES) and procyanidin dimers found in red wine, and curcumin (CUR) found in turmeric curry food were examined in this study. HT-29 cells were stably transfected with NF-kappaB luciferase construct, and stable clones were selected. One of the clones, HT-29 N9 cells, was selected and treated with various concentrations of the natural chemopreventive agents and subsequently challenged with NF-kappaB stimulator lipopolysaccharide (LPS), and the luciferase activities were measured. Western blot analysis of phosphorylated IkappaBalpha was performed after treatments with the natural chemopreventive agents. The effects of these agents on cell viability and apoptosis were also evaluated by a nonradioactive cell proliferation MTS assay [3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]. Trypan blue staining, and caspase assay. RESULTS Treatments with the natural chemopreventive compounds resulted in different responses in the NF-kappaB-luciferase assay. ITCs such as phenethyl isothiocyanate (PEITC), sulforaphane (SUL), allyl isothiocyanate (AITC), and curcumin (CUR) strongly inhibited LPS-induced NF-kappaB-luciferase activations, whereas RES increased activation at lower dose, but inhibited activation at higher dose, and tea flavonoids and procyanidin dimers had little or no effects. ITCs, CUR, (-)-epigallocatechin-3-gallate (EGCG), and RES reduced LPS-induced IkappaBalpha phosphorylation. Furthermore, in the MTS assay, PEITC, SUL, and CUR also potently inhibited cell growth. Caspase-3 activity was induced by chemopreventive compounds, however, the kinetics of caspase-3 activation varied between these compounds within the 48-h time period. CONCLUSIONS These results suggest that natural chemopreventive agents have differential biological functions on the signal transduction pathways in the colon and/or colon cancer.
Collapse
Affiliation(s)
- Woo-Sik Jeong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
139
|
Foryst-Ludwig A, Neumann M, Schneider-Brachert W, Naumann M. Curcumin blocks NF-κB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun 2004; 316:1065-72. [PMID: 15044093 DOI: 10.1016/j.bbrc.2004.02.158] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Indexed: 12/12/2022]
Abstract
Infection of epithelial cells by the microbial pathogen Helicobacter pylori leads to activation of the transcription factor nuclear factor kappaB (NF-kappaB), the induction of pro-inflammatory cytokine/chemokine genes, and the motogenic response (cell scattering). Here we report that H. pylori-induced NF-kappaB activation and the subsequent release of interleukin 8 (IL-8) are inhibited by curcumin (diferuloylmethane), a yellow pigment in turmeric (Curcuma longa L.). Our results demonstrate that curcumin inhibits IkappaBalpha degradation, the activity of IkappaB kinases alpha and beta (IKKalpha and beta), and NF-kappaB DNA-binding. The mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases 1/2 (ERK1/2) and p38, which are also activated by H. pylori infection, were not inhibited by curcumin. Further, the H. pylori-induced motogenic response was blocked by curcumin. We conclude that curcumin, due to inhibition of NF-kappaB activation and cell scattering, should be considered as a potential therapeutic agent effective against pathogenic processes initiated by H. pylori infection.
Collapse
Affiliation(s)
- Anna Foryst-Ludwig
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
| | | | | | | |
Collapse
|
140
|
Frondoza CG, Sohrabi A, Polotsky A, Phan PV, Hungerford DS, Lindmark L. An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures. In Vitro Cell Dev Biol Anim 2004; 40:95-101. [PMID: 15311968 DOI: 10.1290/1543-706x(2004)040<0095:aivsaf>2.0.co;2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase (COX)-2, and prostaglandin (PG)E-2 play a critical role in the pathophysiology of arthritis. Tumor necrosis factor-alpha mediates induction of other cytokines, COX-2, PGs, and metalloproteinases, which leads to cartilage degradation. We developed an in vitro human synoviocyte assay system for screening inhibitors of proinflammatory mediators in herbal extracts. Synoviocytes (5 x 10(5) cells/well) obtained during primary knee replacement from osteoarthritic patients were incubated with: control media alone or ginger extract (hydroxy-methoxy-phenyl compounds [HAPC]: EV.EXT 77), 1 h before activation with 1 ng/ml TNF-alpha, 10 ng/ml interleukin-1beta, or control media alone at 5% carbon dioxide, 37 degrees C. Cell viability, TNF-alpha, COX-2, PGE-2, nuclear factor kappaB (NF-kappaB), and inhibitory subunit I kappa B-alpha (IkappaB-alpha) expression were analyzed by reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, and Western blots. Ginger extract-HAPC (100 microg/ml) significantly inhibited the activation of TNF-alpha and COX-2 expression in human synoviocytes as well as suppressed production of TNF-alpha and PGE-2. Inhibition of TNF-alpha and COX-2 activation was accompanied by suppression of NF-kappaB and IkappaB-alpha induction. Using our in vitro assay, we discovered that the ginger extract blocks activation of proinflammatory mediators and its transcriptional regulator suggesting its mode of action. These observations indicate that ginger extract-HAPC offers a complementary and alternative approach to modulate the inflammatory process involved in arthritis.
