101
|
Björkström NK, Ponzetta A. Natural killer cells and unconventional T cells in COVID-19. Curr Opin Virol 2021; 49:176-182. [PMID: 34217135 PMCID: PMC8214213 DOI: 10.1016/j.coviro.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
NK cells and diverse populations of unconventional T cells, such as MAIT cells, γδ T cells, invariant NKT cells, and DNTɑβ cells are important early effector lymphocytes. While some of these cells, such as NK cell and MAIT cells, have well-established roles in antiviral defense, the function of other populations remains more elusive. Here, we summarize and discuss current knowledge on NK cell and unconventional T cell responses to SARS-CoV-2 infection. Also covered is the role of these cells in the pathogenesis of severe COVID-19. Understanding the early, both systemic and local (lung), effector lymphocyte response in this novel disease will likely aid ongoing efforts to combat the pandemic.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
102
|
Shi J, Zhou J, Zhang X, Hu W, Zhao JF, Wang S, Wang FS, Zhang JY. Single-Cell Transcriptomic Profiling of MAIT Cells in Patients With COVID-19. Front Immunol 2021; 12:700152. [PMID: 34394094 PMCID: PMC8363247 DOI: 10.3389/fimmu.2021.700152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are considered to participate of the host immune response against acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, single-cell transcriptomic profiling of MAIT cells in patients with COVID-19 remains unexplored. Methods We performed single-cell RNA sequencing analyses on peripheral MAIT cells from 13 patients with COVID-19 and 5 healthy donors. The transcriptional profiles of MAIT cells, together with assembled T-cell receptor sequences, were analyzed. Flow cytometry analysis was also performed to investigate the properties of MAIT cells. Results We identified that differentially expressed genes (DEGs) of MAIT cells were involved in myeloid leukocyte activation and lymphocyte activation in patients with COVID-19. In addition, in MAIT cells from severe cases, more DEGs were enriched in adaptive cellular and humoral immune responses compared with those in moderate cases. Further analysis indicated that the increase of cell cytotoxicity (killing), chemotaxis, and apoptosis levels in MAIT cells were consistent with disease severity and displayed the highest levels in patients with severe disease. Interestingly, flow cytometry analysis showed that the frequencies of pyroptotic MAIT cells, but not the frequencies of apoptotic MAIT cells, were increased significantly in patients with COVID-19, suggesting pyroptosis is one of leading causes of MAIT cell deaths during SARS-CoV-2 infection. Importantly, there were more clonal expansions of MAIT cells in severe cases than in moderate cases. Conclusions The results of the present study suggest that MAIT cells are likely to be involved in the host immune response against SARS-CoV-2 infection. Simultaneously, the transcriptomic data from MAIT cells provides a deeper understanding of the immune pathogenesis of the disease.
Collapse
Affiliation(s)
- Jijing Shi
- Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, China.,Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jianglin Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Wei Hu
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Jin-Fang Zhao
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
103
|
Differential immune responses in pregnant patients recovered from COVID-19. Signal Transduct Target Ther 2021; 6:289. [PMID: 34326311 PMCID: PMC8320317 DOI: 10.1038/s41392-021-00703-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnant women are generally more susceptible to viral infection. Although the impact of SARS-CoV-2 in pregnancy remains to be determined, evidence indicates that the risk factors for severe COVID-19 are similar in pregnancy to the general population. Here we systemically analyzed the clinical characteristics of pregnant and non-pregnant female COVID-19 patients who were hospitalized during the same period and found that pregnant patients developed marked lymphopenia and higher inflammation evident by higher C-reactive protein and IL-6. To elucidate the pathways that might contribute to immunopathology or protective immunity against COVID-19 during pregnancy, we applied single-cell mRNA sequencing to profile peripheral blood mononuclear cells from four pregnant and six non-pregnant female patients after recovery along with four pregnant and three non-pregnant healthy donors. We found normal clonal expansion of T cells in the pregnant patients, heightened activation and chemotaxis in NK, NKT, and MAIT cells, and differential interferon responses in the monocyte compartment. Our data present a unique feature in both innate and adaptive immune responses in pregnant patients recovered from COVID-19.
