101
|
Childs JE, Klein SL, Glass GE. A Case Study of Two Rodent-Borne Viruses: Not Always the Same Old Suspects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
102
|
Understanding the hidden relations between pro- and anti-inflammatory cytokine genes in bovine oviduct epithelium using a multilayer response surface method. Sci Rep 2019; 9:3189. [PMID: 30816156 PMCID: PMC6395797 DOI: 10.1038/s41598-019-39081-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
An understanding gene-gene interaction helps users to design the next experiments efficiently and (if applicable) to make a better decision of drugs application based on the different biological conditions of the patients. This study aimed to identify changes in the hidden relationships between pro- and anti-inflammatory cytokine genes in the bovine oviduct epithelial cells (BOECs) under various experimental conditions using a multilayer response surface method. It was noted that under physiological conditions (BOECs with sperm or sex hormones, such as ovarian sex steroids and LH), the mRNA expressions of IL10, IL1B, TNFA, TLR4, and TNFA were associated with IL1B, TNFA, TLR4, IL4, and IL10, respectively. Under pathophysiological + physiological conditions (BOECs with lipopolysaccharide + hormones, alpha-1-acid glycoprotein + hormones, zearalenone + hormones, or urea + hormones), the relationship among genes was changed. For example, the expression of IL10 and TNFA was associated with (IL1B, TNFA, or IL4) and TLR4 expression, respectively. Furthermore, under physiological conditions, the co-expression of IL10 + TNFA, TLR4 + IL4, TNFA + IL4, TNFA + IL4, or IL10 + IL1B and under pathophysiological + physiological conditions, the co-expression of IL10 + IL4, IL4 + IL10, TNFA + IL10, TNFA + TLR4, or IL10 + IL1B were associated with IL1B, TNFA, TLR4, IL10, or IL4 expression, respectively. Collectively, the relationships between pro- and anti-inflammatory cytokine genes can be changed with respect to the presence/absence of toxins, sex hormones, sperm, and co-expression of other gene pairs in BOECs, suggesting that considerable cautions are needed in interpreting the results obtained from such narrowly focused in vitro studies.
Collapse
|
103
|
Gupta PK, McIntosh CM, Chong AS, Alegre ML. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 2019; 16:324-333. [PMID: 30760917 DOI: 10.1038/s41423-019-0203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
104
|
Kahan SM, Zajac AJ. Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses 2019; 11:E156. [PMID: 30781904 PMCID: PMC6410286 DOI: 10.3390/v11020156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental for identifying T cell exhaustion and this system has been invaluable for uncovering the complexity, regulators, and consequences of this state. These findings have been directly relevant for understanding why ineffective T cell responses commonly arise during many chronic infections including HIV and HCV, as well as during tumor outgrowth. The principal feature of exhausted T cells is the inability to elaborate the array of effector functions necessary to contain the underlying infection or tumor. Using LCMV to determine how to prevent and reverse T cell exhaustion has highlighted the potential of checkpoint blockade therapies, most notably PD-1 inhibition strategies, for improving cellular immunity under conditions of antigen persistence. Here, we discuss the discovery, properties, and regulators of exhausted T cells and highlight how LCMV has been at the forefront of advancing our understanding of these ineffective responses.
Collapse
Affiliation(s)
- Shannon M Kahan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
105
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
106
|
Villani R, Vendemiale G, Serviddio G. Molecular Mechanisms Involved in HCC Recurrence after Direct-Acting Antiviral Therapy. Int J Mol Sci 2018; 20:ijms20010049. [PMID: 30583555 PMCID: PMC6337751 DOI: 10.3390/ijms20010049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C is associated with a high risk of developing hepatocellular carcinoma (HCC) because of a direct effect of the Hepatitis C Virus (HCV) proteins and an indirect oncogenic effect of chronic inflammation and impaired immune response. The treatment of chronic hepatitis C markedly reduces all-cause mortality; in fact, interferon-based treatment has shown a reduction of HCC incidence of more than 70%. The recent introduction of the highly effective direct-acting antivirals (DAAs) has completely changed the scenario of chronic hepatitis C (CHC) with rates of HCV cure over 90%. However, an unexpectedly high incidence of HCC recurrence was observed in patients after DAA treatment (27% versus 0.4–2% in patients who received interferon treatment). The mechanism that underlies the high rate of tumor relapse is currently unknown and is one of the main issues in hepatology. We reviewed the possible mechanisms involved in HCC recurrence after DAA treatment.
Collapse
MESH Headings
- Animals
- Antiviral Agents/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/virology
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Incidence
- Interferons/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/epidemiology
- Liver Neoplasms/immunology
- Liver Neoplasms/virology
- Macrophages/drug effects
- Monocytes/drug effects
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/virology
- Neutrophils/drug effects
Collapse
Affiliation(s)
- Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gianluigi Vendemiale
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gaetano Serviddio
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| |
Collapse
|
107
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
108
|
Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8 + T Cells. Front Immunol 2018; 9:2981. [PMID: 30619337 PMCID: PMC6305494 DOI: 10.3389/fimmu.2018.02981] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Eomes, a T-box transcription factor, is known important for both function and homeostasis of effector and memory T cells, but was recently also implicated in CD8+ T cell exhaustion. However, whether and how Eomes might regulate effector functions or exhaustion of CD8+ T cells, especially in the tumor setting, is unknown. Here we first show, as tumor progressed, Eomes expression was elevated in tumor-infiltrating CD8+ T cells, especially in PD-1+Tim-3+ exhausted CD8+ T cells. Complete loss of Eomes in T cells resulted in impaired development of anti-tumor CTLs, whereas deletion of one allele of Eomes in T cells decreased development of exhausted CD8+ T cells, which offered better tumor control. Integrative analysis of RNAseq and ChIPseq of Eomes-overexpressing T cells revealed that high levels of Eomes expression directly controlled expression of T cell exhaustion genes, such as Havcr2. In addition, Eomes might compete with T-bet binding to regulatory genomic loci to antagonize T-bet functions. Collectively, Eomes exerts bimodal functions in CD8+ T cells in tumor.
Collapse
Affiliation(s)
- Jing Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yi He
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
109
|
de Miranda LHM, Meli M, Conceição-Silva F, Novacco M, Menezes RC, Pereira SA, Sugiarto S, dos Reis ÉG, Gremião IDF, Hofmann-Lehmann R. Co-infection with feline retrovirus is related to changes in immunological parameters of cats with sporotrichosis. PLoS One 2018; 13:e0207644. [PMID: 30500849 PMCID: PMC6267967 DOI: 10.1371/journal.pone.0207644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/04/2018] [Indexed: 02/03/2023] Open
Abstract
Feline sporotrichosis due to Sporothrix brasiliensis is frequently severe and often correlated to zoonotic transmission. Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) cause immunodeficiency in cats; no association has been identified with critical cases of sporotrichosis. Moreover, the cytokine profile in Sporothrix-infected cats and a potential impact of retrovirus co-infections on their immunity is unknown. This study assessed immunological parameters in cats with sporotrichosis with and without FIV or FeLV co-infection. FeLV infection was detected by antigen ELISA and by provirus PCR. FIV infection was investigated through ELISA and Western blot. Cytokine transcription (IFN-γ, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α) was quantified using RT-qPCR and lymphocyte subpopulations (CD4, CD8, CD5 and CD21) were assessed by flow cytometry. Thirty cats with sporotrichosis were recruited to the study, including three FIV-positive and five FeLV-positive (progressive infection) cats. One cat with regressive FeLV infection was excluded from statistics. In comparison to retrovirus-negative cats, FIV-positive cats and FeLV-positive cats had higher IL-10 levels, FeLV-positive cats had lower IL-4 levels and FIV-positive cats had lower IL-12 levels and a lower CD4+/CD8+ ratio. Remarkably, all cats with poor general condition were FeLV (progressive infection) or FIV-positive, but the retrovirus status was not associated with the sporotrichosis treatment length or outcome. The immunological changes and the more severe clinical presentation observed in cats with retrovirus co-infections encourage future prospective studies that address the impact of these changes on prognostic determinants of feline sporotrichosis and the development of new therapy strategies that control disease spread.
