101
|
Karaolis DKR, Newstead MW, Zeng X, Hyodo M, Hayakawa Y, Bhan U, Liang H, Standiford TJ. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 2007; 75:4942-50. [PMID: 17646358 PMCID: PMC2044534 DOI: 10.1128/iai.01762-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 12/18/2006] [Accepted: 07/09/2007] [Indexed: 12/26/2022] Open
Abstract
Innate immunity is the primary mechanism by which extracellular bacterial pathogens are effectively cleared from the lung. We have previously shown that cyclic di-GMP (c-di-GMP [c-diguanylate]) is a novel small molecule immunomodulator and immunostimulatory agent that triggers protective host innate immune responses. Using a murine model of bacterial pneumonia, we show that local intranasal (i.n.) or systemic subcutaneous (s.c.) administration of c-di-GMP prior to intratracheal (i.t.) challenge with Klebsiella pneumoniae stimulates protective immunity against infection. Specifically, i.n. or s.c. administration of c-di-GMP 48 and 24 h prior to i.t. K. pneumoniae challenge resulted in significantly increased survival. Pretreatment with c-di-GMP resulted in a 5-fold reduction in bacterial CFU in the lung (P < 0.05) and an impressive >1,000-fold decrease in CFU in the blood (P < 0.01). c-di-GMP administration stimulated a robust innate response to bacterial challenge, characterized by enhanced accumulation of neutrophils and alphabeta T cells, as well as activated NK and alphabeta T lymphocytes, which was associated with earlier and more vigorous expression of chemokines and type I cytokines. Moreover, lung macrophages recovered from Klebsiella-infected mice pretreated with c-di-GMP expressed greater quantities of inducible nitric oxide synthase and nitric oxide ex vivo than did macrophages isolated from infected mice pretreated with the control, c-GMP. These findings demonstrate that c-di-GMP delivered in either a compartmentalized or systemic fashion stimulates protective innate immunity in the lung and protects mice against bacterial invasion. We propose that the cyclic dinucleotide c-di-GMP may be used clinically as an effective immunomodulator, immune enhancer, and vaccine adjuvant to protect against respiratory infection and pneumonia in humans and animals.
Collapse
|
102
|
Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 2007; 65:876-95. [PMID: 17645452 DOI: 10.1111/j.1365-2958.2007.05817.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous bacterial second messenger c-di-GMP regulates the expression of various virulence determinants in a wide range of bacterial pathogens. Several studies have suggested that proteins with a PilZ domain function as c-di-GMP receptors. We have identified in the Pseudomonas aeruginosa genome eight genes encoding for PilZ orhologues and demonstrated binding of c-di-GMP to all but one of these proteins in a direct ligand binding assay. One protein with the PilZ domain, Alg44, is involved in biosynthesis of the extracellular polysaccharide alginate. We have shown that increasing c-di-GMP levels by overexpression of highly active diguanylate cyclases, or hydrolysis of c-di-GMP by phosphodiesterases, enhanced or reduced formation of alginate in mucoid strains, respectively. We have engineered substitutions in several conserved residues of the PilZ domain of Alg44 determined that they resulted in simultaneous loss of c-di-GMP binding and the ability to support production of alginate in P. aeruginosa. A 6xHis-tagged Alg44 fusion was also shown to localize in the membrane fraction of P. aeruginosa independently from its ability to bind c-di-GMP. Alg44 appears to be an essential component of the alginate biosynthetic apparatus, where, following binding of c-di-GMP, it controls polymerization or transport of the polysaccharide.
Collapse
Affiliation(s)
- Massimo Merighi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
103
|
Ebensen T, Schulze K, Riese P, Morr M, Guzmán CA. The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:952-8. [PMID: 17567766 PMCID: PMC2044480 DOI: 10.1128/cvi.00119-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of mucosal adjuvants is still a critical need in vaccinology. In the present work, we show that bis(3',5')-cyclic dimeric GMP (cdiGMP), a second messenger that modulates cell surface properties of several microorganisms, exerts potent activity as a mucosal adjuvant. BALB/c mice were immunized intranasally with the model antigen beta-galactosidase (beta-Gal) coadministered with cdiGMP. Animals receiving cdiGMP as an adjuvant showed significantly higher anti-beta-Gal immunoglobulin G (IgG) titers in sera than controls (i.e., 512-fold [P < 0.05]). Coadministration of cdiGMP also stimulated efficient beta-Gal-specific secretory IgA production in the lung (P < 0.016) and vagina (P < 0.036). Cellular immune responses were observed in response to both the beta-Gal protein and a peptide encompassing its major histocompatibility complex class I-restricted epitope. The IgG1-to-IgG2a ratio of anti-beta-Gal antibodies and the observed profiles of secreted cytokines suggest that a dominant Th1 response pattern is promoted by mucosal coadministration of cdiGMP. Finally, the use of cdiGMP as a mucosal adjuvant also led to the stimulation of in vivo cytotoxic T-lymphocyte responses in C57BL/6 mice intranasally immunized with ovalbumin and cdiGMP (up to 30% of specific lysis). The results obtained indicate that cdiGMP is a promising tool for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
104
|
Yan H, Aguilar AL. Synthesis of 3',5'-cyclic diguanylic acid (cdiGMP) using 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl as a protecting group for 2'-hydroxy functions of ribonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:189-204. [PMID: 17365797 DOI: 10.1080/15257770601112762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We herein report a convenient synthesis of 3',5'-cyclic diguanylic acid via the modified H-phosphonate approach. The 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl (Cpep) group was used as protecting group for the 2'-hydroxy functions of ribonucleosides. Complete unblocking of the fully protected 3',5'-cyclic diguanylic acid gave cdiGMP as a homogeneous compound in an excellent yield.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University. St. Catharines, Ontario, Canada.