Collapse
Affiliation(s)
- Carmelita G Frondoza
- Division of Arthritis Surgery, Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Baek OS, Kang OH, Choi YA, Choi SC, Kim TH, Nah YH, Kwon DY, Kim YK, Kim YH, Bae KH, Lim JP, Lee YM. Curcumin inhibits protease-activated receptor-2 and -4-mediated mast cell activation. Clin Chim Acta 2003; 338:135-41. [PMID: 14637278 DOI: 10.1016/j.cccn.2003.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Curcumin, a major yellow pigment and active component of turmeric powder extracted from Curcuma longa L. (Gingiberaceae), has been shown to possess anti-inflammatory and anti-cancer activities. Protease-activated receptors (PARs) play a role in inflammation, and human leukemic mast cells (HMC-1) co-express PAR2 and PAR4. In the present study, the effect of curcumin on PAR2- and PAR4-mediated HMC-1 activation was examined. METHODS HMC-1 cells were stimulated with trypsin (100 nmol/l, PAR2 and PAR4 agonist), SLIGKV-NH(2) (100 microM, PAR2-activating peptide) or GYPGQV-NH(2) (100 micromol/l PAR4-activating peptide) in the presence or absence of curcumin (1, 10, and 100 micromol/l). TNF-alpha secretion was measured by enzyme-linked immunosorbent assay (ELISA). TNF-alpha and tryptase mRNA were measured by reverse-transcription PCR (RT-PCR). Mitogen-activated protein kinase (MAPK) activation was assessed by Western blot analysis. Trypsin activity was measured using the substrate Bz-DL-Arg-p-nitroanilide (BAPNA). RESULTS Curcumin (10 and 100 micromol/l) inhibited TNF-alpha secretion from trypsin or activating peptide-stimulated HMC-1. Curcumin (10 and 100 micromol/l) also inhibited TNF-alpha and tryptase mRNA expression in trypsin-stimulated HMC-1. Furthermore, curcumin inhibited trypsin-induced extracellular signal-regulated kinase (ERK) phosphorylation. However, curcumin did not affect the trypsin activity even at 100 micromol/l. CONCLUSION Curcumin inhibits PAR2- and PAR4-mediated human mast cell activation, not by inhibition of trypsin activity but by block of ERK pathway.
Collapse
Affiliation(s)
- Ok-Seon Baek
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Kumar A, Lnu S, Malya R, Barron D, Moore J, Corry DB, Boriek AM. Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: implications in asthma. FASEB J 2003; 17:1800-11. [PMID: 14519659 DOI: 10.1096/fj.02-1148com] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated the effects of mechanical stretch and induced stimulation of lung parenchyma on the activation of proinflammatory transcription factors in normal mice and in a mouse model of asthma. Mechanical stretching of lung parenchyma led to increased activation of NF-kappaB and AP-1 transcription factors. Incubation of lung parenchyma with methacholine increased the activation of NF-kappaB, which was further augmented by stretch. Activation of NF-kappaB in response to mechanical stretch was associated with the phosphorylation and degradation of IkappaBalpha and the activation of IkappaB kinase. Stretch-induced activation of NF-kappaB involves activation of stretch-activated (SA) channels and the production of free radicals. Mechanical stretch and/or treatment with methacholine resulted in an increased activation of ERK1/2 and p38 MAP kinase, and the inhibition of the activity of these kinases partially blocked the stretch-induced NF-kappaB and AP-1 activation. A greater level of NF-kappaB and ERK1/2 activity was observed in the asthmatic mice, which was further increased by mechanical stretching. The level of cyclooxygenase-2, an NF-kappaB-regulated enzyme, was also higher in lung parenchyma from asthmatic mice than in normal mice. Our data suggest that mechanical stretching of lung parenchyma activates NF-kappaB and AP-1, at least in part, through the activation of MAP kinase signaling pathways.