Collapse
Affiliation(s)
- Luisa Helena Monteiro de Miranda
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Marina Meli
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marilisa Novacco
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Rodrigo Caldas Menezes
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sarah Sugiarto
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Érica Guerino dos Reis
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
110
|
Xin G, Zander R, Schauder DM, Chen Y, Weinstein JS, Drobyski WR, Tarakanova V, Craft J, Cui W. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat Commun 2018; 9:5037. [PMID: 30487586 PMCID: PMC6261948 DOI: 10.1038/s41467-018-07492-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
During chronic viral infection, the inflammatory function of CD4 T-cells becomes gradually attenuated. Concurrently, Th1 cells progressively acquire the capacity to secrete the cytokine IL-10, a potent suppressor of antiviral T cell responses. To determine the transcriptional changes that underlie this adaption process, we applied a single-cell RNA-sequencing approach and assessed the heterogeneity of IL-10-expressing CD4 T-cells during chronic infection. Here we show an IL-10-producing population with a robust Tfh-signature. Using IL-10 and IL-21 double-reporter mice, we further demonstrate that IL-10+IL-21+co-producing Tfh cells arise predominantly during chronic but not acute LCMV infection. Importantly, depletion of IL-10+IL-21+co-producing CD4 T-cells or deletion of Il10 specifically in Tfh cells results in impaired humoral immunity and viral control. Mechanistically, B cell-intrinsic IL-10 signaling is required for sustaining germinal center reactions. Thus, our findings elucidate a critical role for Tfh-derived IL-10 in promoting humoral immunity during persistent viral infection. During chronic infection CD4+ T cells can progressively acquire IL-10 producing functionality. Here the authors use single cell RNA sequencing to interrogate the IL10 CD4+ T cell compartment in a murine model of chronic infection and identify Il10-producing Tfh involved in promotion of the antiviral humoral immune response.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53213, USA
| | - Ryan Zander
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53213, USA.
| | - David M Schauder
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jason S Weinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - William R Drobyski
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vera Tarakanova
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Weiguo Cui
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53213, USA. .,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
111
|
Huang W, Solouki S, Carter C, Zheng SG, August A. Beyond Type 1 Regulatory T Cells: Co-expression of LAG3 and CD49b in IL-10-Producing T Cell Lineages. Front Immunol 2018; 9:2625. [PMID: 30510554 PMCID: PMC6252342 DOI: 10.3389/fimmu.2018.02625] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/25/2018] [Indexed: 02/04/2023] Open
Abstract
Type 1 regulatory CD4+ T (Tr1) cells express high levels of the immunosuppressive cytokine IL-10 but not the master transcription factor Foxp3, and can suppress inflammation and promote immune tolerance. In order to identify and obtain viable Tr1 cells for research and clinical applications, co-expression of CD49b and LAG3 has been proposed as a unique surface signature for both human and mouse Tr1 cells. However, recent studies have revealed that this pattern of co-expression is dependent on the stimulating conditions and the differentiation stage of the CD4+ T cells. Here, using an IL-10GFP/Foxp3RFP dual reporter transgenic murine model, we demonstrate that co-expression of CD49b and LAG3 is not restricted to the Foxp3− Tr1 cells, but is also observed in Foxp3+ T regulatory (Treg) cells and CD8+ T cells that produce IL-10. Our data indicate that IL-10-producing Tr1 cells, Treg cells and CD8+ T cells are all capable of co-expressing LAG3 and CD49b in vitro following differentiation under IL-10-inducing conditions, and in vivo following pathogenic insult or infection in the pulmonary mucosa. Our findings urge caution in the use of LAG3/CD49b co-expression as sole markers to identify Tr1 cells, since it may mark IL-10-producing T cell lineages more broadly, including the Foxp3− Tr1 cells, Foxp3+ Treg cells, and CD8+ T cells.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chavez Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Song-Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
112
|
Pack AD, Collins MH, Rosenberg CS, Tarleton RL. Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection. PLoS Pathog 2018; 14:e1007410. [PMID: 30419010 PMCID: PMC6258465 DOI: 10.1371/journal.ppat.1007410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection is characterized by chronic parasitism of non-lymphoid tissues and is rarely eliminated despite potent adaptive immune responses. This failure to cure has frequently been attributed to a loss or impairment of anti-T. cruzi T cell responses over time, analogous to the T cell dysfunction described for other persistent infections. In this study, we have evaluated the role of CD8+ T cells during chronic T. cruzi infection (>100 dpi), with a focus on sites of pathogen persistence. Consistent with repetitive antigen exposure during chronic infection, parasite-specific CD8+ T cells from multiple organs expressed high levels of KLRG1, but exhibit a preferential accumulation of CD69+ cells in skeletal muscle, indicating recent antigen encounter in a niche for T. cruzi persistence. A significant proportion of CD8+ T cells in the muscle also produced IFNγ, TNFα and granzyme B in situ, an indication of their detection of and functional response to T. cruzi in vivo. CD8+ T cell function was crucial for the control of parasite burden during chronic infection as exacerbation of parasite load was observed upon depletion of this population. Attempts to improve T cell function by blocking PD-1 or IL-10, potential negative regulators of T cells, failed to increase IFNγ and TNFα production or to enhance T. cruzi clearance. These results highlight the capacity of the CD8+ T cell population to retain essential in vivo function despite chronic antigen stimulation and support a model in which CD8+ T cell dysfunction plays a negligible role in the ability of Trypanosoma cruzi to persist in mice. The parasite Trypanosoma cruzi establishes lifelong infections in humans and other mammals, leading to severe cardiac and gastrointestinal complications known as Chagas disease. Although the factors that enable T. cruzi persistence remain undefined, in this and many other infection models, pathogen persistence has been attributed to the exhaustion of the immune system, particularly of CD8+ T cells. Here, we show that the inability of hosts to fully resolve T. cruzi infection is not a result of immune exhaustion and that in fact the T. cruzi-specific CD8+ T cell population remains highly competent and actively suppresses parasite outgrowth throughout the chronic infection. These results demonstrate that compromised immunity is not the eventual outcome of all chronic infections and suggest that T. cruzi, and perhaps other pathogens, may employ alternative strategies to subvert immune clearance in the presence of highly functional pathogen-specific effectors. These findings also suggest that interventions to inhibit immune regulatory pathways or to otherwise boost existing immune responses in such infections, will have limited benefit.