Collapse
|
104
|
Codd AS, Hanna SJ, Compeer EB, Richter FC, Pring EJ, Gea-Mallorquí E, Borsa M, Moon OR, Scourfield DO, Gallimore AM, Milicic A. Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab016. [PMID: 35593707 PMCID: PMC8371938 DOI: 10.1093/oxfimm/iqab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephanie J Hanna
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ewoud B Compeer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felix C Richter
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Eleanor J Pring
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana Borsa
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Owen R Moon
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anita Milicic
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
105
|
Kreutmair S, Unger S, Núñez NG, Ingelfinger F, Alberti C, De Feo D, Krishnarajah S, Kauffmann M, Friebel E, Babaei S, Gaborit B, Lutz M, Jurado NP, Malek NP, Goepel S, Rosenberger P, Häberle HA, Ayoub I, Al-Hajj S, Nilsson J, Claassen M, Liblau R, Martin-Blondel G, Bitzer M, Roquilly A, Becher B. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity 2021; 54:1578-1593.e5. [PMID: 34051147 PMCID: PMC8106882 DOI: 10.1016/j.immuni.2021.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/24/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Partner Site Freiburg, 79106 Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicolás Gonzalo Núñez
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sinduya Krishnarajah
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sepideh Babaei
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Benjamin Gaborit
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093 Nantes, France
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicole Puertas Jurado
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nisar P Malek
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Siri Goepel
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Helene A Häberle
- Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Sally Al-Hajj
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Manfred Claassen
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France
| | - Guillaume Martin-Blondel
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UPS, 31024 Toulouse, France; Department of Infectious and Tropical Diseases, Toulouse University Hospital, 31059 Toulouse, France
| | - Michael Bitzer
- Department Internal Medicine I, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Antoine Roquilly
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093 Nantes, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
106
|
In vitro Interleukin-7 treatment partially rescues MAIT cell dysfunction caused by SARS-CoV-2 infection. Sci Rep 2021; 11:14090. [PMID: 34238985 PMCID: PMC8266862 DOI: 10.1038/s41598-021-93536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
MAIT cells have been shown to be activated upon several viral infections in a TCR-independent manner by responding to inflammatory cytokines secreted by antigen-presenting cells. Recently, a few studies have shown a similar activation of MAIT cells in response to severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. In this study, we investigate the effect of SARS-CoV-2 infection on the frequency and phenotype of MAIT cells by flow cytometry, and we test in vitro stimulation conditions on the capacity to enhance or rescue the antiviral function of MAIT cells from patients with coronavirus disease 2019 (COVID-19). Our study, in agreement with recently published studies, confirmed the decline in MAIT cell frequency of hospitalized donors in comparison to healthy donors. MAIT cells of COVID-19 patients also had lower expression levels of TNF-alpha, perforin and granzyme B upon stimulation with IL-12 + IL-18. 24 h’ incubation with IL-7 successfully restored perforin expression levels in COVID-19 patients. Combined, our findings support the growing evidence that SARS-CoV-2 is dysregulating MAIT cells and that IL-7 treatment might improve their function, rendering them more effective in protecting the body against the virus.
Collapse
|
107
|
Yu C, Littleton S, Giroux NS, Mathew R, Ding S, Kalnitsky J, Yang Y, Petzold E, Chung HA, Rivera GO, Rotstein T, Xi R, Ko ER, Tsalik EL, Sempowski GD, Denny TN, Burke TW, McClain MT, Woods CW, Shen X, Saban DR. Mucosal-associated invariant T cell responses differ by sex in COVID-19. MED 2021; 2:755-772.e5. [PMID: 33870241 PMCID: PMC8043578 DOI: 10.1016/j.medj.2021.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, but the mechanisms governing this disparity remain incompletely understood. METHODS We carried out sex-balanced sampling of peripheral blood mononuclear cells from hospitalized and non-hospitalized individuals with confirmed COVID-19, uninfected close contacts, and healthy control individuals for 36-color flow cytometry and single-cell RNA sequencing. FINDINGS Our results revealed a pronounced reduction of circulating mucosal-associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets suggests that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, MAIT cells from females possessed an immunologically active gene signature, whereas cells from males were pro-apoptotic. CONCLUSIONS Our findings uncover a female-specific protective MAIT cell profile, potentially shedding light on reduced COVID-19 susceptibility in females. FUNDING This work was supported by NIH/NIAID (U01AI066569 and UM1AI104681), the Defense Advanced Projects Agency (DARPA; N66001-09-C-2082 and HR0011-17-2-0069), the Veterans Affairs Health System, and Virology Quality Assurance (VQA; 75N93019C00015). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health. COVID-19 samples were processed under Biosafety level 2 (BSL-2) with aerosol management enhancement or BSL-3 in the Duke Regional Biocontainment Laboratory, which received partial support for construction from NIH/NIAID (UC6AI058607).