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Punithavathi D, Venkatesan N, Babu M. Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. Br J Pharmacol 2003; 139:1342-50. [PMID: 12890714 PMCID: PMC1573957 DOI: 10.1038/sj.bjp.0705362] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(1) We have studied whether curcumin prevents amiodarone-induced lung fibrosis in rats. Intratracheal instillation of amiodarone (6.25 mg kg(-1) on days 0 and 2, and then killed on day 3, day 5, week 1, week 3 and week 5 after amiodarone administration) induced increases in total protein and lactate dehydrogenase (LDH) activity on days 3 and 5 in bronchoalveolar lavage fluid (BALF). Total cell counts, alveolar macrophages, neutrophils and eosinophils recovered by BAL, and lung myeloperoxidase (MPO) activity were significantly higher in amiodarone rats. (2) Tumor necrosis factor-alpha (TNF-alpha) release after lipopolysaccharide (LPS) stimulation and superoxide anion generation after phorbol myristate acetate (PMA) stimulation were higher in the alveolar macrophages of amiodarone rats at 3 and 5 weeks postamiodarone instillation than in controls. Amiodarone also induced increases in transforming growth factor-beta1 (TGF-beta1) expression, collagen deposition, type I collagen expression and c-Jun protein in lungs. (3) Curcumin (200 mg kg(-1) body weight after first amiodarone instillation and daily thereafter for 5 weeks)-treated amiodarone rats had reduced levels of protein, LDH activity, total cell numbers and differential cell counts in BALF. LPS-stimulated TNF-alpha release and PMA-stimulated superoxide generation were significantly suppressed by curcumin. Furthermore, curcumin inhibited the increases in lung MPO activity, TGF-beta1 expression, lung hydroxyproline content, expression of type I collagen and c-Jun protein in amiodarone rats. Our results have important implications for the treatment of amiodarone-induced lung fibrosis.
Collapse
Affiliation(s)
- Durairaj Punithavathi
- Department of Biotechnology, Central Leather Research Institute, Chennai (Madras), India.
| | | | | |
Collapse
|
144
|
Salh B, Assi K, Templeman V, Parhar K, Owen D, Gómez-Muñoz A, Jacobson K. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol 2003; 285:G235-43. [PMID: 12637253 DOI: 10.1152/ajpgi.00449.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous therapies used for inflammatory bowel disease (IBD) target the transcription factor NF-kappaB, which is involved in the production of cytokines and chemokines integral for inflammation. Here we show that curcumin, a component of the spice turmeric, is able to attenuate colitis in the dinitrobenzene sulfonic acid (DNB)-induced murine model of colitis. When given before the induction of colitis it reduced macroscopic damage scores and NF-kappaB activation. This was accompanied by a reduction in myeloperoxidase activity, and using semiquantitative RT-PCR, an attenuation of the DNB-induced message for IL-1beta was detected. Western blotting analysis revealed that there was a reproducible DNB-induced activation of p38 MAPK detected in intestinal lysates by using a phosphospecific antibody. This signal was significantly attenuated by curcumin. Furthermore, we show that the immunohistochemical signal is dramatically attenuated at the level of the mucosa by curcumin. We conclude that the widely used food additive curcumin is able to attenuate experimental colitis through a mechanism correlated with the inhibition of the activation of NF-kappaB and effects a reduction in the activity of p38 MAPK. We propose that this agent may have therapeutic implications for human IBD.
