101
|
Li Y, Hao B, Kuai X, Xing G, Yang J, Chen J, Tang L, Zhang L, He F. C-type lectin LSECtin interacts with DC-SIGNR and is involved in hepatitis C virus binding. Mol Cell Biochem 2009; 327:183-90. [PMID: 19234677 PMCID: PMC7088854 DOI: 10.1007/s11010-009-0056-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/04/2009] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease. However, the detailed mechanism underlying hepatocyte infection with HCV is not yet completely understood. We previously identified a novel C-type lectin—LSECtin predominantly expressed on liver sinusoidal endothelial cells. Here we demonstrate that LSECtin can interact with two HCV receptors, DC-SIGNR and CD81, through its central ectodomain. Furthermore, cells expressing LSECtin specifically can be attached by the naturally occurring HCV in the sera of infected individuals. This binding was found to be mediated by the HCV E2 glycoprotein and could be efficiently inhibited by EGTA but not by mannan treatment. The present study suggests that LSECtin interaction with DC-SIGNR might contribute to HCV binding to liver sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Bingtao Hao
- Department of Biology Sciences and Biotechnology, Tsinghua University, Beijing, 100084 China
| | - Xuezhang Kuai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Juntao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Jie Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
- Department of Biology Sciences and Biotechnology, Tsinghua University, Beijing, 100084 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| |
Collapse
|
102
|
Rothwangl KB, Rong L. Analysis of a conserved RGE/RGD motif in HCV E2 in mediating entry. Virol J 2009; 6:12. [PMID: 19171049 PMCID: PMC2637243 DOI: 10.1186/1743-422x-6-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/26/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) encodes two transmembrane glycoproteins E1 and E2 which form a heterodimer. E1 is believed to mediate fusion while E2 has been shown to bind cellular receptors. It is clear that HCV uses a multi-receptor complex to gain entry into susceptible cells, however key elements of this complex remain elusive. In this study, the role of a highly conserved RGE/RGD motif of HCV E2 glycoprotein in viral entry was examined. The effect of each substitution mutation in this motif was tested by challenging susceptible cell lines with mutant HCV E1E2 pseudotyped viruses generated using a lentiviral system (HCVpp). In addition to assaying infectivity, producer cell expression and HCVpp incorporation of HCV E2 proteins, CD81 binding profiles, and conformation of mutants were examined. RESULTS Based on these characteristics, mutants either displayed wt characteristics (high infectivity [> or = 90% of wt HCVpp], CD81 binding, E1E2 expression, and incorporation into viral particles and proper conformation) or very low infectivity (< or = 20% of wt HCVpp). Only amino acid substitutions of the 3rd position (D or E) resulted in wt characteristics as long as the negative charge was maintained or a neutral alanine was introduced. A change in charge to a positive lysine, disrupted HCVpp infectivity at this position. CONCLUSION Although most amino acid substitutions within this conserved motif displayed greatly reduced HCVpp infectivity, they retained soluble CD81 binding, proper E2 conformation, and incorporation into HCVpp. Our results suggest that although RGE/D is a well-defined integrin binding motif, in this case the role of these three hyperconserved amino acids does not appear to be integrin binding. As the extent of conservation of this region extends well beyond these three amino acids, we speculate that this region may play an important role in the structure of HCV E2 or in mediating the interaction with other factor(s) during viral entry.
Collapse
Affiliation(s)
- Katharina B Rothwangl
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
103
|
HCV and innate immunity. Uirusu 2009; 58:19-26. [PMID: 19122385 DOI: 10.2222/jsv.58.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hepatitis C virus (HCV) is a single-strand, positive sense RNA virus belonging to the flaviviridae family. HCV develops persistent infection in >70% of infected patients, and eventually causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma in some patients. Once chronic infection is established in patients with HCV, spontaneous viral clearance fails, although how HCV remains persistently infecting the liver is largely unknown. Insufficient immune response, involving antiviral innate immune response including dendritic cells (DCs), has been focused. A number of controversial studies have been reported as to HCV genome replication and HCV-mediated immune responses in human DCs. A tantalizing point of these earlier studies is the lack of the system for viral propagation in HCV. Recently, an in vitro system was exploited to propagate HCV particles using the JFH1 strain. In this review, we review the previous reports about the subversion of innate immunity by HCV and show the innate response of monocyte-derived dendritic cells (MoDCs) against the JFH1 strain. We could not observe HCV direct interaction with MoDC maturation. MoDCs maturated by phagocytosing HCV-infected apoptotic cells containing virus-derived dsRNA, which interacted with TLR3 in the phagosomes. All of these data suggests the importance of TLR3 signal for the induction of anti-HCV innate immunity.
Collapse
|
104
|
Shapshak P, Somboonwit C, Drumright LN, Frost SDW, Commins D, Tellinghuisen TL, Scott WK, Duncan R, McCoy C, Page JB, Giunta B, Fernandez F, Singer E, Levine A, Minagar A, Oluwadara O, Kotila T, Chiappelli F, Sinnott JT. Molecular and contextual markers of hepatitis C virus and drug abuse. Mol Diagn Ther 2009; 13:153-79. [PMID: 19650670 PMCID: PMC4447498 DOI: 10.2165/01250444-200913030-00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of hepatitis C virus (HCV) infection involves a complex interplay of social risks, and molecular factors of both virus and host. Injection drug abuse is the most powerful risk factor for HCV infection, followed by sexual transmission and additional non-injection drug abuse factors such as co-infection with other viruses and barriers to treatment. It is clearly important to understand the wider context in which the factors related to HCV infection occur. This understanding is required for a comprehensive approach leading to the successful prevention, diagnosis, and treatment of HCV. An additional consideration is that current treatments and advanced molecular methods are generally unavailable to socially disadvantaged patients. Thus, the recognition of behavioral/social, viral, and host factors as components of an integrated approach to HCV is important to help this vulnerable group. Equally important, this approach is key to the development of personalized patient treatment - a significant goal in global healthcare. In this review, we discuss recent findings concerning the impact of drug abuse, epidemiology, social behavior, virology, immunopathology, and genetics on HCV infection and the course of disease.
Collapse
Affiliation(s)
- Paul Shapshak
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Tampa General Hospital, University of South Florida, College of Medicine, Tampa, Florida, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Zeisel MB, Barth H, Schuster C, Baumert TF. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci (Landmark Ed) 2009; 14:3274-85. [PMID: 19273272 DOI: 10.2741/3450] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. Using recombinant HCV envelope glycoproteins and HCV pseudotype particles, several cell surface molecules have been identified interacting with HCV during viral binding and entry. These include CD81, highly sulfated heparan sulfate, the low-density lipoprotein receptor, scavenger receptor class B type I and claudin-1. Treatment options for chronic HCV infection are limited and a vaccine to prevent HCV infection is not available. Interfering with HCV entry holds promise for drug design and discovery as the understanding of molecular mechanisms underlying HCV interaction with the host cell is advancing. The complexity of the virus entry process offers several therapeutic targets.
Collapse
|
106
|
Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H, Leroux-Roels G. Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 2008; 48:1761-8. [PMID: 19030166 DOI: 10.1002/hep.22547] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The viral life cycle of the hepatitis C virus (HCV) has been studied mainly using different in vitro cell culture models. Studies using pseudoviral particles (HCVpp) and more recently cell culture-derived virus (HCVcc) suggest that at least three host cell molecules are important for HCV entry in vitro: the tetraspanin CD81, the scavenger receptor class B member I, and the tight junction protein Claudin-1. Whether these receptors are equally important for an in vivo infection remains to be demonstrated. We show that CD81 is indispensable for an authentic in vivo HCV infection. Prophylactic treatment with anti-CD81 antibodies completely protected human liver-uPA-SCID mice from a subsequent challenge with HCV consensus strains of different genotypes. Administration of anti-CD81 antibodies after viral challenge had no effect. CONCLUSION Our experiments provide evidence for the critical role of CD81 in a genuine HCV infection in vivo and open new perspectives for the prevention of allograft reinfection after orthotopic liver transplantation in chronically infected HCV patients.