| | | |
Collapse
|
105
|
Karaolis DKR, Means TK, Yang D, Takahashi M, Yoshimura T, Muraille E, Philpott D, Schroeder JT, Hyodo M, Hayakawa Y, Talbot BG, Brouillette E, Malouin F. Bacterial c-di-GMP is an immunostimulatory molecule. THE JOURNAL OF IMMUNOLOGY 2007; 178:2171-81. [PMID: 17277122 DOI: 10.4049/jimmunol.178.4.2171] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic diguanylate (c-di-GMP) is a bacterial intracellular signaling molecule. We have shown that treatment with exogenous c-di-GMP inhibits Staphylococcus aureus infection in a mouse model. We now report that c-di-GMP is an immodulator and immunostimulatory molecule. Intramammary treatment of mice with c-di-GMP 12 and 6 h before S. aureus challenge gave a protective effect and a 10,000-fold reduction in CFUs in tissues (p < 0.001). Intramuscular vaccination of mice with c-di-GMP coinjected with S. aureus clumping factor A (ClfA) Ag produced serum with significantly higher anti-ClfA IgG Ab titers (p < 0.001) compared with ClfA alone. Intraperitoneal injection of mice with c-di-GMP activated monocyte and granulocyte recruitment. Human immature dendritic cells (DCs) cultured in the presence of c-di-GMP showed increased expression of costimulatory molecules CD80/CD86 and maturation marker CD83, increased MHC class II and cytokines and chemokines such as IL-12, IFN-gamma, IL-8, MCP-1, IFN-gamma-inducible protein 10, and RANTES, and altered expression of chemokine receptors including CCR1, CCR7, and CXCR4. c-di-GMP-matured DCs demonstrated enhanced T cell stimulatory activity. c-di-GMP activated p38 MAPK in human DCs and ERK phosphorylation in human macrophages. c-di-GMP is stable in human serum. We propose that cyclic dinucleotides like c-di-GMP can be used clinically in humans and animals as an immunomodulator, immune enhancer, immunotherapeutic, immunoprophylactic, or vaccine adjuvant.
Collapse
|
106
|
Abstract
Cyclic-di-GMP is a ubiquitous second messenger in bacteria. The recent discovery that c-di-GMP antagonistically controls motility and virulence of single, planktonic cells on one hand and cell adhesion and persistence of multicellular communities on the other has spurred interest in this regulatory compound. Cellular levels of c-di-GMP are controlled through the opposing activities of diguanylate cyclases and phosphodiesterases, which represent two large families of output domains found in bacterial one- and two-component systems. This review concentrates on structural and functional aspects of diguanylate cyclases and phosphodiesterases, and on their role in transmitting environmental stimuli into a range of different cellular functions. In addition, we examine several well-established model systems for c-di-GMP signaling, including Pseudomonas, Vibrio, Caulobacter, and Salmonella.
Collapse
Affiliation(s)
- Urs Jenal
- Biozentrum of the University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
107
|
Christen M, Christen B, Allan MG, Folcher M, Jenö P, Grzesiek S, Jenal U. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 2007; 104:4112-7. [PMID: 17360486 PMCID: PMC1805490 DOI: 10.1073/pnas.0607738104] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria are able to switch between two mutually exclusive lifestyles, motile single cells and sedentary multicellular communities that colonize surfaces. These behavioral changes contribute to an increased fitness in structured environments and are controlled by the ubiquitous bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP). In response to changing environments, fluctuating levels of c-di-GMP inversely regulate cell motility and cell surface adhesins. Although the synthesis and breakdown of c-di-GMP has been studied in detail, little is known about the downstream effector mechanisms. Using affinity chromatography, we have isolated several c-di-GMP-binding proteins from Caulobacter crescentus. One of these proteins, DgrA, is a PilZ homolog involved in mediating c-di-GMP-dependent control of C. crescentus cell motility. Biochemical and structural analysis of DgrA and homologs from C. crescentus, Salmonella typhimurium, and Pseudomonas aeruginosa demonstrated that this protein family represents a class of specific diguanylate receptors and suggested a general mechanism for c-di-GMP binding and signal transduction. Increased concentrations of c-di-GMP or DgrA blocked motility in C. crescentus by interfering with motor function rather than flagellar assembly. We present preliminary evidence implicating the flagellar motor protein FliL in DgrA-dependent cell motility control.
Collapse
Affiliation(s)
- Matthias Christen
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Beat Christen
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Martin G. Allan
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Marc Folcher
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Paul Jenö
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Stephan Grzesiek
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
- To whom correspondence should be addressed at:
Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland. E-mail:
| |
Collapse
|
108
|
Dudley R, Alsam S, Khan NA. Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl Microbiol Biotechnol 2007; 75:133-40. [PMID: 17225099 DOI: 10.1007/s00253-006-0793-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
Acanthamoeba is an opportunistic protozoan pathogen that can cause blinding keratitis as well as fatal granulomatous encephalitis. One of the distressing aspects in combating Acanthamoeba infections is the prolonged and problematic treatment. For example, current treatment against Acanthamoeba keratitis requires early diagnosis followed by hourly topical application of a mixture of drugs that can last up to a year. The aggressive and prolonged management is due to the ability of Acanthamoeba to rapidly adapt to harsh conditions and switch phenotypes into a resistant cyst form. One possibility of improving the treatment of Acanthamoeba infections is to inhibit the ability of these parasites to switch into the cyst form. The cyst wall is partially made of cellulose. Here, we tested whether a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), can enhance the effects of the antiamoebic drug pentamidine isethionate (PMD). Our findings revealed that DCB can block Acanthamoeba encystment and may improve the antiamoebic effects of PMD. Using in vitro assays, the findings revealed that DCB enhanced the inhibitory effects of PMD on Acanthamoeba binding to and cytotoxicity of the host cells, suggesting the cellulose biosynthesis pathway as a novel target for the improved treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Ricky Dudley
- School of Biological and Chemical Sciences, Birkbeck College, University of London, London, England, UK
| | | | | |
Collapse
|
109
|
Cotter PA, Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 2007; 10:17-23. [PMID: 17208514 DOI: 10.1016/j.mib.2006.12.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/19/2006] [Indexed: 12/25/2022]
Abstract
It is now apparent that the signaling molecule 3',5'-cyclic diguanylic acid (c-di-GMP) is a central regulator of the prokaryote biofilm lifestyle and recent evidence also links this molecule to virulence. Environmentally responsive signal transduction systems that control expression and/or activity of the enzymes (GGDEF and EAL domain containing proteins) that are responsible for synthesis and degradation of c-di-GMP have recently been identified. Members of the phosphorelay family feature prominently amongst these systems, which include several with hybrid polydomain sensors and one that is similar to well-characterized chemotaxis-controlling pathways. These findings support the hypothesis that c-di-GMP levels are tightly controlled in response to a broad range, in terms of both diversity and intensity, of extracellular signals. Insight into how c-di-GMP affects changes in gene expression and/or protein activity has come from the demonstration that proteins containing the PilZ domain can bind c-di-GMP and control phenotypes involved in biofilm formation and virulence. These recent developments should pave the way for researchers to answer the important question of how a vast array of extracellular signals that are sensed by multiple sensory transduction pathways which all lead to the production or destruction of c-di-GMP are coordinated such that the appropriate phenotypic response is produced.