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Petzold
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
| | - Hong A Chung
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Grecia O Rivera
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Tomer Rotstein
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Duke Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ephraim L Tsalik
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
108
|
Saris A, Reijnders TD, Reijm M, Hollander JC, de Buck K, Schuurman AR, Duitman J, Heunks L, Aman J, Bogaard HJ, Nossent EJ, van der Poll T, Bontkes HJ, Amsterdam UMC COVID study group. Enrichment of CCR6 + CD8 + T cells and CCL20 in the lungs of mechanically ventilated patients with COVID-19. Eur J Immunol 2021; 51:1535-1538. [PMID: 33768543 PMCID: PMC8250259 DOI: 10.1002/eji.202049046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/21/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
Despite high levels of CXCR3 ligands in mechanically ventilated COVID-19 patients, BALF CD8 T cells were not enriched in CXCR3+ cells but rather CCR6+ , likely due to high CCL20 levels in BALF, and had very high PD-1 expression. In mechanically ventilated, but not ward, patients Th-1 immunity is impaired. .
Collapse
Affiliation(s)
- Anno Saris
- Center for Experimental and Molecular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Tom D.Y. Reijnders
- Center for Experimental and Molecular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Martine Reijm
- Department of Clinical ChemistryMedical Immunology LaboratoryAmsterdam UMCAmsterdamThe Netherlands
| | - Jolien C. Hollander
- Department of Clinical ChemistryMedical Immunology LaboratoryAmsterdam UMCAmsterdamThe Netherlands
| | - Kim de Buck
- Department of Clinical ChemistryMedical Immunology LaboratoryAmsterdam UMCAmsterdamThe Netherlands
| | - Alex R. Schuurman
- Center for Experimental and Molecular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Leo Heunks
- Intensive Care MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Jurjan Aman
- Pulmonary MedicineAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - Tom van der Poll
- Center for Experimental and Molecular MedicineAmsterdam UMCAmsterdamThe Netherlands
- Infectious DiseasesAmsterdam UMCAmsterdamThe Netherlands
| | - Hetty J. Bontkes
- Department of Clinical ChemistryMedical Immunology LaboratoryAmsterdam UMCAmsterdamThe Netherlands
| | | |
Collapse
|
109
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
110
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|
111
|
Bibert S, Guex N, Lourenco J, Brahier T, Papadimitriou-Olivgeris M, Damonti L, Manuel O, Liechti R, Götz L, Tschopp J, Quinodoz M, Vollenweider P, Pagani JL, Oddo M, Hügli O, Lamoth F, Erard V, Voide C, Delorenzi M, Rufer N, Candotti F, Rivolta C, Boillat-Blanco N, Bochud PY. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol 2021; 12:666163. [PMID: 34135895 PMCID: PMC8202013 DOI: 10.3389/fimmu.2021.666163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Joao Lourenco
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Thomas Brahier
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Lauro Damonti
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robin Liechti
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Lou Götz
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Tschopp
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Peter Vollenweider
- Internal Medicine Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Pagani
- Department of Adult Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Adult Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Hügli
- Emergency Department, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine, Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Erard
- Clinique de Médecine et spécialités, Infectiologie, Hôpital Fribourgeois-Fribourg, Fribourg, Switzerland
| | - Cathy Voide
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics and Department of Fundamenal Oncology, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Fabio Candotti
- Division of Immunology and Allergy, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Noémie Boillat-Blanco
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
112
|
Lymphopenia in COVID-19: γδ T Cells-Based Therapeutic Opportunities. Vaccines (Basel) 2021; 9:vaccines9060562. [PMID: 34071430 PMCID: PMC8228064 DOI: 10.3390/vaccines9060562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection dysregulates the immune system by lymphopenia of B cells, monocytes, eosinophils, basophils, and cytotoxic cells such as CD8, γδ T cells, and natural killer (NK) cells. Despite many studies being conducted to better understand the effects of SARS-CoV-2 on the immune system, many mechanisms still remain unclear, hindering the development of novel therapeutic approaches and strategies to improve the host’s immune defense. This mini-review summarizes the findings on the role of γδ T cells in coronavirus disease 2019 (COVID-19), providing an overview of the excellent anti-viral therapeutic potential of γδ T cells, that had not yet been exploited in depth.