Collapse
Affiliation(s)
- Philip Meuleman
- Center for Vaccinology, Ghent University and Hospital, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
107
|
Op den Brouw ML, De Jong MAWP, Ludwig IS, Van Der Molen RG, Janssen HLA, Geijtenbeek TBH, Woltman AM. Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN. J Viral Hepat 2008; 15:675-83. [PMID: 18482282 PMCID: PMC7166686 DOI: 10.1111/j.1365-2893.2008.00993.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the induction of an anti-viral immune response. Many glycosylated viruses subvert this immune surveillance function and exploit DC-SIGN as a port of entry and for trans-infection of target cells. The glycosylation pattern on HBV surface antigens (HBsAg) together with the tissue distribution of HBV would allow interaction between HBV and DC-SIGN and its liver-expressed homologue L-SIGN. Therefore, a detailed study to investigate the binding of HBV to DC-SIGN and L-SIGN was performed. For HCV, both DC-SIGN and L-SIGN are known to bind envelope glycoproteins E1 and E2. Soluble DC-SIGN and L-SIGN specifically bound HCV virus-like particles, but no interaction with either HBsAg or HepG2.2.15-derived HBV was detected. Also, neither DC-SIGN nor L-SIGN transfected Raji cells bound HBsAg. In contrast, highly mannosylated HBV, obtained by treating HBV producing HepG2.2.15 cells with the alpha-mannosidase I inhibitor kifunensine, is recognized by DC-SIGN. The alpha-mannosidase I trimming of N-linked oligosaccharide structures thus prevents recognition by DC-SIGN. On the basis of these findings, it is tempting to speculate that HBV exploits mannose trimming as a way to escape recognition by DC-SIGN and thereby subvert a possible immune activation response.
Collapse
Affiliation(s)
- M. L. Op den Brouw
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - M. A. W. P. De Jong
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - I. S. Ludwig
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - R. G. Van Der Molen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - H. L. A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - T. B. H. Geijtenbeek
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - A. M. Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
108
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
109
|
Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008; 86:861-74. [PMID: 18458800 PMCID: PMC7079906 DOI: 10.1007/s00109-008-0350-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 12/16/2022]
Abstract
Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.
Collapse
Affiliation(s)
- Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, University Pathology Building, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
110
|
Ebihara T, Shingai M, Matsumoto M, Wakita T, Seya T. Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology 2008; 48:48-58. [PMID: 18537195 DOI: 10.1002/hep.22337] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Dendritic cell maturation critically modulates antiviral immune responses, and facilitates viral clearance. Hepatitis C virus (HCV) is characterized by its high predisposition to persistent infection. Here, we examined the immune response of human monocyte-derived dendritic cells (MoDCs) to the JFH1 strain of HCV, which can efficiently replicate in cell culture. However, neither HCV RNA replication nor antigen production was detected in MoDCs inoculated with JFH1. None of the indicators of HCV interacting with MoDCs we evaluated were affected, including expression of maturation markers (CD80, 83, 86), cytokines (interleukin-6 and interferon-beta), the mixed lymphocyte reaction, and natural killer (NK) cell cytotoxicity. Strikingly, MoDCs matured by phagocytosing extrinsically-infected vesicles containing HCV-derived double-stranded RNA (dsRNA). When MoDCs were cocultured with HCV-infected apoptotic Huh7.5.1 hepatic cells, there was increased CD86 expression and interleukin-6 and interferon-beta production in MoDCs, which were characterized by the potential to activate NK cells and induce CD4+ T cells into the T helper 1 type. Lipid raft-dependent phagocytosis of HCV-infected apoptotic vesicles containing dsRNA was indispensable to MoDC maturation. Colocalization of dsRNA with Toll-like receptor 3 (TLR3) in phagosomes suggested the importance of TLR3 signaling in the MoDC response against HCV. CONCLUSION The JFH1 strain does not directly stimulate MoDCs to activate T cells and NK cells, but phagocytosing HCV-infected apoptotic cells and their interaction with the TLR3 pathway in MoDCs plays a critical role in MoDC maturation and reciprocal activation of T and NK cells.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
111
|
Wang SF, Huang JC, Lee YM, Liu SJ, Chan YJ, Chau YP, Chong P, Chen YMA. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans. Biochem Biophys Res Commun 2008; 373:561-6. [PMID: 18593570 PMCID: PMC7092884 DOI: 10.1016/j.bbrc.2008.06.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/18/2008] [Indexed: 11/25/2022]
Abstract
DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing α-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Biotechnology and Laboratory Science in Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH. The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 2008; 3:263-72. [PMID: 18407069 DOI: 10.1016/j.chom.2008.02.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/04/2008] [Accepted: 02/26/2008] [Indexed: 01/14/2023]
Abstract
The course of systemic viral infections is determined by the virus productivity of infected cell types and the efficiency of virus dissemination throughout the host. Here, we used a cell-type-specific virus labeling system to quantitatively track virus progeny during murine cytomegalovirus infection. We infected mice that expressed Cre recombinase selectively in vascular endothelial cells or hepatocytes with a murine cytomegalovirus for which Cre-mediated recombination would generate a fluorescently labeled virus. We showed that endothelial cells and hepatocytes produced virus after direct infection. However, in the liver, the main contributor to viral load in the mouse, most viruses were produced by directly infected hepatocytes. Remarkably, although virus produced in hepatocytes spread to hepatic endothelial cells (and vice versa), there was no significant spread from the liver to other organs. Thus, the cell type producing the most viruses was not necessarily the one responsible for virus dissemination within the host.
Collapse
Affiliation(s)
- Torsten Sacher
- Max von Pettenkofer-Institute, Ludwig Maximilians-University, Munich D-80336, Germany
| | | | | | | | | | | | | |
Collapse
|
113
|
Silberstein E, Taylor DR. Overcoming hurdles in hepatitis C virus research: efficient production of infectious virus in cell culture. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2008; 4:82-8. [PMID: 23675072 PMCID: PMC3614688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022]
Abstract
Hepatitis C virus is a flavivirus that infects nearly 2% of the world population. There is no vaccine available and current therapy with interferon and ribavirin is expensive, not well tolerated and effective in only 60% of patients. HCV research has been hampered by the lack of a robust tissue culture system, but recent advances have made virus growth in culture possible. Here we review the current state-of-the-art and the molecular hurdles that have been met and those that still need to be overcome.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Hepatitis and Related Emerging Agents, Center for Biologics Evaluation and Research, US Food and Drug Administration
| | | |
Collapse
|
114
|
Poumbourios P, Drummer HE. Recent advances in our understanding of receptor binding, viral fusion and cell entry of hepatitis C virus: new targets for the design of antiviral agents. Antivir Chem Chemother 2008; 18:169-89. [PMID: 17907376 DOI: 10.1177/095632020701800402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Improvements to antiviral therapies for the treatment of hepatitis C virus (HCV) infections will require the use of multiple drugs that target viral proteins essential for replication. The discovery of anti-HCV compounds has been severely hampered by the lack of cell culture replication systems. Since the late 1990s, the advent of sub-genomic replicons that model the intracellular events leading to HCV genome replication have enabled the discovery of HCV protease and polymerase inhibitors, but did not allow the study of HCV entry or entry inhibitors. More recently, retroviral pseudotyping of the viral glycoproteins and the development of a cell culture-based system that recapitulates the entire HCV replication cycle were achieved. These new experimental systems have enabled a rapid advance in our knowledge of how HCV glycoproteins, E1 and E2, mediate receptor binding and viral entry. These systems have facilitated the discovery of a range of viral receptors. Evidence is emerging that CD81, scavenger receptor class B type I, claudin-1 and the low-density lipoprotein receptor are involved in viral entry. In addition, DC-SIGN and L-SIGN may function to internalize virus into dendritic or endothelial cells, facilitating the transport of virions to sites of infection such as the liver. This review focuses on the interaction between the HCV glycoproteins and cellular receptors, and our current understanding of the viral entry pathway. In addition, key questions on the role that these receptors play in viral entry are raised and potential avenues for the discovery of new antiviral agents are highlighted.