Collapse
Affiliation(s)
- Peggy A Cotter
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | |
Collapse
|
110
|
Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 2006; 188:7335-43. [PMID: 17050921 PMCID: PMC1636253 DOI: 10.1128/jb.00599-06] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple environmental cues have been shown to trigger biofilm detachment, the transition from surface-attached, highly organized communities known as biofilms to the motile lifestyle. The goal of this study was to identify a gene product involved in sensing environmental cues that trigger biofilm dispersion in Pseudomonas aeruginosa. To do so, we focused on novel putative chemotaxis transducer proteins that could potentially be involved in environmental sensing. We identified a locus encoding such a protein that played a role in detachment, as indicated by the observation that an isogenic mutant biofilm could not disperse in response to a variety of environmental cues. The locus was termed bdlA for biofilm dispersion locus. The BdlA protein harbors an MCP (methyl-accepting chemotaxis protein) domain and two PAS (Per-Arnt-Sint) domains that have been shown to be essential for responding to environmental signals in other proteins. The dispersion-deficient phenotype of the bdlA mutant was confirmed by treatment with the biocide H(2)O(2) and by microscopic observations. The dispersion response was independent of motility. bdlA mutant biofilms were found to have increased adherent properties and increased intracellular levels of cyclic di-GMP (c-di-GMP). Our findings suggest that BdlA may be a link between sensing environmental cues, c-di-GMP levels, and detachment. Based on our findings, a possible involvement of BdlA in a signaling cascade resulting in biofilm dispersion is discussed.
Collapse
Affiliation(s)
- Ryan Morgan
- Department of Biological Sciences, Binghamton University, SUNY at Binghamton, 104 Science III, NY 13902, USA
| | | | | | | | | |
Collapse
|
111
|
Ebensen T, Schulze K, Riese P, Link C, Morr M, Guzmán CA. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine 2006; 25:1464-9. [PMID: 17187906 DOI: 10.1016/j.vaccine.2006.10.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 01/09/2023]
Abstract
The identification of new adjuvants is a critical need in vaccinology. In this work, it is demonstrated that bis-(3',5')-cyclic dimeric guanosine monophosphate (cdiGMP) exhibits potent adjuvant properties. Subcutaneous co-administration of cdiGMP with beta-galactosidase (beta-Gal) to mice resulted in the elicitation of significantly higher antigen-specific serum IgG titres than in animals receiving beta-Gal alone. Strong cellular immune responses, which were characterized by a balanced Th1/Th2 pattern, were also observed in response to the beta-Gal protein and a peptide encompassing its MHC class I-restricted epitope in immunized animals. These results suggest that cdiGMP represents a promising adjuvant for vaccine development.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Ryjenkov DA, Simm R, Römling U, Gomelsky M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 2006; 281:30310-4. [PMID: 16920715 DOI: 10.1074/jbc.c600179200] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous bacterial second messenger c-di-GMP controls exopolysaccharide synthesis, flagella- and pili-based motility, gene expression, and interactions of bacteria with eukaryotic hosts. With the exception of bacterial cellulose synthases, the identities of c-di-GMP receptors and end targets have remained unknown. Recently, Amikam and Galperin (Amikam, D., and Galperin, M. (2006) Bioinformatics 22, 3-6) hypothesized that the PilZ domains present in the BcsA subunits of bacterial cellulose synthases function in c-di-GMP binding. This hypothesis has been tested here using the Escherichia coli PilZ domain protein YcgR, its individual PilZ domain and the PilZ domain from Gluconacetobacter xylinus BcsA. YcgR was purified and found to bind c-di-GMP tightly and specifically, Kd 0.84 microm. Individual PilZ domains from YcgR and BcsA also bound c-di-GMP, albeit with lesser affinity, indicating that PilZ is sufficient for binding. The site-directed mutagenesis performed on YcgR implicated the most conserved residues in the PilZ domain directly in c-di-GMP binding. It is suggested that c-di-GMP binding to PilZ brings about conformational changes in the protein that stabilize the bound ligand and initiate the downstream signal transduction cascade. While the identity of the downstream partner(s) of YcgR remains unknown, it is shown that YcgR regulates flagellum-based motility in a c-di-GMP-dependent manner. The inactivation of ycgR improves swimming and swarming motility of the poorly motile yhjH mutants of Salmonella enterica serovar Typhimurium UMR1. Therefore, biochemical and genetic evidence presented here establishes PilZ as a long sought after c-di-GMP-binding domain and YcgR as a c-di-GMP receptor affecting motility in enterobacteria.
Collapse
Affiliation(s)
- Dmitri A Ryjenkov
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
113
|
Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 2006; 188:2681-91. [PMID: 16547056 PMCID: PMC1428383 DOI: 10.1128/jb.188.7.2681-2691.2006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral-reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a DeltamxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.
Collapse
Affiliation(s)
- Kai M Thormann
- Department of Civil Engineering, James H. Clark Center for Biomedical Engineering and Science, Stanford University, Stanford, CA 94305-5429, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Cyclization versus oligomerization of SP- and RP-5′-OH-N4-benzoyl-2′-deoxycytidine-3′-O-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)s. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Hyodo M, Sato Y, Hayakawa Y. Synthesis of cyclic bis(3′-5′)diguanylic acid (c-di-GMP) analogs. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
116
|
Méndez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernández J. Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3',5'-cyclic diguanylic acid. J Biol Chem 2006; 281:8090-9. [PMID: 16418169 DOI: 10.1074/jbc.m510701200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic diguanylic acid (c-di-GMP; cGpGp) is a global second messenger controlling motility and adhesion in bacterial cells. Intracellular concentrations of c-di-GMP depend on two opposite activities: diguanylate cyclase, recently assigned to the widespread GGDEF domain, and c-di-GMP-specific phosphodiesterase, associated with proteins harboring the EAL domain. To date, little is known about the targets of c-di-GMP in the cell or if it affects transcriptional regulation of certain genes. In order to expand our knowledge of the effect of this molecule on the bacterial metabolism, here we report on the Escherichia coli transcriptional profile under high levels of c-di-GMP. We show that an important number of genes encoding cell surface and membrane-bound proteins are altered in their transcriptional activity. On the other hand, genes encoding several transcriptional factors, such as Fur, RcsA, SoxS, and ZraR, are up-regulated, and others, such as GadE, GadX, GcvA, and MetR, are down-regulated. Transcription of motility and cell division genes were altered, and consistent with this was the physiological analysis of cells overexpressing yddV, a diguanylate cyclase; these cells displayed an abnormal cell division process when high levels of c-di-GMP were present. We also show evidence that the diguanylate cyclase gene yddV is co-transcribed with dos, a heme base oxygen sensor with c-di-GMP-specific phosphodiesterase activity. A delta dos::kan mutation rendered the cells unable to divide properly, suggesting that dos and yddV may be part of a fine-tuning mechanism for regulating the intracellular levels of c-di-GMP.
