101
|
Lee JK, Kim JA, Oh SJ, Lee EW, Shin OS. Zika Virus Induces Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL)-Mediated Apoptosis in Human Neural Progenitor Cells. Cells 2020; 9:cells9112487. [PMID: 33207682 PMCID: PMC7697661 DOI: 10.3390/cells9112487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) remains as a public health threat due to the congenital birth defects the virus causes following infection of pregnant women. Congenital microcephaly is among the neurodevelopmental disorders the virus can cause in newborns, and this defect has been associated with ZIKV-mediated cytopathic effects in human neural progenitor cells (hNPCs). In this study, we investigated the cellular changes that occur in hNPCs in response to ZIKV (African and Asian lineages)-induced cytopathic effects. Transmission electron microscopy showed the progress of cell death as well as the formation of numerous vacuoles in the cytoplasm of ZIKV-infected hNPCs. Infection with both African and Asian lineages of ZIKV induced apoptosis, as demonstrated by the increased activation of caspase 3/7, 8, and 9. Increased levels of proinflammatory cytokines and chemokines (IL-6, IL-8, IL-1β) were also detected in ZIKV-infected hNPCs, while z-VAD-fmk-induced inhibition of cell death suppressed ZIKV-mediated cytokine production in a dose-dependent manner. ZIKV-infected hNPCs also displayed significantly elevated gene expression levels of the pro-apoptotic Bcl2-mediated family, in particular, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Furthermore, TRAIL signaling led to augmented ZIKV-mediated cell death and the knockdown of TRAIL-mediated signaling adaptor, FADD, resulted in enhanced ZIKV replication. In conclusion, our findings provide cellular insights into the cytopathic effects induced by ZIKV infection of hNPCs.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Ji-Ae Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|
102
|
Rosa-Fernandes L, Barbosa RH, dos Santos MLB, Angeli CB, Silva TP, Melo RCN, de Oliveira GS, Lemos B, Van Eyk JE, Larsen MR, Cardoso CA, Palmisano G. Cellular Imprinting Proteomics Assay: A Novel Method for Detection of Neural and Ocular Disorders Applied to Congenital Zika Virus Syndrome. J Proteome Res 2020; 19:4496-4515. [PMID: 32686424 PMCID: PMC7640952 DOI: 10.1021/acs.jproteome.0c00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Raquel Hora Barbosa
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Genetics
Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria Luiza B. dos Santos
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Claudia B. Angeli
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago P. Silva
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rossana C. N. Melo
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bernardo Lemos
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Jennifer E Van Eyk
- Advanced
Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker
Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Martin R. Larsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Claudete Araújo Cardoso
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
103
|
Su Y, Zhang Y, Hu Z, He L, Wang W, Xu J, Fan Z, Liu C, Zhang H, Zhao K. Prokineticin 2 via Calcium-Sensing Receptor Activated NLRP3 Inflammasome Pathway in the Testicular Macrophages of Uropathogenic Escherichia coli-Induced Orchitis. Front Immunol 2020; 11:570872. [PMID: 33193351 PMCID: PMC7644440 DOI: 10.3389/fimmu.2020.570872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract infections contribute to the development of testicular inflammatory lesions, leading to male infertility. Previous research shows that the activation of the NLRP3 inflammasome in orchitis promotes the secretion and maturation of IL-1β and, thus, decreases male fertility. The calcium-sensing receptor (CaSR) is closely related to the secretion of proinflammatory cytokines. An increase in the CaSR level promotes the assembly and activation of the NLRP3 inflammasome. However, the role of CaSRs in orchitis is unknown. We first constructed a uropathogenic Escherichia Coli (UPEC) rat orchitis model and then detected the expression of CaSR and NLRP3 inflammatory pathway proteins in testicular macrophages (TM) through RT-PCR and WB, calcium levels in TM through flow cytometry, and proinflammatory factor IL-1β through ELISA. In addition, testosterone levels in the serum samples were detected using liquid chromatography–mass spectrometry (LC-MS). Here, we show that CaSR upregulation after infection in TM in a rat model of UPEC induces the activation of the NLRP3 inflammasome pathway and thereby enhances IL-1β secretion and reduces the testosterone level in the blood. Moreover, CaSR inhibitors can alleviate inflammatory impairment. After UPEC challenge in vitro, CaSR promoted NLRP3 expression and released IL-1β cleaved from TM into the supernatant. Overall, elevated CaSR levels in TM in testes with UPEC-induced orchitis may impair testosterone synthesis through the activation of the NLRP3 pathway and PK2 is an upstream regulatory protein of CaSR. Our research further shows the underlying mechanisms of inflammation-related male infertility and provides anti-inflammatory therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
104
|
Caobi A, Nair M, Raymond AD. Extracellular Vesicles in the Pathogenesis of Viral Infections in Humans. Viruses 2020; 12:E1200. [PMID: 33096825 PMCID: PMC7589806 DOI: 10.3390/v12101200] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review's scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.
Collapse
Affiliation(s)
| | | | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine at Florida International University, Miami, FL 33199, USA; (A.C.); (M.N.)
| |
Collapse
|
105
|
Jin J, Wang W, Li A, Wu J. LMP7 inhibits the activation of NLRP3 inflammasome through interaction with NLRP3. Biochem Biophys Res Commun 2020; 531:152-159. [PMID: 32782149 DOI: 10.1016/j.bbrc.2020.07.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by coding pattern recognition receptors (PRRs). As a well-known inflammasome, NLRP3 plays an essential role in helping the host immune response and driving antiviral processes. Low molecular mass polypeptide (LMP7) is a critical component of the immunoproteasome that participates in host antiviral activity, as well as T cell function and development. This is the first study to report the direct interaction between LMP7 and NLRP3. Also, LMP7 was found to inhibit the activation of the NLRP3 inflammasome, which is of great significance in exploring the role of the immune proteasome in regulating the activation of NLRP3.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenbiao Wang
- Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
106
|
Alves VS, Leite-Aguiar R, Silva JPD, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav Immun 2020; 89:480-490. [PMID: 32717399 PMCID: PMC7378483 DOI: 10.1016/j.bbi.2020.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
107
|
Rodrigues de Sousa J, Azevedo RDSDS, Quaresma JAS, Vasconcelos PFDC. The innate immune response in Zika virus infection. Rev Med Virol 2020; 31:e2166. [PMID: 32926478 DOI: 10.1002/rmv.2166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV; Flaviviridae, Flavivirus) was discovered in 1947 in Uganda, Africa, from the serum of a sentinel Rhesus monkey (Macaca mulatta). It is an enveloped, positive-sense, single-stranded RNA virus, which encodes a single polyprotein that is cleaved into 10 individual proteins. In 2015, the Zika-epidemic in Brazil was marked mainly by the exponential growth of microcephaly cases and other congenital defects. With regard to host-pathogen relationships, understanding the role of the immune response in the pathogenesis ZIKV infection is challenging. The innate immune response is the first-line immunological defence, in which pathogen-associated molecular patterns are recognized by pattern-recognition receptors that trigger macrophages, dendritic cells, natural killer cells and endothelial cells to produce several mediators, which modulate viral replication and immune evasion. In this review, we have summarized current knowledge on the innate immune response against ZIKV.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil.,Universidade do Estado do Pará, Belém, Brazil
| | | | - Juarez Antônio Simões Quaresma
- Universidade do Estado do Pará, Belém, Brazil.,Departamento de Patologia, Instituto Evandro Chagas, Ananindeua, Brazil.,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil.,Universidade do Estado do Pará, Belém, Brazil
| |
Collapse
|
108
|
Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target. Proc Natl Acad Sci U S A 2020; 117:23869-23878. [PMID: 32907937 DOI: 10.1073/pnas.2007773117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence has associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly, which raises global alarm. Nonetheless, mechanisms by which ZIKV disrupts neurogenesis and causes microcephaly are far from being understood. In this study, we discovered direct effects of ZIKV on neural progenitor cell development by inducing caspase-1- and gasdermin D (GSDMD)-mediated pyroptotic cell death, linking ZIKV infection with the development of microcephaly. Importantly, caspase-1 depletion or its inhibitor VX-765 treatment reduced ZIKV-induced inflammatory responses and pyroptosis, and substantially attenuated neuropathology and brain atrophy in vivo. Collectively, our data identify caspase-1- and GSDMD-mediated pyroptosis in neural progenitor cells as a previously unrecognized mechanism for ZIKV-related pathological effects during neural development, and also provide treatment options for ZIKV-associated diseases.