Collapse
Affiliation(s)
- Pantelis Poumbourios
- Viral Fusion Laboratory, Macfarlane Burnet Institute for Medical Research and Public Health Limited, Melbourne, Australia
| | | |
Collapse
|
115
|
Rothwangl KB, Manicassamy B, Uprichard SL, Rong L. Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: putative CD81 binding region 1 is not involved in CD81 binding. Virol J 2008; 5:46. [PMID: 18355410 PMCID: PMC2277408 DOI: 10.1186/1743-422x-5-46] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 03/20/2008] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis C virus (HCV) encodes two transmembrane glycoproteins E1 and E2 which form a heterodimer. E1 is believed to mediate fusion while E2 has been shown to bind cellular receptors including CD81. In this study, alanine substitutions in E2 were generated within putative CD81 binding regions to define residues critical for viral entry. The effect of each mutation was tested by challenging susceptible cell lines with mutant HCV E1E2 pseudotyped viruses generated using a lentiviral system (HCVpp). In addition to assaying infectivity, producer cell expression and HCVpp incorporation of HCV E1 and E2 proteins, CD81 binding profiles, and E1E2 association of mutants were examined. Results Based on these characteristics, mutants either displayed wt characteristics (high infectivity [≥ 50% of wt HCVpp], CD81 binding, E1E2 expression, association, and incorporation into viral particles and proper conformation) or segregated into 4 distinct low infectivity (≤ 50% of wt HCVpp) mutant phenotypes: (I) CD81 binding deficient (despite wt E1E2 expression, incorporation and association and proper conformation); (II) CD81 binding competent, but lack of E1 detection on the viral particle, (despite adequate E1E2 expression in producer cell lysates and proper conformation); (III) CD81 binding competent, with adequate E1E2 expression, incorporation, association, and proper E2 conformation (i.e. no defect identified to explain the reduced infectivity observed); (IV) CD81 binding deficient due to disruption of E2 mutant protein conformation. Conclusion Although most alanine substitutions within the putative CD81 binding region 1 (amino acids 474–492) displayed greatly reduced HCVpp infectivity, they retained soluble CD81 binding, proper E2 conformation, E1E2 association and incorporation into HCVpp suggesting that region 1 of E2 does not mediate binding to CD81. In contrast, conformationally correct E2 mutants (Y527 and W529) within the second putative CD81 binding region (amino acids 522–551) disrupted binding of E2 to CD81-GST, suggesting that region 2 is critical to CD81 binding. Likewise, all conformationally intact mutants within the third putative CD81 binding region (amino acids 612–619), except L615A, were important for E2 binding to CD81-GST. This region is highly conserved across genotypes, underlining its importance in mediating viral entry.
Collapse
Affiliation(s)
- Katharina B Rothwangl
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
116
|
Glenn JS. Molecular virology of the hepatitis C virus: implication for novel therapies. Infect Dis Clin North Am 2008; 20:81-98. [PMID: 16527650 DOI: 10.1016/j.idc.2006.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the advent of second-generation agents that for the first time specifically target individual HCV proteins, HCV-specific therapy has arrived. The study of HCV molecular virology has helped make this possible and is helping us to identify additional new antiviral targets that will be targeted by third-generation drugs. Key to these efforts is the development of high-efficiency HCV replicons. The future effective pharmacologic control of HCV will likely consist of a cocktail of simultaneously administered virus-specific agents with independent targets. This should minimize the emergence of resistance against any single agent. The way we treat HCV should change dramatically over the next few years.
Collapse
Affiliation(s)
- Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine and Palo Alto Veterans Administration Medical Center, CCSR Building, Room 3115, 269 Campus Drive, Palo Alto, CA 94305-5187, USA.
| |
Collapse
|
117
|
Shiina M, Rehermann B. Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function. Hepatology 2008; 47:385-95. [PMID: 18064579 DOI: 10.1002/hep.21996] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Previous studies suggested a functional impairment of dendritic cells (DCs) in patients with chronic hepatitis C. To investigate whether this effect was mediated by a direct interaction of hepatitis C virus (HCV) with DCs, we studied the effects of infectious cell culture-produced hepatitis C virus (HCVcc) on peripheral blood mononuclear cells (PBMCs), ex vivo isolated plasmacytoid, and myeloid DCs and in vitro generated monocyte-derived DCs of healthy blood donors. HCVcc inhibited toll-like receptor (TLR)-9 (CpG and herpes simples virus)-mediated interferon alpha (IFN-alpha) production by peripheral blood mononuclear cells (PBMC) and plasmacytoid DCs. This inhibitory effect was also observed in response to ultraviolet (UV)-inactivated, noninfectious HCVcc, and it was not abrogated by neutralizing antibodies, and thus did not appear to require DC infection. Influenza A virus restored maturation and TLR9-mediated IFN-alpha production. In contrast to its effect on plasmacytoid DCs, HCVcc did not inhibit TLR3-mediated and TLR4-mediated maturation and interleukin (IL)-12, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha) production by myeloid DCs and monocyte-derived DCs. Likewise, HCVcc did neither alter the capacity of myeloid DCs nor monocyte-derived DCs to induce CD4 T cell proliferation. Whereas phagocytosis of apoptotic hepatoma cells resulted in DC maturation, this effect was independent of whether the phagocytosed Huh7.5.1 cells were infected with HCVcc. In contrast to HCVcc, vaccinia virus inhibited maturation and TNF-alpha expression of myeloid DC as well as maturation and IL-6 and IL-10 production of monocyte-derived DC. CONCLUSION HCVcc inhibited plasmacytoid DCs but not myeloid-derived and monocytoid-derived DCs via a direct interaction that did not require infection. The response of plasmacytoid DCs to influenza A virus infection was not impaired.
Collapse
Affiliation(s)
- Masaaki Shiina
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
118
|
Roulland S, Suarez F, Hermine O, Nadel B. Pathophysiological aspects of memory B-cell development. Trends Immunol 2007; 29:25-33. [PMID: 18061541 DOI: 10.1016/j.it.2007.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 01/26/2023]
Abstract
B cells follow two functionally distinct pathways of development: a classical germinal center (GC) T-dependent pathway in which diversification and maturation generate a slow, but virtually unlimited high-affinity response to cognate antigens; and a marginal zone (MZ) T-independent pathway providing a first line of 'innate-like' defense against specific pathogens. Cells populating these two distinct locations are the normal counterparts of two clinically important pathological entities, follicular lymphoma (FL) and MZ lymphoma (MZL). FL and MZ represent paradigms of two rising concepts of lymphomagenesis, protracted preclinical and antigen-driven lymphoproliferation, respectively. Integrating the mechanisms and functions of MZ and GC B cells and the distinctive features of their pathological counterparts should provide essential clues to the understanding of their malignant development, and should offer new insights into the design of effective treatments for B-cell lymphomas.