Collapse
Affiliation(s)
- B Salh
- Jack Bell Research Centre, Children and Women's Hospital, Vancouver, BC, Canada V5Z 3P1
| | | | | | | | | | | | | |
Collapse
|
145
|
Shishodia S, Potdar P, Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 2003; 24:1269-79. [PMID: 12807725 DOI: 10.1093/carcin/bgg078] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) is a major cause of a variety of malignancies including cancers of the larynx, oral cavity and pharynx, esophagus, pancreas, kidney, bladder and lung. The signal transduction pathway that mediates the effects of CS is not well understood but nuclear factor-kappa B (NF-kappaB) is probably involved. The gas phase of CS contains free radicals such as superoxide radicals, hydroxyl radicals and hydrogen peroxide, which potentially can activate NF-kappaB. Benzo[a]pyrene, another potent carcinogen of CS, can also activate NF-kappaB, but by an as yet unknown mechanism. Various other agents that activate NF-kappaB are either tumor initiators or tumor promoters, and NF-kappaB activation can block apoptosis, promote proliferation and mediate tumorigenesis. Therefore, NF-kappaB is an ideal target for preventing CS-induced lung carcinogenesis. Thus, agents that abrogate NF-kappaB activation have the potential to suppress lung carcinogenesis. Because curcumin, a diferuloylmethane, is anticarcinogenic, we investigated the effect of this phytochemical on CS-induced NF-kappaB activation and NF-kappaB-regulated gene expression in human non-small cell lung carcinoma cells. Exposure of cells to CS induced persistent activation of NF-kappaB, and pre-treatment with curcumin abolished the CS-induced DNA-binding of NF-kappaB, IkappaBalpha kinase activation, IkBalpha phosphorylation and degradation, p65 nuclear translocation and CS-induced NF-kappaB-dependent reporter gene expression. The inhibition of NF-kappaB activation correlated with suppression of CS-induced NF-kappaB-dependent cyclin D1, cyclooxygenase-2 and matrix metalloproteinase-9 expression. Overall our results indicate that CS-induced NF-kappaB activation and NF-kappaB-regulated gene expression in human non-small cell lung carcinoma cells is suppressed by curcumin through suppression of IkappaBalpha kinase.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
146
|
Ram A, Das M, Ghosh B. Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biol Pharm Bull 2003; 26:1021-4. [PMID: 12843631 DOI: 10.1248/bpb.26.1021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anti-asthmatic property of curcumin (diferuloylmethane), a natural product from the rhizomes of Curcuma longa, has been tested in a guinea pig model of airway hyperresponsiveness. We sensitized guinea pigs with ovalbumin (OVA) to develop certain characteristic features of asthma: allergen induced airway constriction and airway hyperreactivity to histamine. Guinea pigs were treated with curcumin during sensitization (to examine its preventive effect) or after developing impaired airways features (to examine its therapeutic effect). Status of airway constriction and airway hyperreactivity were determined by measuring specific airway conductance (SGaw) using a non-invasive technique, constant-volume body plethysmography. Curcumin (20 mg/kg body weight) treatment significantly inhibits OVA-induced airway constriction (p<0.0399) and airway hyperreactivity (p<0.0043). The results demonstrate that curcumin is effective in improving the impaired airways features in the OVA-sensitized guinea pigs.
Collapse
Affiliation(s)
- Arjun Ram
- Molecular Immunology and Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Delhi University Campus, India
| | | | | |
Collapse
|
147
|
Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003; 101:1053-62. [PMID: 12393461 DOI: 10.1182/blood-2002-05-1320] [Citation(s) in RCA: 516] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Because of the central role of the transcription factor nuclear factor-kappaB (NF-kappaB) in cell survival and proliferation in human multiple myeloma (MM), we explored the possibility of using it as a target for MM treatment by using curcumin (diferuloylmethane), an agent known to have very little or no toxicity in humans. We found that NF-kappaB was constitutively active in all human MM cell lines examined and that curcumin, a chemopreventive agent, down-regulated NF-kappaB in all cell lines as indicated by electrophoretic mobility gel shift assay and prevented the nuclear retention of p65 as shown by immunocytochemistry. All MM cell lines showed consitutively active IkappaB kinase (IKK) and IkappaBalpha phosphorylation. Curcumin suppressed the constitutive IkappaBalpha phosphorylation through the inhibition of IKK activity. Curcumin also down-regulated the expression of NF-kappaB-regulated gene products, including IkappaBalpha, Bcl-2, Bcl-x(L), cyclin D1, and interleukin-6. This led to the suppression of proliferation and arrest of cells at the G(1)/S phase of the cell cycle. Suppression of NF-kappaB complex by IKKgamma/NF-kappaB essential modulator-binding domain peptide also suppressed the proliferation of MM cells. Curcumin also activated caspase-7 and caspase-9 and induced polyadenosine-5'-diphosphate-ribose polymerase (PARP) cleavage. Curcumin-induced down-regulation of NF-kappaB, a factor that has been implicated in chemoresistance, also induced chemosensitivity to vincristine and melphalan. Overall, our results indicate that curcumin down-regulates NF-kappaB in human MM cells, leading to the suppression of proliferation and induction of apoptosis, thus providing the molecular basis for the treatment of MM patients with this pharmacologically safe agent.
