101
|
Russo R, Navarra M, Maiuolo J, Rotiroti D, Bagetta G, Corasaniti MT. 17beta-estradiol protects SH-SY5Y Cells against HIV-1 gp120-induced cell death: evidence for a role of estrogen receptors. Neurotoxicology 2005; 26:905-13. [PMID: 15899520 DOI: 10.1016/j.neuro.2005.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/29/2022]
Abstract
Despite the large body of experimental evidence demonstrating the neuroprotective properties of 17beta-estradiol (17beta-E2) both in vitro and in vivo experimental models of neuronal injury, the exact mechanisms implicated in neuroprotection have not been fully delineated. Some experimental evidence highlight a role for the antioxidant properties of 17beta-E2 in mediating protection against oxidative injury. Parallel to these, evidence also exist which point to alternative mechanisms involving estrogen receptors (ER). The HIV-1 coat protein, gp120, has been implicated in the progression of central nervous system damage caused by HIV-1 infection. The neurotoxic effects induced by gp120 are triggered via an excitotoxic mechanism of cell death which implicates alteration of calcium homeostasis, activation of calcium-dependent pathways, mitochondrial uncoupling and membrane lipid peroxidation. In the present study, we demonstrate that 17beta-E2 protects human SH-SY5Y neuroblastoma cells from cell death elicited by gp120. Tamoxifen and ICI 182,780, two ER antagonists, both antagonized 17beta-E2-mediated inhibition of cell death. Exposure of SH-SY5Y cells to gp120 for 30min caused a significant accumulation of intracellular reactive oxygen species (ROS) and this was abrogated by 17beta-E2; however, the ability of 17beta-E2 to counteract ROS generation induced by gp120 does not account for the reported prevention of cell death because ICI 182,780 failed to revert intracellular ROS reduction caused by 17beta-E2 though it was able to revert prevention of cell death. Furthermore, by using 17alpha-E2, the isomer unable to stimulate ER which, however, retains the antioxidant effects, we observed that a pre-treatment with 17alpha-E2 was effective in preventing gp120-induced accumulation of ROS but it failed to affect cell death caused by the viral protein. Collectively, these data demonstrate that neuroprotection afforded by 17beta-E2 is receptor-mediated and ROS scavenging effects may not be implicated.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University Magna Graecia of Catanzaro, c/o Complesso Ninì Barbieri, 88021 Roccelletta di Borgia, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
102
|
Goncharov I, Weiner L, Vogel Z. Delta9-tetrahydrocannabinol increases C6 glioma cell death produced by oxidative stress. Neuroscience 2005; 134:567-74. [PMID: 15975726 DOI: 10.1016/j.neuroscience.2005.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 04/03/2005] [Accepted: 04/15/2005] [Indexed: 11/25/2022]
Abstract
(-)Delta9-tetrahydrocannabinol is a scavenger of free radicals. However, the activation of the CB1 receptor in cultured C6 glioma cells by (-)delta9-tetrahydrocannabinol in the presence of reagents generating reactive oxygen species leads to amplification of the cellular damage from oxidative stress. This was evident by increased loss of cell wall integrity, impaired mitochondrial function and reduction of glucose uptake. In addition, (-)delta9-tetrahydrocannabinol treatment was also found to be deleterious to the cells under conditions of glucose starvation. Free radicals have been implicated in various conditions leading to cell death and, as a routine, the Fenton reaction is utilized for modeling reactive oxygen species production. Our study was performed using a cell permeating Fe(III) chelating quinone that provides more physiological conditions for mimicking the naturally occurring oxidative stress within the cell and thus serves as a better model for natural reactive oxygen species formation.
Collapse
Affiliation(s)
- I Goncharov
- Department of Neurobiology, Weizmann Institute of Science, Herzel Street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
103
|
Fernyhough P, Smith DR, Schapansky J, Van Der Ploeg R, Gardiner NJ, Tweed CW, Kontos A, Freeman L, Purves-Tyson TD, Glazner GW. Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons. J Neurosci 2005; 25:1682-90. [PMID: 15716404 PMCID: PMC6725919 DOI: 10.1523/jneurosci.3127-04.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB (NF-kappaB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro. Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor alpha (TNFalpha), a potent activator of NF-kappaB activity. We tested the hypothesis that activation of NF-kappaB stimulated by endogenous TNFalpha was required for survival of axotomized adult sensory neurons. Peripheral axotomy of lumbar DRG neurons by sciatic nerve crush induced a very rapid (within 2 h) and significant elevation in NF-kappaB-binding activity. This phenomenon was mimicked in cultured neurons in which there was substantial NF-kappaB nuclear translocation and a significant rise in NF-kappaB DNA-binding activity after plating. Inhibitors of NF-kappaB (SN50 or NF-kappaB decoy DNA) resulted in necrotic cell death of medium to large neurons (> or =40 microm) within 24 h (60 and 75%, respectively), whereas inhibition of p38 and mitogen-activated protein/extracellular signal-regulated kinase did not effect survival. ELISA revealed that these cultures contained TNFalpha, and exposure to an anti-TNFalpha antibody inhibited NF-kappaB DNA-binding activity by approximately 35% and killed approximately 40% of medium to large neurons within 24 h. The results show for the first time that cytokine-mediated activation of NF-kappaB is a component of the signaling pathway responsible for maintenance of adult sensory neuron survival after axon damage.
Collapse
Affiliation(s)
- Paul Fernyhough
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wen TC, Rogido MR, Moore JE, Genetta T, Peng H, Sola A. Cardiotrophin-1 protects cortical neuronal cells against free radical-induced injuries in vitro. Neurosci Lett 2005; 387:38-42. [PMID: 16084018 DOI: 10.1016/j.neulet.2005.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/07/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Cardiotrophin-1 (CT-1) was initially defined as a mediator of cardiomyocyte hypertrophy. Additional studies have showed that CT-1 enhanced survival of differentiated cardiac muscle cells and inhibited cardiac myocyte apoptosis after serum deprivation or cytokine stimulation. Moreover, CT-1 has recently been shown to act as a neuroregulatory cytokine in the peripheral nervous system. However, its effects in the central nervous system have not been determined. In the present study, we evaluated whether CT-1 protects cultured cortical neurons against oxidative injuries caused by the hydroxyl radical-producing agent FeSO4 and by the peroxynitrite-producing agent 3-morpholinosydnonimine (SIN-1). CT-1 reduced neuronal cell death caused by FeSO4 and also attenuated the neurotoxic effect of SIN-1 in a dose-dependent manner. These results indicate that CT-1 is neuroprotective in an in vitro model of cerebral ischemia. This study indicates that further evaluation of CT-1 in acute brain injury should be investigated in vivo.
Collapse
Affiliation(s)
- Tong-Chun Wen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Noelker C, Bacher M, Gocke P, Wei X, Klockgether T, Du Y, Dodel R. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neurosci Lett 2005; 383:39-43. [PMID: 15894425 DOI: 10.1016/j.neulet.2005.04.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/01/2005] [Accepted: 04/02/2005] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta. 6-Hydroxydopamine (6-OHDA) is specific to dopaminergic neurons in intrastriatal rodent models. It induces neuronal death either via uncoupling mitochondrial oxidative phosphorylation resulting in energy deprivation or alternatively, is associated with its ability to produce hydrogen peroxide, hydroxyl and superoxide radicals. Caffeic acid phenethyl ester (CAPE), an antioxidant flavanoid, has antiviral, anti-inflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that CAPE has also a neuroprotective effects in ischemia and low potassium-induced neuronal apoptotic models. In cerebellar granule neurons CAPE significantly blocks 6-OHDA mediated cell death (70 microM) in a dose-dependent manner. Furthermore, CAPE was able to modulate the Ca(2+)-induced release of cyctochrome c in isolated liver mitochondria. Caspase-3 activation following 6-OHDA treatment was markedly inhibited in the presence of CAPE. Although the molecular mechanisms associated with CAPE's neuroprotective effects remain to be elucidated in more detail, our results clearly demonstrate a considerable neuroprotective effect of CAPE. Since a mitochondrial insult is a major cause for the degeneration of nigral neurons in PD, we hypothesize that propolis derivatives, in particular CAPE, may have a neuroprotective effect on those cells and may be a promising drug candidate to be taken into in vivo models of PD.
Collapse
Affiliation(s)
- Carmen Noelker
- Department of Neurology, Friedrich-Wilhelms-University, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
106
|
Smith-Swintosky VL, Gozes I, Brenneman DE, D'Andrea MR, Plata-Salaman CR. Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci 2005; 25:225-38. [PMID: 15800376 DOI: 10.1385/jmn:25:3:225] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 11/11/2022]
Abstract
Activity-dependent neurotrophic factor (ADNF) is a novel, femtomolar-acting, glial-derived polypeptide (14 kDa) known to protect neurons from a variety of toxic insults. The active site for ADNF function is localized to a 9-amino-acid stretch (SALLRSIPA; ADNF-9). A few years later, a novel ADNF-9-like active peptide (NAPVSIPQ or NAP) was identified and shown to be expressed in the CNS and exhibit an activity profile similar to ADNF-9. Such studies suggest that ADNF-9 and NAP might function like other known neurotrophins and play a role in neural development and maintenance. The purpose of the present studies was to determine if ADNF-9 or NAP affects neurite outgrowth and synaptogenesis in rat hippocampal and cortical cultures. Using MAP2-FITC immunofluorescent labeling, we found that ADNF-9 and NAP promoted neurite outgrowth in a concentration-dependent manner, with maximal activity observed at femtomolar concentrations. Both peptides stimulated robust outgrowth in hippocampal cells (approximately 150% of control; p < 0.01) with a modest effect on cortical cells (approximately 20% of control; p < 0.05) similar to other known growth factors. However, the outgrowth-promoting effect was abolished in the absence of serum, suggesting that soluble factors might be necessary for the neurotrophic activity. Finally, we found that ADNF-9 and NAP increased synaptophysin expression in both rat hippocampal and cortical cultures. These results suggest that ADNF-9 and NAP might contribute to neuronal plasticity associated with development and repair after injury.