Collapse
Affiliation(s)
- Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, 13288 Marseille, France
| | | | | | | |
Collapse
|
119
|
Johnson TR. Respiratory syncytial virus and innate immunity: a complex interplay of exploitation and subversion. Expert Rev Vaccines 2007; 5:371-80. [PMID: 16827621 DOI: 10.1586/14760584.5.3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Respiratory syncytial virus causes significant disease in infants, the elderly and select groups of immunocompromised patients. Healthy individuals are also naturally infected with respiratory syncytial virus repeatedly throughout life. Therefore, safe and effective vaccines and therapies are needed. However, a number of factors have prevented development of such antiviral interventions to date. These include a failed vaccine trial, the very young age of the primary target population (neonates), the inability of natural infection to induce long-term protective immunity, and an incomplete understanding of virus-host interactions. The identification of pattern recognition receptors has led to significant increases in our understanding of induction and regulation of innate immune responses. This review will address the impact of these findings on respiratory syncytial virus research.
Collapse
Affiliation(s)
- Teresa R Johnson
- Vaccine Research Center, NIAID, NIH, Building 40 Room 2614, 40 Convent Drive MSC3017, Bethesda, MD 20892, USA.
| |
Collapse
|
120
|
Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev 2007; 59:1200-12. [PMID: 17825945 DOI: 10.1016/j.addr.2007.04.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. Molecular studies of the virus became possible with the successful cloning of its genome in 1989. Although much work remains to be done regarding early and late stages of the HCV life cycle, significant progress has been made with respect to the molecular biology of HCV, especially the viral protein processing and the genome replication. This review summarizes our current understanding of genomic organization of HCV, features of the viral protein characteristics, and the viral life cycle.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
121
|
Affiliation(s)
- Thomas von Hahn
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
122
|
Lai WK, Curbishley SM, Goddard S, Alabraba E, Shaw J, Youster J, McKeating J, Adams DH. Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J Hepatol 2007; 47:338-47. [PMID: 17467113 DOI: 10.1016/j.jhep.2007.03.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS In most cases infection with hepatitis C results in chronic infection as a consequence of viral subversion and failed anti-viral immune responses. The suggestion that dendritic cells are defective in chronic HCV infection led us to investigate the phenotype and function of liver-derived myeloid (mDC) and plasmacytoid (pDC) dendritic cells in patients with chronic HCV infection. METHODS Liver DCs were isolated without expansion in cytokines from human liver allowing us to study unmanipulated tissue-resident DCs ex vivo. RESULTS Compared with mDCs isolated from non-infected inflamed liver mDCs from HCV-infected liver (a) demonstrated higher expression of MHC class II, CD86 and CD123, (b) were more efficient stimulators of allogeneic T-cells and (c) secreted less IL-10. Reduced IL-10 secretion may be a factor in the enhanced functional properties of mDCs from HCV infected liver because antibody depletion of IL-10 enhanced the ability of mDCs from non-infected liver to stimulate T-cells. In contrast, pDCs were present at lower frequencies in HCV-infected liver and expressed higher levels of the regulatory receptor BDCA-2. CONCLUSIONS In HCV-infected liver the combination of enhanced mDC function and a reduced number of pDCs may contribute to viral persistence in the face of persistent inflammation.
Collapse
Affiliation(s)
- Wai Kwan Lai
- Liver Research Group, Institute of Biomedical Research, The University of Birmingham Medical School, Wolfson Drive, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Morikawa K, Zhao Z, Date T, Miyamoto M, Murayama A, Akazawa D, Tanabe J, Sone S, Wakita T. The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles. J Med Virol 2007; 79:714-23. [PMID: 17457918 DOI: 10.1002/jmv.20842] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Because appropriate cell-culture systems or small-animal models have been lacking, the early steps in the HCV life cycle have been difficult to study. A cell culture system was developed recently that allows production of infectious HCV. In this study, infectious HCV particles produced in cultured cells were used. To clarify the role of CD81 in HCV attachment and entry, the effect of anti-CD81 antibody was examined. The antibody blocked HCV virion entry but not particle attachment. Only the fraction bound to a heparin affinity column and eluted with 0.3 M NaCl productively infected Huh7 cells, indicating that infectious HCV particles bind to heparin. Both heparin treatment of the virus particles and heparinase treatment of the Huh7 cells reduced virus-cell binding without substantially inhibiting HCV infectivity. Finally, to confirm the role of both heparin sulfate proteoglycan (HSPG) and CD81 in HCV entry, the effects of heparinase I and anti-CD81 antibody were analyzed. No productive RNA replication was detected in the Huh7 cells in the presence of both heparinase I and anti-CD81 antibody. In conclusion, these data suggested that both HSPG and CD81 are important for HCV entry. HSPG may play a role in the initial cell surface binding of infectious HCV particles and CD81 is conceivably correlated with HCV entry after viral attachment.
Collapse
Affiliation(s)
- Kenichi Morikawa
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, Pietschmann T, Bartenschlager R. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 2007; 80:5308-20. [PMID: 16699011 PMCID: PMC1472176 DOI: 10.1128/jvi.02460-05] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lack of an efficient system to produce hepatitis C virus (HCV) particles has impeded the analysis of the HCV life cycle. Recently, we along with others demonstrated that transfection of Huh7 hepatoma cells with a novel HCV isolate (JFH1) yields infectious viruses. To facilitate studies of HCV replication, we generated JFH1-based bicistronic luciferase reporter virus genomes. We found that RNA replication of the reporter construct was only slightly attenuated and that virus titers produced were only three- to fivefold lower compared to the parental virus, making these reporter viruses an ideal tool for quantitative analyses of HCV infections. To expand the scope of the system, we created two chimeric JFH1 luciferase reporter viruses with structural proteins from the Con1 (genotype 1b) and J6CF (genotype 2a) strains. Using these and the authentic JFH1 reporter viruses, we analyzed the early steps of the HCV life cycle. Our data show that the mode of virus entry is conserved between these isolates and involves CD81 as a key receptor for pH-dependent virus entry. Competition studies and time course experiments suggest that interactions of HCV with cell surface-resident glycosaminoglycans aid in efficient infection of Huh7 cells and that CD81 acts during a postattachment step. The reporter viruses described here should be instrumental for investigating the viral life cycle and for the development of HCV inhibitors.
Collapse
Affiliation(s)
- George Koutsoudakis
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome. Clin Immunol 2007; 124:5-12. [PMID: 17540619 DOI: 10.1016/j.clim.2007.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/16/2023]
Abstract
T cell-mediated protection against HCV depends on constantly activated effector CD8(+)T cells that control emergence, spread and expansion of the virus. Why these cells fail to contain HCV replication in 70-80% of the individuals who develop persistent viremia is not clear. Although many reviews have focused on HCV's ability to interfere with the process of antigen presentation by dendritic cells (DC), only few have discussed the mechanisms whereby HCV-derived antigens become available for presentation to naive CD8(+)T cells. The importance of these mechanisms has been recently brought to light by new insight into DC biology, antigen processing, HCV replication and the immune system's functional anatomy. This review explores the different immunological scenarios in which CD8(+)T cell responses against HCV may be initiated. It describes the critical factors limiting antigen sensing and capture by APC and antigen recognition by T cells, and discusses how these factors may favor chronicity of HCV infection. Despite the lack of critical detail and hard experimental proof, this review proposes a model whereby liver seclusion, unproductive infection of professional antigen presenting cells and lack of direct tissue damage hamper the launch of a virus-specific CD8(+)T cell response. The implications for vaccine development are also discussed.
Collapse
|
126
|
Liang XS, An Y. Progress in the anti-hepatitis C virus strategies targeting on host cells. Shijie Huaren Xiaohua Zazhi 2007; 15:1754-1758. [DOI: 10.11569/wcjd.v15.i15.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is one of the serious diseases endangered people's health. The current therapy for HCV infection has limited efficacy, and new and more effective therapies are pressingly needed. Host cell factors that are required for HCV infection, replication and/or pathogenesis represent potential therapeutic targets. The most interesting cellular factors are cellular receptors that mediate HCV entry, factors that facilitate HCV replication and assembly, and intracellular pathways involving lipid biosynthesis, oxidative stress and innate immune response. The key issue now is to manipulate such cellular targets pharmacologically for the treatment of chronic HCV infection, without being limited by side effects. This paper mainly related to the nearest years of research progress for a brief overview.