Collapse
Affiliation(s)
- Angela D. Pack
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H. Collins
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S. Rosenberg
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
113
|
Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, Cheong HC, Yong YK, Larsson M, Shankar EM. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol 2018; 9:2569. [PMID: 30473697 PMCID: PMC6237934 DOI: 10.3389/fimmu.2018.02569] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
Collapse
Affiliation(s)
- Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Pediatrics School of Medicine Emory University, Atlanta, GA, United States
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Saeidi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kong Yong
- Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia.,Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
114
|
Lee Y, Kim WH, Lee SJ, Lillehoj HS. Detection of chicken interleukin-10 production in intestinal epithelial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA. Vet Immunol Immunopathol 2018; 204:52-58. [DOI: 10.1016/j.vetimm.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
115
|
Che Mat NF, Siddiqui S, Mehta D, Seaver K, Banete A, Alothaimeen T, Gee K, Basta S. Lymphocytic choriomeningitis virus infection of dendritic cells interferes with TLR-induced IL-12/IL-23 cytokine production in an IL-10 independent manner. Cytokine 2018; 108:105-114. [PMID: 29602153 DOI: 10.1016/j.cyto.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 02/25/2018] [Accepted: 03/15/2018] [Indexed: 11/25/2022]
Abstract
Dendritic cells produce IL-12 and IL-23 in response to viral and bacterial infection and these cytokines are responsible for successful pathogen clearance. How sequential viral and bacterial infections affect the production of IL-12 and IL-23 is currently not known. Our study demonstrates that in dendritic cells infected with Lymphocytic choriomeningitis virus (LCMV), TLR activation with bacterial PAMPs resulted in reduced IL-12 and IL-23 expression compared to non-infected cells. Furthermore, expression of other proinflammatory cytokines, TNF-α and IL-6, were not inhibited under these conditions. We discovered that TLR-induced phosphorylation of p38 was significantly inhibited in LCMV-infected cells. We detected enhanced expression of suppressor of cytokine signalling (SOCS)-3 and IL-10. Yet, neutralizing IL-10 did not restore IL-12/IL-23 expression. Taken together, these results show that virus infection interferes with the magnitude of TLR-mediated inflammatory responses by repressing specific cytokine expression.
Collapse
Affiliation(s)
- Nor Fazila Che Mat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sarah Siddiqui
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Divya Mehta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
116
|
Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A 2018; 115:E7814-E7823. [PMID: 30061383 DOI: 10.1073/pnas.1804674115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding of T cell exhaustion and successful therapy to restore T cell function was first described using Clone (Cl) 13 variant selected from the lymphocytic choriomeningitis virus (LCMV) Armstrong (ARM) 53b parental strain. T cell exhaustion plays a pivotal role in both persistent infections and cancers of mice and humans. C57BL/6, BALB, SWR/J, A/J, 129, C3H, and all but one collaborative cross (CC) mouse strain following Cl 13 infection have immunosuppressed T cell responses, high PD-1, and viral titers leading to persistent infection and normal life spans. In contrast, the profile of FVB/N, NZB, PL/J, SL/J, and CC NZO mice challenged with Cl 13 is a robust T cell response, high titers of virus, PD-1, and Lag3 markers on T cells. These mice all die 7 to 9 d after Cl 13 infection. Death is due to enhanced pulmonary endothelial vascular permeability, pulmonary edema, collapse of alveolar air spaces, and respiratory failure. Pathogenesis involves abundant levels of Cl 13 receptor alpha-dystroglycan on endothelial cells, with high viral replication in such cells leading to immunopathologic injury. Death is aborted by blockade of interferon-1 (IFN-1) signaling or deletion of CD8 T cells.
Collapse
|
117
|
Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2018; 92:JVI.02196-17. [PMID: 29593047 PMCID: PMC5974502 DOI: 10.1128/jvi.02196-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that il27p28 transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased il27p28 in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b+ DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process. IMPORTANCE Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.
Collapse
|
118
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
119
|
Uhde AK, Ciurkiewicz M, Herder V, Khan MA, Hensel N, Claus P, Beckstette M, Teich R, Floess S, Baumgärtner W, Jung K, Huehn J, Beineke A. Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Sci Rep 2018; 8:6106. [PMID: 29666403 PMCID: PMC5904160 DOI: 10.1038/s41598-018-24378-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/27/2018] [Indexed: 12/24/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV) infection represents an experimental mouse model to study hippocampal damage induced by neurotropic viruses. IL-10 is a pleiotropic cytokine with profound anti-inflammatory properties, which critically controls immune homeostasis. In order to analyze IL-10R signaling following virus-induced polioencephalitis, SJL mice were intracerebrally infected with TMEV. RNA-based next generation sequencing revealed an up-regulation of Il10, Il10rα and further genes involved in IL-10 downstream signaling, including Jak1, Socs3 and Stat3 in the brain upon infection. Subsequent antibody-mediated blockade of IL-10R signaling led to enhanced hippocampal damage with neuronal loss and increased recruitment of CD3+ T cells, CD45R+ B cells and an up-regulation of Il1α mRNA. Increased expression of Tgfβ and Foxp3 as well as accumulation of Foxp3+ regulatory T cells and arginase-1+ macrophages/microglia was detected in the hippocampus, representing a potential compensatory mechanism following disturbed IL-10R signaling. Additionally, an increased peripheral Chi3l3 expression was found in spleens of infected mice, which may embody reactive regulatory mechanisms for prevention of excessive immunopathology. The present study highlights the importance of IL-10R signaling for immune regulation and its neuroprotective properties in the context of an acute neurotropic virus infection.
Collapse
Affiliation(s)
- Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany.,Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - René Teich
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
120
|
Maini MK, Pallett LJ. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol Hepatol 2018; 3:192-202. [PMID: 29870733 DOI: 10.1016/s2468-1253(18)30007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) remains a major cause of morbidity and mortality worldwide. Treatments that can induce functional cure in patients chronically infected with this hepatotropic, non-cytopathic virus are desperately needed. Attempts to use therapeutic vaccines to expand the weak antiviral T-cell response and induce sustained immunity have been unsuccessful. However, exciting progress has been made in defining the molecular defects that must be overcome to harness T-cell immunity. A large arsenal of immunotherapeutic agents and direct-acting antivirals targeting multiple steps of the viral lifecycle is emerging. In this Review, we discuss how to translate the new insights into T-cell manipulation, combined with better understanding of patient heterogeneity, into optimisation of therapeutic vaccines against HBV. We review the opportunities and risks involved in boosting endogenous T-cell responses using combinations of next generation therapeutic vaccines and immunotherapy agents.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
121
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
122
|
Luft O, Khattar R, Farrokhi K, Ferri D, Yavorska N, Zhang J, Sadozai H, Adeyi O, Chruscinski A, Levy GA, Selzner N. Inhibition of the Fibrinogen-Like Protein 2:FcγRIIB/RIII immunosuppressive pathway enhances antiviral T-cell and B-cell responses leading to clearance of lymphocytic choriomeningitis virus clone 13. Immunology 2018; 154:476-489. [PMID: 29341118 DOI: 10.1111/imm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2-/- mice or fgl2+/+ mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4+ and CD8+ antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4+ and CD8+ T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
Collapse
Affiliation(s)
- Olga Luft
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Ramzi Khattar
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dario Ferri
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nataliya Yavorska
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Jianhua Zhang
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Hassan Sadozai
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Oyedele Adeyi
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Gary A Levy
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nazia Selzner
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| |
Collapse
|
123
|
Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection. Cell Rep 2018; 16:3286-3296. [PMID: 27653690 DOI: 10.1016/j.celrep.2016.08.065] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 12/24/2022] Open
Abstract
Viral persistence specifically inhibits CD4 Th1 responses and promotes Tfh immunity, but the mechanisms that suppress Th1 cells and the disease consequences of their loss are unclear. Here, we demonstrate that the loss of CD4 Th1 cells specifically leads to progressive CD8 T cell decline and dysfunction during viral persistence. Therapeutically reconstituting CD4 Th1 cells restored CD4 T cell polyfunctionality, enhanced antiviral CD8 T cell numbers and function, and enabled viral control. Mechanistically, combined interaction of PD-L1 and IL-10 by suppressive dendritic cell subsets inhibited new CD4 Th1 cells in both acute and persistent virus infection, demonstrating an unrecognized suppressive function for PD-L1 in virus infection. Thus, the loss of CD4 Th1 cells is a key event leading to progressive CD8 T cell demise during viral persistence with important implications for restoring antiviral CD8 T cell immunity to control persistent viral infection.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ivan Osokine
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas H Yamada
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Rafael De la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
124
|
Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu Rev Med 2018; 69:301-318. [PMID: 29414259 DOI: 10.1146/annurev-med-012017-043208] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antigen-specific CD8 T cells are central to the control of chronic infections and cancer, but persistent antigen stimulation results in T cell exhaustion. Exhausted CD8 T cells have decreased effector function and proliferative capacity, partly caused by overexpression of inhibitory receptors such as programmed cell death (PD)-1. Blockade of the PD-1 pathway has opened a new therapeutic avenue for reinvigorating T cell responses, with positive outcomes especially for patients with cancer. Other strategies to restore function in exhausted CD8 T cells are currently under evaluation-many in combination with PD-1-targeted therapy. Exhausted CD8 T cells comprise heterogeneous cell populations with unique differentiation and functional states. A subset of stem cell-like PD-1+ CD8 T cells responsible for the proliferative burst after PD-1 therapy has been recently described. A greater understanding of T cell exhaustion is imperative to establish rational immunotherapeutic interventions.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Alice O Kamphorst
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Haydn T Kissick
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Rathi N Pillai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| |
Collapse
|
125
|
Smith LK, Boukhaled GM, Condotta SA, Mazouz S, Guthmiller JJ, Vijay R, Butler NS, Bruneau J, Shoukry NH, Krawczyk CM, Richer MJ. Interleukin-10 Directly Inhibits CD8 + T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity. Immunity 2018; 48:299-312.e5. [PMID: 29396160 DOI: 10.1016/j.immuni.2018.01.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/01/2017] [Accepted: 01/02/2018] [Indexed: 01/29/2023]
Abstract
Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.