Collapse
|
109
|
Degradation of MicroRNA miR-466d-3p by Japanese Encephalitis Virus NS3 Facilitates Viral Replication and Interleukin-1β Expression. J Virol 2020; 94:JVI.00294-20. [PMID: 32461319 DOI: 10.1128/jvi.00294-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
Collapse
|
110
|
Li W, Cao T, Luo C, Cai J, Zhou X, Xiao X, Liu S. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl Microbiol Biotechnol 2020; 104:6129-6140. [PMID: 32447438 DOI: 10.1007/s00253-020-10614-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum stress (ERS) is a protective response to restore protein homeostasis by activating the unfolded protein response (UPR). However, UPR can trigger cell death under severe and/or persistently high ERS. The NLRP3 inflammasome is a complex of multiple proteins that activates the secretion of the proinflammatory cytokine IL-1β in a caspase-1-dependent manner to participate in the regulation of inflammation. The NLRP3 inflammasome involvement in ERS-induced inflammation has not been completely described. The intersection of ERS with multiple inflammatory pathways can initiate and aggravate chronic diseases. Accumulating evidence suggests that ERS-induced activation of NLRP3 inflammasome is the pathological basis of various inflammatory diseases. In this review, we have discussed the networks between ERS and NLRP3 inflammasome, with the view to identifying novel therapeutic targets in inflammatory diseases. KEY POINTS: • Endoplasmic reticulum stress (ERS) is an important factor for the activation of the NLRP3 inflammasomes that results in pathological processes. • ERS can activate the NLRP3 inflammasome to induce inflammatory responses via oxidative stress, calcium homeostasis, and NF-κB activation. • The interactions between ERS and NLRP3 inflammasome are associated with inflammation, which represent a potential therapeutic opportunity of inflammatory diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chunyi Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jialun Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinhua Xiao
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| |
Collapse
|
111
|
Lega S, Naviglio S, Volpi S, Tommasini A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines (Basel) 2020; 8:224. [PMID: 32423059 PMCID: PMC7349555 DOI: 10.3390/vaccines8020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
As the outbreak of the new coronavirus (SARS-CoV-2) infection is spreading globally, great effort is being made to understand the disease pathogenesis and host factors that predispose to disease progression in an attempt to find a window of opportunity for intervention. In addition to the direct cytopathic effect of the virus, the host hyper-inflammatory response has emerged as a key factor in determining disease severity and mortality. Accumulating clinical observations raised hypotheses to explain why some patients develop more severe disease while others only manifest mild or no symptoms. So far, Covid-19 management remains mainly supportive. However, many researches are underway to clarify the role of antiviral and immunomodulating drugs in changing morbidity and mortality in patients who become severely ill. This review summarizes the current state of knowledge on the interaction between SARS-CoV-2 and the host immune system and discusses recent findings on proposed pharmacologic treatments.
Collapse
Affiliation(s)
- Sara Lega
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini and Università degli Studi di Genova, 16147 Genova, Italy;
| | - Alberto Tommasini
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy
| |
Collapse
|
112
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
113
|
Zuñiga J, Choreño-Parra JA, Jiménez-Alvarez L, Cruz-Lagunas A, Márquez-García JE, Ramírez-Martínez G, Goodina A, Hernández-Montiel E, Fernández-López LA, Cabrera-Cornejo MF, Cabello C, Castillejos M, Hernández A, Regino-Zamarripa NE, Mendoza-Milla C, Vivanco-Cid H, Escobar-Gutierrez A, Fonseca-Coronado S, Belaunzarán-Zamudio PF, Pérez-Patrigeon S, Guerrero L, Regalado J, Nájera-Cancino G, Caballero-Sosa S, Rincón-León H, Smolskis M, Mateja A, Hunsberger S, Beigel JH, Ruiz-Palacios G. A unique immune signature of serum cytokine and chemokine dynamics in patients with Zika virus infection from a tropical region in Southern Mexico. Int J Infect Dis 2020; 94:4-11. [PMID: 32081772 PMCID: PMC7362833 DOI: 10.1016/j.ijid.2020.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To describe the kinetics of circulating cytokines and chemokines in humans with ZIKAV infection. METHODS Serum levels of different immune mediators in patients with ZIKAV infection were measured at distinct stages of the disease, as well as in culture supernatants from human monocytes infected with a clinical ZIKAV isolate. We also looked for clinical features associated with specific immune signatures among symptomatic patients. RESULTS We evaluated 23 ZIKAV-infected patients. Their mean age was 32 ± 8.3 years and 65% were female. ZIKAV patients showed elevated IL-9, IL-17A, and CXCL10 levels at acute stages of the disease. At day 28, levels of CCL4 and CCL5 were increased, whereas IL-1RA, CXCL8 and CCL2 were decreased. At baseline, IL-7 was increased among patients with headache, whereas CCL2, and CCL3 were decreased in patients with bleeding and rash, respectively. Our clinical ZIKAV isolate induced a broad immune response in monocytes that did not resemble the signature observed in ZIKAV patients. CONCLUSIONS We showed a unique immune signature in our cohort of ZIKAV-infected patients. Our study may provide valuable evidence helpful to identify immune correlates of protection against ZIKAV.
Collapse
Affiliation(s)
- Joaquín Zuñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico.
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Jiménez-Alvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Aminadab Goodina
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Erika Hernández-Montiel
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Luis Alejandro Fernández-López
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - María Fernanda Cabrera-Cornejo
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Carlos Cabello
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Manuel Castillejos
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Andrés Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Nora E Regino-Zamarripa
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Criselda Mendoza-Milla
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Héctor Vivanco-Cid
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Alejandro Escobar-Gutierrez
- Department for Immunological Investigations, Instituto de Diagnóstico y Referencia Epidemiológica, Mexico City, Mexico
| | | | - Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Maryland, USA
| | - Santiago Pérez-Patrigeon
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lourdes Guerrero
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Justino Regalado
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Sandra Caballero-Sosa
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, Chiapas, Mexico
| | | | - Mary Smolskis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Maryland, USA
| | | | - Sally Hunsberger
- Biostatistics Research Branch (BRB), National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - John H Beigel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Maryland, USA
| | - Guillermo Ruiz-Palacios
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
114
|
Ghimire L, Paudel S, Jin L, Jeyaseelan S. The NLRP6 inflammasome in health and disease. Mucosal Immunol 2020; 13:388-398. [PMID: 31988468 PMCID: PMC7493825 DOI: 10.1038/s41385-020-0256-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
NACHT, LRR (leucine-rich repeat), and PYD (pyrin domain) domain-containing 6 (Nlrp6) is a member of the NLR (nucleotide-oligomerization domain-like receptor) family that patrols the cytosolic compartment of cells to detect pathogen- and damage-associated molecular patterns. Because Nlrp6 is a recently discovered inflammasome, details of its signaling mechanism, structural assembly, and roles in host defense have yet to be determined. To date, Nlrp6 has been proposed to perform a multitude of functions ranging from control of microbiota, maintenance of epithelial integrity, and regulation of metabolic diseases to modulation of host defense during microbial infections, cancer protection, and regulation of neuroinflammation. While recent studies have questioned some of the proposed functions of Nlrp6, Nlrp6 has been shown to form an inflammasome complex and cleaves interleukin-1β (IL-1β) and IL-18 during microbial infection, indicating that it is a bonafide inflammasome. In this review, we summarize the recent advancements in knowledge of the signaling mechanisms and structure of the Nlrp6 inflammasome and discuss the relevance of NLRP6 to human disease.
Collapse
Affiliation(s)
- Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Center for Lung Biology and Disease, Louisiana State University (LSU), Baton Rouge, LA, 70803, USA
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Center for Lung Biology and Disease, Louisiana State University (LSU), Baton Rouge, LA, 70803, USA
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Center for Lung Biology and Disease, Louisiana State University (LSU), Baton Rouge, LA, 70803, USA
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Center for Lung Biology and Disease, Louisiana State University (LSU), Baton Rouge, LA, 70803, USA.
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
115
|
Anderson G, Reiter RJ. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev Med Virol 2020; 30:e2109. [PMID: 32314850 PMCID: PMC7235470 DOI: 10.1002/rmv.2109] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.
Collapse
Affiliation(s)
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science at San AntonioSan Antonio, Texas
| |
Collapse
|
116
|
Lin H, Li B, Liu M, Zhou H, He K, Fan H. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis. Vet Microbiol 2020; 244:108684. [PMID: 32402351 PMCID: PMC7165116 DOI: 10.1016/j.vetmic.2020.108684] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is beneficial to PEDV replication. PEDV nonstructural protein 6 (nsp6) is a key protein involved in PEDV-induced autophagy. Nsp6 of PEDV induced autophagy via the PI3K/Akt/mTOR signaling pathway.