Collapse
|
127
|
Falkowska E, Kajumo F, Garcia E, Reinus J, Dragic T. Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol 2007; 81:8072-9. [PMID: 17507469 PMCID: PMC1951298 DOI: 10.1128/jvi.00459-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen that causes serious liver disease, including cirrhosis and hepatocellular carcinoma. The primary target cells of HCV are hepatocytes, and entry is restricted by interactions of the envelope glycoproteins, E1 and E2, with cellular receptors. E1 and E2 form noncovalently linked heterodimers and are heavily glycosylated. Glycans contribute to protein folding and transport as well as protein function. In addition, glycans associated with viral envelopes mask important functional domains from the immune system and attenuate viral immunogenicity. Here, we explored the role of N- and O-linked glycans on E2, which is the receptor binding subunit of the HCV envelope. We identified a number of glycans that are critical for viral entry. Importantly, we showed that the removal of several glycans significantly increased the inhibition of entry by sera from HCV-positive individuals. Only some of the glycans that affected entry and neutralization were also important for CD81 binding. Our results show that HCV envelope-associated glycans play a crucial role in masking functionally important regions of E2 and suggest a new strategy for eliciting highly neutralizing antibodies against this virus.
Collapse
Affiliation(s)
- Emilia Falkowska
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
128
|
Bertaux C, Daelemans D, Meertens L, Cormier EG, Reinus JF, Peumans WJ, Van Damme EJM, Igarashi Y, Oki T, Schols D, Dragic T, Balzarini J. Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 2007; 366:40-50. [PMID: 17498767 DOI: 10.1016/j.virol.2007.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 01/23/2023]
Abstract
We studied the antiviral activity of carbohydrate-binding agents (CBAs), including several plant lectins and the non-peptidic small-molecular-weight antibiotic pradimicin A (PRM-A). These agents efficiently prevented hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) infection of target cells by inhibiting the viral entry. CBAs were also shown to prevent HIV and HCV capture by DC-SIGN-expressing cells. Surprisingly, infection by other enveloped viruses such as herpes simplex viruses, respiratory syncytial virus and parainfluenza-3 virus was not inhibited by these agents pointing to a high degree of specificity. Mannan reversed the antiviral activity of CBAs, confirming their association with viral envelope-associated glycans. In contrast, polyanions such as dextran sulfate-5000 and sulfated polyvinylalcohol inhibited HIV entry but were devoid of any activity against HCV infection, indicating that they act through a different mechanism. CBAs could be considered as prime drug leads for the treatment of chronic viral infections such as HCV by preventing viral entry into target cells. They may represent an attractive new option for therapy of HCV/HIV coinfections. CBAs may also have the potential to prevent HCV/HIV transmission.
Collapse
Affiliation(s)
- Claire Bertaux
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Hepatitis C virus (HCV) encodes a single polyprotein, which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the synthesis of an additional protein. Until recently, studies of HCV have been hampered by the lack of a productive cell culture system. Since the identification of HCV genome approximately 17 years ago, structural, biochemical and biological information on HCV proteins has mainly been obtained with proteins produced by heterologous expression systems. In addition, some functional studies have also been confirmed with replicon systems or with retroviral particles pseudotyped with HCV envelope glycoproteins. The data that have accumulated on HCV proteins begin to provide a framework for understanding the molecular mechanisms involved in the major steps of HCV life cycle. Moreover, the knowledge accumulated on HCV proteins is also leading to the development of antiviral drugs among which some are showing promising results in early-phase clinical trials. This review summarizes the current knowledge on the functions and biochemical features of HCV proteins.
Collapse
Affiliation(s)
- Jean Dubuisson
- Hepatitis C Laboratory, CNRS-UMR8161, Institut de Biologie de Lille I & II, Université de Lille, 1 rue Calmette, BP447, 59021 Lille Cedex, France.
| |
Collapse
|
130
|
Lau AH, Thomson AW, Colvin BL. Chronic ethanol exposure affects in vivo migration of hepatic dendritic cells to secondary lymphoid tissue. Hum Immunol 2007; 68:577-85. [PMID: 17584579 DOI: 10.1016/j.humimm.2007.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/09/2007] [Accepted: 03/15/2007] [Indexed: 12/24/2022]
Abstract
The mechanisms by which chronic ethanol (EtOH) consumption results in an immune-compromised state have not been fully elucidated. No studies to date have ascertained whether EtOH affects the migratory capacity of dendritic cells (DC), potent immune regulators. We hypothesized that EtOH exposure might affect hepatic and splenic DC trafficking to secondary lymphoid tissues and the resulting immune response. Hepatic DC from EtOH-treated animals migrated in greater numbers to draining lymphoid tissue than controls, whereas spleen DC were unaffected. Moreover, hepatic EtOH-exposed (E) DC induced more vigorous priming of allogeneic T cells in vivo compared with splenic EDC or controls. Altered hepatic EDC migration was independent of either CCR7 or CD11a expression, with no striking changes in surface expression of other adhesion molecules analyzed. The modified trafficking to secondary lymphoid tissue observed for hepatic EDC may play a role in the altered immune response to microbial pathogens in chronic alcohol users.
Collapse
MESH Headings
- Alcohol-Induced Disorders/immunology
- Animals
- Antibodies, Monoclonal
- CD11 Antigens/biosynthesis
- CD11 Antigens/immunology
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/immunology
- Cell Movement/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- Ethanol/administration & dosage
- Ethanol/toxicity
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/immunology
- Liver/drug effects
- Liver/immunology
- Lymphoid Tissue/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oligodeoxyribonucleotides/immunology
- Receptors, CCR7
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/immunology
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/immunology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Audrey H Lau
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
131
|
Abstract
The hepatitis C virus (HCV) is a remarkably successful pathogen, establishing persistent infection in more than two-thirds of those who contract it. Its success is related to its abilities to blunt innate antiviral pathways and to evade adaptive immune responses. These two themes may be related. We propose that HCV takes advantage of the impaired innate response to delay the organization of an effective adaptive immune attack. The tolerogenic liver environment may provide cover, prolonging this delay. HCV's error-prone replication strategy permits rapid evolution under immune pressure. Persistent high levels of viral antigens may contribute to immune exhaustion. Finally, the virus may benefit from the efficient enlistment of memory T and B cells in the pursuit of a moving target.
Collapse
Affiliation(s)
- Lynn B Dustin
- The Rockefeller University, Center for the Study of Hepatitis C, New York, NY 10021, USA.
| | | |
Collapse
|
132
|
He Y, Duan W, Tan SL. Emerging host cell targets for hepatitis C therapy. Drug Discov Today 2007; 12:209-17. [PMID: 17331885 DOI: 10.1016/j.drudis.2007.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/03/2007] [Accepted: 01/24/2007] [Indexed: 12/23/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is a major burden on humanity. The current HCV therapy has limited efficacy, and there is pressing need for new and more effective therapies. Host cell factors that are required for HCV infection, replication and/or pathogenesis represent potential therapeutic targets. Of particular interest are cellular receptors that mediate HCV entry, factors that facilitate HCV replication and assembly, and intracellular pathways involving lipid biosynthesis, oxidative stress and innate immune response. A crucial challenge now is to manipulate such cellular targets pharmacologically for chronic HCV treatment, without being limited by side effects.