Collapse
Affiliation(s)
- Virginia L Smith-Swintosky
- CNS Research, Johnson & Johnson Pharmaceutical Research and Development, LLC, Spring House, PA 19447-0776, USA.
| | | | | | | | | |
Collapse
|
107
|
Yao PJ, Petralia RS, Bushlin I, Wang Y, Furukawa K. Synaptic distribution of the endocytic accessory proteins AP180 and CALM. J Comp Neurol 2005; 481:58-69. [PMID: 15558718 DOI: 10.1002/cne.20362] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clathrin-coated vesicles mediate a variety of endocytosis pathways in cells, including endocytic events at synapses. AP180 and clathrin assembly lymphoid myeloid leukemia protein (CALM) are clathrin accessory proteins that promote the formation of clathrin-coated vesicles. Both proteins bind to membrane lipids through their epsin N-terminal homology domains and interact with clathrin and related protein components through their carboxyl-terminal peptide motifs. We examine their neuronal expression and synaptic distribution. We show that both proteins are detected in synapses but demonstrate different distribution patterns. AP180 is located predominantly in presynaptic profiles, whereas CALM is found nonselectively in pre- and postsynaptic profiles and also in perisynaptic processes. These observations reveal an unexpected relationship between AP180 and the presumed non-neuronal homologue CALM. We propose that both AP180 and CALM function as endocytic accessory proteins at synapses, but each may regulate distinct clathrin pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
108
|
Joo CH, Ahn J, Seo I, Kim YK, Kim D, Hong H, Lee H. Characterization of Nonpolio Enteroviruses Recovered from Patients with Aseptic Meningitis in Korea. Intervirology 2005; 48:97-103. [PMID: 15812181 DOI: 10.1159/000081735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 03/13/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We attempted to characterize nonpolio enteroviruses recovered from Korean patients with aseptic meningitis. METHODS We performed RT-PCR on the 5'-nontranslated region using clinical specimens. Infectious clinical isolates were amplified by infecting Vero cells with RT-PCR-positive clinical specimens. We then investigated the direct effect in primary neuronal cells or cardiomyocytes following virus infection. RESULTS Total 12 clinical isolates were subtypically analyzed by both RT-PCR/sequencing comparison of the VP-1 region and neutralization assay. 43-2, 43-2S, 57 and 58 were found to be coxsackievirus B1 (CVB1), 312 to be CVB5, 14-2S and 327 to be echovirus 6, 165 to be echovirus 9, 337 to be echovirus 11, and 270 to be echovirus 30. All the clinical isolates tested showed profound cytotoxicity to various degrees in the primary neuronal cells within 24 h postinfection at 10 MOI. By contrast, a significant cytopathic effect was observed in the primary cardiomyocytes at 3-5 days postinfection at 50 MOI. CONCLUSIONS The present study suggests that the clinical isolates recovered from Korean patients belonged to different CVB or echovirus serotypes and that these viruses showed diversities in their virulence in primary neuronal cells and cardiomyocytes.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Child
- Child, Preschool
- Chlorocebus aethiops
- Cytopathogenic Effect, Viral
- Echovirus 6, Human/classification
- Echovirus 6, Human/isolation & purification
- Echovirus 9/classification
- Echovirus 9/isolation & purification
- Echovirus Infections/virology
- Enterovirus B, Human/classification
- Enterovirus B, Human/genetics
- Enterovirus B, Human/immunology
- Enterovirus B, Human/isolation & purification
- Enterovirus Infections/virology
- Female
- Humans
- Infant
- Korea
- Male
- Meningitis, Aseptic/virology
- Myocytes, Cardiac/virology
- Neurons/virology
- RNA, Untranslated/genetics
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Serotyping
- Vero Cells
- Virus Cultivation
Collapse
Affiliation(s)
- Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
109
|
Thomas SN, Soreghan BA, Nistor M, Sarsoza F, Head E, Yang AJ. Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach. J Neurochem 2005; 92:705-17. [PMID: 15686472 DOI: 10.1111/j.1471-4159.2004.02892.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract Oxidative stress imparted by reactive oxygen species (ROS) is implicated in the pathogenesis of Alzheimer's disease (AD). Given that amyloid beta (Abeta) itself generates ROS that can directly damage proteins, elucidating the functional consequences of protein oxidation can enhance our understanding of the process of Abeta-mediated neurodegeneration. In this study, we employed a biocytin hydrazide/streptavidin affinity purification methodology followed by two-dimensional liquid chromatography tandem mass spectrometry coupled with SEQUEST bioinformatics technology, to identify the targets of Abeta-induced oxidative stress in cultured primary cortical mouse neurons. The Golgi-resident enzyme glucuronyltransferase (GlcAT-P) was a carbonylated target that we investigated further owing to its involvement in the biosynthesis of HNK-1, a carbohydrate epitope expressed on cell adhesion molecules and implicated in modulating the effectiveness of synaptic transmission in the brain. We found that increasing amounts of Abeta, added exogenously to the culture media of primary cortical neurons, significantly decreased HNK-1 expression. Moreover, in vivo, HNK-1 immunoreactivity was decreased in brain tissue of a transgenic mouse model of AD. We conclude that a potential consequence of Abeta-mediated oxidation of GlcAT-P is impairment of its enzymatic function, thereby disrupting HNK-1 biosynthesis and possibly adversely affecting synaptic plasticity. Considering that AD is partly characterized by progressive memory impairment and disordered cognitive function, the data from our in vitro studies can be reconciled with results from in vivo studies that have demonstrated that HNK-1 modulates synaptic plasticity and is critically involved in memory consolidation.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
110
|
Sahin M, Karauzum SB, Perry G, Smith MA, Aliciguzel Y. Retinoic acid isomers protect hippocampal neurons from amyloid-beta induced neurodegeneration. Neurotox Res 2005; 7:243-50. [PMID: 15897158 DOI: 10.1007/bf03036453] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Attenuating amyloid-beta mediated neurodegeneration is of major therapeutic consideration in the potential treatment of Alzheimer disease. Previously, we found that a high dietary consumption of retinoic acid was associated with a reduced incidence of Alzheimer disease. Therefore, in this study, we investigated whether amyloid-beta mediated cell death in primary hippocampal neurons could be prevented by retinoic acid isomers. Our results suggest that retinoic acid isomers, including all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid, may play an important role in protecting neurons from amyloid-beta -induced cell death. Retinoic acid may therefore afford a novel therapeutic mechanism for the treatment and prevention of Alzheimer disease.
Collapse
Affiliation(s)
- M Sahin
- Akdeniz University, Faculty of Medicine, Department of Biochemistry and Department of Medical Biology and Genetics, Antalya- Turkey
| | | | | | | | | |
Collapse
|
111
|
Levenson CW, Cutler RG, Ladenheim B, Cadet JL, Hare J, Mattson MP. Role of dietary iron restriction in a mouse model of Parkinson's disease. Exp Neurol 2004; 190:506-14. [PMID: 15530889 DOI: 10.1016/j.expneurol.2004.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence suggesting that iron chelation may be a useful therapy in the treatment of Parkinson's Disease (PD). Experiments were designed to test the impact of dietary iron availability on the pathogenic process and functional outcome in a mouse model of PD. Mice were fed diets containing low (4 ppm) or adequate (48 ppm) amounts of iron for 6 weeks before the administration of MPTP, a mitochondrial toxin that damages nigrostriatal dopaminergic neurons and induces Parkinson-like symptoms. Low dietary iron increased serum total iron binding capacity (P < 0.001). Consistent with neuronal protection, iron restriction increased sphingomyelin C16:0 and decreased ceramide C16:0. However, there was a 35% decrease in striatal dopamine (DA) in iron-restricted mice. Motor behavior was also impaired in these animals. In vitro studies suggested that severe iron restriction could lead to p53-mediated neuronal apoptosis. Administration of MPTP reduced striatal DA (P < 0.01) and impaired motor behavior in iron-adequate mice. However, in iron-restricted mice, striatal dopamine levels and motor behavior were unchanged compared to saline-treated mice. Thus, while reduced iron may provide protection against PD-inducing insults such as MPTP, the role of iron in the synthesis of DA and neuronal survival should be considered, particularly in the development of iron-chelating agents to be used chronically in the clinical setting.
Collapse
Affiliation(s)
- Cathy W Levenson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Khodorov B. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:279-351. [PMID: 15288761 DOI: 10.1016/j.pbiomolbio.2003.10.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Delayed neuronal death following prolonged (10-15 min) stimulation of Glu receptors is known to depend on sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) which may persist far beyond the termination of Glu exposure. Mitochondrial depolarization (MD) plays a central role in this Ca(2+) deregulation: it inhibits the uniporter-mediated Ca(2+) uptake and reverses ATP synthetase which enhances greatly ATP consumption during Glu exposure. MD-induced inhibition of Ca(2+) uptake in the face of continued Ca(2+) influx through Glu-activated channels leads to a secondary increase of [Ca(2+)](i) which, in its turn, enhances MD and thus [Ca(2+)](i). Antioxidants fail to suppress this pathological regenerative process which indicates that reactive oxygen species are not involved in its development. In mature nerve cells (>11 DIV), the post-glutamate [Ca(2+)](i) plateau associated with profound MD usually appears after 10-15 min Glu (100 microM) exposure. In contrast, in young cells (<9 DIV) delayed Ca(2+) deregulation (DCD) occurs only after 30-60 min Glu exposure. This difference is apparently determined by a dramatic increase in the susceptibility of mitochondia to Ca(2+) overload during nerve cells maturation. The exact mechanisms of Glu-induced profound MD and its coupling with the impairment of Ca(2+) extrusion following toxic Glu challenge is not clarified yet. Their elucidation demands a study of dynamic changes in local concentrations of ATP, Ca(2+), H(+), Na(+) and protein kinase C using novel methodological approaches.