Porcine epidemic diarrhea virus (PEDV) has caused, and continues to cause, severe economic losses to the swine industry worldwide. The pathogenic mechanism and immune regulatory interactions between PEDV and the host remain largely unknown. In this study, the interaction between autophagy and PEDV replication in intestinal porcine epithelial (IPEC-J2) cells was investigated. The effects of the structural and nonstructural proteins of PEDV on the autophagy process and the autophagy-related signaling pathways were also examined. The results shown that PEDV replication increased the autophagy flux in IPEC-J2 cells, and that autophagy was beneficial to PEDV replication, which may be one of the reasons for the rapid damage to intestinal epithelial cells and the enhanced virulence of PEDV in both newborn piglets and finishing pigs. When autophagy was pharmacologically induced by rapamycin, PEDV replication increased from 8.5 × 105 TCID50/mL to 8.8 × 106 TCID50/mL in IPEC-J2 cells. When autophagy was pharmacologically suppressed by hydroxychloroquine, PEDV replication decreased from 8.5 × 105 TCID50/mL to 7.9 × 104 TCID50/mL. To identify which PEDV proteins were the key inducers of autophagy, all 4 structural proteins and 17 nonstructural proteins of PEDV were eukaryotic expressed. It was found that the nonstructural protein 6 (nsp6) and ORF3 of PEDV were able to induce significant autophagy in IPEC-J2 cells, but the other proteins were unable to induce autophagy. It was indicated that nsp6-induced autophagy mainly occurred via the PI3K/Akt/mTOR signaling pathway. The results accelerate the understanding of the biology and pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
117
|
Singh S, Singh PK, Suhail H, Arumugaswami V, Pellett PE, Giri S, Kumar A. AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1810-1824. [PMID: 32086387 PMCID: PMC7310572 DOI: 10.4049/jimmunol.1901310] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
Viruses are known to perturb host cellular metabolism to enable their replication and spread. However, little is known about the interactions between Zika virus (ZIKV) infection and host metabolism. Using primary human retinal vascular endothelial cells and an established human endothelial cell line, we investigated the role of AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, in response to ZIKV challenge. ZIKV infection caused a time-dependent reduction in the active phosphorylated state of AMPK and of its downstream target acetyl-CoA carboxylase. Pharmacological activation of AMPK using 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), metformin, and a specific AMPKα activator (GSK621) attenuated ZIKV replication. This activity was reversed by an AMPK inhibitor (compound C). Lentivirus-mediated knockdown of AMPK and the use of AMPKα-/- mouse embryonic fibroblasts provided further evidence that AMPK has an antiviral effect on ZIKV replication. Consistent with its antiviral effect, AMPK activation potentiated the expression of genes with antiviral properties (e.g., IFNs, OAS2, ISG15, and MX1) and inhibited inflammatory mediators (e.g., TNF-α and CCL5). Bioenergetic analysis showed that ZIKV infection evokes a glycolytic response, as evidenced by elevated extracellular acidification rate and increased expression of key glycolytic genes (GLUT1, HK2, TPI, and MCT4); activation of AMPK by AICAR treatment reduced this response. Consistent with this, 2-deoxyglucose, an inhibitor of glycolysis, augmented AMPK activity and attenuated ZIKV replication. Thus, our study demonstrates that the anti-ZIKV effect of AMPK signaling in endothelial cells is mediated by reduction of viral-induced glycolysis and enhanced innate antiviral responses.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | | | - Philip E Pellett
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | - Ashok Kumar
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201;
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
118
|
Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Shereen MA, Chen W, Pan P, Wan P, Wu K, Wu J. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog 2020; 16:e1008335. [PMID: 32187211 PMCID: PMC7080238 DOI: 10.1371/journal.ppat.1008335] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/19/2020] [Indexed: 01/08/2023] Open
Abstract
One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection. The innate immune system is a primary host defense strategy to suppress the pathogen infections. One of the fundamental reactions of the innate immunity is the release of pro-inflammatory cytokines, including interleukine-1β (IL-1β), regulated by inflammasomes. The best-characterized inflammasomes is the NLRP3 inflammasome. STING has the essential roles in innate immune response against pathogen infections and is required for pathogen-induced inflammasome activation and IL-1β secretion. This study explores how STING regulates the NLRP3 inflammasome and reveals a distinct mechanism underlying such regulation upon herpes simplex virus type 1 (HSV-1) infection and cytosolic DNA stimulation. The authors propose that the cGAS-STING-NLRP3 axis is essential for host defense against HSV-1 infection.
Collapse
Affiliation(s)
- Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caifeng Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yuqian Feng
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weijie Chen
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pin Wan
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (KW); (JW)
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (KW); (JW)
| |
Collapse
|
119
|
Yoshikawa FSY, Pietrobon AJ, Branco ACCC, Pereira NZ, Oliveira LMDS, Machado CM, Duarte AJDS, Sato MN. Zika Virus Infects Newborn Monocytes Without Triggering a Substantial Cytokine Response. J Infect Dis 2020; 220:32-40. [PMID: 30785182 DOI: 10.1093/infdis/jiz075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is a clinically important flavivirus that can cause neurological disturbances in newborns. Here, we investigated comparatively the outcome of in vitro infection of newborn monocytes by ZIKV. We observed that neonatal cells show defective production of interleukin 1β, interleukin 10, and monocyte chemoattractant protein 1 in response to ZIKV, although they were as efficient as adult cells in supporting viral infection. Although CLEC5A is a classical flavivirus immune receptor, it is not essential to the cytokine response, but it regulates the viral load only in adult cells. Greater expression of viral entry receptors may create a favorable environment for viral invasion in neonatal monocytes. We are the first to suggest a role for CLEC5A in human monocyte infectivity and to show that newborn monocytes are interesting targets in ZIKV pathogenesis, owing to their ability to carry the virus with only a partial triggering of the immune response, creating a potentially favorable environment for virus-related pathologies in young individuals.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Anna Julia Pietrobon
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Nátalli Zanete Pereira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Luanda Mara da Silva Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | | | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Maria Notomi Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| |
Collapse
|
120
|
Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ. Zika virus NS5 localizes at centrosomes during cell division. Virology 2020; 541:52-62. [PMID: 32056715 DOI: 10.1016/j.virol.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) nonstructural protein 5 (NS5) plays a critical role in viral RNA replication and mediates key virus-host cell interactions. As with other flavivirus NS5 proteins, ZIKV NS5 is primarily found in the nucleus. We previously reported that the NS5 protein of dengue virus, another flavivirus, localized to centrosomes during cell division. Here we show that ZIKV NS5 also relocalizes from the nucleus to centrosomes during mitosis. In infected cells with supernumerary centrosomes, NS5 was present at all centrosomes. Transient expression of NS5 in uninfected cells confirmed that centrosomal localization was independent of other viral proteins. Live-cell imaging demonstrated that NS5-GFP accumulated at centrosomes shortly after break down of nuclear membrane and remained there through mitosis. Cells expressing NS5-GFP took longer to complete mitosis than control cells. Finally, an analysis of ZIKV NS5 binding partners revealed several centrosomal proteins, providing potential direct links between NS5 and centrosomes.
Collapse
Affiliation(s)
- Aditi S Kesari
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew S Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
121
|
Li A, Wang W, Wang Y, Chen K, Xiao F, Hu D, Hui L, Liu W, Feng Y, Li G, Tan Q, Liu Y, Wu K, Wu J. NS5 Conservative Site Is Required for Zika Virus to Restrict the RIG-I Signaling. Front Immunol 2020; 11:51. [PMID: 32117232 PMCID: PMC7033454 DOI: 10.3389/fimmu.2020.00051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
During host-virus co-evolution, cells develop innate immune systems to inhibit virus invasion, while viruses employ strategies to suppress immune responses and maintain infection. Here, we reveal that Zika virus (ZIKV), a re-emerging arbovirus causing public concerns and devastating complications, restricts host immune responses through a distinct mechanism. ZIKV nonstructural protein 5 (NS5) interacts with the host retinoic acid-inducible gene I (RIG-I), an essential signaling molecule for defending pathogen infections. NS5 subsequently represses K63-linked polyubiquitination of RIG-I, attenuates the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3), and inhibits the expression and production of interferon-β (IFN-β), thereby restricting the RIG-I signaling pathway. Interestingly, we demonstrate that the methyltransferase (MTase) domain of NS5 is required for the repression of RIG-I ubiquitination, IRF3 activation, and IFN-β production. Detailed studies further reveal that the conservative active site D146 of NS5 is critical for the suppression of the RIG-I signaling. Therefore, we uncover an essential role of NS5 conservative site D146 in ZIKV-mediated repression of innate immune system, illustrate a distinct mechanism by which ZIKV evades host immune responses, and discover a potential target for anti-viral infection.
Collapse
Affiliation(s)
- Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lixia Hui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqian Feng
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Geng Li
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiuping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Yingle Liu
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
122
|
Jin J, Wang W, Ai S, Liu W, Song Y, Luo Z, Zhang Q, Wu K, Liu Y, Wu J. Enterovirus 71 Represses Interleukin Enhancer-Binding Factor 2 Production and Nucleus Translocation to Antagonize ILF2 Antiviral Effects. Viruses 2019; 12:v12010022. [PMID: 31878072 PMCID: PMC7019514 DOI: 10.3390/v12010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Enterovirus 71 (EV71) infection causes hand-foot-mouth disease (HFMD), meningoencephalitis, neonatal sepsis, and even fatal encephalitis in children, thereby presenting a serious risk to public health. It is important to determine the mechanisms underlying the regulation of EV71 infection. In this study, we initially show that the interleukin enhancer-binding factor 2 (ILF2) reduces EV71 50% tissue culture infective dose (TCID50) and attenuates EV71 plaque-formation unit (PFU), thereby repressing EV71 infection. Microarray data analyses show that ILF2 mRNA is reduced upon EV71 infection. Cellular studies indicate that EV71 infection represses ILF2 mRNA expression and protein production in human leukemic monocytes (THP-1) -differentiated macrophages and human rhabdomyosarcoma (RD) cells. In addition, EV71 nonstructural protein 2B interacts with ILF2 in human embryonic kidney (HEK293T) cells. Interestingly, in the presence of EV71 2B, ILF2 is translocated from the nucleus to the cytoplasm, and it colocalizes with 2B in the cytoplasm. Therefore, we present a distinct mechanism by which EV71 antagonizes ILF2-mediated antiviral effects by inhibiting ILF2 expression and promoting ILF2 translocation from the nucleus to the cytoplasm through its 2B protein.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Sha Ai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yu Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
- Correspondence: ; Tel.: +86-27-68754979
| |
Collapse
|
123
|
Gim E, Shim DW, Hwang I, Shin OS, Yu JW. Zika Virus Impairs Host NLRP3-mediated Inflammasome Activation in an NS3-dependent Manner. Immune Netw 2019; 19:e40. [PMID: 31921470 PMCID: PMC6943171 DOI: 10.4110/in.2019.19.e40] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neurological disorders including Guillain-Barré syndrome and microcephaly. The host innate immune responses against ZIKV infection are essential for protection; however, ZIKV has evolved strategies to evade and antagonize antiviral responses via its nonstructural (NS) proteins. Here, we demonstrated that ZIKV infection unexpectedly inhibits NLRP3-dependent inflammasome activation in bone marrow-derived macrophages and mixed glial cells from mouse brain. ZIKV infection led to increased transcript levels of proinflammatory cytokines such as IL-1β and IL-6 via activating NF-κB signaling. However, ZIKV infection failed to trigger the secretion of active caspase-1 and IL-1β from macrophages and glial cells even in the presence of LPS priming or ATP costimulation. Intriguingly, ZIKV infection significantly attenuated NLRP3-dependent, but not absent in melanoma 2-dependent caspase-1 activation and IL-1β secretion from both cells. ZIKV infection further blocked apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization in LPS/ATP-stimulated macrophages. Interestingly, expression of ZIKV NS3 protein reduced NLRP3-mediated caspase-1 activation and IL-1β secretion in macrophages, whereas NS1 and NS5 proteins showed no effects. Furthermore, NLRP3 was found to be degraded by the overexpression of ZIKV NS3 in 293T cells. Collectively, these results indicate that ZIKV evades host NLRP3 inflammasome-mediated innate immune responses in macrophages and glial cells; this may facilitate ZIKV's ability to enhance the replication and dissemination in these cells.