Collapse
|
113
|
Lu Z, Meng L, Sun Z, Shi X, Shao W, Zheng Y, Yao X, Song J. Differentially Expressed Genes and Enriched Signaling Pathways in the Adipose Tissue of Obese People. Front Genet 2021; 12:620740. [PMID: 34093637 PMCID: PMC8175074 DOI: 10.3389/fgene.2021.620740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
As the prevalence of obesity increases, so does the occurrence of obesity-related complications, such as cardiovascular and cerebrovascular diseases, diabetes, and some cancers. Increased adipose tissue is the main cause of harm in obesity. To better understand obesity and its related complications, we analyzed the mRNA expression profiles of adipose tissues from 126 patients with obesity and 275 non-obese controls. Using an integrated bioinformatics method, we explored the functions of 113 differentially expressed genes (DEGs) between them. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses revealed that upregulated DEGs were enriched in immune cell chemotaxis, complement-related cascade activation, and various inflammatory signaling pathways, while downregulated DEGs enriched in nutrient metabolism. The CIBERSORT algorithm indicated that an increase in macrophages may be the main cause of adipose tissue inflammation, while decreased γδ T cells reduce sympathetic action, leading to dysregulation of adipocyte thermogenesis. A protein-protein interaction network was constructed using the STRING database, and the top 10 hub genes were identified using the cytoHubba plug-in in Cytoscape. All were confirmed to be obesity-related using a separate dataset. In addition, we identified chemicals related to these hub genes that may contribute to obesity. In conclusion, we have successfully identified several hub genes in the development of obesity, which provide insights into the possible mechanisms controlling obesity and its related complications, as well as potential biomarkers and therapeutic targets for further research.
Collapse
Affiliation(s)
- Zhenhua Lu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhen Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolei Shi
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Shao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Zheng
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
114
|
McCarthy C, O'Donnell CP, Kelly NEW, O'Shea D, Hogan AE. COVID-19 severity and obesity: are MAIT cells a factor? THE LANCET. RESPIRATORY MEDICINE 2021; 9:445-447. [PMID: 33844997 PMCID: PMC8040652 DOI: 10.1016/s2213-2600(21)00140-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Cormac McCarthy
- School of Medicine, University College Dublin, Dublin T04 T6F4, Ireland; Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland.
| | - Cliona P O'Donnell
- Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
| | - Neil E Wrigley Kelly
- Obesity Immunology Group, Education and Research Centre, University College Dublin, Dublin T04 T6F4, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, University College Dublin, Dublin T04 T6F4, Ireland
| | - Andrew E Hogan
- Obesity Immunology Group, Education and Research Centre, University College Dublin, Dublin T04 T6F4, Ireland; Institute of Immunology, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
115
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
116
|
Liu J, Yang X, Wang H, Li Z, Deng H, Liu J, Xiong S, He J, Feng X, Guo C, Wang W, Zelinskyy G, Trilling M, Sutter K, Senff T, Menne C, Timm J, Zhang Y, Deng F, Lu Y, Wu J, Lu M, Yang D, Dittmer U, Wang B, Zheng X. Analysis of the Long-Term Impact on Cellular Immunity in COVID-19-Recovered Individuals Reveals a Profound NKT Cell Impairment. mBio 2021; 12:e00085-21. [PMID: 33906918 PMCID: PMC8092197 DOI: 10.1128/mbio.00085-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected over 120 million people and killed over 2.7 million individuals by March 2021. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remain to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19-convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2-unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of annexin V and 7-aminoactinomycin D (7-AAD) double-positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies and TIM-3 expression on CD4 and CD8 T cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by granzyme B (GzmB) expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully able to proliferate and produce effector cytokines upon T cell receptor (TCR) stimulation. Collectively, we provide a comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.IMPORTANCE Wuhan was the very first city hit by SARS-CoV-2. Accordingly, the patients who experienced the longest phase of convalescence following COVID-19 reside here. This enabled us to investigate the "immunological scar" left by SARS-CoV-2 on cellular immunity after recovery from the disease. In this study, we characterized the long-term impact of SARS-CoV-2 infection on the immune system and provide a comprehensive picture of cellular immunity of a convalescent COVID-19 patient cohort with the longest recovery time. We revealed that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease; in particular, a profound NKT cell impairment was found in the convalescent phase of COVID-19.
Collapse
Affiliation(s)
- Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Shue Xiong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi He
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weixian Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Tina Senff
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Christopher Menne
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Joerg Timm
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Yanfang Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
117
|
Saris A, Reijnders TDY, Nossent EJ, Schuurman AR, Verhoeff J, Asten SV, Bontkes H, Blok S, Duitman J, Bogaard HJ, Heunks L, Lutter R, van der Poll T, Garcia Vallejo JJ. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax 2021; 76:1010-1019. [PMID: 33846275 PMCID: PMC8050882 DOI: 10.1136/thoraxjnl-2020-216256] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Background Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. Methods This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. Findings Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. Interpretation The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.