Collapse
MESH Headings
- Bacteriophages/metabolism
- Biofilms
- Cell Division
- Cell Movement
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA/chemistry
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Down-Regulation
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Guanosine Monophosphate/analogs & derivatives
- Guanosine Monophosphate/chemistry
- Guanosine Monophosphate/metabolism
- Kinetics
- Microscopy, Electron
- Models, Chemical
- Models, Genetic
- Mutagenesis
- Mutation
- Oligonucleotide Array Sequence Analysis
- Oxygen/metabolism
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- M Marcela Méndez-Ortiz
- Laboratorio de Microbiología y Genética Molecular, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
117
|
Bobrov AG, Kirillina O, Perry RD. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 2005; 247:123-30. [PMID: 15935569 DOI: 10.1016/j.femsle.2005.04.036] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/13/2005] [Accepted: 04/26/2005] [Indexed: 11/22/2022] Open
Abstract
In Yersinia pestis, biofilm formation is stimulated by HmsT, a GGDEF-domain containing protein that synthesizes cyclic-di-GMP (c-di-GMP), and inhibited by HmsP, an EAL-domain protein. Only the EAL-domain portion of HmsP is required to inhibit biofilm formation. The EAL domain of HmsP was purified as a 6XHis-tag fusion protein and demonstrated to have phosphodiesterase activity using bis(p-nitrophenyl) phosphate (bis-pNPP) as a substrate. This enzymatic activity was strictly manganese dependent. A critical residue (E506) of HmsP within the EAL domain, that is required for inhibition of biofilm formation, is also essential for this phosphodiesterase activity. While the proposed function of EAL-domain proteins is to linearize c-di-GMP, this is a direct demonstration of the required phosphodiesterase activity of a purified EAL-domain protein.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
118
|
Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 2005; 187:4774-81. [PMID: 15995192 PMCID: PMC1169503 DOI: 10.1128/jb.187.14.4774-4781.2005] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EAL domain (also known as domain of unknown function 2 or DUF2) is a ubiquitous signal transduction protein domain in the Bacteria. Its involvement in hydrolysis of the novel second messenger cyclic dimeric GMP (c-di-GMP) was demonstrated in vivo but not in vitro. The EAL domain-containing protein Dos from Escherichia coli was reported to hydrolyze cyclic AMP (cAMP), implying that EAL domains have different substrate specificities. To investigate the biochemical activity of EAL, the E. coli EAL domain-containing protein YahA and its individual EAL domain were overexpressed, purified, and characterized in vitro. Both full-length YahA and the EAL domain hydrolyzed c-di-GMP into linear dimeric GMP, providing the first biochemical evidence that the EAL domain is sufficient for phosphodiesterase activity. This activity was c-di-GMP specific, optimal at alkaline pH, dependent on Mg(2+) or Mn(2+), strongly inhibited by Ca(2+), and independent of protein oligomerization. Linear dimeric GMP was shown to be 5'pGpG. The EAL domain from Dos was overexpressed, purified, and found to function as a c-di-GMP-specific phosphodiesterase, not as a cAMP-specific phosphodiesterase, in contrast to previous reports. The EAL domains can hydrolyze 5'pGpG into GMP, however, very slowly, thus implying that this activity is irrelevant in vivo. Therefore, c-di-GMP is the exclusive substrate of EAL. Multiple-sequence alignment revealed two groups of EAL domains hypothesized to correspond to enzymatically active and inactive domains. The domains in the latter group have mutations in residues conserved in the active domains. The enzymatic inactivity of EAL domains may explain their coexistence with GGDEF domains in proteins possessing c-di-GMP synthase (diguanulate cyclase) activity.
Collapse
Affiliation(s)
- Andrew J Schmidt
- Department of Molecular Biology, University of Wyoming, Laramie, 82071, USA
| | | | | |
Collapse
|
119
|
Chakraborty TK, Koley D, Prabhakar S, Ravi R, Kunwar AC. Synthesis and conformational studies of amide-linked cyclic homooligomers of a thymidine-based nucleoside amino acid. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.07.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
120
|
Tamayo R, Tischler AD, Camilli A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 2005; 280:33324-30. [PMID: 16081414 PMCID: PMC2776828 DOI: 10.1074/jbc.m506500200] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The newly recognized bacterial second messenger 3',5'-cyclic diguanylic acid (cyclic diguanylate (c-di-GMP)) has been shown to regulate a wide variety of bacterial behaviors and traits. Biosynthesis and degradation of c-di-GMP have been attributed to the GGDEF and EAL protein domains, respectively, based primarily on genetic evidence. Whereas the GGDEF domain was demonstrated to possess diguanylate cyclase activity in vitro, the EAL domain has not been tested directly for c-di-GMP phosphodiesterase activity. This study describes the analysis of c-di-GMP hydrolysis by an EAL domain protein in a purified system. The Vibrio cholerae EAL domain protein VieA has been shown to inversely regulate biofilm-specific genes (vps) and virulence genes (ctxA), presumably by decreasing the cellular pool of c-di-GMP. VieA was maximally active at neutral pH, physiological ionic strength, and ambient temperatures and demonstrated c-di-GMP hydrolytic activity with a Km of 0.06 microM. VieA was unable to hydrolyze cGMP. The putative metal coordination site of the EAL domain, Glu170, was demonstrated to be necessary for VieA activity. Furthermore, the divalent cations Mg2+ and Mn2+ were necessary for VieA activity; conversely, Ca2+ and Zn2+ were potent inhibitors of the VieA phosphodiesterase. Calcium inhibition of the VieA EAL domain provides a potential mechanism for regulation of c-di-GMP degradation.