Collapse
Affiliation(s)
- Eunji Gim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Do-Wan Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
124
|
Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci 2019; 43:55-73. [PMID: 31843293 DOI: 10.1016/j.tins.2019.11.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Pyroptosis ('fiery death') is an inflammatory type of regulated cell death (RCD), which occurs downstream of inflammasome activation. Pyroptosis is mediated directly by the recently identified family of pore-forming proteins known as gasdermins, the best characterized of which is gasdermin D (GSDMD). Recent investigations implicate pyroptosis in the pathogenesis of multiple neurological diseases. In this review, we discuss molecular mechanisms that drive pyroptosis, evidence for pyroptosis within the CNS, and emerging therapeutic strategies for its inhibition in the context of neurological disease.
Collapse
|
125
|
Shao L, Liu Y, Wang W, Li A, Wan P, Liu W, Shereen MA, Liu F, Zhang W, Tan Q, Wu K, Liu Y, Wu J. SUMO1 SUMOylates and SENP3 deSUMOylates NLRP3 to orchestrate the inflammasome activation. FASEB J 2019; 34:1497-1515. [PMID: 31914638 DOI: 10.1096/fj.201901653r] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1β secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1β cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.
Collapse
Affiliation(s)
- Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Quiping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
126
|
Pan P, Zhang Q, Liu W, Wang W, Yu Z, Lao Z, Zhang W, Shen M, Wan P, Xiao F, Shereen MA, Zhang W, Tan Q, Liu Y, Liu X, Wu K, Liu Y, Li G, Wu J. Dengue Virus Infection Activates Interleukin-1β to Induce Tissue Injury and Vascular Leakage. Front Microbiol 2019; 10:2637. [PMID: 31824450 PMCID: PMC6883832 DOI: 10.3389/fmicb.2019.02637] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV) infection causes several diseases ranging from dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome characterized by endothelial dysfunction, vascular leakage, and shock. Here, we identify a potential mechanism by which DENV induces tissue injury and vascular leakage by promoting the activation of interleukin (IL)-1β. DENV facilitates IL-1β secretion in infected patients, mice, human peripheral blood mononuclear cells (PBMCs), mouse bone marrow-derived macrophages (BMDMs), and monocyte-differentiated macrophages (THP-1) via activating the NLRP3 inflammasome. The accumulated data suggest that IL-1β probably induces vascular leakage and tissue injury in interferon-alpha/beta receptor 1 deficient C57BL/6 mice (IFNAR–/– C57BL/6), whereas IL-1 receptor antagonist (IL-1RA) alleviates these effects of IL-1β. Finally, administration of recombinant IL-1β protein results in vascular leakage and tissue injury in C57BL/6 mice. Together, the accumulated results demonstrate that IL-1β contributes to DENV-associated pathology and suggest that IL-1RA acts as a potential agent for the treatment of DENV-associated diseases.
Collapse
Affiliation(s)
- Pan Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhenyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zizhao Lao
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhang
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology, Foshan, China
| | - Qiuping Tan
- Guangdong LongFan Biological Science and Technology, Foshan, China
| | - Yuntao Liu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Geng Li
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
127
|
Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sci 2019; 240:117084. [PMID: 31759040 DOI: 10.1016/j.lfs.2019.117084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
As soon as a pathogen invades through the physical barriers of its corresponding host, host mounts a series of protective immune response to get rid of the invading pathogen. Host's pattern recognition receptors (PRR), localized at the cellular surface, cytoplasm and also in the nucleus; recognises pathogen associated molecular patterns (PAMPs) and plays crucial role in directing the immune response to be specific. Inflammatory responses are among the earliest strategies to tackle the pathogen by the host and are tightly regulated by multiple molecular pathways. Inflammasomes are multi-subunit protein complex consisting of a receptor molecule viz. NLRP3, an adaptor molecule- Apoptosis-associated speck-like protein containing a CARD (ASC) and an executioner caspase. Upon infection and/or injury; inflammasome components assemble and oligomerizes leading to the auto cleavage of the pro-caspase-1 to its active form. The activated caspase-1 cleaves immature form of the pro-inflammatory cytokines to their mature form e.g. IL1-β and IL-18 which mount inflammatory response. Moreover, C-terminal end of the Gasdermin D molecule is also cleaved by the caspase-1. The activated N-terminal Gasdermin D molecule form pores in the infected cells leading to their pyroptosis. Hence, inflammasomes drive inflammation during infection and controls the establishment of the pathogen by mounting inflammatory response and activation of the pyroptotic cell death.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
128
|
Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. FASEB J 2019; 34:208-221. [PMID: 31914640 DOI: 10.1096/fj.201901537r] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Ginsenoside Rg3 is one of the main constituents of Panax ginseng. Compelling evidence has demonstrated that ginsenoside Rg3 is capable of inhibiting inflammation. However, the mechanism mediating its anti-inflammatory effects remain unclear. Here we show that ginsenoside Rg3 blocks IL-1β secretion and caspase-1 activation through inhibiting LPS priming and the NLRP3 inflammasome activation in human and mouse macrophages. Rg3 specifically inhibits activation of NLRP3 but not the NLRC4 or AIM2 inflammasomes. In addition, Rg3 has no effect on upstream regulation of NLRP3 inflammasome, such as K+ efflux, ROS production, or mitochondrial membrane potential. Mechanistically, Rg3 abrogates NEK7-NLRP3 interaction, and subsequently inhibits NLRP3-ASC interaction, ASC oligomerization, and speckle formation. More importantly, Rg3 can reduce IL-1β secretion induced by LPS in mice and protect mice from lethal endotoxic shock. Thus, our findings reveal an anti-inflammatory mechanism for Rg3 and suggest its potential use in NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mengjie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Yang
- College of Animal Science and Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
129
|
Luo Z, Su R, Wang W, Liang Y, Zeng X, Shereen MA, Bashir N, Zhang Q, Zhao L, Wu K, Liu Y, Wu J. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog 2019; 15:e1008142. [PMID: 31730654 PMCID: PMC6932824 DOI: 10.1371/journal.ppat.1008142] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/26/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023] Open
Abstract
As a neurotropic virus, human Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) and may develop severe neurological disorders in infants. Toll-like receptor 7 (TLR7) acts as an innate immune receptor and is also a death receptor in the central nervous system (CNS). However, the mechanisms underlying the regulation of TLR7-mediated brain pathogenesis upon EV71 infection remain largely elusive. Here we reveal a novel mechanism by which EV71 infects astrocytes in the brain and induces neural pathogenesis via TLR7 and interleukin-6 (IL-6) in C57BL/6 mice and in human astroglioma U251 cells. Upon EV71 infection, wild-type (WT) mice displayed more significant body weight loss, higher clinical scores, and lower survival rates as compared with TLR7-/- mice. In the cerebral cortex of EV71-infected mice, neurofilament integrity was disrupted, and inflammatory cell infiltration and neurodegeneration were induced in WT mice, whereas these were largely absent in TLR7-/- mice. Similarly, IL-6 production, Caspase-3 cleavage, and cell apoptosis were significantly higher in EV71-infected WT mice as compared with TLR7-/- mice. Moreover, EV71 preferentially infected and induced IL-6 in astrocytes of mice brain. In U251 cells, EV71-induced IL-6 production and cell apoptosis were suppressed by shRNA-mediated knockdown of TLR7 (shTLR7). Moreover, in the cerebral cortex of EV71-infected mice, the blockade of IL-6 with anti-IL-6 antibody (IL-6-Ab) restored the body weight loss, attenuated clinical scores, improved survival rates, reduced the disruption of neurofilament integrity, decreased cell apoptotic induction, and lowered levels of Caspase-3 cleavage. Similarly, in EV71-infected U251 cells, IL-6-Ab blocked EV71-induced IL-6 production and cell apoptosis in response to viral infection. Collectively, it’s exhibited TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Taken together, we propose that EV71 infects astrocytes of the cerebral cortex in mice and human and triggers TLR7 signaling and IL-6 release, subsequently inducing neural pathogenesis in the brain. Enterovirus 71 (EV71) infection causes aseptic meningitis, poliomyelitis-like paralysis and fatal encephalitis in infants. Besides an immune receptor, toll-like receptor 7 (TLR7) serves as a death receptor in central nervous system (CNS). However, the role of TLR7 in EV71-induced neural pathogenesis remains ambiguous. This study reveals a distinct mechanism by which EV71 induces neurodegeneration via TLR7 and interleukin-6 (IL-6). Upon EV71 infection, TLR7-/- mice displayed less body weight loss, lower clinical score, and higher survival rate as compared with wild-type (WT) mice. Meanwhile, a severer histopathologic neurofilaments disruption, neurodegeneration and cell apoptosis were observed in brain of EV71-infected WT mice. IL-6 release, cell apoptosis, and Caspase-3 cleavage were attenuated by shRNA targeting TLR7 (shTLR7) in EV71-infected U251 cells. Moreover, anti-IL-6 antibody (IL-6-Ab) suppressed EV71-induced body weight loss, clinical score increase, and survival rate decrease as well as neurofilaments disruption and neurodegeneration in mice, and it also attenuated EV71-induced cell apoptosis and Caspase-3 cleavage in U251 cells. It’s retrospectively observed that TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Therefore, TLR7 is required for neural pathogenesis by IL-6 induction upon EV71 infection.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
130
|