Collapse
Affiliation(s)
- Boris Khodorov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Baltiiskaya Str. 8, 125315 Moscow, Russia.
| |
Collapse
|
113
|
Shi J, Wang X, Qiu J, Si Q, Sun R, Guo H, Wu Q. Roles of NF-kappaB and SP-1 in oxidative stress-mediated induction of platelet-derived growth factor-B by TNFalpha in human endothelial cells. J Cardiovasc Pharmacol 2004; 44:26-34. [PMID: 15175554 DOI: 10.1097/00005344-200407000-00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factor-B (PDGF-B) is upregulated by proinflamatory stimuli in the early stages of atherosclerosis. However, its mechanisms are not fully elucidated. In the present study, by using the antioxidant N-acetylcysteine (NAC), we investigated in human umbilical vein endothelial cells (HUVECs) the roles of oxidative stress in PDGF-B expression induced by tumor necrosis factor alpha (TNFalpha) and its underlying mechanisms. Exposure of HUVECs to TNFalpha (200 U/ml) for 24 hours caused significant increases of both the PDGF-B expression and its promoter/enhancer activity, which were abolished by NAC (20 mmol/L). Accordingly, a prolonged oxidative stress was induced by TNFalpha and that was prevented by pretreatment with NAC. Electrophoresis mobility shift assay (EMSA) and Western blot analysis showed that both the nuclear factor-kappaB (NF-kappaB) and the specificity protein-1 (SP-1) were activated by TNFalpha. However, NAC only partially inhibited the TNFalpha-induced activation of NF-kappaB, but abolished the activation of SP-1. Mutation of the NF-kappaB binding site resulted in a moderate reduction in the TNFalpha-induced activity of PDGF-B promoter/enhancer, whereas mutation of SP-1 binding site resulted in an absence of induction by TNFalpha. These results suggest that oxidative stress mediates the TNFalpha-induced expression of PDGF-B in HUVECs through redox-sensitive transcription factors, predominantly the SP-1 and possibly, to some extent of NF-kappaB.
Collapse
Affiliation(s)
- Jianru Shi
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
114
|
Hart AM, Terenghi G, Kellerth JO, Wiberg M. Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 2004; 125:91-101. [PMID: 15051148 DOI: 10.1016/j.neuroscience.2003.12.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Neuronal death is a major factor in many neuropathologies, particularly traumatic, and yet no neuroprotective therapies are currently available clinically, although antioxidants and mitochondrial protection appear to be fruitful avenues of research. The simplest system involving neuronal death is that of the dorsal root ganglion after peripheral nerve trauma, where the loss of approximately 40% of primary sensory neurons is a major factor in the overwhelmingly poor clinical outcome of the several million nerve injuries that occur each year worldwide. N-acetyl-cysteine (NAC) is a glutathione substrate which is neuroprotective in a variety of in vitro models of neuronal death, and which may enhance mitochondrial protection. Using TdT uptake nick-end labelling (TUNEL), optical disection, and morphological studies, the effect of systemic NAC treatment upon L4 and 5 primary sensory neuronal death after sciatic nerve transection was investigated. NAC (150 mg/kg/day) almost totally eliminated the extensive neuronal loss found in controls both 2 weeks (no treatment 21% loss, NAC 3%, P=0.03) and 2 months after axotomy (no treatment 35% loss, NAC 3%, P=0.002). Glial cell death was reduced (mean number TUNEL positive cells 2 months after axotomy: no treatment 51/ganglion pair, NAC 16/ganglion pair), and mitochondrial architecture was preserved. The effects were less profound when a lower dose was examined (30 mg/kg/day), although significant neuroprotection still occurred. This provides evidence of the importance of mitochondrial dysregulation in axotomy-induced neuronal death in the peripheral nervous system, and suggests that NAC merits investigation in CNS trauma. NAC is already in widespread clinical use for applications outside the nervous system; it therefore has immediate clinical potential in the prevention of primary sensory neuronal death, and has therapeutic potential in other neuropathological systems.
Collapse
Affiliation(s)
- A M Hart
- Blond-McIndoe Research Laboratories, The University of Manchester, Stopford Building, Room 3.102, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
115
|
Abstract
Zinc is an important component of proteins essential for normal functioning of the brain. However, it has been shown in vitro that this metal, at elevated levels, can be toxic to cells leading to their death. We investigated possible mechanisms of cell death caused by zinc: firstly, generation of reactive oxygen species, and secondly, the activation of the MAP-kinase pathway. Cell viability was assessed by means of the methyl-thiazolyl tetrazolium salt (MTT) assay and confirmed by tetramethylrhodamine methyl ester (TMRM) staining. We measured the phosphorylation status of Erk and p38 as indicators of MAP-kinase activity, using Western Blot techniques. A time curve was established when neuroblastoma (N2alpha) cells were exposed to 100 microM of zinc for 4, 12, and 24 h. Zinc caused a significant reduction in cell viability as early as 4 h, and indirectly stimulated the accumulation of reactive oxygen species as determined by 2.7 dichlorodihydrofluorescein diacetate (DCDHF) staining and confocal microscopy. Investigation of the MAP-kinase pathway indicated that Erk was downregulated, while p38 was stimulated. Our results therefore led us to conclude that in vitro, zinc toxicity involved the generation of reactive oxygen species and the activation of the MAP-kinase pathway.
Collapse
Affiliation(s)
- Willie M U Daniels
- Department of Medical Physiology, University of Stellenbosch, Tygerberg, South Africa.
| | | | | | | |
Collapse
|
116
|
Ju TC, Yang YT, Yang DI. Protective effects of S-nitrosoglutathione against neurotoxicity of 3-nitropropionic acid in rat. Neurosci Lett 2004; 362:226-31. [PMID: 15158020 DOI: 10.1016/j.neulet.2004.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/12/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are often linked to various neurodegenerative disorders including ischemic stroke and Huntington's disease (HD). S-Nitrosoglutathione (GSNO) is an endogenous nitric oxide carrier recently identified as a potent antioxidant capable of neutralizing oxidative stress. In the present study, we explore the neuroprotective effects of GSNO against metabolic insults induced by 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor commonly used as a pharmacological model for HD, in primary culture of fetal rat cortical and striatal neurons. Application of GSNO (1-5 microM) substantially reduced neuronal loss caused by 3-NP (1-5 mM) exposure based on MTT reduction, lactate dehydrogenase (LDH) release, and Hoechst staining assays. The protective effect of GSNO appeared to be more potent than N-acetyl-l-cysteine (NAC), a glutathione precursor, at the same concentrations. These results suggest that manipulation of GSNO metabolism may exert protective effects against mitochondrial dysfunction often observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tzyh-Chwen Ju
- Institute of Neuroscience, Tzu Chi University, Hualien 970, Taiwan
| | | | | |
Collapse
|
117
|
Chan SL, Fu W, Zhang P, Cheng A, Lee J, Kokame K, Mattson MP. Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J Biol Chem 2004; 279:28733-43. [PMID: 15102845 DOI: 10.1074/jbc.m404272200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In response to endoplasmic reticulum (ER) stress, cells launch homeostatic and protective responses, but can also activate cell death cascades. A 54 kDa integral ER membrane protein called Herp was identified as a stress-responsive protein in non-neuronal cells. We report that Herp is present in neurons in the developing and adult brain, and that it is regulated in neurons by ER stress; sublethal levels of ER stress increase Herp levels, whereas higher doses decrease Herp levels and induce apoptosis. The decrease in Herp protein levels following a lethal ER stress occurs prior to mitochondrial dysfunction and cell death, and is mediated by caspases which generate a 30-kDa proteolytic Herp fragment. Mutagenesis of the caspase cleavage site in Herp enhances its neuroprotective function during ER stress. While suppression of Herp induction by RNA interference sensitizes neural cells to apoptosis induced by ER stress, overexpression of Herp promotes survival by a mechanism involving stabilization of ER Ca(2+) levels, preservation of mitochondrial function and suppression of caspase 3 activation. ER stress-induced activation of JNK/c-Jun and caspase 12 are reduced by Herp, whereas induction of major ER chaperones is unaffected. Herp prevents ER Ca(2+) overload under conditions of ER stress and agonist-induced ER Ca(2+) release is attenuated by Herp suggesting a role for Herp in regulating neuronal Ca(2+) signaling. By stabilizing ER Ca(2+) homeostasis and mitochondrial functions, Herp serves a neuroprotective function under conditions of ER stress.
Collapse
Affiliation(s)
- Sic L Chan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Reiterer G, Toborek M, Hennig B. Quercetin protects against linoleic acid-induced porcine endothelial cell dysfunction. J Nutr 2004; 134:771-5. [PMID: 15051824 DOI: 10.1093/jn/134.4.771] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Consumption of plant phenolics, such as quercetin, may be associated with decreased risk of cardiovascular disease by stabilizing and protecting vascular endothelial cells against oxidative and proinflammatory insults. The present study focused on the effect of quercetin on linoleic acid-induced oxidative stress and the inflammatory pathways of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). Because the transcription factor peroxisome proliferator activated receptor gamma (PPARgamma) was reported to downregulate inflammatory pathways, we further investigated the effect of quercetin on PPARgamma. Porcine pulmonary-arterial endothelial cells were activated with linoleic acid in the presence or absence of quercetin. Oxidative stress was markedly induced by endothelial cell exposure to linoleic acid and diminished by treatment with quercetin as measured via the oxidation of 2',7'-dichlorofluorescin. Quercetin reduced linoleic acid-mediated binding activity of NF-kappaB and AP-1 and mRNA levels of inflammatory genes such as interleukin-6 (IL-6) and vascular cell adhesion molecule-1 (VCAM-1). Cotreatment of linoleic acid plus quercetin or vitamin E also decreased linoleic acid-induced binding activity of PPARgamma. These data suggest that quercetin has potent antioxidative and anti-inflammatory properties and protects endothelial cells against linoleic acid-mediated cell dysfunction.