Collapse
Affiliation(s)
- Alok C Bharti
- Cytokine Research Section, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
148
|
Abstract
Nuclear factor-kappaB is a transcriptional factor required for the gene expression of many inflammatory mediators. Nuclear factor-kappaB activation requires removal and degradation of its inhibitor kappaB, an event that occurs after phosphorylation of inhibitor kappaB by a complex of inhibitor kappaB kinases. These events allow nuclear factor-kappaB to translocate into the nucleus, where it binds to kappaB elements and initiates transcription. Inappropriate and prolonged activation of nuclear factor-kappaB has been linked to several diseases associated with inflammatory events, including septic shock, acute respiratory distress syndrome, ischemia, and reperfusion injury. Thus, the key role of nuclear factor-kappaB in regulating inflammation makes this factor a therapeutic target for reducing tissue and organ damage. Regulation and control of nuclear factor-kappaB can be achieved by gene modification strategies or by pharmacologic inhibition of the key components of the cascade that leads to nuclear factor-kappaB activation. The purpose of our review is to describe these novel therapeutic approaches and their potential efficacy.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Children's Hospital Medical Center, Division of Critical Care Medicine, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
149
|
Sang Choe E, Warrier B, Soo Chun J, Cheol Park J, Lee CH. EDTA-induced activation of Ca-regulated proteins in the vaginal mucosa. ACTA ACUST UNITED AC 2003; 68:159-67. [PMID: 14661261 DOI: 10.1002/jbm.a.20047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of EDTA on the expression and topologic localization of mitogen-activated protein (MAP) kinases (ERK, JNK, and p38), along with nitric oxide synthase (NOS), I-KappaB, and p53 were examined to elucidate the host response provoked by the intravaginal application of a female controlled drug delivery system (FcDDS) containing a spermicidal/microbicidal agent and EDTA. Immunohistochemical and immunoblotting studies were conducted to identify and quantitate the EDTA-inducible proteins in vaginal mucosa. The content of nitrite, which is one of the primary stable breakdown products of nitric oxide (NO), was determined to correlate the expression of NOS with NO formation in HeLa cervical carcinoma cell line. The immunohistochemical study demonstrated that the modulation of the calcium gradient by EDTA activated MAP kinases (ERK and JNK) in the rabbit vaginal mucosa. The results of Western immunoblot study demonstrated differential expression of MAP kinases (ERK and JNK) with EDTA treatment, whereas the expression of NOS and NF-KappaB was not affected by EDTA. There was no significant difference in nitrite production in the HeLa cell line upon exposure to EDTA compared with the control, which was consistent with the results of the Western blot study. The results of this work support that the regulation of MAP kinase was affected by calcium, which is controlled by chelation activity of EDTA. The specific tissue responses exerted by the loading components of a biomaterial-based system should be fully taken into consideration for its intravaginal application.
Collapse
Affiliation(s)
- Eun Sang Choe
- Department of Biology, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | |
Collapse
|
150
|
Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 2002; 21:8852-61. [PMID: 12483537 DOI: 10.1038/sj.onc.1206048] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 09/10/2002] [Accepted: 09/16/2002] [Indexed: 01/19/2023]
Abstract
Cyclin D1 is a proto-oncogene that is overexpressed in many cancers including breast and prostate. It plays a role in cell proliferation through activation of cyclin-dependent kinases. Curcumin, a diferuloylmethane, is a chemopreventive agent known to inhibit the proliferation of several breast and prostate cancer cell lines. It is possible that the effect of curcumin is mediated through the regulation of cyclin D1. In the present report we show that inhibition of the proliferation of various prostate, breast and squamous cell carcinoma cell lines by curcumin correlated with the down-regulation of the expression of cyclin D1 protein. In comparison, the down-regulation by curcumin of cyclin D2 and cyclin D3 was found only in selective cell lines. The suppression of cyclin D1 by curcumin led to inhibition of CDK4-mediated phosphorylation of retinoblastoma protein. We found that curcumin-induced down-regulation of cyclin D1 was inhibited by lactacystin, an inhibitor of 26S proteosome, suggesting that curcumin represses cyclin D1 expression by promoting proteolysis. We found that curcumin also down-regulated mRNA expression, thus suggesting transcriptional regulation. Curcumin also inhibited the activity of the cyclin D1 promoter-dependent reporter gene expression. Overall our results suggest that curcumin down-regulates cyclin D1 expression through activation of both transcriptional and post-transcriptional mechanisms, and this may contribute to the antiproliferative effects of curcumin against various cell types.
Collapse
Affiliation(s)
- Asok Mukhopadhyay
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, Texas, TX 77030, USA
| | | | | | | | | | | |
Collapse
|