Collapse
Affiliation(s)
- Yupeng He
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | |
Collapse
|
133
|
Antibodies to the C-type lectin, L-SIGN, as tentative therapeutic agents for induction of antigen-specific tolerance. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
134
|
Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol 2006; 81:374-83. [PMID: 17050612 PMCID: PMC1797271 DOI: 10.1128/jvi.01134-06] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past several years, a number of cellular proteins have been identified as candidate entry receptors for hepatitis C virus (HCV) by using surrogate models of HCV infection. Among these, the tetraspanin CD81 and scavenger receptor B type I (SR-BI), both of which localize to specialized plasma membrane domains enriched in cholesterol, have been suggested to be key players in HCV entry. In the current study, we used a recently developed in vitro HCV infection system to demonstrate that both CD81 and SR-BI are required for authentic HCV infection in vitro, that they function cooperatively to initiate HCV infection, and that CD81-mediated HCV entry is, in part, dependent on membrane cholesterol.
Collapse
Affiliation(s)
- Sharookh B Kapadia
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
135
|
Abstract
Hepatitis C virus (HCV) exists in different forms in the circulation of infected people: lipoprotein bound and lipoprotein free, enveloped and nonenveloped. Viral particles with the highest infectivity are associated with lipoproteins, whereas lipoprotein-free virions are poorly infectious. The detection of HCV's envelope proteins E1 and E2 in lipoprotein-associated virions has been challenging. Because lipoproteins are readily endocytosed, some forms of HCV might utilize their association with lipoproteins rather than E1 and E2 for cell attachment and internalization. However, vaccination of chimpanzees with recombinant envelope proteins protected the animals from hepatitis C infection, suggesting an important role for E1 and E2 in cell entry. It seems possible that different forms of HCV use different receptors to attach to and enter cells. The putative receptors and the assays used for their validation are discussed in this review.
Collapse
|
136
|
Falkowska E, Durso RJ, Gardner JP, Cormier EG, Arrigale RA, Ogawa RN, Donovan GP, Maddon PJ, Olson WC, Dragic T. L-SIGN (CD209L) isoforms differently mediate trans-infection of hepatoma cells by hepatitis C virus pseudoparticles. J Gen Virol 2006; 87:2571-2576. [PMID: 16894195 DOI: 10.1099/vir.0.82034-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
L-SIGN is a C-type lectin that is expressed on liver sinusoidal endothelial cells. Capture of Hepatitis C virus (HCV) by this receptor results in trans-infection of hepatoma cells. L-SIGN alleles have been identified that encode between three and nine tandem repeats of a 23 residue stretch in the juxtamembrane oligomerization domain. Here, it was shown that these repeat-region isoforms are expressed at the surface of mammalian cells and variably bind HCV envelope glycoprotein E2 and HCV pseudoparticles. Differences in binding were reflected in trans-infection efficiency, which was highest for isoform 7 and lowest for isoform 3. These findings provide a molecular mechanism whereby L-SIGN polymorphism could influence the establishment and progression of HCV infection.
Collapse
Affiliation(s)
- Emilia Falkowska
- Albert Einstein College of Medicine, Microbiology and Immunology Department, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Robert J Durso
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jason P Gardner
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Emmanuel G Cormier
- Albert Einstein College of Medicine, Microbiology and Immunology Department, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Robert A Arrigale
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Raymond N Ogawa
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gerald P Donovan
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Paul J Maddon
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Progenics Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tatjana Dragic
- Albert Einstein College of Medicine, Microbiology and Immunology Department, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
137
|
Lalor PF, Lai WK, Curbishley SM, Shetty S, Adams DH. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J Gastroenterol 2006; 12:5429-39. [PMID: 17006978 PMCID: PMC4088223 DOI: 10.3748/wjg.v12.i34.5429] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatic sinusoids are lined by a unique population of hepatic sinusoidal endothelial cells (HSEC), which is one of the first hepatic cell populations to come into contact with blood components. However, HSEC are not simply barrier cells that restrict the access of blood-borne compounds to the parenchyma. They are functionally specialised endothelial cells that have complex roles, including not only receptor-mediated clearance of endotoxin, bacteria and other compounds, but also the regulation of inflammation, leukocyte recruitment and host immune responses to pathogens. Thus understanding the differentiation and function of HSEC is critical for the elucidation of liver biology and pathophysiology. This article reviews methods for isolating and studying human hepatic endothelial cell populations using in vitro models. We also discuss the expression and functions of phenotypic markers, such as the presence of fenestrations and expression of VAP-1, Stabilin-1, L-SIGN, which can be used to identify sinusoidal endothelium and to permit discrimination from vascular and lymphatic endothelial cells.
Collapse
MESH Headings
- Amine Oxidase (Copper-Containing)/genetics
- Amine Oxidase (Copper-Containing)/metabolism
- Biomarkers/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelium, Lymphatic/cytology
- Endothelium, Vascular/cytology
- Gene Expression Regulation/genetics
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/blood supply
- Liver/cytology
- Liver/metabolism
- Liver Circulation
- Phenotype
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Lymphocyte Homing/genetics
- Receptors, Lymphocyte Homing/metabolism
Collapse
Affiliation(s)
- P F Lalor
- Liver Research Group, Institute of Biomedical Research, Division of Medical Science, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | |
Collapse
|
138
|
Qureshi SA. Hepatitis C virus-biology, host evasion strategies, and promising new therapies on the horizon. Med Res Rev 2006; 27:353-73. [PMID: 16958135 DOI: 10.1002/med.20063] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatitis C reduces the quality of life for some 170 million people around the globe and is one of the most prevalent diseases on the planet. It is caused by the hepatitis C virus (HCV) that is replicated by an error-prone polymerase and therefore undergoes rapid evolution. To date, although much has been learned about the biology of HCV, only a partially effective combination therapy comprised of ribavirin and pegylated-interferon-alpha is available to hepatitis C sufferers. Given the prevalence of hepatitis C, together with the fact that almost half the chronically infected HCV patients are refractory to current therapy, there is an urgent need for an efficacious immunoprophylactic that protects individuals from HCV infection, as well as drugs that impede the viral life cycle effectively and eradicate infection. Herein, I provide an overview of the molecular biology of HCV, highlighting the functions of different virally encoded proteins in terms of how they alter signaling pathways of host cell to establish an infection and discuss whether a more promising therapy for treating hepatitis C is anywhere in sight.
Collapse
Affiliation(s)
- Sohail A Qureshi
- Department of Biological & Biomedical Sciences, The Aga Khan University Hospital, Karachi 74800, Pakistan.
| |
Collapse
|
139
|
de Witte L, van Kooyk Y, Geijtenbeek TBH. Dendritic cell-mediated viral transmission: a potential drug target? Future Virol 2006. [DOI: 10.2217/17460794.1.5.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendritic cells (DCs) are important in the sexual transmission of HIV-1, the most common route of acquiring HIV-1. HIV-1 subverts the biological function of DCs to facilitate its transport from site of entry at mucosal tissues to lymphoid tissues to infect T cells. Recent data have furthered our understanding of how DCs mediate viral transmission to T cells. DCs capture HIV-1 through specific attachment receptors, such as DC-SIGN, which not only facilitate HIV-1 transmission, but also infection of DCs. Therefore, these receptors are very promising targets for the design of inhibitors or vaccination strategies to prevent mucosal HIV-1 transmission. It is becoming evident that other viruses also use DCs for their transmission. This review will discuss the mechanism of HIV-1 transmission and potential intervention strategies.