Collapse
Affiliation(s)
- Gudrun Reiterer
- Department of. Surgery, College of Agriculture, University of Kentucky, Lexington, KY 40546-0215, USA
| | | | | |
Collapse
|
119
|
Blake AD. Dipyridamole is neuroprotective for cultured rat embryonic cortical neurons. Biochem Biophys Res Commun 2004; 314:501-4. [PMID: 14733934 DOI: 10.1016/j.bbrc.2003.12.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of a clinically useful cardiovascular agent, dipyridamole, were examined in a rodent tissue culture model of neuroprotection. Dipyridamole effectively protected rat embryonic day 18 (E18) cortical neurons from either 48 h trophic deprivation or 48 h exposure to the glutathione synthesis inhibitor, L-buthionine (R,S) sulfoximine. The neuron sparing actions of dipyridamole were time- and concentration-dependent and mimicked the actions of exogenously applied glutathione. These results demonstrate that dipyridamole protects primary neuronal cultures against either trophic or chemically mediated insults, and suggest that dipyridamole has a potent antioxidant ability that compensates for glutathione depletion in neuronal cultures.
Collapse
Affiliation(s)
- Allan D Blake
- Department of Biology, Seton Hall University, South Orange, NJ 07079, USA.
| |
Collapse
|
120
|
Abstract
Although ATP is reported to modulate synaptic plasticity, the mechanism of action of ATP on synaptic transmission is not fully understood. Here we show that ATP enhances long-term potentiation (LTP), and P2X receptor antagonists inhibit this ATP effect, but do not affect paired pulse facilitation (PPF) in rat hippocampal slices. ATP rapidly increases intracellular calcium, and P2X receptor antagonists inhibit this increase in cultured dissociated neurons. These results indicate that ATP enhances LTP via activation of postsynaptic P2X receptors. A pertussis toxin-sensitive G-protein inhibitor significantly attenuates PPF, although it does not affect LTP, indicating that presynaptic P2Y receptors also play an important role in neuronal plasticity. We conclude that ATP modulates synaptic plasticity via dual effects on pre- and post-synaptic mechanisms.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
121
|
Kassed CA, Butler TL, Patton GW, Demesquita DD, Navidomskis MT, Mémet S, Israël A, Pennypacker KR. Injury‐induced NF‐κB activation in the hippocampus: implications for neuronal survival. FASEB J 2004; 18:723-4. [PMID: 14766792 DOI: 10.1096/fj.03-0773fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factor (NF)-kappaB p50 protein is involved in promoting survival in hippocampal neurons after trimethyltin (TMT)-injury. In the current study, hippocampal NF-kappaB activity was examined and quantitated from transgenic kappaB-lacZ reporter mice after chemical-induced injury. NF-kappaB activity was localized primarily to hippocampal neurons and significantly elevated over that in saline-treated mice between 4 and 21 days after TMT injection. Seven days after TMT injection, a timepoint of elevated NF-kappaB activity, gene expression in the hippocampus was studied by microarray analysis through comparison of expression profiles between treated nontransgenic and p50-null mice with their saline-injected controls. Seventeen genes increased in nontransgenic TMT-treated mice relative to saline-treated as well as showing no increase in p50-null mice, indicating a role for p50 in their regulation. One of these genes, the Na+, K+-ATPase-gamma subunit, was detected in brain for the first time. Several of the genes modulated by NF-kappaB are potentially related to neuroplasticity, providing additional evidence that this transcription factor is a neuroprotective signal in the hippocampus.
Collapse
Affiliation(s)
- C A Kassed
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Root-end-filling materials have been tested for toxicity on several cell types, but their toxicity has not been tested on neurons. In this study we evaluated the neurotoxicity in murine cerebral cortical cell cultures of four commonly used root-end-filling materials: mineral trioxide aggregate, amalgam, Super EBA, and Diaket. Standardized amounts of each material were placed on culture-well inserts, allowing the material to be exposed to the culture bathing media without causing physical disruption of the cells. Cell death was quantified by assaying release of the cytosolic enzyme lactate dehydrogenase. Exposure of cortical cultures to freshly mixed or 7-day-old MTA did not cause significant neuronal death, whereas exposure to freshly mixed or 7-day-old amalgam, Super EBA, and Diaket resulted in significant neuronal death (p < .05). Thus, each material, except for mineral trioxide aggregate, can induce neurotoxicity, even when allowed to set thoroughly.
Collapse
Affiliation(s)
- Mahshid Asrari
- Department of Endodontics, Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
123
|
Diestel A, Aktas O, Hackel D, Hake I, Meier S, Raine CS, Nitsch R, Zipp F, Ullrich O. Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. ACTA ACUST UNITED AC 2004; 198:1729-40. [PMID: 14657223 PMCID: PMC2194134 DOI: 10.1084/jem.20030975] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease in which it has only recently been suggested that damage to neuronal structures plays a key role. Here, we uncovered a link between the release of lipid breakdown products, found in the brain and cerebrospinal fluid (CSF) of MS patients as well as in experimental autoimmune encephalomyelitis, and neuronal damage mediated by microglial activation. The concentrations of the breakdown product 7-ketocholesterol detected in the CSF of MS patients were capable of inducing neuronal damage via the activation and migration of microglial cells in living brain tissue. 7-ketocholesterol rapidly entered the nucleus and activated poly(ADP-ribose)-polymerase (PARP)-1, followed by the expression of migration-regulating integrins CD11a and intercellular adhesion molecule 1. These findings reveal a novel mechanism linking demyelination and progressive neuronal damage, which might represent an underlying insidious process driving disease beyond a primary white matter phenomenon and rendering the microglial PARP-1 a possible antiinflammatory therapeutic target.
Collapse
Affiliation(s)
- Antje Diestel
- Department of Cell and Neurobiology, Institute of Anatomy, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Li AA, Ng E, Shi W, Lee A, Chia M, Liu TJ, Huang D, O'Sullivan B, Gullane P, Liu FF. Potential efficacy ofp16 gene therapy for EBV-positive nasopharyngeal carcinoma. Int J Cancer 2004; 110:452-8. [PMID: 15095314 DOI: 10.1002/ijc.20065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The p16 cell cycle inhibitory gene is a potentially critical molecular abnormality in nasopharyngeal carcinoma (NPC). Its expression is silenced through either deletion or promoter methylation in the vast majority of NPC. This in turn is associated with absent or reduced protein expression, which has been previously demonstrated by our group to correlate with inferior clinical outcome. Therefore, we were interested in evaluating the potential of adenoviral mediated p16 gene therapy (adv.p16) in an EBV-positive NPC model (C666-1). We confirm that under basal conditions, p16 protein is undetectable in C666-1 cells, which, in turn, is associated with retention of retinoblastoma protein (pRb) expression. P16 expression was observed as early as 4 hr after infection of C666-1 cells with adv.p16 (10 pfu/cell) with no discernible perturbation in pRb for up to 24 hr. At 48 hr post-infection, p16 expression continued to increase, but at this point, pRb expression started to decline significantly. Cell viability decreased in a dose-dependent manner, down to 20% using 50 pfu/cell of adv.p16. The addition of radiation therapy (RT) administered 24 hr post-infection achieved only a slightly additive cytotoxicity. Adv.p16 therapy resulted in multiple mechanisms of cytotoxicity, including cell cycle arrest at the G0/G1 phase, induction of senescence, along with apoptosis. Ex vivo infection of C666-1 cells with adv.p16 (25 pfu/cell) with subsequent implantation into scid mice completely prevented tumor formation, followed for up to 51 days. Our study demonstrates the potential efficacy of adv.p16 gene therapy for NPC, mediated through multimodal mechanisms of cytotoxicity. Future evaluations will examine strategies to increase in vivo tumor transduction with a view towards future clinical applications.
Collapse
Affiliation(s)
- Anna Aihua Li
- Ontario Cancer Institute, University Health Network, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Yao PJ, Zhang P, Mattson MP, Furukawa K. Heterogeneity of endocytic proteins: distribution of clathrin adaptor proteins in neurons and glia. Neuroscience 2003; 121:25-37. [PMID: 12946697 DOI: 10.1016/s0306-4522(03)00431-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clathrin adaptor protein (AP)180 is a synaptic protein that regulates the assembly of clathrin-coated vesicles. Several endocytic proteins including AP2, CALM, and epsin 1 have functions or molecular structures similar to AP180. We determined if AP180 associates with functional synapses in cultured hippocampal neurons. We also compared the expression pattern of AP180 with the other endocytic proteins. The distribution of AP180 corresponded with the synaptic vesicle-associated protein synapsin I, and with functional presynaptic terminals labeled with the styryl dye FM1-43. Synaptic AP2 colocalized with AP180, but the distribution of AP2 was not limited to synapses of neurons and it was also expressed in glia. CLAM and epsin 1 immunoreactivities were also detected in both neurons and glia. Unlike AP180, the neuronal immunoreactivity of CALM was not intense in the synaptic puncta. Epsin 1 immunoreactivity was found in both synaptic and extrasynaptic sites, and its synaptic distribution only partially overlapped with that of AP180. These results support roles for AP180 in synaptic function in neurons. The findings also provide information on the distribution of AP2, CALM, and epsin 1 in cells of the nervous system that suggest different roles for these endocytic proteins in the biology of these cells.