Collapse
Affiliation(s)
- Rita Tamayo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Anna D. Tischler
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Andrew Camilli
- Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, Massachusetts 02111
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
121
|
Brouillette E, Hyodo M, Hayakawa Y, Karaolis DKR, Malouin F. 3',5'-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob Agents Chemother 2005; 49:3109-13. [PMID: 16048911 PMCID: PMC1196217 DOI: 10.1128/aac.49.8.3109-3113.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic dinucleotide 3',5'-cyclic diguanylic acid (c-di-GMP) is a naturally occurring small molecule that regulates important signaling systems in bacteria. We have recently shown that c-di-GMP inhibits Staphylococcus aureus biofilm formation in vitro and its adherence to HeLa cells. We now report that c-di-GMP treatment has an antimicrobial and antipathogenic activity in vivo and reduces, in a dose-dependent manner, bacterial colonization by biofilm-forming S. aureus strains in a mouse model of mastitis infection. Intramammary injections of 5 and 50 nmol of c-di-GMP decreased colonization (bacterial CFU per gram of gland) by 0.79 (P > 0.05) and 1.44 (P < 0.01) logs, respectively, whereas 200-nmol doses allowed clearance of the bacteria below the detection limit with a reduction of more than 4 logs (P < 0.001) compared to the untreated control groups. These results indicate that cyclic dinucleotides potentially represent an attractive and novel drug platform which could be used alone or in combination with other agents or drugs in the prevention, treatment, or control of infection.
Collapse
Affiliation(s)
- Eric Brouillette
- CEVDM, Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
122
|
Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436:1171-5. [PMID: 16121184 DOI: 10.1038/nature03912] [Citation(s) in RCA: 881] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 06/09/2005] [Indexed: 12/24/2022]
Abstract
Biofilms are adherent aggregates of bacterial cells that form on biotic and abiotic surfaces, including human tissues. Biofilms resist antibiotic treatment and contribute to bacterial persistence in chronic infections. Hence, the elucidation of the mechanisms by which biofilms are formed may assist in the treatment of chronic infections, such as Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Here we show that subinhibitory concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and Escherichia coli. In P. aeruginosa, a gene, which we designated aminoglycoside response regulator (arr), was essential for this induction and contributed to biofilm-specific aminoglycoside resistance. The arr gene is predicted to encode an inner-membrane phosphodiesterase whose substrate is cyclic di-guanosine monophosphate (c-di-GMP)-a bacterial second messenger that regulates cell surface adhesiveness. We found that membranes from arr mutants had diminished c-di-GMP phosphodiesterase activity, and P. aeruginosa cells with a mutation changing a predicted catalytic residue of Arr were defective in their biofilm response to tobramycin. Furthermore, tobramycin-inducible biofilm formation was inhibited by exogenous GTP, which is known to inhibit c-di-GMP phosphodiesterase activity. Our results demonstrate that biofilm formation can be a specific, defensive reaction to the presence of antibiotics, and indicate that the molecular basis of this response includes alterations in the level of c-di-GMP.
Collapse
Affiliation(s)
- Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
123
|
Karaolis DKR, Rashid MH, Chythanya R, Luo W, Hyodo M, Hayakawa Y. c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob Agents Chemother 2005; 49:1029-38. [PMID: 15728899 PMCID: PMC549248 DOI: 10.1128/aac.49.3.1029-1038.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of humans and animals, and antibiotic resistance is a public health concern. Biofilm formation is essential in virulence and pathogenesis, and the ability to resist antibiotic treatment results in difficult-to-treat and persistent infections. As such, novel antimicrobial approaches are of great interest to the scientific, medical, and agriculture communities. We recently proposed that modulating levels of the cyclic dinucleotide signaling molecule, c-di-GMP (cyclic diguanylate [3',5'-cyclic diguanylic acid], cGpGp), has utility in regulating phenotypes of prokaryotes. We report that extracellular c-di-GMP shows activity against human clinical and bovine intramammary mastitis isolates of S. aureus, including methicillin-resistant S. aureus (MRSA) isolates. We show that chemically synthesized c-di-GMP is soluble and stable in water and physiological saline and stable following boiling and exposure to acid and alkali. Treatment of S. aureus with extracellular c-di-GMP inhibited cell-to-cell (intercellular) adhesive interactions in liquid medium and reduced (>50%) biofilm formation in human and bovine isolates compared to untreated controls. c-di-GMP inhibited the adherence of S. aureus to human epithelial HeLa cells. The cyclic nucleotide analogs cyclic GMP and cyclic AMP had a lesser inhibitory effect on biofilms, while 5'-GMP had no major effect. We propose that cyclic dinucleotides such as c-di-GMP, used either alone or in combination with other antimicrobial agents, represent a novel and attractive approach in the development of intervention strategies for the prevention of biofilms and the control and treatment of infection.
Collapse
Affiliation(s)
- David K R Karaolis
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
124
|
García B, Latasa C, Solano C, García-del Portillo F, Gamazo C, Lasa I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 2004; 54:264-77. [PMID: 15458421 DOI: 10.1111/j.1365-2958.2004.04269.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enterica serovar Typhimurium is capable of producing cellulose as the main exopolysaccharide compound of the biofilm matrix. It has been shown for Gluconacetobacter xylinum that cellulose biosynthesis is allosterically regulated by bis-(3',5') cyclic diguanylic acid, whose synthesis/degradation depends on diguanylate cyclase/phosphodiesterase enzymatic activities. A protein domain, named GGDEF, is present in all diguanylate cyclase/phosphodiesterase enzymes that have been studied to date. In this study, we analysed the molecular mechanisms responsible for the failure of Salmonella typhimurium strain SL1344 to form biofilms under different environmental conditions. Using a complementation assay, we were able to identify two genes, which can restore the biofilm defect of SL1344 when expressed from the plasmid pBR328. Based on the observation that one of the genes, STM1987, contains a GGDEF domain, and the other, mlrA, indirectly controls the expression of another GGDEF protein, AdrA, we proceeded on a mutational analysis of the additional GG[DE]EF motif containing proteins of S. typhimurium. Our results demonstrated that MlrA, and thus AdrA, is required for cellulose production and biofilm formation in LB complex medium whereas STM1987 (GGDEF domain containing protein A, gcpA) is critical for biofilm formation in the nutrient-deficient medium, ATM. Insertional inactivation of the other six members of the GGDEF family (gcpB-G) showed that only deletion of yciR (gcpE) affected cellulose production and biofilm formation. However, when provided on plasmid pBR328, most of the members of the GGDEF family showed a strong dominant phenotype able to bypass the need for AdrA and GcpA respectively. Altogether, these results indicate that most GGDEF proteins of S. typhimurium are functionally related, probably by controlling the levels of the same final product (cyclic di-GMP), which include among its regulatory targets the cellulose production and biofilm formation of S. typhimurium.