Collapse
Affiliation(s)
- Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands .,Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Saskia van Asten
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | - Hetty Bontkes
- Medical Immunology Laboratory, Department of Clinical Chemistry, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Siebe Blok
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Janwillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Rene Lutter
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands.,Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam institute for infection and immunity, Amsterdam, Netherlands
| | | |
Collapse
|
118
|
Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He J, Ma W, He J, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li YM, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu SQ, Luo M, Ma Q, Song Q, Sun W, Wang G, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao P, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Bei JX, Wei L, Bian XW, Liu X, Cheng T, Li X, Zhao P, Wang FS, Wang H, Su B, Zhang Z, Qu K, Wang X, Chen J, Jin R, Zhang Z. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021; 184:1895-1913.e19. [PMID: 33657410 PMCID: PMC7857060 DOI: 10.1016/j.cell.2021.01.053] [Citation(s) in RCA: 492] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhong Hou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bin Su
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Fan Zhang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiangping He
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pingping Wang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiqi Cao
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Fangjin Chen
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuqing Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Wenyu Ding
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Gan
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Weiqiang Guo
- Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai 201052, China
| | - Haofei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jianwei Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qibing Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - GaoXiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinxin Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xudong Xing
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Chonghai Yin
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongdong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kezhuo Yu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jin Yuan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peipei Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China; Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Peidong Zhao
- Analytical Biosciences Beijing Limited, Beijing 100084, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Zhou
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Sujuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Zhong
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahua Zou
- Cancer Center, Huanggang Hospital of Traditional Chinese Medicine, Huanggang 438000, China
| | - Zengtao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China.
| | - Zhiwei Huang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Medical Research Center, Shantou University Medical College, Shaoguan 512025, China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China.
| | - Xiaoqun Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiekai Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Ronghua Jin
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
119
|
Wu YH, Yeh IJ, Phan NN, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Hsu HP, Wang CY, Lai MD. Gene signatures and potential therapeutic targets of Middle East respiratory syndrome coronavirus (MERS-CoV)-infected human lung adenocarcinoma epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:845-857. [PMID: 34176764 PMCID: PMC7997684 DOI: 10.1016/j.jmii.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 12/23/2022]
Abstract
Background Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. Methods High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein–protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. Results Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. Conclusions The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.
Collapse
Affiliation(s)
- Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
120
|
Maleki KT, Tauriainen J, García M, Kerkman PF, Christ W, Dias J, Wigren Byström J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Björkström NK, Sandberg JK, Klingström J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. CELL REPORTS MEDICINE 2021; 2:100220. [PMID: 33763658 PMCID: PMC7974553 DOI: 10.1016/j.xcrm.2021.100220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections. MAIT cells are activated in individuals with hemorrhagic fever with renal syndrome (HFRS) MAIT cell activation correlates with HFRS severity markers during hantavirus infection MAIT cell blood levels decline during acute HFRS Hantavirus-mediated MAIT cell activation is type I IFN dependent
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Wigren Byström
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mattias N Forsell
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
121
|
Flament H, Rouland M, Beaudoin L, Toubal A, Bertrand L, Lebourgeois S, Rousseau C, Soulard P, Gouda Z, Cagninacci L, Monteiro AC, Hurtado-Nedelec M, Luce S, Bailly K, Andrieu M, Saintpierre B, Letourneur F, Jouan Y, Si-Tahar M, Baranek T, Paget C, Boitard C, Vallet-Pichard A, Gautier JF, Ajzenberg N, Terrier B, Pène F, Ghosn J, Lescure X, Yazdanpanah Y, Visseaux B, Descamps D, Timsit JF, Monteiro RC, Lehuen A. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nat Immunol 2021; 22:322-335. [PMID: 33531712 DOI: 10.1038/s41590-021-00870-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.