Collapse
Affiliation(s)
- P J Yao
- Laboratory of Neurosciences, Gerontology Research Center, NIA/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
126
|
Bhat R, Xue Y, Berg S, Hellberg S, Ormö M, Nilsson Y, Radesäter AC, Jerning E, Markgren PO, Borgegård T, Nylöf M, Giménez-Cassina A, Hernández F, Lucas JJ, Díaz-Nido J, Avila J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003; 278:45937-45. [PMID: 12928438 DOI: 10.1074/jbc.m306268200] [Citation(s) in RCA: 425] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in pathological conditions such as diabetes and Alzheimer's disease. We report the characterization of a GSK3 inhibitor, AR-A014418, which inhibits GSK3 (IC50 = 104 +/- 27 nM), in an ATP-competitive manner (Ki = 38 nM). AR-A014418 does not significantly inhibit cdk2 or cdk5 (IC50 > 100 microM) or 26 other kinases demonstrating high specificity for GSK3. We report the co-crystallization of AR-A014418 with the GSK3beta protein and provide a description of the interactions within the ATP pocket, as well as an understanding of the structural basis for the selectivity of AR-A014418. AR-A014418 inhibits tau phosphorylation at a GSK3-specific site (Ser-396) in cells stably expressing human four-repeat tau protein. AR-A014418 protects N2A neuroblastoma cells against cell death mediated by inhibition of the phosphatidylinositol 3-kinase/protein kinase B survival pathway. Furthermore, AR-A014418 inhibits neurodegeneration mediated by beta-amyloid peptide in hippocampal slices. AR-A014418 may thus have important applications as a tool to elucidate the role of GSK3 in cellular signaling and possibly in Alzheimer's disease. AR-A014418 is the first compound of a family of specific inhibitors of GSK3 that does not significantly inhibit closely related kinases such as cdk2 or cdk5.
Collapse
Affiliation(s)
- Ratan Bhat
- AstraZeneca R&D, 15185 Södertälje, Sweden, AstraZeneca R&D, 43183 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gilman CP, Perry T, Furukawa K, Grieg NH, Egan JM, Mattson MP. Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. J Neurochem 2003; 87:1137-44. [PMID: 14622093 DOI: 10.1046/j.1471-4159.2003.02073.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) activates receptors coupled to cAMP production and calcium influx in pancreatic cells, resulting in enhanced glucose sensitivity and insulin secretion. Despite evidence that the GLP-1 receptor is present and active in neurons, little is known of the roles of GLP-1 in neuronal physiology. As GLP-1 modulates calcium homeostasis in pancreatic beta cells, and because calcium plays important roles in neuronal plasticity and neurodegenerative processes, we examined the effects of GLP-1 on calcium regulation in cultured rat hippocampal neurons. When neurons were pre-treated with GLP-1, calcium responses to glutamate and membrane depolarization were attenuated. Whole-cell patch clamp analyses showed that glutamate-induced currents and currents through voltage-dependent calcium channels were significantly decreased in neurons pre-treated with GLP-1. Pre-treatment of neurons with GLP-1 significantly decreased their vulnerability to death induced by glutamate. Acute application of GLP-1 resulted in a transient elevation of intracellular calcium levels, consistent with the established effects of GLP-1 on cAMP production and activation of cAMP response element-binding protein. Collectively, our findings suggest that, by modulating calcium responses to glutamate and membrane depolarization, GLP-1 may play important roles in regulating neuronal plasticity and cell survival.
Collapse
Affiliation(s)
- Charles P Gilman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
128
|
Lovell MA, Xie C, Xiong S, Markesbery WR. Wilms' tumor suppressor (WT1) is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer's disease. Brain Res 2003; 983:84-96. [PMID: 12914969 DOI: 10.1016/s0006-8993(03)03032-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wilms' tumor suppressor (WT1), a 52- to 54-kda transcription factor, is the gene product of Wilms' tumor 1 (wt1), one of at least three genes involved in the development of a pediatric kidney cancer. Expression patterns of WT1 indicate that it is not restricted to the kidney but may play a role in the development and homeostasis of other tissues as well. WT1 has been implicated in various cellular processes including proliferation, differentiation, and apoptosis. High levels of WT1 induce apoptosis independent of p53, whereas low levels of WT1 inhibit apoptosis. Because apoptosis has been suggested to play a role in neurodegeneration in Alzheimer's disease (AD), immunohistochemistry of WT1 and paired helical filament (PHF) in serial sections was carried out. Immunohistochemical localization of WT1 and PHF showed the presence of WT1 in approximately 42% of PHF-positive neurofibrillary tangle containing-neurons. Laser confocal microscopy of hippocampal neuron cultures undergoing apoptosis induced by amyloid beta peptide (Abeta) or staurosporine demonstrated significant time-dependent elevations of WT1 correlating with increased levels of apoptosis. Blockade of WT1 transcription by antisense oligonucleotide reduced WT1 expression and prevented neuronal apoptosis in both Abeta- and staurosporine-treated cultures. Together, these data suggest a role for WT1 in the neurodegeneration observed in AD brain.
Collapse
Affiliation(s)
- Mark A Lovell
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
129
|
Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, Fernyhough P. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 2003; 52:2129-36. [PMID: 12882932 DOI: 10.2337/diabetes.52.8.2129] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial dysfunction has been proposed as a mediator of neurodegeneration in diabetes complications. The aim of this study was to determine whether deficits in insulin-dependent neurotrophic support contributed to depolarization of the mitochondrial membrane in sensory neurons of streptozocin (STZ)-induced diabetic rats. Whole cell fluorescent video imaging using rhodamine 123 (R123) was used to monitor mitochondrial inner membrane potential (deltapsi(m)). Treatment of cultured dorsal root ganglia (DRG) sensory neurons from normal adult rats for up to 1 day with 50 mmol/l glucose had no effect; however, 1.0 nmol/l insulin increased deltapsi(m) by 100% (P < 0.05). To determine the role of insulin in vivo, STZ-induced diabetic animals were treated with background insulin and the deltapsi(m) of DRG sensory neurons was analyzed. Insulin therapy in STZ-induced diabetic rats had no effect on raised glycated hemoglobin or sciatic nerve polyol levels, confirming that hyperglycemia was unaffected. However, insulin treatment significantly normalized diabetes-induced deficits in sensory and motor nerve conduction velocity (P < 0.05). In acutely isolated DRG sensory neurons from insulin-treated STZ animals, the diabetes-related depolarization of the deltapsi(m) was corrected (P < 0.05). The results demonstrate that loss of insulin-dependent neurotrophic support may contribute to mitochondrial membrane depolarization in sensory neurons in diabetic neuropathy.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Ganglia, Spinal/cytology
- Glucose/pharmacology
- Hyperglycemia/drug therapy
- Hyperglycemia/physiopathology
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Male
- Membrane Potentials/drug effects
- Microscopy, Video
- Mitochondria/drug effects
- Mitochondria/physiology
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Polymers/metabolism
- Rats
- Rats, Wistar
- Receptor, Insulin/physiology
Collapse
Affiliation(s)
- Tze-Jen Huang
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
130
|
Alvarez G, Ramos M, Ruiz F, Satrústegui J, Bogónez E. Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state. J Neurosci Res 2003; 73:260-9. [PMID: 12836169 DOI: 10.1002/jnr.10648] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism by which beta-amyloid protein (A beta) causes degeneration in cultured neurons is not completely understood, but several lines of evidence suggest that A beta-mediated neuronal death is associated with an enhanced production of reactive oxygen species (ROS) and oxidative damage. In the present study, we address whether supplementation of glucose-containing culture media with energy substrates, pyruvate plus malate (P/M), protects rat primary neurons from A beta-induced degeneration and death. We found that P/M addition attenuated cell death evoked by beta-amyloid peptides (A beta(25-35) and A beta(1-40)) after 24 hr treatment and that this effect was blocked by alpha-ciano-3-hydroxycinnamate (CIN), suggesting that it requires mitochondrial pyruvate uptake. P/M supply to control and A beta-treated neuronal cultures increases cellular reducing power, as indicated by the ability to reduce the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The early increases in ROS levels, measured by dichlorofluorescein (DCF) fluorescence, and caspase-3 activity that follow exposure to A beta were notably reduced in the presence of P/M. These results place activation of caspase-3 most likely downstream of oxidative damage to the mitochondria and indicate that mitochondrial NAD(P) redox status plays a central role in the neuroprotective effect of pyruvate. Inhibition of respiratory chain complexes and mitochondrial uncoupling did not block the early increase in ROS levels, suggesting that A beta could initiate oxidative stress by activating a source of ROS that is not accesible to the antioxidant defenses fueled by mitochondrial substrates.
Collapse
Affiliation(s)
- Gema Alvarez
- Centro de Biología Molecular "Severo Ochoa," CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
131
|
Pérez M, Rojo AI, Wandosell F, Díaz-Nido J, Avila J. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochem J 2003; 372:129-36. [PMID: 12578563 PMCID: PMC1223368 DOI: 10.1042/bj20021596] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 01/10/2003] [Accepted: 02/11/2003] [Indexed: 11/17/2022]
Abstract
Prion diseases are characterized by neuronal cell death, glial proliferation and deposition of prion peptide aggregates. An abnormal misfolded isoform of the prion protein (PrP) is considered to be responsible for this neurodegeneration. The PrP 106-126, a synthetic peptide obtained from the amyloidogenic region of the PrP, constitutes a model system to study prion-induced neurodegeneration as it retains the ability to trigger cell death in neuronal cultures. In the present study, we show that the addition of this prion peptide to cultured neurons increases the activity of glycogen synthase kinase 3 (GSK-3), which is accompanied by the enhanced phosphorylation of some microtubule-associated proteins including tau and microtubule-associated protein 2. Prion peptide-treated neurons become progressively atrophic, and die ultimately. Both lithium and insulin, which inhibit GSK-3 activity, significantly decrease prion peptide-induced cell death both in primary neuronal cultures and in neuroblastoma cells. Finally, the overexpression of a dominant-negative mutant of GSK-3 in transfected neuroblastoma cells efficiently prevents prion peptide-induced cell death. These results are consistent with the view that the activation of GSK-3 is a crucial mediator of prion peptide-induced neurodegeneration.