Dengue Virus M Protein Promotes NLRP3 Inflammasome Activation To Induce Vascular Leakage in Mice. J Virol 2019; 93:JVI.00996-19. [PMID: 31413130 DOI: 10.1128/jvi.00996-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) infection causes serious clinical symptoms, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular permeability change is the main feature of the diseases, and the abnormal expression of proinflammatory cytokines is the important cause of vascular permeability change. However, the mechanism underlying vascular permeability induced by DENV has not been fully elucidated. Here, we reveal a distinct mechanism by which DENV infection promotes NLRP3 inflammasome activation and interleukin-1 beta (IL-1β) release to induce endothelial permeability and vascular leakage in mice. DENV M protein interacts with NLRP3 to facilitate NLRP3 inflammasome assembly and activation, which induce proinflammatory cytokine IL-1β activation and release. Notably, M can induce vascular leakage in mouse tissues by activating the NLRP3 inflammasome and IL-1β. More importantly, inflammatory cell infiltration and tissue injuries are induced by M in wild-type (WT) mouse tissues, but they are not affected by M in NLRP3 knockout (NLRP3-/-) mouse tissues. Evans blue intensities in WT mouse tissues are significantly higher than in NLRP3-/- mouse tissues, demonstrating an essential role of NLRP3 in M-induced vascular leakages in mice. Therefore, we propose that upon DENV infection, M interacts with NLRP3 to facilitate inflammasome activation and IL-1β secretion, which lead to the induction of endothelial permeability and vascular leakage in mouse tissues. The important role of the DENV-M-NLRP3-IL-1β axis in the induction of vascular leakage provides new insights into the mechanisms underlying DENV pathogenesis and DENV-associated DHF and DSS development.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen, and infections by this virus are prevalent in over 100 tropical and subtropical countries or regions, with approximately 2.5 billion people at risk. DENV infection induces a spectrum of clinical symptoms, ranging from classical dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Therefore, it is important to understand the mechanisms underlying DENV pathogenesis. In this study, we reveal that the DENV membrane protein (M) interacts with the host NLRP3 protein to promote NLRP3 inflammasome activation, which leads to the activation and release of a proinflammatory cytokine, interleukin-1 beta (IL-1β). More importantly, we demonstrate that M protein can induce vascular permeability and vascular leakage and that NLRP3 is required for M-induced vascular leakage in mouse tissues. Collectively, this study reveals a distinct mechanism underlying DENV pathogeneses and provides new insights into the development of therapeutic agents for DENV-associated diseases.
Collapse
|
131
|
Khan S, Lew I, Wu F, Fritts L, Fontaine KA, Tomar S, Trapecar M, Shehata HM, Ott M, Miller CJ, Sanjabi S. Low expression of RNA sensors impacts Zika virus infection in the lower female reproductive tract. Nat Commun 2019; 10:4344. [PMID: 31554802 PMCID: PMC6761111 DOI: 10.1038/s41467-019-12371-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Innate immune responses to Zika virus (ZIKV) are dampened in the lower female reproductive tract (LFRT) compared to other tissues, but the mechanism that underlies this vulnerability is poorly understood. Using tissues from uninfected and vaginally ZIKV-infected macaques and mice, we show that low basal expression of RNA-sensing pattern recognition receptors (PRRs), or their co-receptors, in the LFRT contributes to high viral replication in this tissue. In the LFRT, ZIKV sensing provides limited protection against viral replication, and the sensors are also minimally induced after vaginal infection. While IFNα/β receptor signaling offers minimal protection in the LFRT, it is required to prevent dissemination of ZIKV to other tissues, including the upper FRT. Our findings support a role for RNA-sensing PRRs in the dampened innate immunity against ZIKV in the LFRT compared to other tissues and underlie potential implications for systemic dissemination upon heterosexual transmission of ZIKV in women.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Regulation, Viral
- Genitalia, Female/immunology
- Genitalia, Female/metabolism
- Genitalia, Female/virology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Macaca mulatta
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 3/metabolism
- Vagina/immunology
- Vagina/metabolism
- Vagina/virology
- Virus Replication/genetics
- Virus Replication/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus/physiology
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Shahzada Khan
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Irene Lew
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Frank Wu
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Linda Fritts
- Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Krystal A Fontaine
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Sakshi Tomar
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Martin Trapecar
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Melanie Ott
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christopher J Miller
- Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
132
|
de Sousa JR, Azevedo RDSDS, Quaresma JAS, Vasconcelos PFDC. Cell Death And Zika Virus: An Integrated Network Of The Mechanisms Of Cell Injury. Infect Drug Resist 2019; 12:2917-2921. [PMID: 31571944 PMCID: PMC6750865 DOI: 10.2147/idr.s209213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 01/24/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus that is transmitted by Aedes mosquitos. Its prototype was isolated in 1947 from serum of a sentinel Rhesus monkey (Macaca mulatta) in the Zika forest of Uganda. As a member of the genus Flavivirus, family Flaviviridae, ZIKV is enveloped and icosahedral and possesses a single-stranded, positive-sense RNA genome of approximately 10.7 kb. Epidemiologically, infection by ZIKV has become a global health concern in recent years because of the occurrence of epidemics, its speed of dissemination, routes of transmission, and the sequelae it can cause especially in newborns. At the neural level, there are still many gaps in our understanding of the mechanisms that induce ZIKV infection-associated microcephaly. However, some studies already demonstrated that underlying cell death is determinant to induce the congenital malformation. In this report, we reviewed the various mechanisms of cell injury involved in the immunopathogenesis of ZIKV infection and discussed its relationship with the death of neuronal and glial cells development and microcephaly.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Núcleo de Medicina Tropical Belém, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Juarez Antônio Simões Quaresma
- Núcleo de Medicina Tropical Belém, Universidade Federal do Pará, Belém, Pará, Brazil.,Departamento de Patologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| |
Collapse
|
133
|
Hayashida E, Ling ZL, Ashhurst TM, Viengkhou B, Jung SR, Songkhunawej P, West PK, King NJC, Hofer MJ. Zika virus encephalitis in immunocompetent mice is dominated by innate immune cells and does not require T or B cells. J Neuroinflammation 2019; 16:177. [PMID: 31511023 PMCID: PMC6740023 DOI: 10.1186/s12974-019-1566-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background Until the end of the twentieth century, Zika virus (ZIKV) was thought to cause a mostly mild, self-limiting disease in humans. However, as the geographic distribution of ZIKV has shifted, so too has its pathogenicity. Modern-day ZIKV infection is now known to cause encephalitis, acute disseminated encephalomyelitis, and Guillain-Barré syndrome in otherwise healthy adults. Nevertheless, the underlying pathogenetic mechanisms responsible for this shift in virulence remain unclear. Methods Here, we investigated the contribution of the innate versus the adaptive immune response using a new mouse model involving intracranial infection of adult immunocompetent mice with a moderately low dose of ZIKV MR766. To determine the contribution of type I interferons (IFN-Is) and adaptive immune cells, we also studied mice deficient for the IFN-I receptor 1 (Ifnar1−/−) and recombination-activating gene 1 (Rag1−/−). Results We show that intracranial infection with ZIKV resulted in lethal encephalitis. In wild-type mice, ZIKV remained restricted predominantly to the central nervous system (CNS) and infected neurons, whereas astrocytes and microglia were spared. Histological and molecular analysis revealed prominent activation of resident microglia and infiltrating monocytes that were accompanied by an expression of pro-inflammatory cytokines. The disease was independent of T and B cells. Importantly, unlike peripheral infection, IFN-Is modulated but did not protect from infection and lethal disease. Lack of IFN-I signaling resulted in spread of the virus, generalized inflammatory changes, and accelerated disease onset. Conclusions Using intracranial infection of immunocompetent wild-type mice with ZIKV, we demonstrate that in contrast to the peripheral immune system, the CNS is susceptible to infection and responds to ZIKV by initiating an antiviral immune response. This response is dominated by resident microglia and infiltrating monocytes and macrophages but does not require T or B cells. Unlike in the periphery, IFN-Is in the CNS cannot prevent the establishment of infection. Our findings show that ZIKV encephalitis in mice is dependent on the innate immune response, and adaptive immune cells play at most a minor role in disease pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1566-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emina Hayashida
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Zheng Lung Ling
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Thomas M Ashhurst
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Cytometry Facility, The University of Sydney and the Centenary Institute, Sydney, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - So Ri Jung
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Pattama Songkhunawej
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Phillip K West
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Nicholas J C King
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Cytometry Facility, The University of Sydney and the Centenary Institute, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Molecular Bioscience Bldg., Maze Crescent G08, Sydney, NSW, 2006, Australia.
| |
Collapse
|
134
|
de Castro-Jorge LA, de Carvalho RVH, Klein TM, Hiroki CH, Lopes AH, Guimarães RM, Fumagalli MJ, Floriano VG, Agostinho MR, Slhessarenko RD, Ramalho FS, Cunha TM, Cunha FQ, da Fonseca BAL, Zamboni DS. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog 2019; 15:e1007934. [PMID: 31479495 PMCID: PMC6743794 DOI: 10.1371/journal.ppat.1007934] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/13/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1β. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1β and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.