Collapse
Affiliation(s)
- Héloïse Flament
- Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Center for Research on Inflammation, Inserm U1149 & CNRS ERL8252, Inflamex Laboratory, Paris, France
| | - Matthieu Rouland
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Amine Toubal
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Léo Bertrand
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Samuel Lebourgeois
- Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France
| | - Camille Rousseau
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Pauline Soulard
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Zouriatou Gouda
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Lucie Cagninacci
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Antoine C Monteiro
- Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France
| | - Margarita Hurtado-Nedelec
- Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Center for Research on Inflammation, Inserm U1149 & CNRS ERL8252, Inflamex Laboratory, Paris, France
| | - Sandrine Luce
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Karine Bailly
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Benjamin Saintpierre
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France
| | - Youenn Jouan
- Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France.,Intensive Care Medical Unit, Tours Regional University Hospital, Tours, France
| | - Mustapha Si-Tahar
- Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France
| | - Thomas Baranek
- Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France
| | - Christophe Paget
- Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France
| | - Christian Boitard
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.,Department of Diabetology, AP-HP, Cochin University Hospital, Paris, France
| | - Anaïs Vallet-Pichard
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.,Department of Hepatology, AP-HP, Cochin University Hospital, Paris, France
| | - Jean-François Gautier
- Department of Diabetes and Endocrinology, AP-HP, Lariboisière Hospital, Paris, France
| | - Nadine Ajzenberg
- Department of Hematology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, LVTS, Inserm, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, AP-HP, Cochin University Hospital, Paris, France
| | - Frédéric Pène
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.,Medical Intensive Care Unit, AP-HP, Cochin University Hospital, Paris, France
| | - Jade Ghosn
- Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.,Department of Infectious and Tropical Diseases, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France
| | - Xavier Lescure
- Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.,Department of Infectious and Tropical Diseases, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France
| | - Yazdan Yazdanpanah
- Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.,Department of Infectious and Tropical Diseases, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France
| | - Benoit Visseaux
- Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France
| | - Diane Descamps
- Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France
| | - Jean-François Timsit
- Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France
| | - Renato C Monteiro
- Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France.,Université de Paris, Center for Research on Inflammation, Inserm U1149 & CNRS ERL8252, Inflamex Laboratory, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
| |
Collapse
|
122
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a major public health threat worldwide. Insight into protective and pathogenic aspects of SARS-CoV-2 immune responses is critical to work out effective therapeutics and develop vaccines for controlling the disease. Here, we review the present literature describing the innate and adaptive immune responses including innate immune cells, cytokine responses, antibody responses and T cell responses against SARS-CoV-2 in human infection, as well as in AEC2-humanized mouse infection. We also summarize the now known and unknown about the role of the SARS-CoV-2 immune responses. By better understanding the mechanisms that drive the immune responses, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.
Collapse
|
123
|
Kang YW, Park S, Lee KJ, Moon D, Kim YM, Lee SW. Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis. Immune Netw 2021; 21:e1. [PMID: 33728094 PMCID: PMC7937512 DOI: 10.4110/in.2021.21.e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a significant health concern worldwide. Undoubtedly, a better understanding of the innate and adaptive immune responses against SARS-CoV-2 and its relationship with the coronavirus disease 2019 (COVID-19) pathogenesis will be the sole basis for developing and applying therapeutics. This review will summarize the published results that relate to innate immune responses against infections with human coronaviruses including SARS-CoV-1 and SARS-CoV-2 in both humans and animal models. The topics encompass the innate immune sensing of the virus to the dysregulation of various innate immune cells during infection and disease progression.
Collapse
Affiliation(s)
- Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Young-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
124
|
Klenerman P, Hinks TSC, Ussher JE. Biological functions of MAIT cells in tissues. Mol Immunol 2021; 130:154-158. [PMID: 33358567 PMCID: PMC8021939 DOI: 10.1016/j.molimm.2020.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
Mucosal associated invariant T (MAIT) cells have a recognised innate-like capacity for antibacterial host defence, consequent on the specificity of their T cell receptor (TCR) for small molecule metabolites produced by a range of prokaryotic and fungal species, their effector memory phenotype, and their expression of cytotoxic molecules. However, recent studies have identified at least two other important functions of MAIT cells in antiviral immunity and in tissue homeostasis and repair. Each are related to distinct transcriptional programmes, which are activated differentially according to the specific immune context. Here we discuss these diverse functions, we review the evidence for the newly identified role of MAIT cells in promoting tissue repair, and we discuss emerging data pointing to the future directions of MAIT cell research including roles in cancer, in antiviral immunity and recent studies in the immune response to SARS-CoV-2 infection. Overall these studies have made us aware of the potential for pleiotropic roles of MAIT cells and related cell populations in micee and humans, and have created a simple and attractive new paradigm for regulation in barrier tissues, where antigen and tissue damage are sensed, integrated and interpreted.