Collapse
Affiliation(s)
- Mar Pérez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
132
|
Lee YW, Park HJ, Son KW, Hennig B, Robertson LW, Toborek M. 2,2',4,6,6'-pentachlorobiphenyl (PCB 104) induces apoptosis of human microvascular endothelial cells through the caspase-dependent activation of CREB. Toxicol Appl Pharmacol 2003; 189:1-10. [PMID: 12758055 DOI: 10.1016/s0041-008x(03)00084-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been proposed that endothelial integrity can play an active regulatory role in the extravasation of tumor cells during cancer metastasis. Since polychlorinated biphenyls (PCBs) have been shown to cause endothelial cell activation or injury and to lead to various diseases that involve dysfunction of the vascular endothelium, the present study was designed to determine the cellular and molecular signaling mechanisms of PCB-induced apoptosis in human microvascular endothelial cells (HMEC-1). A significant and marked decrease in cell viability was observed in HMEC-1 treated with 2,2',4,6,6'-pentachlorobiphenyl (PCB 104) in a time- and dose-dependent manner. Exposure of HMEC-1 to PCB 104 also dramatically induced internucleosomal DNA fragmentation. However, the caspase inhibitor zVAD-fmk significantly reversed the PCB 104-induced DNA fragmentation in HMEC-1, suggesting that endothelial cell death induced by PCB 104 exposure is, at least in part, due to caspase-dependent apoptotic pathways. To elucidate the molecular signaling mechanisms of PCB 104-induced apoptotic cell death in human microvascular endothelial cells, the present study focused on the effects of acute exposure of PCB 104 on the activation of several transcription factors, such as cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and signal transducers and activators of transcription (STAT1), which have been known to play a pivotal role in the molecular signaling cascades for the induction of apoptosis. A series of electrophoretic mobility shift assay showed that PCB 104 specifically increased only CREB DNA-binding activity in a dose-dependent manner. AP-1, NF-kappaB, and STAT1, however, were not activated. In addition, zVAD-fmk significantly and dose-dependently blocked the CREB activation enhanced by PCB 104 exposure. These results suggest that PCB-induced death of human microvascular endothelial cells is mediated, at least in part, via the caspase-dependent apoptotic pathways and that the selective activation of CREB is involved in this process.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
133
|
Goody RJ, Martin KM, Goebel SM, Hauser KF. Dynorphin A toxicity in striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism. Neuroscience 2003; 116:807-16. [PMID: 12573721 DOI: 10.1016/s0306-4522(02)00563-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynorphin A (1-17) is an endogenous opioid peptide that is antinociceptive at physiological concentrations, but in excess can elicit a number of pathological effects. Both kappa-opioid and N-methyl-D-aspartate receptor antagonists modulate dynorphin toxicity, suggesting that dynorphin is acting directly or indirectly through these receptor types. We found in spinal cord neurons that the neurotoxic effects of dynorphin A and several dynorphin-derived peptide fragments are largely mediated by N-methyl-D-aspartate receptors. Despite these findings, aspects of dynorphin A toxicity could not be accounted for by opioid or N-methyl-D-aspartate receptor mechanisms. To address this issue, neurons enriched in kappa-opioid, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors were isolated from embryonic day-15 mouse striata and the effects of extracellularly administered dynorphin A (1-17) and (13-17) on neuronal survival were examined in vitro. Unlike spinal cord neurons, N-methyl-D-aspartate receptors mature later than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors in striatal neurons, thus providing a strategy to elucidate non-N-methyl-D-aspartate receptor-mediated mechanisms of toxicity. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. Dynorphin A (1-17 or 13-17; 10 microM) caused significant neuronal losses after 48 to 72 hours versus untreated controls. Dynorphin A or A (13-17) toxicity was unaffected by the opioid receptor antagonist naloxone (10 microM) or by dizocilpine (10 microM). In contrast, the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline- 2,3-dione (10 microM) significantly attenuated only dynorphin A (1-17)-induced neuronal losses and not that induced by dynorphin A (13-17). Dynorphin A (1-17) toxicity was accompanied by a proportional loss of R2 and R3 subunits of the AMPA receptor complex, but not non-N-methyl-D-aspartateR1, expressing neurons and was mimicked by the ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine. Although it is unclear whether dynorphin A activates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors directly or indirectly via glutamate release, our culture conditions do not support glutamate retention or accumulation. Our findings suggest that dynorphin A (1-17) can exert toxic effects on striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism.
Collapse
Affiliation(s)
- R J Goody
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
134
|
Takahashi H, Kosaka M, Watanabe Y, Nakade K, Fukuyama Y. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg Med Chem 2003; 11:1781-8. [PMID: 12659764 DOI: 10.1016/s0968-0896(02)00666-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Norbergenin, which is the O-demethyl derivative of bergenin, the main component of Mallotus japonicus, has been found to show moderate antioxidant activity (IC(50) 13 microM in DPPH radical scavenging; 32 microM in superoxide anion scavenging). Modification of sugar part on norbergenin by coupling with a variety of fatty acids was employed for increasing its antioxidant activity. Selective esterification of hydroxyl groups on the sugar part enhanced greatly antioxidant activity. The most potent one is norbergenin 11-caproate, which not only exhibits stronger antioxidant activity than that of catechin but also prevents neuronal death at 10 microM on the primary culture of rat cortical neurons in DMEM supplemented with N2.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | | | | | | | | |
Collapse
|
135
|
Boland A, Gérardy J, Mossay D, Seutin V. Pre- and post-treatment with pirlindole and dehydropirlindole protects cultured brain cells against nitric oxide-induced death. Eur J Pharmacol 2003; 466:21-30. [PMID: 12679138 DOI: 10.1016/s0014-2999(03)01539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that pirlindole and dehydropirlindole, two monoamine oxidase type-A inhibitors, protect cultured brain cells against iron-induced toxicity through a mechanism unrelated to monoamine oxidase type-A inhibition. The current study was performed to test whether the protective effect of pirlindole and dehydropirlindole could be extended to a nitric oxide (NO)-induced insult. A comparison with other monoamine oxidase inhibitors (brofaromine, moclobemide and deprenyl) and with trolox was made. In a first series of experiments, rat hippocampal or cortical cultured cells were exposed to a drug for 3 h, then 5 microM sodium nitroprusside, a NO donor, was added and the incubation was continued for 16 h. Cell survival assessment showed that pirlindole, dehydropirlindole and trolox significantly protected cultures against NO-induced toxicity in a concentration-dependent manner with respective EC(50)'s of 7, 3 and 17 microM. Similarly, pirlindole, dehydropirlindole or trolox, at a concentration of 50 microM, significantly decreased both intracellular peroxide production and lipoperoxidation. Other drugs were ineffective. In a post-hoc treatment protocol (3- or 6-h pre-incubation in the presence of sodium nitroprusside, then addition of one of the above mentioned compounds), only pirlindole and dehydropirlindole significantly improved cell survival in a concentration-dependent manner with respective EC(50)'s of 9 and 4 microM. The maximal protection in terms of cell survival was 90% and 78% after 3 and 6 h, respectively. They also reduced the production of both lipoperoxides and endoperoxides. Our results show that pirlindole and dehydropirlindole protect neurons against NO-induced toxicity at pharmacologically relevant concentrations. Moreover, their protective effect is still apparent when they are applied after the start of the insult. Therefore, our preclinical study suggests a new strategy that may be efficient to reduce NO-induced damage in the central nervous system.
Collapse
Affiliation(s)
- André Boland
- Center for Cellular and Molecular Neurobiology, Laboratory of Pharmacology, Institute of Pathology B23, University of Liège, B-4000 Sart-Tilman- 1, Liège, Belgium
| | | | | | | |
Collapse
|
136
|
Flora G, Lee YW, Nath A, Maragos W, Hennig B, Toborek M. Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med 2003; 2:71-85. [PMID: 12230306 DOI: 10.1385/nmm:2:1:71] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cellular and molecular mechanisms of methamphetamine (METH)-induced neurotoxicity may involve alterations of cellular redox status and induction of inflammatory genes. To study this hypothesis, molecular signaling pathways of METH-induced inflammatory responses via activation of redox-sensitive transcription factors were investigated in discrete regions (corpus striatum, frontal cortex, and hippocampus) of mouse brain. Intraperitoneal injection of METH at a dose of 10 mg/kg body weight resulted in a significant increase in oxidative stress, as measured by 2,7-dichlorofluorescein (DCF) fluorescence assay, thiobarbituric acid-reactive substances (TBARS), and total glutathione levels. Glutathione peroxidase activity was also significantly increased after METH exposure. In addition, DNA binding activity of activator protein-1 (AP-1), a redox-responsive transcription factor, was increased in all studied brain regions in response to METH treatment. Because AP-1 is known to regulate expression of inflammatory genes, levels of TNF-alpha mRNA were also studied. Expression of the tumor necrosis factor-alpha (TNF-alpha) gene was induced 3 h after METH injection and remained elevated for up to 6 h of METH exposure. In addition, stimulation of the TNF-alpha gene was associated with increased TNF-a protein production in the frontal cortex. These results suggest that METH-induced disturbances in cellular redox status and that activation of AP-1 can play a critical role in signaling pathways leading to upregulation of inflammatory genes in vivo. Furthermore, these data provide evidence for the role of oxidative stress in the neurotoxic effects of METH.