Collapse
Affiliation(s)
- Begoña García
- Instituto de Agrobiotecnología y Recursos Naturales and Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona-31006, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
125
|
Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 2004; 54:75-88. [PMID: 15458406 DOI: 10.1111/j.1365-2958.2004.04253.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hms(+) phenotype of Yersinia pestis promotes the binding of haemin or Congo red (CR) to the cell surface at temperatures below 34 degrees C. We previously demonstrated that temperature regulation of the Hms(+) phenotype is not controlled at the level of transcription. Instead, HmsH, HmsR and HmsT are degraded upon a temperature shift from 26 degrees C to 37 degrees C. We used random transposon mutagenesis to identify new genes involved in the temperature-regulated expression of the Hms phenotype. One of these genes, which we designated hmsP, encodes a putative phosphodiesterase with a conserved EAL motif. Mutations in hmsP caused formation of red colonies on CR plates at 26 degrees C and 37 degrees C. Strains complemented with hmsP(+) on a plasmid form white colonies at both temperatures. We used a crystal violet assay and confocal laser scanning microscopy to demonstrate Hms-dependent biofilm formation by Y. pestis cells. Y. pestis Hms(+) strains grown at 26 degrees C but not at 37 degrees C form a biofilm on borosilicate glass surfaces. Strains that either overexpress HmsT (a GGDEF domain protein) or have a mutation in hmsP produced an extremely thick biofilm. Alanine substitutions for each of the GGEE residues (amino acids 296-299) of HmsT as well as the E506 and L508 residues of HmsP caused a loss of function. We propose that HmsT and HmsP together control the amount of biofilm produced in Y. pestis. Degradation of HmsT at 37 degrees C may be a critical factor in controlling the temperature-dependent expression of the Hms biofilm.
Collapse
Affiliation(s)
- Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | |
Collapse
|
126
|
Hyodo M, Hayakawa Y. An Improved Method for Synthesizing Cyclic Bis(3′–5′)diguanylic Acid (c-di-GMP). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.2089] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
127
|
Abstract
While studying virulence gene regulation in Vibrio cholerae during infection of the host small intestine, we identified VieA as a two-component response regulator that contributes to activating expression of cholera toxin. Here we report that VieA represses transcription of Vibrio exopolysaccharide synthesis (vps) genes involved in biofilm formation by a mechanism independent of its phosphorelay and DNA-binding activities. VieA controls the intracellular concentration of the cyclic nucleotide second messenger cyclic diguanylate (c-di-GMP) using an EAL domain that functions as a c-di-GMP phosphodiesterase. Two-dimensional thin layer chromatography of nucleotide extracts confirmed that VieA reduces the concentration of c-di-GMP, opposing the action of c-di-GMP synthetase proteins. Expression of unrelated V. cholerae c-di-GMP synthetase or phosphodiesterae proteins also modulated c-di-GMP concentration and vps gene expression. We propose that c-di-GMP synthetase and phosphodiesterase domain-containing proteins contribute to regulating biofilm formation by controlling c-di-GMP concentration.
Collapse
Affiliation(s)
| | - Andrew Camilli
- For correspondence. ; Tel. (+1) 617 636 2144; Fax (+1) 617 636 0337
| |
Collapse
|
128
|
Jenal U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol 2004; 7:185-91. [PMID: 15063857 DOI: 10.1016/j.mib.2004.02.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cyclic nucleotide cyclic di-guanosine-monophosphate (c-diGMP) was recognized in the 1980s as a signaling compound that is involved in controlling the condensation of glucose moieties into cellulose polymers. More recent data from several different bacterial species now suggest that c-diGMP might have a general role as secondary messenger in modulating bacterial growth on surfaces by regulating cellular adhesion components and preparing cells for cell-cell and cell-surface interactions.
Collapse
Affiliation(s)
- Urs Jenal
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
129
|
Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 2004; 18:715-27. [PMID: 15075296 PMCID: PMC387245 DOI: 10.1101/gad.289504] [Citation(s) in RCA: 477] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pole development is coordinated with the Caulobacter crescentus cell cycle by two-component signaling proteins. We show that an unusual response regulator, PleD, is required for polar differentiation and is sequestered to the cell pole only when it is activated by phosphorylation. Dynamic localization of PleD to the cell pole provides a mechanism to temporally and spatially control the signaling output of PleD during development. Targeting of PleD to the cell pole is coupled to the activation of a C-terminal guanylate cyclase domain, which catalyzes the synthesis of cyclic di-guanosine monophosphate. We propose that the local action of this novel-type guanylate cyclase might constitute a general regulatory principle in bacterial growth and development.