Collapse
Affiliation(s)
- Paul Klenerman
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Timothy S C Hinks
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Respiratory Medicine Unit, Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, Otago, New Zealand; Southern Community Laboratories, Dunedin, 9016, Otago, New Zealand
| |
Collapse
|
125
|
Wang H, Chen Z, McCluskey J, Corbett AJ. Mouse models illuminate MAIT cell biology. Mol Immunol 2021; 130:55-63. [PMID: 33360377 PMCID: PMC7855494 DOI: 10.1016/j.molimm.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
126
|
DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun 2021; 538:211-217. [PMID: 33190827 PMCID: PMC7584424 DOI: 10.1016/j.bbrc.2020.10.060] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 first emerged in the human population in late 2019 in Wuhan, China, and in a matter of months, spread across the globe resulting in the Coronavirus Disease 19 (COVID-19) pandemic and substantial economic fallout. SARS-CoV-2 is transmitted between humans via respiratory particles, with infection presenting a spectrum of clinical manifestations ranging from asymptomatic to respiratory failure with multiorgan dysfunction and death in severe cases. Prior experiences with human pathogenic coronaviruses and respiratory virus diseases in general have revealed an important role for cellular immunity in limiting disease severity. Here, we review some of the key mechanisms underlying cell-mediated immunity to respiratory viruses and summarize our current understanding of the functional capacity and role of SARS-CoV-2-specific T cells following natural infection and vaccination.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
127
|
Pérez-Galarza J, Prócel C, Cañadas C, Aguirre D, Pibaque R, Bedón R, Sempértegui F, Drexhage H, Baldeón L. Immune Response to SARS-CoV-2 Infection in Obesity and T2D: Literature Review. Vaccines (Basel) 2021; 9:102. [PMID: 33572702 PMCID: PMC7911386 DOI: 10.3390/vaccines9020102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a novel coronavirus known as SARS-CoV-2 was first detected in Wuhan, China, causing outbreaks of the coronavirus disease COVID-19 that has now spread globally. For this reason, The World Health Organization (WHO) declared COVID-19 a public health emergency in March 2020. People living with pre-existing conditions such as obesity, cardiovascular diseases, type 2 diabetes (T2D), and chronic kidney and lung diseases, are prone to develop severe forms of disease with fatal outcomes. Metabolic diseases such as obesity and T2D alter the balance of innate and adaptive responses. Both diseases share common features characterized by augmented adiposity associated with a chronic systemic low-grade inflammation, senescence, immunoglobulin glycation, and abnormalities in the number and function of adaptive immune cells. In obese and T2D patients infected by SARS-CoV-2, where immune cells are already hampered, this response appears to be stronger. In this review, we describe the abnormalities of the immune system, and summarize clinical findings of COVID-19 patients with pre-existing conditions such as obesity and T2D as this group is at greater risk of suffering severe and fatal clinical outcomes.
Collapse
Affiliation(s)
- Jorge Pérez-Galarza
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | | | - Cristina Cañadas
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Diana Aguirre
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ronny Pibaque
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ricardo Bedón
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
- Hospital General Docente de Calderón, Quito 170201, Ecuador
| | - Fernando Sempértegui
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | - Hemmo Drexhage
- Immunology Department, Erasmus Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lucy Baldeón
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| |
Collapse
|
128
|
Orlov M, Morrell ED, Dmyterko V, Hamerman JA, Wurfel MM, Mikacenic C. Endotracheal aspirates contain a limited number of lower respiratory tract immune cells. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:14. [PMID: 33407749 PMCID: PMC7787413 DOI: 10.1186/s13054-020-03432-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Marika Orlov
- Department of Veterans Affairs, Puget Sound, Hospitalist and Specialty Medicine, Seattle, WA, 98108, USA.
| | - Eric D Morrell
- Department of Veterans Affairs, Puget Sound, Hospitalist and Specialty Medicine, Seattle, WA, 98108, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, 98104, USA
| | - Victoria Dmyterko
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, 98104, USA
| | | | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, 98104, USA
| | | |
Collapse
|
129
|
MAIT cells, guardians of skin and mucosa? Mucosal Immunol 2021; 14:803-814. [PMID: 33753874 PMCID: PMC7983967 DOI: 10.1038/s41385-021-00391-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mucosal Associated Invariant T (MAIT) cells are evolutionary conserved innate-like T cells able to recognize bacterial and fungal ligands derived from vitamin B biosynthesis. These cells are particularly present in liver and blood but also populate mucosal sites including skin, oral, intestinal, respiratory, and urogenital tracts that are in contact with the environment and microbiota of their host. Growing evidence suggests important involvement of MAIT cells in safeguarding the mucosa against external microbial threats. Simultaneously, mucosal MAIT cells have been implicated in immune and inflammatory pathologies affecting these organs. Here, we review the specificities of mucosal MAIT cells, their functions in the protection and maintenance of mucosal barriers, and their interactions with other mucosal cells.