Collapse
Affiliation(s)
- Luiza A. de Castro-Jorge
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Renan V. H. de Carvalho
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Taline M. Klein
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Carlos H. Hiroki
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Alexandre H. Lopes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Rafaela M. Guimarães
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Marcílio Jorge Fumagalli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Vitor G. Floriano
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Mayara R. Agostinho
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | | | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Benedito A. L. da Fonseca
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
135
|
Valdés López JF, Velilla PA, Urcuqui-Inchima S. Chikungunya Virus and Zika Virus, Two Different Viruses Examined with a Common Aim: Role of Pattern Recognition Receptors on the Inflammatory Response. J Interferon Cytokine Res 2019; 39:507-521. [DOI: 10.1089/jir.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Paula Andrea Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
136
|
Li Y, Su Y, Zhou T, Hu Z, Wei J, Wang W, Liu C, Zhang H, Zhao K. Activation of the NLRP3 Inflammasome Pathway by Prokineticin 2 in Testicular Macrophages of Uropathogenic Escherichia coli- Induced Orchitis. Front Immunol 2019; 10:1872. [PMID: 31474981 PMCID: PMC6702272 DOI: 10.3389/fimmu.2019.01872] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the reproductive tract are known to contribute to testicular inflammatory impairment, leading to an increase of pro-inflammatory cytokines such as IL-1β, and a decline in sperm quality. Prokineticin 2 (PK2), a secretory protein, is closely associated with the secretion of pro-inflammatory cytokines in inflamed tissue. It was reported that increased PK2 is related to the upregulation of IL-1β, but the underlying mechanism remains elusive. Here, we illustrated that PK2 was upregulated in testicular macrophages (TM) in a rat model of uropathogenic Escherichia coli (UPEC) infection, which induced the activation of the NLRP3 inflammasome pathway to boost IL-1β secretion. Administration of PK2 inhibitor alleviated the inflammatory damage and suppressed IL-1β secretion. Moreover, PK2 promoted NLRP3 expression and the release of cleaved IL-1β from TM to the supernatants after the challenge with UPEC in vitro. IL-1β in the supernatants affected Leydig cells by suppressing the expression of genes encoding for the enzymes P450scc and P450c17, which are involved in testosterone production. Overall, we revealed that increased PK2 levels in TM in UPEC-induced orchitis may impair testosterone synthesis via the activation of the NLRP3 pathway. Our study provides a new insight into the mechanisms underlying inflammation-associated male infertility and suggests an anti-inflammatory therapeutic target for male infertility.
Collapse
Affiliation(s)
- Ying Li
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Prenatal Diagnostic Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yufang Su
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
137
|
Liu T, Tang L, Tang H, Pu J, Gong S, Fang D, Zhang H, Li YP, Zhu X, Wang W, Wu M, Liao Y, Li C, Zhou H, Huang X. Zika Virus Infection Induces Acute Kidney Injury Through Activating NLRP3 Inflammasome Via Suppressing Bcl-2. Front Immunol 2019; 10:1925. [PMID: 31474993 PMCID: PMC6702322 DOI: 10.3389/fimmu.2019.01925] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a newly emerging flavivirus that broadly exhibits in various bodily tissues and fluids, especially in the brain, and ZIKV infection often causes microcephaly. Previous studies have been reported that ZIKV can infect renal cells and can be detected in the urine samples of infected individuals. However, whether ZIKV infection causes renal diseases and its pathogenic mechanisms remains unknown. Here, we identified that ZIKV infection resulted in acute kidney injury (AKI) in both newborn and adult mouse models by increasing the levels of AKI-related biomarkers [e.g., serum creatinine (Scr), kidney injury molecular-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL)]. ZIKV infection triggered the inflammatory response and renal cell injury by activating Nod-like receptor 3 (NLRP3) inflammasome and secreting interleukin-1β (IL-1β). IL-1β inhibited aquaporins expression and led to water re-absorption disorder. Furthermore, ZIKV infection induced a decreased expression of B-cell lymphoma-2 (Bcl-2) in the kidney. Overexpression of Bcl-2 attenuated ZIKV-induced NLRP3 inflammasome activation in renal cells and down-regulated PARP/caspase-3-mediated renal apoptosis. Overall, our findings demonstrated that ZIKV infection induced AKI by activating NLRP3 inflammasome and apoptosis through suppressing Bcl-2 expression, which provided potential therapeutic targets for ZIKV-associated renal diseases.
Collapse
Affiliation(s)
- Ting Liu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lantian Tang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Hui Tang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danyun Fang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Hui Zhang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Yi-Ping Li
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Xun Zhu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Weidong Wang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Minhao Wu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuhui Liao
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Chunling Li
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xi Huang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
138
|
Kovanich D, Saisawang C, Sittipaisankul P, Ramphan S, Kalpongnukul N, Somparn P, Pisitkun T, Smith DR. Analysis of the Zika and Japanese Encephalitis Virus NS5 Interactomes. J Proteome Res 2019; 18:3203-3218. [PMID: 31199156 DOI: 10.1021/acs.jproteome.9b00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mosquito-borne flaviviruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), are major human pathogens. Among the flaviviral proteins, the nonstructural protein 5 (NS5) is the largest, most conserved, and major enzymatic component of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum antiflaviviral therapeutics. Hundreds of NS5 interactors have been identified, but these are mostly DENV-NS5 interactors. To this end, we sought to investigate the JEV- and ZIKV-NS5 interactomes using EGFP immunoprecipitation with label-free quantitative mass spectrometry analysis. We report here a total of 137 NS5 interactors with a significant enrichment of spliceosomal and spliceosomal-associated proteins. The transcription complex Paf1C and phosphatase 6 were identified as common NS5-associated complexes. PAF1 was shown to play opposite roles in JEV and ZIKV infections. Additionally, we validated several NS5 targets and proposed their possible roles in infection. These include lipid-shuttling proteins OSBPL9 and OSBPL11, component of RNAP3 transcription factor TFIIIC, minichromosome maintenance, and cochaperone PAQosome. Mining this data set, our study expands the current interaction landscape of NS5 and uncovers several NS5 targets that are new to flavivirus biology.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | | | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| |
Collapse
|
139
|
Ng IHW, Chan KWK, Tan MJA, Gwee CP, Smith KM, Jeffress SJ, Saw WG, Swarbrick CMD, Watanabe S, Jans DA, Grüber G, Forwood JK, Vasudevan SG. Zika Virus NS5 Forms Supramolecular Nuclear Bodies That Sequester Importin-α and Modulate the Host Immune and Pro-Inflammatory Response in Neuronal Cells. ACS Infect Dis 2019; 5:932-948. [PMID: 30848123 DOI: 10.1021/acsinfecdis.8b00373] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Zika virus (ZIKV) epidemic in the Americas was alarming because of its link with microcephaly in neonates and Guillain-Barré syndrome in adults. The unusual pathologies induced by ZIKV infection and the knowledge that the flaviviral nonstructural protein 5 (NS5), the most conserved protein in the flavivirus proteome, can modulate the host immune response during ZIKV infection prompted us to investigate the subcellular localization of NS5 during ZIKV infection and explore its functional significance. A monopartite nuclear localization signal (NLS) sequence within ZIKV NS5 was predicted by the cNLS Mapper program, and we observed localization of ZIKV NS5 in the nucleus of infected cells by immunostaining with specific antibodies. Strikingly, ZIKV NS5 forms spherical shell-like nuclear bodies that exclude DNA. The putative monopartite NLS 390KRPR393 is necessary to direct FLAG-tagged NS5 to the nucleus as the NS5 390ARPA393 mutant protein accumulates in the cytoplasm. Furthermore, coimmunostaining experiments reveal that NS5 localizes with and sequesters importin-α, but not importin-β, in the observed nuclear bodies during virus infection. Structural and biochemical data demonstrate binding of ZIKV NS5 with importin-α and reveal important binding determinants required for their interaction and formation of complexes that give rise to the supramolecular nuclear bodies. Significantly, we demonstrate a neuronal-specific activation of the host immune response to ZIKV infection and a possible role of ZIKV NS5's nuclear localization toward this activation. This suggests that ZIKV pathogenesis may arise from a tissue-specific host response to ZIKV infection.