Collapse
Affiliation(s)
- Ralf Paul
- Division of Molecular Microbiology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
130
|
Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 2004; 186:1638-47. [PMID: 14996794 PMCID: PMC355957 DOI: 10.1128/jb.186.6.1638-1647.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Yersinia pestis, the Congo red (and hemin) binding that is characteristic of the Hms+ phenotype occurs at temperatures up to 34 degrees C but not at higher temperatures. Manifestation of the Hms+ phenotype requires at least five proteins (HmsH, -F, -R, -S, and -T) that are organized into two separate operons: hmsHFRS and hmsT. HmsH and HmsF are outer membrane proteins, while HmsR, HmsS, and HmsT are predicted to be inner membrane proteins. We have used transcriptional reporter constructs, RNA dot blots, and Western blots to examine the expression of hms operons and proteins. Our studies indicate that transcription from the hmsHFRS and hmsT promoters is not regulated by the iron status of the cells, growth temperature, or any of the Hms proteins. In addition, the level of mRNA for both operons is not significantly affected by growth temperature. However, protein levels of HmsH, HmsR, and HmsT in cells grown at 37 degrees C are very low compared to those in cells grown at 26 degrees C, while the amounts of HmsF and HmsS show only a moderate reduction at the higher growth temperature. Neither the Pla protease nor a putative endopeptidase (Y2360) encoded upstream of hmsH is essential for temperature regulation of the Hms+ phenotype. However, HmsT at 37 degrees C is sensitive to degradation by Lon and/or ClpPX. Thus, the stability of HmsH, HmsR, and HmsT proteins likely plays a role in temperature regulation of the Hms+ phenotype of Y. pestis.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Rashid MH, Rajanna C, Zhang D, Pasquale V, Magder LS, Ali A, Dumontet S, Karaolis DKR. Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol Lett 2004; 230:105-13. [PMID: 14734172 DOI: 10.1016/s0378-1097(03)00879-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera can produce an exopolysaccharide (EPS). Some strains can also phenotypically switch from a smooth to a 'rugose' phenotype characterized by small wrinkled colonies, overproduction of EPS, increased biofilm formation in vitro and increased resistance to various stressful conditions. High frequency switching to the rugose phenotype is more common in epidemic strains than in non-pathogenic strains, suggesting EPS production and the rugose phenotype are important in cholera epidemiology. VpsR up-regulates Vibrio polysaccharide (VPS) genes and the synthesis of extracellular EPS (VPS). However, the function of VPS, the rugose phenotype and VpsR in pathogenesis is not well understood. We report that rugose strains of both classical and El Tor biotypes of epidemic V. cholerae are defective in the in vitro production of extracellular collagenase activity. In vivo studies in rabbit ileal loops suggest that VpsR mutants are attenuated in reactogenicity. Intestinal colonization studies in infant mice suggest that VPS production, the rugose phenotype and VpsR have a role in pathogenesis. Our results indicate that regulated VPS production is important for promoting in vivo biofilm formation and pathogenesis. Additionally, VpsR might regulate genes with roles in virulence. Rugose strains appear to be a subpopulation of cells that might act as a 'helper' phenotype promoting the pathogenesis of certain strains. Our studies provide new insight into the potential role of VPS, the rugose phenotype and VpsR in the pathogenesis of epidemic V. cholerae.
Collapse
Affiliation(s)
- Mohammed H Rashid
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Rashid MH, Rajanna C, Ali A, Karaolis DKR. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 2004; 227:113-9. [PMID: 14568156 DOI: 10.1016/s0378-1097(03)00657-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can switch to a 'rugose' phenotype characterized by an exopolysaccharide (EPS) matrix, wrinkled colony morphology, increased biofilm formation and increased survival under specific conditions. The vps gene cluster responsible for the biosynthesis of the rugose EPS (rEPS) is positively regulated by VpsR. We recently identified media (APW#3) promoting EPS production and the rugose phenotype and found epidemic strains switch at a higher frequency than non-pathogenic strains, suggesting this switch and the rugose phenotype are important in cholera epidemiology. In this study, transposon mutagenesis on a smooth V. cholerae strain was used to identify mutants that were unable to shift to the rugose phenotype under inducing conditions to better understand the molecular basis of the switch. We identified vpsR, galE and vps previously associated with the rugose phenotype, and also identified genes not previously associated with the phenotype, including rfbD and rfbE having roles in LPS (lipopolysaccharide) synthesis and aroB and aroK with roles in aromatic amino acid synthesis. Additionally, a mutation in amiB encoding N-acetylmuramoyl-L-alanine amidase caused defects in the switch, motility and cell morphology. We also found that a gene encoding a novel regulatory protein we termed RocS (regulation of cell signaling) containing a GGDEF and EAL domains and associated with c-di-GMP levels is important for the rugose phenotype, EPS, biofilm formation and motility. We propose that modulation of cyclic dinucleotide (e.g. c-di-GMP) levels might have application in regulating various phenotypes of prokaryotes. Our study shows the molecular complexity of the switch between the smooth and rugose phenotypes of V. cholerae and may be relevant to similar phenotypes in other species.
Collapse
Affiliation(s)
- Mohammed H Rashid
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
133
|
Hayakawa Y, Nagata R, Hirata A, Hyodo M, Kawai R. A facile synthesis of cyclic bis(3′→5′)diguanylic acid. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01045-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
134
|
Aldridge P, Paul R, Goymer P, Rainey P, Jenal U. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 2003; 47:1695-708. [PMID: 12622822 DOI: 10.1046/j.1365-2958.2003.03401.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several members of the two-component signal transduction family have been implicated in the control of polar development in Caulobacter crescentus: PleC and DivJ, two polarly localized histidine sensor kinases; and the response regulators DivK and PleD. The PleD protein was shown previously to be required during the swarmer-to-stalked cell transition for flagellar ejection and efficient stalk biogenesis. Here, we present data indicating that PleD also controls the onset of motility and a cell density switch immediately preceding cell division. Constitutively active alleles of pleD or wspR, an orthologue from Pseudomonas fluorescens, almost completely suppressed C. crescentus motility and inhibited the increase in swarmer cell density during cell differentiation. The observation that these alleles also had a dominant-negative effect on motility in a pleC divJ and a pleC divK mutant background indicated that PleD is located downstream of the other components in the signal transduction cascade, which controls the activity of the flagellar motor. In addition, the presence of a constitutive pleD or wspR allele resulted in a doubling of the average stalk length. Together, this is consistent with a model in which the active form of PleD, PleD approximately P, negatively controls aspects of differentiation in the late predivisional cell, whereas it acts positively on polar development during the swarmer-to-stalked cell transition. In agreement with such a model, we found that DivJ, which localizes to the stalked pole during cell differentiation, positively controlled the in vivo phosphorylation status of PleD, and the swarmer pole-specific PleC kinase modulated this status in a negative manner. Furthermore, domain switch experiments demonstrated that the WspR GGDEF output domain from P. fluorescens is active in C. crescentus, favouring a more general function for this novel signalling domain over a specific role such as DNA or protein interaction. Possible roles for PleD and its C-terminal output domain in modulating the polar cell surface of C. crescentus are discussed.