Collapse
Affiliation(s)
- Logan K Smith
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Giselle M Boukhaled
- Department of Physiology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Stephanie A Condotta
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Microbiology, Immunology and Infectiology, Université de Montréal, Montreal, QC, Canada
| | - Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Julie Bruneau
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Family Medicine and Emergency Medicine, Université de Montréal, Montreal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Connie M Krawczyk
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Department of Physiology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
126
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
127
|
Christensen-Quick A, Vanpouille C, Lisco A, Gianella S. Cytomegalovirus and HIV Persistence: Pouring Gas on the Fire. AIDS Res Hum Retroviruses 2017; 33:S23-S30. [PMID: 29140108 DOI: 10.1089/aid.2017.0145] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The inherent stability of a small population of T cells that are latently infected with HIV despite antiretroviral therapy (ART) remains a stubborn obstacle to an HIV cure. By exploiting the memory compartment of our immune system, HIV maintains persistence in a small subset of quiescent cells with varying phenotypes, thus evading immune surveillance and clinical detection. Understanding the molecular and immunological mechanisms that maintain the latent reservoir will be critical to the success of HIV eradication strategies. Human cytomegalovirus (CMV), another chronic viral infection, frequently co-occurs with HIV and occupies an oversized proportion of memory T cell responses. CMV and HIV have both evolved complex strategies to manipulate our immune system for their own advantage. Given the increasingly clear links between CMV replication, chronic immune activation, and increased HIV reservoirs, we present a closer examination of the interplay between these two chronic coinfections. Here we review the effects of CMV on the immune system and show how they may affect persistence of the latent HIV reservoir during ART. The studies described herein suggest that hijacking of cytokine and chemokine signaling, manipulation of cell development pathways, and transactivation of HIV expression by CMV might be pouring gas on the fire of HIV persistence. Future interventional studies are required to formally determine the extent to which CMV is causally associated with inflammation and HIV reservoir expansion.
Collapse
Affiliation(s)
| | - Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sara Gianella
- University of California San Diego, Center for AIDS Research, La Jolla, California
| |
Collapse
|
128
|
Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 2017; 8:102835-102851. [PMID: 29262527 PMCID: PMC5732693 DOI: 10.18632/oncotarget.22159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells are broadly divided into naive-like and activated Treg cells, however recent studies suggest further Treg cell heterogeneity. Treg cells contribute to impaired T cell responses in chronic infections, but the role of specific Treg cell subpopulations in viral infections is not well defined. Here, we report that activated Treg cells are separated into two transcriptionally distinct subpopulations characterized by low or high expression of the transcriptional regulator Id3. Id3lo Treg cells are a highly suppressive Treg cell subpopulation, expressing elevated levels of immunomodulatory molecules and are capable of broadly targeting T cell responses. Viral infection and interleukin-2 promote the differentiation of Id3hi into Id3lo Treg cells and during chronic infection Id3lo Treg cells are the predominant Treg cell population. Thus, our report provides a framework, in which different activated Treg cell subpopulations specifically affect immune responses, possibly contributing to T cell dysfunction in chronic infections.
Collapse
|
129
|
Kortekaas Krohn I, Bobic S, Dooley J, Lan F, Zhang N, Bachert C, Steelant B, Bullens DM, Liston A, Ceuppens JL, Seys SF, Hellings PW. Programmed cell death-1 expression correlates with disease severity and IL-5 in chronic rhinosinusitis with nasal polyps. Allergy 2017; 72:985-993. [PMID: 28122135 DOI: 10.1111/all.13136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Programmed cell death-1 (PD-1) is a negative regulator of T-cell responses. Expression of PD-1 and its ligands PD-L1 and PD-L2 in chronic rhinosinusitis with nasal polyps (CRSwNP) is poorly studied. METHODS Expression of PD-1, PD-L1, PD-L2, TGF-β, IL-5, and IL-10 mRNA was measured by real-time quantitative PCR on tissue homogenates of patients with CRSwNP (n = 21) and healthy controls (n = 21) and on primary epithelial cells. Disease severity was scored using the Lund-Mackay scores of maxillofacial computed tomography (CT) scans. Expression of PD-1 and PD-L1/L2 was evaluated at the cellular and tissue levels (n = 6) by flow cytometry and immunohistochemistry. RESULTS Programmed cell death-1 mRNA expression was increased in tissue homogenates from patients with CRSwNP compared with controls, irrespective of the atopy status. Importantly, expression of PD-1 correlated with the total CT scan scores (r = 0.5, P = 0.02). Additionally, a significant association was found between PD-1 mRNA and expression of IL-5 mRNA in control nasal tissue (r = 0.95, P < 0.0001) and in CRSwNP (r = 0.63, P = 0.002). PD-1 was expressed on different subsets of T cells and CD11b- dendritic cells. Both PD-1 and its ligands were expressed on primary epithelial cells from control nasal tissue and nasal polyp tissue. CONCLUSIONS Higher PD-1 expression was found in CRSwNP than in nasal tissue from controls. This was associated with disease severity and tissue IL-5 expression but unrelated to the patients' atopy status.