Collapse
Affiliation(s)
- Lot de Witte
- VU University Medical Center Amsterdam, Department of Molecular Cell Biology & Immunology, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Yvette van Kooyk
- VU University Medical Center Amsterdam, Department of Molecular Cell Biology & Immunology, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- VU University Medical Center Amsterdam, Department of Molecular Cell Biology & Immunology, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
140
|
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. A vaccine protecting against HCV infection is not available, and current antiviral therapies are characterized by limited efficacy, high costs, and substantial side effects. Binding of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between virus and the target cell that is required for the initiation of infection. Because this step represents a critical determinant of tissue tropism and pathogenesis, it is a major target for host cell responses such as antibody-mediated virus-neutralization-and a promising target for new antiviral therapy. The recent development of novel tissue culture model systems for the study of the first steps of HCV infection has allowed rapid progress in the understanding of the molecular mechanisms of HCV binding and entry. This review summarizes the impact of recently identified viral and host cell factors for HCV attachment and entry. Clinical implications of this important process for the pathogenesis of HCV infection and novel therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Heidi Barth
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
141
|
Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J Virol 2006; 80:6993-7008. [PMID: 16809305 PMCID: PMC1489030 DOI: 10.1128/jvi.00365-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have generated replication-competent (VSV-C/E1/E2) and nonpropagating (VSVDeltaG-C/E1/E2) vesicular stomatitis virus (VSV) contiguously expressing the structural proteins of hepatitis C virus (HCV; core [C] and glycoproteins E1 and E2) and report on their immunogenicity in murine models. VSV-C/E1/E2 and VSVDeltaG-C/E1/E2 expressed high levels of HCV C, E1, and E2, which were authentically posttranslationally processed. Both VSV-expressed HCV E1-E2 glycoproteins were found to form noncovalently linked heterodimers and appeared to be correctly folded, as confirmed by coimmunoprecipitation analysis using conformationally sensitive anti-HCV-E2 monoclonal antibodies (MAbs). Intravenous or intraperitoneal immunization of BALB/c mice with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2 resulted in significant and surprisingly comparable HCV core or E2 antibody responses compared to those of control mice. In addition, both virus types generated HCV C-, E1-, or E2-specific gamma interferon (IFN-gamma)-producing CD8(+) T cells, as determined by enzyme-linked immunospot (ELISPOT) analysis. Mice immunized with VSVDeltaG-C/E1/E2 were also protected against the formation of tumors expressing HCV E2 (CT26-hghE2t) and exhibited CT26-hghE2t-specific IFN-gamma-producing and E2-specific CD8(+) T-cell activity. Finally, recombinant vaccinia virus (vvHCV.S) expressing the HCV structural proteins replicated at significantly lower levels when inoculated into mice immunized with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2, but not with control viruses. Our data therefore illustrate that potentially safer replication-defective VSV can be successfully engineered to express high levels of antigenically authentic HCV glycoproteins. In addition, this strategy may therefore serve in effective vaccine and immunotherapy-based approaches to the treatment of HCV-related disease.
Collapse
Affiliation(s)
- Ayaz M Majid
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33136, USA
| | | | | | | |
Collapse
|
142
|
Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol 2006; 16:263-75. [PMID: 16791836 DOI: 10.1002/rmv.507] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dengue infections are a major cause of morbidity and mortality in the tropical and sub-tropical regions of the world. There is no vaccine for dengue and also there are no anti-viral drugs to treat the infection. Some patients, typically those experiencing a secondary infection with a different dengue serotype, may progress from an acute febrile disease to the more severe forms of disease, dengue haemorrhagic fever and dengue shock syndrome. Here we discuss the significant immunopathological component to severe disease and how T cells, cytokines and cross-reactive antibody combine to contribute to the progression to dengue haemorrhagic fever. These events are thought to lead to vascular leakage, the signature event in dengue haemorrhagic fever, and are addressed in this review by incorporating the concept of heterologous T cell immunity. The need for effective measures against dengue and dengue-related illness is clear. We propose that drugs against dengue virus, or the symptoms of severe dengue disease, are a viable goal.
Collapse
Affiliation(s)
- Joshua Fink
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore
| | | | | |
Collapse
|
143
|
Lai WK, Sun PJ, Zhang J, Jennings A, Lalor PF, Hubscher S, McKeating JA, Adams DH. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:200-8. [PMID: 16816373 PMCID: PMC1698775 DOI: 10.2353/ajpath.2006.051191] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatic sinusoidal endothelial cells are unique among endothelial cells in their ability to internalize and process a diverse range of antigens. DC-SIGNR, a type 2 C-type lectin expressed on liver sinusoids, has been shown to bind with high affinity to hepatitis C virus (HCV) E2 glycoprotein. DC-SIGN is a closely related homologue reported to be expressed only on dendritic cells and a subset of macrophages and has similar binding affinity to HCV E2 glycoprotein. These receptors function as adhesion and antigen presentation molecules. We report distinct patterns of DC-SIGNR and DC-SIGN expression in human liver tissue and show for the first time that both C-type lectins are expressed on sinusoidal endothelial cells. We confirmed that these receptors are functional by demonstrating their ability to bind HCV E2 glycoproteins. Although these lectins on primary sinusoidal cells support HCV E2 binding, they are unable to support HCV entry. These data support a model where DC-SIGN and DC-SIGNR on sinusoidal endothelium provide a mechanism for high affinity binding of circulating HCV within the liver sinusoids allowing subsequent transfer of the virus to underlying hepatocytes, in a manner analogous to DC-SIGN presentation of human immunodeficiency virus on dendritic cells.
Collapse
Affiliation(s)
- Wai K Lai
- Liver Research Laboratories, Institute of Biomedical Research, Birmingham University, Edgbaston, B15 2TH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Cocquerel L, Voisset C, Dubuisson J. Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol 2006; 87:1075-1084. [PMID: 16603507 DOI: 10.1099/vir.0.81646-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several cellular molecules have been identified as putative receptors forHepatitis C virus(HCV): CD81 tetraspanin, scavenger receptor class B type I (SR-BI), mannose-binding lectins DC-SIGN and L-SIGN, low-density lipoprotein receptor, heparan sulphate proteoglycans and the asialoglycoprotein receptor. Due to difficulties in propagating HCV in cell culture, most of these molecules have been identified by analysing their interaction with a soluble, truncated form of HCV glycoprotein E2. A recent major step in investigating HCV entry was the development of pseudoparticles (HCVpp), consisting of unmodified HCV envelope glycoproteins assembled onto retroviral core particles. This system has allowed the investigation of the role of candidate receptors in the early steps of the HCV life cycle and the data obtained can now be confirmed with the help of a newly developed cell-culture system that allows efficient amplification of HCV (HCVcc). Interestingly, CD81 and SR-BI have been shown to play direct roles in HCVpp and/or HCVcc entry. However, co-expression of CD81 and SR-BI in non-hepatic cell lines does not lead to HCVpp entry, indicating that other molecule(s), expressed only in hepatic cells, are necessary for HCV entry. In this review, the molecules that have been proposed as potential HCV receptors are described and the experimental data indicating that CD81 and SR-BI are potentially involved in HCV entry are presented.