Collapse
Affiliation(s)
- Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Genome Institute of Singapore, Agency for Science & Technology Research (A*STAR), 60 Biopolis Street, Singapore 138672
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kate M. Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Sarah J. Jeffress
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Crystall M. D. Swarbrick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
140
|
Pacheco AL, Vicentini G, Matteucci KC, Ribeiro RR, Weinlich R, Bortoluci KR. The impairment in the NLRP3-induced NO secretion renders astrocytes highly permissive to T. cruzi replication. J Leukoc Biol 2019; 106:201-207. [PMID: 30997938 DOI: 10.1002/jlb.4ab1118-416rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Trypanossoma cruzi (T. cruzi), the causative protozoan of Chagas disease (CD) invades many cell types, including central nervous system (CNS) cells triggering local lesions and neurological impact. Previous work from our group described NLRP3 inflammasomes as central effectors for the parasite control by macrophages. Recent evidences demonstrate that NLRP3 can be activated in CNS cells with controversial consequences to the control of infections and inflammatory pathologies. However, the relative contribution of NLRP3 in different cell types remains to be elucidated. In this article, we described an effector response mediated by NLRP3 that works on microglia but not on astrocytes to control T. cruzi infection. Despite T. cruzi ability to invade astrocytes and microglia, astrocytes were clearly more permissive to parasite replication. Moreover, the absence of NLRP3 renders microglia but not astrocytes more permissive to T. cruzi replication. In fact, microglia but not astrocytes were able to secrete NLRP3-dependent IL-1β and NO in response to T. cruzi. Importantly, the pharmacological inhibition of iNOS with aminoguanidine resulted in a significant increase in the numbers of amastigotes found in microglia from wild-type but not from NLRP3-/- mice, indicating the importance of NLRP3-mediated NO secretion to the infection control by these cells. Taken together, our findings revealed that T. cruzi differentially activates NLRP3 inflammasomes in astrocytes and microglia and established a role for these platforms in the control of a protozoan infection by glial cells from CNS.
Collapse
Affiliation(s)
- Aline L Pacheco
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC-Mol), UNIFESP, São Paulo, Brazil
| | - Gabriella Vicentini
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC-Mol), UNIFESP, São Paulo, Brazil
| | - Kely C Matteucci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC-Mol), UNIFESP, São Paulo, Brazil
| | - Rafaela Rosa Ribeiro
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Karina R Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC-Mol), UNIFESP, São Paulo, Brazil
| |
Collapse
|
141
|
Rao L, Wang W, Meng QF, Tian M, Cai B, Wang Y, Li A, Zan M, Xiao F, Bu LL, Li G, Li A, Liu Y, Guo SS, Zhao XZ, Wang TH, Liu W, Wu J. A Biomimetic Nanodecoy Traps Zika Virus To Prevent Viral Infection and Fetal Microcephaly Development. NANO LETTERS 2019; 19:2215-2222. [PMID: 30543300 DOI: 10.1021/acs.nanolett.8b03913] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Zika virus (ZIKV) has emerged as a global health threat due to its unexpected causal link to devastating neurological disorders such as fetal microcephaly; however, to date, no approved vaccine or specific treatment is available for ZIKV infection. Here we develop a biomimetic nanodecoy (ND) that can trap ZIKV, divert ZIKV away from its intended targets, and inhibit ZIKV infection. The ND, which is composed of a gelatin nanoparticle core camouflaged by mosquito medium host cell membranes, effectively adsorbs ZIKV and inhibits ZIKV replication in ZIKV-susceptible cells. Using a mouse model, we demonstrate that NDs significantly attenuate the ZIKV-induced inflammatory responses and degenerative changes and thus improve the survival rate of ZIKV-challenged mice. Moreover, by trapping ZIKV, NDs successfully prevent ZIKV from passing through physiologic barriers into the fetal brain and thereby mitigate ZIKV-induced fetal microcephaly in pregnant mice. We anticipate that this study will provide new insights into the development of safe and effective protection against ZIKV and various other viruses that threaten public health.
Collapse
Affiliation(s)
- Lang Rao
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Wenbiao Wang
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
- Institute of Medical Microbiology , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Qian-Fang Meng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Bo Cai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Minghui Zan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Lin-Lin Bu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Geng Li
- School of Chinese Pharmaceutical Science , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong 510006 , China
| | - Andrew Li
- Department of Biomedical Engineering , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Tza-Huei Wang
- Department of Biomedical Engineering , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology , Wuhan University , Wuhan , Hubei 430072 , China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , China
- Institute of Medical Microbiology , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
142
|
Human metapneumovirus activates NOD-like receptor protein 3 inflammasome via its small hydrophobic protein which plays a detrimental role during infection in mice. PLoS Pathog 2019; 15:e1007689. [PMID: 30964929 PMCID: PMC6474638 DOI: 10.1371/journal.ppat.1007689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/19/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers caspase-1 activation-induced maturation of interleukin (IL)-1β and IL-18 and therefore is important for the development of the host defense against various RNA viral diseases. However, the implication of this protein complex in human metapneumovirus (HMPV) disease has not been fully studied. Herein, we report that NLRP3 inflammasome plays a detrimental role during HMPV infection because NLRP3 inflammasome inhibition protected mice from mortality and reduced weight loss and inflammation without impacting viral replication. We also demonstrate that NLRP3 inflammasome exerts its deleterious effect via IL-1β production since we observed reduced mortality, weight loss and inflammation in IL-1β-deficient (IL-1β-/-) mice, as compared to wild-type animals during HMPV infection. Moreover, the effect on these evaluated parameters was not different in IL-1β-/- and wild-type mice treated with an NLRP3 inflammasome inhibitor. The production of IL-1β was also abrogated in bone marrow derived macrophages deficient for NLRP3. Finally, we show that small hydrophobic protein-deleted recombinant HMPV (HMPV ΔSH) failed to activate caspase-1, which is responsible for IL-1β cleavage and maturation. Furthermore, HMPV ΔSH-infected mice had less weight loss, showed no mortality and reduced inflammation, as compared to wild-type HMPV-infected mice. Thus, NLRP3 inflammasome activation seems to be triggered by HMPV SH protein in HMPV disease. In summary, once activated by the HMPV SH protein, NLRP3 inflammasome promotes the maturation of IL-1β, which exacerbates HMPV-induced inflammation. Therefore, the blockade of IL-1β production by using NLRP3 inflammasome inhibitors might be a novel potential strategy for the therapy and prevention of HMPV infection. Human metapneumovirus (HMPV), a negative-stranded, enveloped RNA virus, is recognized as one of the leading causes of acute respiratory disease in children since its discovery in 2001. Nevertheless, there is currently no licensed vaccine for the prevention of HMPV infection and treatment modalities are limited to the use of ribavirin, a weak antiviral agent or immunoglobulins. NOD-like receptor protein 3 (NLRP3) inflammasome has been shown to be involved in the pathogenesis of several RNA viral diseases but its role during HMPV infection has not been fully studied. Here, we report for the first time that NLRP3 inflammasome is activated by the small hydrophobic protein of HMPV, leading to the release of IL-1β, which has the potential to exacerbate inflammation. However, NLRP3 inflammasome has no direct influence on viral replication. Thus, IL-1β-mediated inflammatory process plays an important role during HMPV infection and, therefore, anti-IL-1β strategies such as the use of NLRP3 inhibitors may be a novel potential approach for the prevention and therapy of HMPV disease.
Collapse
|
143
|
Lee JK, Shin OS. Advances in Zika Virus⁻Host Cell Interaction: Current Knowledge and Future Perspectives. Int J Mol Sci 2019; 20:ijms20051101. [PMID: 30836648 PMCID: PMC6429326 DOI: 10.3390/ijms20051101] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging mosquito-transmitted RNA viruses, such as Zika virus (ZIKV) and Chikungunya represent human pathogens of an immense global health problem. In particular, ZIKV has emerged explosively since 2007 to cause a series of epidemics in the South Pacific and most recently in the Americas. Although typical ZIKV infections are asymptomatic, ZIKV infection during pregnancy is increasingly associated with microcephaly and other fetal developmental abnormalities. In the last few years, genomic and molecular investigations have established a remarkable progress on the pathogenic mechanisms of ZIKV infection using in vitro and in vivo models. Here, we highlight recent advances in ZIKV-host cell interaction studies, including cellular targets of ZIKV, ZIKV-mediated cell death mechanisms, host cell restriction factors that limit ZIKV replication, and immune evasion mechanisms utilized by ZIKV. Understanding of the mechanisms of ZIKV⁻host interaction at the cellular level will contribute crucial insights into the development of ZIKV therapeutics and vaccines.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| |
Collapse
|
144
|
Lei J, Vermillion MS, Jia B, Xie H, Xie L, McLane MW, Sheffield JS, Pekosz A, Brown A, Klein SL, Burd I. IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCI Insight 2019; 4:122678. [PMID: 30944243 DOI: 10.1172/jci.insight.122678] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes significant adverse sequelae in the developing fetus, and results in long-term structural and neurologic defects. Most preventive and therapeutic efforts have focused on the development of vaccines, antivirals, and antibodies. The placental immunologic response to ZIKV, however, has been largely overlooked as a target for therapeutic intervention. The placental inflammatory response, specifically IL-1β secretion and signaling, is induced by ZIKV infection and represents an environmental factor that is known to increase the risk of perinatal developmental abnormalities. We show in a mouse model that maternally administrated IL-1 receptor antagonist (IRA; Kineret, or anakinra), following ZIKV exposure, can preserve placental function (by improving trophoblast invasion and placental vasculature), increase fetal viability, and reduce neurobehavioral deficits in the offspring. We further demonstrate that while ZIKV RNA is highly detectable in placentas, it is not correlated with fetal viability. Beyond its effects in the placenta, we show that IL-1 blockade may also directly decrease fetal neuroinflammation by mitigating fetal microglial activation in a dose-dependent manner. Our studies distinguish the role of placental inflammation during ZIKV-infected pregnancies, and demonstrate that maternal IRA may attenuate fetal neuroinflammation and improve perinatal outcomes.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeanne S Sheffield
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
145
|
Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol 2019; 4:789-799. [PMID: 30804542 PMCID: PMC7096966 DOI: 10.1038/s41564-019-0371-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023]
Abstract
Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.