Collapse
Affiliation(s)
- I. Kortekaas Krohn
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
| | - S. Bobic
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
| | - J. Dooley
- Translational Immunology Laboratory; VIB; University of Leuven; Leuven Belgium
| | - F. Lan
- Upper Airway Research Laboratory; Department of Otorhinolaryngology; University Hospital Ghent; Ghent Belgium
| | - N. Zhang
- Upper Airway Research Laboratory; Department of Otorhinolaryngology; University Hospital Ghent; Ghent Belgium
| | - C. Bachert
- Upper Airway Research Laboratory; Department of Otorhinolaryngology; University Hospital Ghent; Ghent Belgium
| | - B. Steelant
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
| | - D. M. Bullens
- Pediatric Immunology; Department of Microbiology and Immunology; University of Leuven; Leuven Belgium
- Clinical Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| | - A. Liston
- Translational Immunology Laboratory; VIB; University of Leuven; Leuven Belgium
| | - J. L. Ceuppens
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
| | - S. F. Seys
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
| | - P. W. Hellings
- Laboratory of Clinical Immunology; Department of Microbiology & Immunology; University of Leuven; Leuven Belgium
- Clinical Division of Otorhinolaryngology; University Hospitals Leuven; Leuven Belgium
- Clinical Division of Otorhinolaryngology; Academic Medical Centre; Amsterdam The Netherlands
| |
Collapse
|
130
|
Chuai X, Chen P, Chen H, Wang W, Deng Y, Ruan L, Li W, Tan W. Protective efficacy and hepatitis B virus clearance in mice enhanced by cell-mediated immunity with novel prime-boost regimens. J Viral Hepat 2017; 24:337-345. [PMID: 27885748 DOI: 10.1111/jvh.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
In this study, anti-hepatitis B virus (HBV) immunity was evaluated in mice using several regimens of the HBV recombinant protein vaccine HBSS1 that expressed in CHO cells containing S (1-223 aa) and preS1 (21-47 aa) and recombinant adenovirus rAdSS1 vaccine. Further, the protective efficacy of these vaccine regimens was studied in a mouse model. High titres of antigen-specific antibodies and neutralizing activity were elicited in mice after vaccination. However, robust multi-antigen (preS1 and S)-specific cell-mediated immunity (CMI) was only detected in mice primed with HBSS1 and boosted with rAdSS1. Moreover, functional T-cell responses with high levels of cytokines and antigen-specific cytotoxic T-cell responses (CD107a+ CD8+ ) were also detected in the mice. Rapid clearance of hepatitis B surface antigen and HBV DNA in blood and significantly decreased hepatitis B envelope antigen levels were observed in mice immunized with the heterogeneous prime-boost vaccine after hepatitis B virus challenge by hydrodynamic injection (HI) of pCS-HBV1.3. The clearance of HBV correlated well with antigen-specific CMI (Th1 and CTL responses) and cytokine profiles (IFN-γ, TNF-α, IL-2) elicited by vaccination. Taken together, our results might contribute to the development of new human HBV vaccines and a better understanding of the mechanisms underlying immune protection and clearance of hepatitis B virus infection.
Collapse
Affiliation(s)
- X Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Heibei Province, China
| | - P Chen
- National Institute of Biological Sciences, Beijing, China
| | - H Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Ruan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Li
- National Institute of Biological Sciences, Beijing, China
| | - W Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
131
|
IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res 2017; 2017:6104054. [PMID: 28316998 PMCID: PMC5337865 DOI: 10.1155/2017/6104054] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections.
Collapse
|
132
|
Huang ZY, Xu P, Li JH, Zeng CH, Song HF, Chen H, Zhu YB, Song YY, Lu HL, Shen CP, Zhang XG, Wu MY, Wang XF. Clinical Significance of Dynamics of Programmed Death Ligand-1 Expression on Circulating CD14 + Monocytes and CD19 + B Cells with the Progression of Hepatitis B Virus Infection. Viral Immunol 2016; 30:224-231. [PMID: 28005469 DOI: 10.1089/vim.2016.0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed death-1 (PD-1) expression has been revealed to be upregulated on T cells and contributes to T cell exhaustion in patients with hepatitis B virus (HBV) infection. In this study, we investigated the dynamic expression of programmed death ligand-1 (PD-L1), the ligand of PD-1, on circulating CD14+ monocytes and CD19+ B cells of HBV-infected patients at the stages of chronic HBV (CHB) infection, liver cirrhosis (LC), and hepatocellular carcinoma (HCC), respectively. The results showed that compared with healthy controls, the levels of PD-L1 expression on CD14+ and CD19+ populations were both upregulated in CHB, LC, and HCC groups. Although there was no significant difference of PD-L1 expression on CD14+ population among three disease groups, further analysis demonstrated that the frequency of CD14+PD-L1+ population was negatively correlated with HBV DNA load, the levels of alanine aminotransaminase (ALT), and the levels of aspartate aminotransferase (AST), respectively, at CHB stage, while it did not present significant correlation with such parameters at LC stage and was only positively correlated with HBV DNA load at HCC stage. Similarly, the levels of PD-L1 expression on CD19+ population also did not present much difference among three disease groups. Intriguingly, the frequencies of CD19+PD-L1+ population at CHB and LCC stages were both positively correlated with the levels of ALT and AST, but they were not significantly correlated with HBV DNA load. Thereby, the current study elucidated the dynamics of PD-L1 expression on monocytes and B cells, along with the dynamic regulation of PD-1 on T cells, which had a close relationship during the progression of HBV infection. Collectively, our findings demonstrated that in the course of HBV infection development, PD-L1 expression on CD14+ monocytes and CD19+ B cells varied and significantly correlated with clinical parameters, which could be utilized as a potential clinical indicator.
Collapse
Affiliation(s)
- Zi-Yi Huang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,2 Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Ping Xu
- 3 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Jian-Hua Li
- 4 Central Blood Station of Jiaxing , Zhejiang, China
| | - Chen-Hua Zeng
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Hua-Feng Song
- 3 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Hui Chen
- 3 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Yi-Bei Zhu
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Ying-Ying Song
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Han-Lin Lu
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Chun-Ping Shen
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Xue-Guang Zhang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,2 Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Mei-Ying Wu
- 3 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Xue-Feng Wang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| |
Collapse
|
133
|
Villani R, Facciorusso A, Bellanti F, Tamborra R, Piscazzi A, Landriscina M, Vendemiale G, Serviddio G. DAAs Rapidly Reduce Inflammation but Increase Serum VEGF Level: A Rationale for Tumor Risk during Anti-HCV Treatment. PLoS One 2016; 11:e0167934. [PMID: 27997563 PMCID: PMC5172554 DOI: 10.1371/journal.pone.0167934] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Novel direct-acting antivirals (DAAs) have completely changed the panorama of hepatitis C due to their high efficacy and optimal safety profile. Unfortunately, an unexpectedly high rate of early recurrence of hepatocellular carcinoma has been reported within weeks of starting treatment, but the mechanism is not known. METHODS We monitored the serum level of vascular endothelial growth factor (VEGF) and changes in the pattern of circulating interleukins in 103 chronic hepatitis C patients during antiviral treatment with DAA-regimens. VEGF, epidermal growth factor (EGF), and several interleukins were assessed at baseline, during treatment, and after treatment. The biological effect of DAA-treated patient serum on human umbilical vein endothelial cell (HUVEC) proliferation was also confirmed. RESULTS After 4 weeks of therapy, VEGF increased approximately 4-fold compared to baseline, remained elevated up to the end of treatment, and returned to the pre-treatment level after the end of therapy. In contrast, interleukin-10 and tumor necrosis factor-alpha significantly decreased during therapy, which was coincident with HCV clearance. The levels of both remained low after treatment. The addition of serum from patients collected during therapy induced HUVEC proliferation; however, this disappeared after the end of therapy. CONCLUSIONS DAA administration induces an early increase in serum VEGF and a change in the inflammatory pattern, coinciding with HCV clearance. This may alter the balance between inflammatory and anti-inflammatory processes and modify the antitumor surveillance of the host. Fortunately, such modifications return reverse to normal after the end of treatment.
Collapse
Affiliation(s)
- Rosanna Villani
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Facciorusso
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Bellanti
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Tamborra
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. (Centro per la Ricerca e la Cura delle Epatopatie), Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
134
|
Aptamers for CD Antigens: From Cell Profiling to Activity Modulation. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 6:29-44. [PMID: 28325295 PMCID: PMC5363458 DOI: 10.1016/j.omtn.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Nucleic acid-based aptamers are considered to be a promising alternative to antibodies because of their strong and specific binding to diverse targets, fast and inexpensive chemical synthesis, and easy labeling with a fluorescent dye or therapeutic agent. Cluster of differentiation (CD) proteins are among the most popular antigens for aptamers on the cell surface. These anti-CD aptamers could be used in cell biology and biomedicine, from simple cell phenotyping by flow cytometry or fluorescent microscopy to diagnosis and treatment of HIV/AIDS to cancer and immune therapies. The unique feature of aptamers is that they can act simultaneously as an agonist and antagonist of CD receptors depending on a degree of aptamer oligomerization. Aptamers can also deliver small interfering RNA to silence vital genes in CD-positive cells. In this review, we summarize nucleic acid sequences of anti-CD aptamers and their use, which have been validated in multiple studies.