Collapse
Affiliation(s)
- Laurence Cocquerel
- CNRS-UMR8161, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, BP447, 59021 Lille cedex, France
| | - Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, BP447, 59021 Lille cedex, France
| | - Jean Dubuisson
- CNRS-UMR8161, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, BP447, 59021 Lille cedex, France
| |
Collapse
|
145
|
Gramberg T, Zhu T, Chaipan C, Marzi A, Liu H, Wegele A, Andrus T, Hofmann H, Pöhlmann S. Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology 2006; 347:354-63. [PMID: 16413044 PMCID: PMC7111803 DOI: 10.1016/j.virol.2005.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/19/2005] [Accepted: 11/23/2005] [Indexed: 11/28/2022]
Abstract
The lectins DC-SIGN and DC-SIGNR augment infection by human immunodeficiency virus (HIV), Ebolavirus (EBOV) and other pathogens. The neck domain of these proteins drives multimerization, which is believed to be required for efficient recognition of multivalent ligands. The neck domain of DC-SIGN consists of seven sequence repeats with rare variations. In contrast, the DC-SIGNR neck domain is polymorphic and, in addition to the wild type (wt) allele with seven repeat units, allelic forms with five and six sequence repeats are frequently found. A potential association of the DC-SIGNR genotype and risk of HIV-1 infection is currently under debate. Therefore, we investigated if DC-SIGNR alleles with five and six repeat units exhibit defects in pathogen capture. Here, we show that wt DC-SIGNR and patient derived alleles with five and six repeats bind viral glycoproteins, augment viral infection and tetramerize with comparable efficiency. Moreover, coexpression of wt DC-SIGNR and alleles with five repeats did not decrease the interaction with pathogens compared to expression of each allele alone, suggesting that potential formation of hetero-oligomers does not appreciably reduce pathogen binding, at least under conditions of high expression. Thus, our results do not provide evidence for diminished pathogen capture by DC-SIGNR alleles with five and six repeat units. Albeit, we cannot exclude that subtle, but in vivo relevant differences remained undetected, our analysis suggests that indirect mechanisms could account for the association of polymorphisms in the DC-SIGNR neck region with reduced risk of HIV-1 infection.
Collapse
MESH Headings
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Culture Techniques
- HIV Infections/metabolism
- HIV-1/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Polymorphism, Genetic
- Protein Structure, Tertiary/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tuofu Zhu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Microbiology, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Chawaree Chaipan
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Huanliang Liu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anja Wegele
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Andrus
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medical Microbiology and Virology, University of Kiel, 24105 Kiel, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
146
|
Callens N, Ciczora Y, Bartosch B, Vu-Dac N, Cosset FL, Pawlotsky JM, Penin F, Dubuisson J. Basic residues in hypervariable region 1 of hepatitis C virus envelope glycoprotein e2 contribute to virus entry. J Virol 2006; 79:15331-41. [PMID: 16306604 PMCID: PMC1316016 DOI: 10.1128/jvi.79.24.15331-15341.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The N terminus of hepatitis C virus (HCV) envelope glycoprotein E2 contains a hypervariable region (HVR1) which has been proposed to play a role in viral entry. Despite strong amino acid variability, HVR1 is globally basic, with basic residues located at specific sequence positions. Here we show by analyzing a large number of HVR1 sequences that the frequency of basic residues at each position is genotype dependent. We also used retroviral pseudotyped particles (HCVpp) harboring genotype 1a envelope glycoproteins to study the role of HVR1 basic residues in entry. Interestingly, HCVpp infectivity globally increased with the number of basic residues in HVR1. However, a shift in position of some charged residues also modulated HCVpp infectivity. In the absence of basic residues, infectivity was reduced to the same level as that of a mutant deleted of HVR1. We also analyzed the effect of these mutations on interactions with some potential HCV receptors. Recognition of CD81 was not affected by changes in the number of charged residues, and we did not find a role for heparan sulfates in HCVpp entry. The involvement of the scavenger receptor class B type I (SR-BI) was indirectly analyzed by measuring the enhancement of infectivity of the mutants in the presence of the natural ligand of SR-BI, high-density lipoproteins (HDL). However, no correlation between the number of basic residues within HVR1 and HDL enhancement effect was observed. Despite the lack of evidence of the involvement of known potential receptors, our results demonstrate that the presence of basic residues in HVR1 facilitates virus entry.
Collapse
Affiliation(s)
- Nathalie Callens
- Unité Hépatite C, CNRS-UPR2511, Institut de Biologie de Lille, 1 rue Calmette, BP447, 59021 Lille cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Davis CW, Nguyen HY, Hanna SL, Sánchez MD, Doms RW, Pierson TC. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 2006; 80:1290-301. [PMID: 16415006 PMCID: PMC1346927 DOI: 10.1128/jvi.80.3.1290-1301.2006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.
Collapse
Affiliation(s)
- Carl W Davis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
148
|
Dakappagari N, Maruyama T, Renshaw M, Tacken P, Figdor C, Torensma R, Wild MA, Wu D, Bowdish K, Kretz-Rommel A. Internalizing antibodies to the C-type lectins, L-SIGN and DC-SIGN, inhibit viral glycoprotein binding and deliver antigen to human dendritic cells for the induction of T cell responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:426-40. [PMID: 16365436 DOI: 10.4049/jimmunol.176.1.426] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The C-type lectin L-SIGN is expressed on liver and lymph node endothelial cells, where it serves as a receptor for a variety of carbohydrate ligands, including ICAM-3, Ebola, and HIV. To consider targeting liver/lymph node-specific ICAM-3-grabbing nonintegrin (L-SIGN) for therapeutic purposes in autoimmunity and infectious disease, we isolated and characterized Fabs that bind strongly to L-SIGN, but to a lesser degree or not at all to dendritic cell-specific ICAM-grabbing nonintegrin (DC-SIGN). Six Fabs with distinct relative affinities and epitope specificities were characterized. The Fabs and those selected for conversion to IgG were tested for their ability to block ligand (HIV gp120, Ebola gp, and ICAM-3) binding. Receptor internalization upon Fab binding was evaluated on primary human liver sinusoidal endothelial cells by flow cytometry and confirmed by confocal microscopy. Although all six Fabs internalized, three Fabs that showed the most complete blocking of HIVgp120 and ICAM-3 binding to L-SIGN also internalized most efficiently. Differences among the Fab panel in the ability to efficiently block Ebola gp compared with HIVgp120 suggested distinct binding sites. As a first step to consider the potential of these Abs for Ab-mediated Ag delivery, we evaluated specific peptide delivery to human dendritic cells. A durable human T cell response was induced when a tetanus toxide epitope embedded into a L-SIGN/DC-SIGN-cross-reactive Ab was targeted to dendritic cells. We believe that the isolated Abs may be useful for selective delivery of Ags to DC-SIGN- or L-SIGN-bearing APCs for the modulation of immune responses and for blocking viral infections.
Collapse
|
149
|
Bartosch B, Cosset FL. Cell entry of hepatitis C virus. Virology 2006; 348:1-12. [PMID: 16455127 DOI: 10.1016/j.virol.2005.12.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/30/2005] [Accepted: 12/15/2005] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV), an important human pathogen, is an enveloped, positive-stranded RNA virus classified in the hepacivirus genus of the Flaviviridae family. Cell attachment of flaviviruses generally leads to endocytosis of bound virions. Systems that support HCV replication and particle formation in vitro are emerging only now, 16 years after the discovery of the virus. Albeit this limitation, the route of HCV cell entry as well as 'capture' molecules involved in low-affinity interactions for the initial contact of HCV with target cells and potential high-affinity receptor candidates that may mediate HCV trafficking and fusion has been described. The objective of this review is to summarize the contribution of different HCV model systems to our current knowledge about structure of the HCV GPs E1 and E2 and their roles in cell entry comprising cell attachment, interactions with cellular receptors, endocytosis, and fusion.
Collapse
|
150
|
Cambi A, Figdor CG. Levels of complexity in pathogen recognition by C-type lectins. Curr Opin Immunol 2005; 17:345-51. [PMID: 15950451 PMCID: PMC7127008 DOI: 10.1016/j.coi.2005.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 05/25/2005] [Indexed: 12/23/2022]
Abstract
In pathogen recognition by C-type lectins, several levels of complexity can be distinguished; these might modulate the immune response in different ways. Firstly, the pathogen-associated molecular pattern repertoire expressed at the microbial surface determines the interactions with specific receptors. Secondly, each immune cell type possesses a specific set of pathogen-recognition receptors. Thirdly, changes in the cell-surface distribution of C-type lectins regulate carbohydrate binding by modulating receptor affinity for different ligands. Crosstalk between these receptors results in a network of multimolecular complexes, adding a further level of complexity in pathogen recognition.
Collapse
|