Collapse
Affiliation(s)
- Govinder Flora
- Departments of Surgery, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
137
|
Hossain MA, Fielding KE, Trescher WH, Ho T, Wilson MA, Laterra J. Human FGF-1 gene delivery protects against quinolinate-induced striatal and hippocampal injury in neonatal rats. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.1998.00259.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
138
|
Melo JB, Agostinho P, Oliveira CR. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 2003; 45:117-27. [PMID: 12507730 DOI: 10.1016/s0168-0102(02)00201-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) activity is increased within and around amyloid plaques, which are present in Alzheimer's disease (AD) patient's brain. In this study, using cultured retinal cells as a neuronal model, we analyzed the effect of the synthetic peptide Abeta(25-35) on the activity of AChE, the degradation enzyme of acetylcholine, as well as the involvement of oxidative stress in this process. The activity of AChE was increased when retinal cells were incubated with Abeta(25-35) (25 microM, 24 h) and antioxidants such as alpha-tocopherol acetate and nitric oxide synthase (NOS) inhibitors were capable of preventing this effect. Despite Abeta(25-35) did not affect cell membrane integrity, the redox capacity of cells decreased. The incubation with this amyloidogenic peptide led to an increment of reactive oxygen species formation (20%), of lipid peroxidation (65%), and basal intracellular calcium levels (40%). The data obtained show that the enhancement of AChE activity induced by Abeta(25-35) is mediated by oxidative stress, and that vitamin E and NOS inhibitors, by preventing the compromise of the enzyme activity, can have an important role in the maintenance of acetylcholine synaptic levels, thus preventing or improving cognitive and memory functions of AD patients.
Collapse
Affiliation(s)
- Joana Barbosa Melo
- Center for Neurosciences of Coimbra and Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | |
Collapse
|
139
|
Toborek M, Lee YW, Pu H, Malecki A, Flora G, Garrido R, Hennig B, Bauer HC, Nath A. HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 2003; 84:169-79. [PMID: 12485413 DOI: 10.1046/j.1471-4159.2003.01543.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Impaired function of the brain vasculature might contribute to the development of HIV-associated dementia. For example, injury or dysfunction of brain microvascular endothelial cells (BMEC) can lead to the breakdown of the blood-brain barrier (BBB) and thus allow accelerated entry of the HIV-1 virus into the CNS. Mechanisms of injury to BMEC during HIV-1 infection are not fully understood, but the viral gene product Tat may be, at least in part, responsible for this effect. Tat can be released from infected perivascular macrophages in the CNS of patients with AIDS, and thus BMEC can be directly exposed to high concentrations of this protein. To study oxidative and inflammatory mechanisms associated with Tat-induced toxicity, BMEC were exposed to increasing doses of Tat1-72, and markers of oxidative stress, as well as redox-responsive transcription factors such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), were measured. Tat1-72 treatment markedly increased cellular oxidative stress, decreased levels of intracellular glutathione and activated DNA binding activity and transactivation of NF-kappaB and AP-1. To determine if Tat1-72 can stimulate inflammatory responses in brain endothelium in vivo, expression of monocyte chemoattractant protein-1 (MCP-1), an NF-kappaB and AP-1-dependent chemokine, was studied in brain tissue in mice injected with Tat1-72 into the right hippocampus. Tat1-72 markedly elevated the MCP-1 mRNA levels in brain tissue. In addition, a double immunohistochemistry study revealed that MCP-1 protein was markedly overexpressed on brain vascular endothelium. These data indicate that Tat1-72 can induce redox-related inflammatory responses both in in vitro and in vivo environments. These changes can directly lead to disruption of the BBB. Thus, Tat can play an important role in the development of detrimental vascular changes in the brains of HIV-infected patients.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, Animal Sciences and Neurology, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3:862-72. [PMID: 12415294 DOI: 10.1038/nrn960] [Citation(s) in RCA: 767] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frank M LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Building, Irvine, California 92697, USA.
| |
Collapse
|
141
|
Lee WT, Yin HS, Shen YZ. The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload. Neuroscience 2002; 112:707-16. [PMID: 12074912 DOI: 10.1016/s0306-4522(02)00097-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies showed that 3-nitropropionic acid, an irreversible inhibitor of succinate dehydrogenase, produced neuronal death secondary to perturbed intracellular calcium homeostasis. However, the response of intramitochondrial calcium ([Ca(2+)](m)) to 3-nitropropionic acid remains unknown. In this study, we investigated the roles of and relationships among [Ca(2+)](m) overload, mitochondrial reactive oxygen species, and mitochondrial membrane depolarization in 3-nitropropionic acid-induced neuronal death. Following 1 mM 3-nitropropionic acid treatment on primary rat neuronal cultures, there was a gradual increase of [Ca(2+)](m) beginning at 2-4 h post 3-nitropropionic acid application, and a twofold increase of mitochondrial reactive oxygen species at 4 h. These were followed by mitochondrial membrane depolarization at 6-8 h post-treatment. By inhibiting [Ca(2+)](m) uptake, Ruthenium Red attenuated the production of reactive oxygen species, and prevented the 3-nitropropionic acid-induced mitochondrial membrane depolarization and 70% of apoptotic neuronal death (P<0.001). Inhibition of caspase activation attenuated the elevation of [Ca(2+)](m) (P<0.001), indicating that caspase activation plays a role in the elevation of [Ca(2+)](m). MK-801, an antagonist of N-methyl-D-aspartate (NMDA) glutamate receptors, prevented 3-nitropropionic acid-induced [Ca(2+)](m) elevation, caspase-3 activation, mitochondrial depolarization, and neuronal death. We conclude that the activation of NMDA glutamate receptor contributes to mitochondrial alterations induced by 3-nitropropionic acid. Inhibition of its activation and [Ca(2+)](m) overload with subsequent mitochondrial membrane depolarization can therefore attenuate the neuronal death induced by 3-nitropropionic acid.
Collapse
Affiliation(s)
- W T Lee
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
142
|
Gabryel B, Adamczyk J, Huzarska M, Pudełko A, Trzeciak HI. Aniracetam attenuates apoptosis of astrocytes subjected to simulated ischemia in vitro. Neurotoxicology 2002; 23:385-95. [PMID: 12387365 DOI: 10.1016/s0161-813x(02)00084-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to establish whether aniracetam is capable of protecting cultured rat astrocytes against ischemic injury. Treatment of the cultures with aniracetam (1, 10 and 100 mM) during 24 h ischemia simulated in vitro significantly decreased the number of apoptotic cells. The antiapoptotic effects of the drug were confirmed by the increase of intracellular ATP and phosphocreatine (PCr) levels and the inhibition of the caspase-3 activity. Aniracetam also attenuated cellular oxidative stress by decreased production of reactive oxygen species (ROS). These effects were associated with the decrease in levels of c-fos and c-jun mRNA in primary astrocyte cultures exposed to 24 h ischemia. When cultured astrocytes were incubated during 24 h simulated ischemia with wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor or PD98059, a mitogen-activated protein (MAP)/extracellular signal regulated kinase (ERK) (MEK) inhibitor the cell apoptosis was accelerated. This effect was antagonized by adding 100 mM aniracetam to the culture medium. These findings suggest that the protective effect of aniracetam is mediated by PI 3-kinase and MEK pathways in the downstream mechanisms.
Collapse
Affiliation(s)
- Bozena Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | | | | | |
Collapse
|
143
|
Wan W, DePetrillo PB. Ritonavir protects hippocampal neurons against oxidative stress-induced apoptosis. Neurotoxicology 2002; 23:301-6. [PMID: 12387358 DOI: 10.1016/s0161-813x(02)00057-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress plays an important role in many neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. 4-Hydroxynonenal (HNE), a lipid-soluble aldehydic product of membrane peroxidation, has been known to decrease neuronal survival by impairing Na+, K+, and -ATPase activity. HNE also increases neuronal vulnerability to excitotoxic injury and disrupts homeostasis by activating proteases which mediate the destruction of cellular protein and structure. The present study demonstrated that the hydrophobic HIV protease inhibitor, ritonavir inhibited HNE-mediated apoptosis in hippocampal primary neurons. In neurons exposed to oxidative stress induced by HNE (1 microM), ritonavir at 100 pM increased cell survival and completely abolished the apoptotic effects of HNE (P < 0.01). Ritonavir and its analogues might have useful cytoprotective effects for use in limiting the natural course of tissue injury after conditions where oxidative stress plays a role.
Collapse
Affiliation(s)
- Wenshuai Wan
- Unit of Clinical and Biochemical Pharmacology, Laboratory of Clinical Studies, Division of Intramural Clinical and Biochemical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1256, USA
| | | |
Collapse
|
144
|
Prakash KRC, Tang Y, Kozikowski AP, Flippen-Anderson JL, Knoblach SM, Faden AI. Synthesis and biological activity of novel neuroprotective diketopiperazines. Bioorg Med Chem 2002; 10:3043-8. [PMID: 12110327 DOI: 10.1016/s0968-0896(02)00132-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyclic dipeptide cyclo[His-Pro] (CHP) is synthesized endogenously de novo and as a breakdown product of thyrotropin-releasing hormone (TRH), a tripeptide with known neuroprotective activity. We synthesized two isomeric compounds based on the structure of CHP, in which the histidine residue was replaced by 3,5-di-tert-butyltyrosine (DBT), a phenolic amino acid that traps reactive oxygen species. These novel diketopiperazines prevented neuronal death in an in vitro model of traumatic injury. In addition, they dose-dependently prevented death caused by the direct induction of free radicals, and by calcium mobilization through an agent that evokes rapid, necrotic death. The drugs showed activity in the latter system at picomolar concentrations. The neuroprotective profile of these compounds suggests that they may be useful as treatments for neuronal degeneration in vivo, potentially through several different mechanisms.