Collapse
|
135
|
Hussain T, Shah SZA, Zhao D, Sreevatsan S, Zhou X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell Commun Signal 2016; 14:29. [PMID: 27905994 PMCID: PMC5131435 DOI: 10.1186/s12964-016-0152-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and is the causative agent of Johne's disease of domestic and wild ruminants. Johne's disease is characterized by chronic granulomatous enteritis leading to substantial economic losses to the livestock sector across the world. MAP persistently survives in phagocytic cells, most commonly in macrophages by disrupting its early antibacterial activity. MAP triggers several signaling pathways after attachment to pathogen recognition receptors (PRRs) of phagocytic cells. MAP adopts a survival strategy to escape the host defence mechanisms via the activation of mitogen-activated protein kinase (MAPK) pathway. The signaling mechanism initiated through toll like receptor 2 (TLR2) activates MAPK-p38 results in up-regulation of interleukin-10 (IL-10), and subsequent repression of inflammatory cytokines. The anti-inflammatory response of IL-10 is mediated through membrane-bound IL-10 receptors, leading to trans-phosphorylation and activation of Janus Kinase (JAK) family receptor-associated tyrosine kinases (TyKs), that promotes the activation of latent transcription factors, signal transducer and activators of transcription 3 (STAT3). IL-10 is an important inhibitory cytokine playing its role in blocking phagosome maturation and apoptosis. In the current review, we describe the importance of IL-10 in early phases of the MAP infection and regulatory mechanisms of the IL-10 dependent pathways in paratuberculosis. We also highlight the strategies to target IL-10, MAPK and STAT3 in other infections caused by intracellular pathogens.
Collapse
Affiliation(s)
- Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN USA
| | - Xiangmei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
136
|
Rehman SU, Rauf M, Abbas Z, Hamed MH, Qadri I. Role of Some Predominant Host Immunomodulators' Single Nucleotide Polymorphisms in Severity of Hepatitis B Virus and Hepatitis C Virus Infection. Viral Immunol 2016; 29:536-545. [PMID: 27676210 DOI: 10.1089/vim.2016.0062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B and C infections can be either acute or chronic. The chronic infection can culminate in liver cirrhosis and hepatocellular carcinoma. Influence of the host genetic makeup on conversion of acute to chronic infection, development of cirrhosis, and hepatocellular carcinoma is an interesting area of research. Variability in different immune system genes may account for such differences in the outcome of infection. This article discusses single nucleotide polymorphisms in different host immunomodulator genes that have been frequently reported to influence the outcome of infection and severity of disease. The genetic variability could be utilized for the prediction of disease outcome and treatment responses.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- Hepacivirus/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/immunology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/immunology
- Humans
- Immunologic Factors/genetics
- Immunologic Factors/immunology
- Interleukins/genetics
- Interleukins/immunology
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Neoplasms/immunology
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/immunology
- Polymorphism, Single Nucleotide
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Mahd Rauf
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Zaigham Abbas
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Muhammed Haroon Hamed
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| | - Ishtiaq Qadri
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
137
|
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem, with approximately one third of populations have been infected, among which 3-5% of adults and more than 90% of children developed to chronic HBV infection. Host immune factors play essential roles in the outcome of HBV infection. Thus, ineffective immune response against HBV may result in persistent virus replications and liver necroinflammations, then lead to chronic HBV infection, liver cirrhosis, and even hepatocellular carcinoma. Cytokine balance was shown to be an important immune characteristic in the development and progression of hepatitis B, as well as in an effective antiviral immunity. Large numbers of cytokines are not only involved in the initiation and regulation of immune responses but also contributing directly or indirectly to the inhibition of virus replication. Besides, cytokines initiate downstream signaling pathway activities by binding to specific receptors expressed on the target cells and play important roles in the responses against viral infections and, therefore, might affect susceptibility to HBV and/or the natural course of the infection. Since cytokines are the primary causes of inflammation and mediates liver injury after HBV infection, we have discussed recent advances on the roles of various cytokines [including T helper type 1 cells (Th1), Th2, Th17, regulatory T cells (Treg)-related cytokines] in different phases of HBV infection and cytokine-related mechanisms for impaired viral control and liver damage during HBV infection. We then focus on experimental therapeutic applications of cytokines to gain a better understanding of this newly emerging aspect of disease pathogenesis.
Collapse
|
138
|
T‐cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol 2016; 94:935-942. [DOI: 10.1038/icb.2016.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
139
|
PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc Natl Acad Sci U S A 2016; 113:E7231-E7239. [PMID: 27799548 DOI: 10.1073/pnas.1603738113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein encoded by the autoimmune-associated protein tyrosine phosphatase nonreceptor type 22 gene, PTPN22, has wide-ranging effects in immune cells including suppression of T-cell receptor signaling and promoting efficient production of type I interferons (IFN-I) by myeloid cells. Here we show that mice deficient in PTPN22 resist chronic viral infection with lymphocytic choriomeningitis virus clone 13 (LCMV cl13). The numbers and function of viral-specific CD4 T lymphocytes is greatly enhanced, whereas expression of the IFNβ-induced IL-2 repressor, cAMP-responsive element modulator (CREM) is reduced. Reduction of CREM expression in wild-type CD4 T lymphocytes prevents the loss of IL-2 production by CD4 T lymphocytes during infection with LCMV cl13. These findings implicate the IFNβ/CREM/IL-2 axis in regulating T-lymphocyte function during chronic viral infection.
Collapse
|
140
|
Residues K465 and G467 within the Cytoplasmic Domain of GP2 Play a Critical Role in the Persistence of Lymphocytic Choriomeningitis Virus in Mice. J Virol 2016; 90:10102-10112. [PMID: 27581982 DOI: 10.1128/jvi.01303-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose serious public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. We have documented that a recombinant LCMV containing the glycoprotein (GPC) gene of LASV within the backbone of the immunosuppressive clone 13 (Cl-13) variant of the Armstrong strain of LCMV (rCl-13/LASV-GPC) exhibited Cl-13-like growth properties in cultured cells, but in contrast to Cl-13, rCl-13/LASV-GPC was unable to establish persistence in immunocompetent adult mice, which prevented its use for some in vivo experiments. Recently, V459K and K461G mutations within the GP2 cytoplasmic domain (CD) of rCl-13/LASV-GPC were shown to increase rCl-13/LASV-GPC infectivity in mice. Here, we generated rCl-13(GPC/VGKS) by introducing the corresponding revertant mutations K465V and G467K within GP2 of rCl-13 and we show that rCl-13(GPC/VGKS) was unable to persist in mice. K465V and G467K mutations did not affect GPC processing, virus RNA replication, or gene expression. In addition, rCl-13(GPC/VGKS) grew to high titers in cultured cell lines and in immunodeficient mice. Further analysis revealed that rCl-13(GPC/VGKS) infected fewer splenic plasmacytoid dendritic cells than rCl-13, yet the two viruses induced similar type I interferon responses in mice. Our findings have identified novel viral determinants of Cl-13 persistence and also revealed that virus GPC-host interactions yet to be elucidated critically contribute to Cl-13 persistence. IMPORTANCE The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), provides investigators with a superb experimental model system to investigate virus-host interactions. The Armstrong strain (ARM) of LCMV causes an acute infection, whereas its derivative, clone 13 (Cl-13), causes a persistent infection. Mutations F260L and K1079Q within GP1 and L polymerase, respectively, have been shown to play critical roles in Cl-13's ability to persist in mice. However, there is an overall lack of knowledge about other viral determinants required for Cl-13's persistence. Here, we report that mutations K465V and G467K within the cytoplasmic domain of Cl-13 GP2 resulted in a virus, rCl-13(GPC/VGKS), that failed to persist in mice despite exhibiting Cl-13 wild-type-like fitness in cultured cells and immunocompromised mice. This finding has uncovered novel viral determinants of viral persistence, and a detailed characterization of rCl-13(GPC/VGKS) can provide novel insights into the mechanisms underlying persistent viral infection.