Collapse
|
146
|
Wan P, Zhang Q, Liu W, Jia Y, Ai S, Wang T, Wang W, Pan P, Yang G, Xiang Q, Huang S, Yang Q, Zhang W, Liu F, Tan Q, Zhang W, Wu K, Liu Y, Wu J. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. FASEB J 2019; 33:5793-5807. [PMID: 30653357 DOI: 10.1096/fj.201801681r] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of the NACHT, leucine-rich repeat, and pyrin domains-containing protein 3 (collectively known as NLRP3) inflammasome plays a key role in host immune response, which is the first line of defense against cellular stresses and pathogen infections. However, excessive inflammasome activation damages host cells, and therefore it must be precisely controlled. Here, we discover that Cullin1 (CUL1), a key component of the Skp1-Cullin1-F-box E3 ligase, plays a critical role in controlling the NLRP3 inflammasome. CUL1 represses inflammasome assembly in cultured cells, suppresses NLRP3 function in human monocytic cell line macrophages, and attenuates inflammatory responses in mouse model. Detailed studies demonstrate that CUL1 interacts with NLRP3 and promotes NLRP3 ubiquitination, but not protein degradation, to repress the NLRP3 inflammasome activation. Moreover, upon inflammatory stimuli, including ATP and nigericin treatments, CUL1 disassociates from NLRP3 to release the repression of the NLRP3 inflammasome. Thus, this study reveals a distinct and unique mechanism underlying the control of systematic activation of the NLRP3 inflammasome.-Wan, P., Zhang, Q., Liu, W., Jia, Y., Ai, S., Wang, T., Wang, W., Pan, P., Yang, G., Xiang, Q., Huang, S., Yang, Q., Zhang, W., Liu, F., Tan, Q., Zhang, W., Wu, K., Liu, Y., Wu, J. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation.
Collapse
Affiliation(s)
- Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yaling Jia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Ai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianci Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China; and
| | - Pan Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ge Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Siyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qingyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiuping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China; and
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Key Laboratory of Virology of Guangzhou, Institute of Medical Microbiology, Jinan University, Guangzhou, China; and
| |
Collapse
|
147
|
Jiang Y, Li J, Teng Y, Sun H, Tian G, He L, Li P, Chen Y, Guo Y, Li J, Zhao G, Zhou Y, Sun S. Complement Receptor C5aR1 Inhibition Reduces Pyroptosis in hDPP4-Transgenic Mice Infected with MERS-CoV. Viruses 2019; 11:v11010039. [PMID: 30634407 PMCID: PMC6356766 DOI: 10.3390/v11010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic virus with a crude mortality rate of ~35%. Previously, we established a human DPP4 transgenic (hDPP4-Tg) mouse model in which we studied complement overactivation-induced immunopathogenesis. Here, to better understand the pathogenesis of MERS-CoV, we studied the role of pyroptosis in THP-1 cells and hDPP4 Tg mice with MERS-CoV infection. We found that MERS-CoV infection induced pyroptosis and over-activation of complement in human macrophages. The hDPP4-Tg mice infected with MERS-CoV overexpressed caspase-1 in the spleen and showed high IL-1β levels in serum, suggesting that pyroptosis occurred after infection. However, when the C5a-C5aR1 axis was blocked by an anti-C5aR1 antibody (Ab), expression of caspase-1 and IL-1β fell. These data indicate that MERS-CoV infection induces overactivation of complement, which may contribute to pyroptosis and inflammation. Pyroptosis and inflammation were suppressed by inhibiting C5aR1. These results will further our understanding of the pathogenesis of MERS-CoV infection.
Collapse
Affiliation(s)
- Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Junfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Guang Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Pei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
148
|
The NS1 Protein of Influenza A Virus Participates in Necroptosis by Interacting with MLKL and Increasing Its Oligomerization and Membrane Translocation. J Virol 2019; 93:JVI.01835-18. [PMID: 30355688 DOI: 10.1128/jvi.01835-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Elimination of infected cells by programmed cell death is a well-recognized host defense mechanism to control the spread of infection. In addition to apoptosis, necroptosis is also one of the mechanisms of cell death that can be activated by viral infection. Activation of necroptosis leads to the phosphorylation of mixed-lineage kinase domain-like protein (MLKL) by receptor-interacting protein kinase 3 (RIPK3) and results in MLKL oligomerization and membrane translocation, leading to membrane disruption and a loss of cellular ion homeostasis. It has recently been reported that influenza A virus (IAV) infection induces necroptosis. However, the underlying mechanism of the IAV-mediated necroptosis process, particularly the roles of IAV proteins in necroptosis, remains unexplored. Here, we report that IAV infection induces necroptosis in macrophages and epithelial cells. We demonstrate that the NS1 protein of IAV interacts with MLKL. Coiled-coil domain 2 of MLKL has a predominant role in mediating the MLKL interaction with NS1. The interaction of NS1 with MLKL increases MLKL oligomerization and membrane translocation. Moreover, the MLKL-NS1 interaction enhances MLKL-mediated NLRP3 inflammasome activation, leading to increased interleukin-1β (IL-1β) processing and secretion.IMPORTANCE Necroptosis is a programmed cell death that is inflammatory in nature owing to the release of danger-associated molecular patterns from the ruptured cell membrane. However, necroptosis also constitutes an important arm of host immune responses. Thus, a balanced inflammatory response determines the disease outcome. We report that the NS1 protein of IAV participates in necroptosis by interacting with MLKL, resulting in increased MLKL oligomerization and membrane translocation. These results reveal a novel function of the NS1 protein and the mechanism by which IAV induces necroptosis. Moreover, we show that this interaction enhances NLRP3 inflammasome activation and IL-1β processing and secretion. This information may contribute to a better understanding of the role of necroptosis in IAV-induced inflammation.
Collapse
|
149
|
Lin S, Yang S, He J, Guest JD, Ma Z, Yang L, Pierce BG, Tang Q, Zhang YJ. Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation. Virology 2018; 527:180-187. [PMID: 30530224 DOI: 10.1016/j.virol.2018.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne positive-sense single-stranded RNA virus in the family of Flaviviridae. Unlike other flaviviruses, ZIKV infection of pregnant women may result in birth defects in their newborns, such as microcephaly or vision problem. ZIKV is known to antagonize the interferon (IFN) production in infected cells. However, the exact mechanism of this interference is not fully understood. Here, we demonstrate that NS5 protein of ZIKV MR766 strain antagonizes IFN production through inhibiting the activation of TANK-binding kinase 1 (TBK1), which phosphorylates the transcription activator IFN regulatory factor 3 (IRF3). Mechanistically, NS5 interacts with the ubiquitin-like domain of TBK1 and results in less complex of TBK1 and TNF (tumor necrosis factor) receptor-associated factor 6 (TRAF6), leading to dampened TBK1 activation and IRF3 phosphorylation. Our study provides insights into the mechanism of ZIKV evasion of IFN-mediated innate immunity.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Shixing Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; School of Medicine, Jiangsu University, Jiangsu, China
| | - Jia He
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zexu Ma
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington DC, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
150
|
Chen XX, Guo Z, Jin Q, Qiao S, Li R, Li X, Deng R, Feng WH, Zhang GP. Porcine reproductive and respiratory syndrome virus induces interleukin-1β through MyD88/ERK/AP-1 and NLRP3 inflammasome in microglia. Vet Microbiol 2018; 227:82-89. [PMID: 30473357 DOI: 10.1016/j.vetmic.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection which caused severe reproductive failure and respiratory disorders in swine is accompanied with severe nervous symptoms. Our previous studies demonstrated that microglia, the resident innate immune cells in central nervous system (CNS), could support PRRSV infection and replication in vitro. And PRRSV infection led to the increased expressions of large amounts of proinflammatory cytokines and chemokines which contributed to neuropathogenesis of PRRSV. Interleukin-1β (IL-1β) is one of the increased proinflammatory cytokines, which possesses diverse functions in immune response upon virus infection, including activation of innate immune and modulation of adaptive immune responses. Importantly, considerable evidences indicated that 1L-1β is involved in neuronal injury. Here, we demonstrated that PRRSV infection up-regulated IL-1β expression at both the mRNA and protein levels in microglia in a dose-dependent manner. Myeloid differentiation primary response gene 88 (MyD88), extracellular signal-regulated kinase1/2 (ERK) and activator protein 1 (AP-1) were involved in PRRSV induced IL-1β production in microglia. Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome is activated by PRRSV in microglia, which is required for IL-1β secretion. Taken together, our data indicated that PRRSV infection could induce IL-1β up-regulation, which was likely mediated by MyD88/ERK/AP-1 and NLRP3 inflammasome. These findings will provide new insights into the molecular mechanisms of IL-1β production and some implications for neuropathogenesis of PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Gai-Ping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|