Collapse
Affiliation(s)
- Phillip Aldridge
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
135
|
Gomelsky M, Klug G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 2002; 27:497-500. [PMID: 12368079 DOI: 10.1016/s0968-0004(02)02181-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
Collapse
Affiliation(s)
- Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA.
| | | |
Collapse
|
136
|
Effect of molecular sieves in the liquid-phase synthesis of nucleotides via the phosphoramidite method. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00880-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
137
|
Hayakawa Y. Toward an Ideal Synthesis of Oligonucleotides: Development of a Novel Phosphoramidite Method with High Capability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2001. [DOI: 10.1246/bcsj.74.1547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
138
|
Abstract
The GGDEF domain is detected in many prokaryotic proteins, most of which are of unknown function. Several bacteria carry 12-22 different GGDEF homologues in their genomes. Conducting extensive profile-based searches, we detect statistically supported sequence similarity between GGDEF domain and adenylyl cyclase catalytic domain. From this homology, we deduce that the prokaryotic GGDEF domain is a regulatory enzyme involved in nucleotide cyclization, with the fold similar to that of the eukaryotic cyclase catalytic domain. This prediction correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. Domain architecture analysis shows that GGDEF is typically present in multidomain proteins containing regulatory domains of signaling pathways or protein-protein interaction modules. Evolutionary tree analysis indicates that GGDEF/cyclase superfamily forms a large diversified cluster of orthologous proteins present in bacteria, archaea, and eukaryotes. Proteins 2001;42:210-216.
Collapse
Affiliation(s)
- J Pei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050, USA
| | | |
Collapse
|
139
|
Lee HC, Zhao X. Effects of mixing conditions on the production of microbial cellulose byAcetobacter xylinum. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02931912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
140
|
Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 1998; 180:4416-25. [PMID: 9721278 PMCID: PMC107450 DOI: 10.1128/jb.180.17.4416-4425.1998] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of beta-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguanylate, cdg1, cdg2, and cdg3. Within each cdg operon, a pdeA gene lies upstream of a dgc gene. cdg1 contains two additional flanking genes, cdg1a and cdg1d. cdg1a encodes a putative transcriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia. The deduced DGC and PDEA proteins have an identical motif structure of two lengthy domains in their C-terminal regions. These domains are also present in numerous bacterial proteins of undefined function. The N termini of the DGC and PDEA deduced proteins contain putative oxygen-sensing domains, based on similarity to domains on bacterial NifL and FixL proteins, respectively. Genetic disruption analyses demonstrated a physiological hierarchy among the cdg operons, such that cdg1 contributes 80% of cellular DGC and PDEA activities and cdg2 and cdg3 contribute 15 and 5%, respectively. Disruption of dgc genes markedly reduced in vivo cellulose production, demonstrating that c-di-GMP controls this process.
Collapse
Affiliation(s)
- R Tal
- Cetus Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Vandamme E, De Baets S, Vanbaelen A, Joris K, De Wulf P. Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 1998. [DOI: 10.1016/s0141-3910(97)00185-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
142
|
Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G, Ohana P, Benziman M. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett 1997; 416:207-11. [PMID: 9369216 DOI: 10.1016/s0014-5793(97)01202-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A protein which specifically binds cyclic diguanylic acid (c-di-GMP), the reversible allosteric activator of the membrane-bound cellulose synthase system of Acetobacter xylinum, has been identified in membrane preparations of this organism. c-di-GMP binding is of high affinity (KD 20 nM), saturable and reversible. The equilibrium of the reaction is markedly and specifically shifted towards the binding direction by K+. The c-di-GMP binding protein, structurally associated with the cellulose synthase, appears to play a major role in modulating the intracellular concentration of free c-di-GMP and thus may constitute an essential factor in regulating cellulose synthesis in vivo.
Collapse
Affiliation(s)
- H Weinhouse
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Israel
| | | | | | | | | | | | | |
Collapse
|
143
|
Engle AR, Purdie N, Hyatt JA. Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 1994; 265:181-95. [PMID: 7842441 DOI: 10.1016/0008-6215(94)00235-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetobacter xylinum, grown in the presence of low levels of the water-soluble dye Calcofluor White ST produces a pellicle of cellulose that has no detectable crystallinity. Biological factors of this sort are probably more important than physical factors in controlling the higher order structures of celluloses. Circular dichroism (CD) is induced by complexes that are formed by specific interactions between chiral oligosaccharides and dye molecules. Using CD, equilibrium constants were measured for the association reactions between various dyes with a series of cello-oligosaccharides (n = 2-6), methylcellulose, hydroxypropylcellulose (HPC), amylose, cyclomalto-oligosaccharides (cyclodextrins), and the linear malto-oligosaccharides (n = 3-7). Possible structural features of the complexes are discussed. Dyes that are capable of binding to the higher cello-oligomers in aqueous solutions are the same dyes that modify the solid structure of bacterial cellulose. An analogy between the binding of water-soluble dyes to cello-oligosaccharides and the binding of the cellulose-degrading enzyme, cellobiohydrolase I, to cellulose is discussed.
Collapse
Affiliation(s)
- A R Engle
- Chemistry Department, Oklahoma State University, Stillwater 74078-0447
| | | | | |
Collapse
|
144
|
|
145
|
Whitfield C, Valvano MA. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 1993; 35:135-246. [PMID: 8310880 DOI: 10.1016/s0065-2911(08)60099-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
146
|
Roelen HCPF, de Vroom E, Wang AHJ, van der Marel GA, van Boom JH. Stereoselective Synthesis of Ribonucleoside 3′,5′-Cyclic Methyl(phenyl)phosphonates and Phosphonothioates. ACTA ACUST UNITED AC 1992. [DOI: 10.1080/07328319208021157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
147
|
Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 1991; 67:1211-21. [PMID: 1760846 DOI: 10.1016/0092-8674(91)90297-c] [Citation(s) in RCA: 511] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Retroviral DNA integration involves a coordinated set of DNA cutting and joining reactions. Linear viral DNA is cleaved at each 3' end to generate the precursor ends for integration. The resulting recessed 3' ends are inserted into target DNA by a subsequent DNA strand transfer reaction. Purified HIV-1 integration protein carries out both of these steps in vitro. Two novel forms of the dinucleotide cleaved from HIV-1 DNA were identified and one, a cyclic dinucleotide, was used to analyze the stereochemical course of viral DNA cleavage. Both viral DNA cleavage and DNA strand transfer display inversion at chiral phosphorothioates during the course of the reaction. These results suggest that both reactions occur by a one-step mechanism without involvement of a covalent protein-DNA intermediate.
Collapse
Affiliation(s)
- A Engelman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|