Collapse
|
141
|
Exploitation of Interleukin-10 (IL-10) Signaling Pathways: Alternate Roles of Viral and Cellular IL-10 in Rhesus Cytomegalovirus Infection. J Virol 2016; 90:9920-9930. [PMID: 27558431 DOI: 10.1128/jvi.00635-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
There is accumulating evidence that the viral interleukin-10 (vIL-10) ortholog of both human and rhesus cytomegalovirus (HCMV and RhCMV, respectively) suppresses the functionality of cell types that are critical to contain virus dissemination and help shape long-term immunity during the earliest virus-host interactions. In particular, exposure of macrophages, peripheral blood mononuclear cells, monocyte-derived dendritic cells, and plasmacytoid dendritic cells to vIL-10 suppresses multiple effector functions including, notably, those that link innate and adaptive immune responses. Further, vaccination of RhCMV-uninfected rhesus macaques with nonfunctional forms of RhCMV vIL-10 greatly restricted parameters of RhCMV infection following RhCMV challenge of the vaccinees. Vaccinees exhibited significantly reduced shedding of RhCMV in saliva and urine following RhCMV challenge compared to shedding in unvaccinated controls. Based on the evidence that vIL-10 is critical during acute infection, the role of vIL-10 during persistent infection was analyzed in rhesus macaques infected long term with RhCMV to determine whether postinfection vaccination against vIL-10 could change the virus-host balance. RhCMV-seropositive macaques, which shed RhCMV in saliva, were vaccinated with nonfunctional RhCMV vIL-10, and shedding levels of RhCMV in saliva were evaluated. Following robust increases in vIL-10-binding and vIL-10-neutralizing antibodies, shedding levels of RhCMV modestly declined, consistent with the interpretation that vIL-10 may play a functional role during persistent infection. However, a more significant association was observed between the levels of cellular IL-10 secreted in peripheral blood mononuclear cells exposed to RhCMV antigens and shedding of RhCMV in saliva. This result implies that RhCMV persistence is associated with the induction of cellular IL-10 receptor-mediated signaling pathways. IMPORTANCE Human health is adversely impacted by viruses that establish lifelong infections that are often accompanied with increased morbidity and mortality (e.g., infections with HIV, hepatitis C virus, or human cytomegalovirus). A longstanding but unfulfilled goal has been to develop postinfection vaccine strategies that could "reboot" the immune system of an infected individual in ways that would enable the infected host to develop immune responses that clear reservoirs of persistent virus infection, effectively curing the host of infection. This concept was evaluated in rhesus macaques infected long term with rhesus cytomegalovirus by repeatedly immunizing infected animals with nonfunctional versions of the rhesus cytomegalovirus-encoded viral interleukin-10 immune-modulating protein. Following vaccine-mediated boosting of antibody titers to viral interleukin-10, there was modest evidence for increased immunological control of the virus following vaccination. More significantly, data were also obtained that indicated that rhesus cytomegalovirus is able to persist due to upregulation of the cellular interleukin-10 signaling pathway.
Collapse
|
142
|
Jofra T, Di Fonte R, Hutchinson TE, Dastmalchi F, Galvani G, Battaglia M, Salek-Ardakani S, Fousteri G. Protein tyrosine phosphatase PTPN22 has dual roles in promoting pathogen versus homeostatic-driven CD8 T-cell responses. Immunol Cell Biol 2016; 95:121-128. [PMID: 27725666 DOI: 10.1038/icb.2016.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/21/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022]
Abstract
PTPN22 (protein tyrosine phosphatase non receptor 22) encodes a tyrosine phosphatase that functions as a key regulator of immune homeostasis. In particular, PTPN22 inhibits T-cell receptor signaling and selectively promotes type I interferon responses in myeloid cells. To date, there is little information on the CD8 T-cell-intrinsic role of PTPN22 in response to a viral pathogen. We unexpectedly found that PTPN22-deficient virus-specific CD8 T cells failed to accumulate in wild-type hosts after lymphocytic choriomeningitis virus infection. Lack of PTPN22 expression altered CD8 T-cell activation and antiviral cytokine production, but did not significantly affect the composition of effector and memory cell precursors. Most significantly, in vivo, PTPN22-deficient CD8 T cells showed a profound defect in upregulating STAT-1 after lymphocytic choriomeningitis virus infection and considerably less phosphorylation of STAT-1 in response to IFN-α treatment in vitro compared with their wild-type counterparts. In stark contrast, following transfer into lymphopenic mice, CD8 T-cell expansion and central-like phenotype, was considerably increased in the absence of PTPN22. Collectively, our results suggest that PTPN22 has dual roles in T-cell clonal expansion and effector function; whereas it promotes antigen-driven responses during acute infection by positively regulating interferon signaling in T cells, PTPN22 inhibits homeostatic-driven proliferation.
Collapse
Affiliation(s)
- Tatiana Jofra
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Di Fonte
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tarun Edgar Hutchinson
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Giuseppe Galvani
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Battaglia
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
143
|
Ni G, Wang Y, Cummins S, Walton S, Mounsey K, Liu X, Wei MQ, Wang T. Inhibitory mechanism of peptides with a repeating hydrophobic and hydrophilic residue pattern on interleukin-10. Hum Vaccin Immunother 2016; 13:518-527. [PMID: 27686406 DOI: 10.1080/21645515.2016.1238537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Interleukin 10 (IL-10) is a cytokine that is able to downregulate inflammation. Its overexpression is directly associated with the difficulty in the clearance of chronic viral infections, such as chronic hepatitis B, hepatitis C and HIV infection, and infection-related cancer. IL-10 signaling blockade has been proposed as a promising way of clearing chronic viral infection and preventing tumor growth in animal models. Recently, we have reported that peptides with a helical repeating pattern of hydrophobic and hydrophilic residues are able to inhibit IL-10 significantly both in vitro and in vivo. 1 In this work, we seek to further study the inhibiting mechanism of these peptides using sequence-modified peptides. As evidenced by both experimental and molecular dynamics simulation in concert the N-terminal hydrophobic peptide constructed with repeating hydrophobic and hydrophilic pattern of residues is more likely to inhibit IL10. In addition, the sequence length and the ability of protonation are also important for inhibition activity.