Collapse
Affiliation(s)
- K R C Prakash
- Drug Discovery Program, Department of Neurology, Georgetown University Medical Center, 3900 Reservoir Road, N. W., Washington, DC 20007-2197, USA
| | | | | | | | | | | |
Collapse
|
145
|
Toborek M, Lee YW, Kaiser S, Hennig B. Measurement of inflammatory properties of fatty acids in human endothelial cells. Methods Enzymol 2002; 352:198-219. [PMID: 12125348 DOI: 10.1016/s0076-6879(02)52020-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Michal Toborek
- Department of Surgery, Division of Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
146
|
Wang Y, Mattson MP, Furukawa K. Endoplasmic reticulum calcium release is modulated by actin polymerization. J Neurochem 2002; 82:945-52. [PMID: 12358800 DOI: 10.1046/j.1471-4159.2002.01059.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular calcium ions regulate the structure and functions of cytoskeletal proteins. On the other hand, recent studies have shown that the cytoskeleton, and actin filaments in particular, can modulate calcium influx through plasma membrane ligand- and voltage-gated channels. We now report that calcium release from inositol trisphosphate (IP3) and ryanodine-sensitive endoplasmic reticulum (ER) stores is modulated by polymerization and depolymerization of actin filaments in cultured hippocampal neurons. Depolymerization of actin filaments with cytochalasin D attenuates calcium release induced by carbamylcholine (CCh; a muscarinic agonist for IP3 pathway), caffeine (a ryanodine receptor agonist) and thapsigargin (an inhibitor of the ER calcium- ATPase) in both the presence and absence of extracellular calcium. Conversely, the actin polymerizing agent jasplakinolide potentiates calcium release induced by CCh, caffeine and thapsigargin. Cytochalasin D attenuated, while jasplakinolide augmented, thapsigargin-induced JNK activation and neuronal cell death. Our data show that the actin cytoskeleton regulates ER calcium release, suggesting roles for actin in the various physiological and pathological processes that involve calcium release.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
147
|
Mu X, Azbill RD, Springer JE. NBQX treatment improves mitochondrial function and reduces oxidative events after spinal cord injury. J Neurotrauma 2002; 19:917-27. [PMID: 12225652 DOI: 10.1089/089771502320317078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the effects of inhibiting ionotropic glutamate receptor subtypes on measures of oxidative stress events at acute times following traumatic spinal cord injury (SCI). Rats received a moderate contusion injury and 15 min later were treated with one of two doses of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzol[f]quinoxaline-7-sulfonamide disodium (NBQX), MK-801, or the appropriate vehicle. At 4 h following injury, spinal cords were removed and a crude synaptosomal preparation obtained to examine mitochondrial function using the MTT assay, as well as measures of reactive oxygen species (ROS), lipid peroxidation, and glutamate and glucose uptake. We report here that intraspinal treatment with either 15 or 30 nmol of NBQX improves mitochondrial function and reduces the levels of ROS and lipid peroxidation products. In contrast, MK-801, given intravenously at doses of 1.0 or 5.0 mg/kg, was without effect on these same measures. Neither drug treatment had an effect on glutamate or glucose uptake, both of which are reduced at acute times following SCI. Previous studies have documented that drugs acting on non-N-methyl-D-aspartate (NMDA) receptors exhibit greater efficacy compared to NMDA receptor antagonists on recovery of function and tissue sparing following traumatic spinal cord injury. The results of this study provide a potential mechanism by which blockade of the non-NMDA ionotropic receptors exhibit positive effects following traumatic SCI.
Collapse
Affiliation(s)
- Xiaojun Mu
- Department of Anatomy, Center for Spinal Cord and Brain Injury Research, University of Kentucky Medical Center, Lexington, Kentucky 40536-0084, USA
| | | | | |
Collapse
|
148
|
Tomac AC, Agulnick AD, Haughey N, Chang CF, Zhang Y, Bäckman C, Morales M, Mattson MP, Wang Y, Westphal H, Hoffer BJ. Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Acad Sci U S A 2002; 99:9521-6. [PMID: 12093930 PMCID: PMC123173 DOI: 10.1073/pnas.152535899] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persephin (Pspn), a recently cloned member of the transforming growth factor-beta superfamily (TGF-beta) and glial cell line-derived neurotrophic factor (GDNF) subfamily, is distributed throughout the nervous system at extremely low levels and is thought to function as a survival factor for midbrain dopaminergic and spinal motor neurons in vivo. Here, we report that mice lacking Pspn by homologous recombination show normal development and behavior, but are hypersensitive to cerebral ischemia. A 300% increase in infarction volume was observed after middle cerebral artery occlusion. We find that glutamate-induced Ca(2+) influx, thought to be a major component of ischemic neuronal cell death, can be regulated directly by the Persephin protein (PSP) and that PSP can reduce hypoxia/reperfusion cell death in vitro. Neuronal cell death can be prevented or markedly attenuated by administration of recombinant human PSP in vivo before ischemia in both mouse and rat models. Taken together, these data indicate that PSP is a potent modulator of excitotoxicity in the central nervous system with pronounced neuroprotective activity. Our findings support the view that PSP signaling can exert an important control function in the context of stroke and glutamate-mediated neurotoxicity, and also suggest that future therapeutic approaches may involve this novel trophic protein.
Collapse
Affiliation(s)
- Andreas C Tomac
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Hennig B, Meerarani P, Slim R, Toborek M, Daugherty A, Silverstone AE, Robertson LW. Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol Appl Pharmacol 2002; 181:174-83. [PMID: 12079426 DOI: 10.1006/taap.2002.9408] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
So-called coplanar polychlorinated biphenyls (PCBs), as well as other environmental contaminants that are aryl hydrocarbon receptor (AhR) agonists, may compromise the normal functions of vascular endothelial cells by activating oxidative stress-sensitive signaling pathways and subsequent proinflammatory events critical in the pathology of atherosclerosis and cardiovascular disease. To test this hypothesis, porcine endothelial cells were exposed to PCB 153 and to three coplanar PCBs (PCB 77, PCB 126, or PCB 169). In contrast to PCB 153, which is not a ligand for the Ah receptor (AhR), all coplanar PCBs disrupted endothelial barrier function. All coplanar PCBs increased expression of the CYP1A1 gene, oxidative stress (DCF fluorescence), and the DNA-binding activity of nuclear factor kappaB (NF-kappaB). PCB-induced oxidative stress was concentration-dependent, with PCB 126 exhibiting a maximal response at the lowest concentration (0.5 microM) tested. The increase in NF-kappaB-dependent transcriptional activity was confirmed in endothelial cells by a luciferase reporter gene assay. In contrast to PCB 153, coplanar PCBs that are AhR ligands increased endothelial production of interleukin-6. At 3.4 microM, expression of the adhesion molecule VCAM-1 was most sensitive to PCB 77 and 169. We also provide in vivo evidence, suggesting that binding to the AhR is critical for the proinflammatory properties of PCBs. Twenty hours after a single administration of PCB 77, VCAM-1 expression was increased only in wild-type mice, while mice lacking the AhR gene showed no increased staining for VCAM-1. These data provide evidence that coplanar PCBs, agonists for the AhR, and inducers of cytochrome P450 1A1, produce oxidative stress and an inflammatory response in vascular endothelial cells. An intact AhR may be necessary for the observed PCB-induced responses. These findings suggest that activation of the AhR can be an underlying mechanism of atherosclerosis mediated by certain environmental contaminants.
Collapse
Affiliation(s)
- Bernhard Hennig
- Cell Nutrition Group, Department of Animal Sciences, University of Kentucky, Lexington 40506-0054, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Matsuoka N, Ishii K, Akimoto M, Hamada H, Hashimoto N, Miyatake SI. Overexpression of basic fibroblast growth factor and Bcl-xL with adenoviral vectors protects primarily cultured neurons against glutamate insult. Neurosurgery 2002; 50:857-62; discussion 862-3. [PMID: 11904039 DOI: 10.1097/00006123-200204000-00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 11/13/2001] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Excitatory amino acid (EAA) toxicity seems to be an important mechanism of neuronal cell death after cerebral infarction. We examined the inhibitory effects of neuronal cell death caused by EAA in vitro by means of adenoviral gene transfer of neurotrophic basic fibroblast growth factor (bFGF) and antiapoptotic Bcl-xL. METHODS Recombinant adenoviral vectors expressing human bFGF gene with secretory signals of interleukin-2 and human Bcl-xL gene were constructed. Primarily cultured rat neuronal cells were treated with glutamate to cause EAA, and the neuroprotective effects of gene transfer by these adenoviral vectors were investigated at several time points of infection. RESULTS Each adenoviral infection to primarily cultured neuronal cells exhibited neuroprotective effects against EAA caused by glutamate. Both gene transfer of bFGF with secretory signal and Bcl-xL transfer to neuronal cells exhibited the synergistic neuroprotective effects against EAA. These effects were most prominent with gene transfer 4 hours before glutamate insult; gene transfer performed simultaneously with and up to 4 hours after the insult exhibited definite neuroprotective effects. CONCLUSION These experiments revealed marked neuroprotective effects of adenoviral gene transfer of bFGF and Bcl-xL into neuronal cells in vitro. The findings may lead to new approaches for treating occlusive cerebrovascular disease.
Collapse
Affiliation(s)
- Norihiro Matsuoka
- Department of Neurosurgery and Clinical Neuroscience, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|