Collapse
Affiliation(s)
- Guoying Ni
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia.,b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Yuejian Wang
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China
| | - Scott Cummins
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| | - Shelley Walton
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Kate Mounsey
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Xiaosong Liu
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China.,d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Ming Q Wei
- b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Tianfang Wang
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| |
Collapse
|
144
|
Uhde AK, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, Floess S, Baumgärtner W, Huehn J, Beineke A. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS One 2016; 11:e0161883. [PMID: 27611574 PMCID: PMC5017624 DOI: 10.1371/journal.pone.0161883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Theiler´s murine encephalomyelitis virus (TMEV)-infection is a widely used animal model for studying demyelinating disorders, including multiple sclerosis (MS). The immunosuppressive cytokine Interleukin (IL)-10 counteracts hyperactive immune responses and critically controls immune homeostasis in infectious and autoimmune disorders. In order to investigate the effect of signaling via Interleukin-10 receptor (IL-10R) in infectious neurological diseases, TMEV-infected SJL mice were treated with IL-10R blocking antibody (Ab) in the acute and chronic phase of the disease. The findings demonstrate that (i) Ab-mediated IL-10 neutralization leads to progressive colitis with a reduction in Foxp3+ regulatory T cells and increased numbers of CD8+CD44+ memory T cells as well as activated CD4+CD69+ and CD8+CD69+ T cells in uninfected mice. (ii) Concurrent acute TMEV-infection worsened enteric disease-mediated by IL-10R neutralization. Virus-triggered effects were associated with an enhanced activation of CD4+ T helper cells and CD8+ cytotoxic T lymphocytes and augmented cytokine expression. By contrast, (iii) IL-10R neutralization during chronic TMEV-infection was not associated with enhanced peripheral immunopathology but an increased CD3+ T cell influx in the spinal cord. IL-10R neutralization causes a breakdown in peripheral immune tolerance in genetically predisposed mice, which leads to immune-mediated colitis, resembling inflammatory bowel disease. Hyperactive immune state following IL-10R blockade is enhanced by central nervous system-restricted viral infection in a disease phase-dependent manner.
Collapse
Affiliation(s)
- Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS—Arid Agriculture University, Rawalpindi, Pakistan
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer—Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - René Teich
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
145
|
Su X, Xu W, Guan R, Wang Y, Wu J, Zhai L, Chen G, Hu S. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model. Int Immunopharmacol 2016; 38:16-25. [DOI: 10.1016/j.intimp.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/30/2023]
|
146
|
Inoue H, Kishimoto A, Ushikoshi-Nakayama R, Hasaka A, Takahashi A, Ryo K, Muramatsu T, Ide F, Mishima K, Saito I. Resveratrol improves salivary dysfunction in a non-obese diabetic (NOD) mouse model of Sjögren's syndrome. J Clin Biochem Nutr 2016; 59:107-112. [PMID: 27698537 PMCID: PMC5018577 DOI: 10.3164/jcbn.16-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a natural polyphenol produced by plants in response to environmental stress. This compound has been shown to have pharmacological effects against a wide range of diseases including neurological, hepatic, cardiovascular and autoimmune conditions. The non-obese diabetic (NOD) mouse, in which loss of lacrimal and salivary gland function occurs, has been studied as an animal model for Sjögren’s syndrome. In this study, we confirmed that administration of resveratrol results in increased secretion of saliva in NOD mice. Although resveratrol enhanced Sirt1 activity, inflammatory cell infiltration was not affected. Moreover, expression of the anti-inflammatory cytokine IL-10 in salivary glands was enhanced in the resveratrol-administered group. Thus, we confirmed a novel therapeutic effect for resveratrol on salivary dysfunction in Sjögren’s syndrome.
Collapse
Affiliation(s)
- Hiroko Inoue
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Department of Pharmacotherapy, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kita-Adachi-gun, Saitama 362-0806, Japan
| | - Atsuhiro Kishimoto
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ryoko Ushikoshi-Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ayaka Hasaka
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ayako Takahashi
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Koufuchi Ryo
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Takashi Muramatsu
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Department of Endodontics and Clinical Cariology, Tokyo Dental Collage, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Fumio Ide
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Kenji Mishima
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
147
|
Shete A, Suryawanshi P, Godbole S, Pawar J, Paranjape R, Thakar M. HIV-infected CD4+ T Cells Use T-bet-dependent Pathway for Production of IL-10 Upon Antigen Recognition. Scand J Immunol 2016; 83:288-96. [PMID: 27028319 DOI: 10.1111/sji.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
Abstract
Interleukin (IL)-10 has been implicated in persistence of pathogens in a number of chronic infections. Infected CD4+ cells upon reactivation with HIV antigens were also shown to produce IL-10, which might contribute to their persistence. Hence, it is crucial to determine mechanisms regulating IL-10 production after activation with HIV antigens for devising effective blocking strategies. In this study, ERK-, T-bet- and FoxP3-dependent pathways were evaluated for their possible roles in IL-10 production by infected CD4+ cells after reactivation with HIV Env. Intracellular and secreted IL-10 levels were determined by flow cytometry and Bioplex assay after treating PBMCs with PD98059, tipifarnib and cyclosporin A for blocking of ERK-, T-bet-and FoxP3-dependent pathways, respectively. Baseline levels of T-bet, pERK were higher in P24+ CD4+ cells as compared to uninfected CD4+ cells, which increased further after activation with Env. Inhibition of T-bet resulted in 2.3-fold reduction of IL-10 expression whereas ERK and FoxP3 inhibition failed to cause suppression of IL-10 expression. Conversely, IL-10 secreted by PBMCs was inhibited maximally after ERK inhibition suggesting its role in regulation of cytokine secretory pathway. IFN-γ was found to be suppressed after treatment with inhibitors of all these pathways. Thus, the study highlighted need for IL-10 blockade along with the use of antigens for therapeutic vaccinations or latency reversal and identified the T-bet-dependent pathway as an important pathway regulating IL-10 production by infected CD4+ cells. However, simultaneous blockade of IFN-γ precludes use of inhibitor of this pathway as an IL-10 blocking strategy.
Collapse
Affiliation(s)
- A Shete
- National AIDS Research Institute, Pune, India
| | | | - S Godbole
- National AIDS Research Institute, Pune, India
| | - J Pawar
- National AIDS Research Institute, Pune, India
| | - R Paranjape
- National AIDS Research Institute, Pune, India
| | - M Thakar
- National AIDS Research Institute, Pune, India
| |
Collapse
|
148
|
Tian Y, Mollo SB, Harrington LE, Zajac AJ. IL-10 Regulates Memory T Cell Development and the Balance between Th1 and Follicular Th Cell Responses during an Acute Viral Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1308-21. [PMID: 27402701 DOI: 10.4049/jimmunol.1502481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
T cells provide protective immunity against infections by differentiating into effector cells that contribute to rapid pathogen control and by forming memory populations that survive over time and confer long-term protection. Thus, understanding the factors that regulate the development of effective T cell responses is beneficial for the design of vaccines and immune-based therapies against infectious diseases. Cytokines play important roles in shaping T cell responses, and IL-10 has been shown to modulate the differentiation of CD4 and CD8 T cells. In this study, we report that IL-10 functions in a cell-extrinsic manner early following acute lymphocytic choriomeningitis virus infection to suppress the magnitude of effector Th1 responses as well as the generation of memory CD4 and CD8 T cells. We further demonstrate that the blockade of IL-10 signaling during the priming phase refines the functional quality of memory CD4 and CD8 T cells. This inhibition strategy resulted in a lower frequency of virus-specific follicular Th (Tfh) cells and increased the Th1 to Tfh ratio. Nevertheless, neither germinal center B cells nor lymphocytic choriomeningitis virus-specific Ab levels were influenced by the blockade. Thus, our studies show that IL-10 influences the balance between Th1 and Tfh cell differentiation and negatively regulates the development of functionally mature memory T cells.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Sarah B Mollo
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laurie E Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
149
|
Endogenous Il10 alleviates the systemic antiviral cellular immune response and T cell-mediated immunopathology in select organs of acutely LCMV-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3025-38. [PMID: 26506472 DOI: 10.1016/j.ajpath.2015.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.
Collapse
|
150
|
Beltra JC, Decaluwe H. Cytokines and persistent viral infections. Cytokine 2016; 82:4-15. [DOI: 10.1016/j.cyto.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|