Collapse
|
130
|
Abstract
Mucosal associated invariant T (MAIT) cells were first identified as specific for bacterial, mycobacterial, and fungal organisms, which detect microbially-derived biosynthetic ligands presented by MHC-related protein 1 (MR1). More recently two unexpected, additional roles have been identified for these ancient and abundant cells: a TCR-depen-dent role in tissue repair and a TCR-independent role in antiviral host defence. Data from several classes of viral disease shows their capability for activation by the cytokines interleukin (IL)-12, IL-15, IL-18, and type I interferon. MAIT cells are abundant at mucosal surfaces, particularly in the lung, and it seems likely a primary reason for their striking evolutionary conservation is an important role in early innate defence against respiratory infections, including both bacteria and viruses. Here we review evidence for their TCR-independent activation, observational human data for their activation in influenza A virus, and in vivo murine evidence of their protection against severe influenza A infection, mediated at least partially via IFN-gamma. We then survey evidence emerging from other respiratory viral infections including recent evidence for an important adjuvant role in adenovirus infection, specifically chimpanzee adenoviruses used in recent coronavirus vaccines, and data for strong associations between MAIT cell responses and adverse outcomes from coronavirus-19 (COVID-19) disease. We speculate on potential translational implications of these findings, either using corticosteroids or inhibitory ligands to suppress deleterious MAIT cell responses, or the potential utility of stimulatory MR1 ligands to boost MAIT cell frequencies to enhance innate viral defences.
Collapse
Affiliation(s)
- Yuqing Long
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK
- Chinese Academy of Medical Sciences Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK
| |
Collapse
|
131
|
Hanna SJ, Codd AS, Gea-Mallorqui E, Scourfield DO, Richter FC, Ladell K, Borsa M, Compeer EB, Moon OR, Galloway SAE, Dimonte S, Capitani L, Shepherd FR, Wilson JD, Uhl LFK, Gallimore AM, Milicic A. T cell phenotypes in COVID-19 - a living review. OXFORD OPEN IMMUNOLOGY 2020; 2:iqaa007. [PMID: 33575657 PMCID: PMC7798577 DOI: 10.1093/oxfimm/iqaa007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients' long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation.
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK,Correspondence address. Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK. Tel: +44 29206 87342, E-mail:
| | - Amy S Codd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Ester Gea-Mallorqui
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Felix C Richter
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Mariana Borsa
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Owen R Moon
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sarah A E Galloway
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sandra Dimonte
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Freya R Shepherd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Joseph D Wilson
- Medical Sciences Division, University of Oxford, Headington, Oxford, OX3 9DU
| | - Lion F K Uhl
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | | | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Anita Milicic
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
132
|
Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends Microbiol 2020; 29:504-516. [PMID: 33353796 DOI: 10.1016/j.tim.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.
Collapse
|
133
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
134
|
Abstract
In this issue of JEM, Jouan et al. (https://doi.org/10.1084/jem.20200872) report the activation and skewed function of unconventional T cells in severe COVID-19 patients. This may reflect a role in COVID-19 immunity or pathogenesis and potentially identifies new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas S. Fulford
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
135
|
Wang X, Gui J. Cell-mediated immunity to SARS-CoV-2. Pediatr Investig 2020; 4:281-291. [PMID: 33376956 PMCID: PMC7768298 DOI: 10.1002/ped4.12228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses spread unscrupulously virtually every corner on the planet in a very quick speed leading to an unprecedented world pandemic of COVID-19 claiming a great many of people's life. Paramount importance has been given to the studies on the virus itself including genomic variation and viron structure, as well as cell entry pathway and tissue residence. Other than that, to learn the main characteristic of host immunity responding to SARS-CoV-2 infection is an eminent task for restraining virus and controlling disease progress. Beside antibody production in response to SARS-CoV-2 infection, host cellular immunity plays an indispensable role in impeding virus replication and expansion at various stages of COVID-19 disease. In this review, we summarized the recent knowledge regarding the aberrant regulation and dysfunction of multiple immune cells during SARS-CoV-2 infection. This includes the dysregulation of immune cell number, Th polarity, cytokine storm they implicated with, as well as cell function exhaustion after chronic virus stimulation. Notwithstanding that many obstacles remain to be overcome, studies on immunotherapy for COVID-19 treatment based on the known features of host immunity in response to SARS-CoV-2 infection offer us tangible benefits and hope for making this SARS-CoV-2 pandemic under control.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Tumor ImmunologyBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| | - Jingang Gui
- Laboratory of Tumor ImmunologyBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| |
Collapse
|
136
|
Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020; 11:588409. [PMID: 33335518 PMCID: PMC7736111 DOI: 10.3389/fmicb.2020.588409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperactivation of the host immune system during infection by SARS-CoV-2 is the leading cause of death in COVID-19 patients. It is also evident that patients who develop mild/moderate symptoms and successfully recover display functional and well-regulated immune response. Whereas a delayed initial interferon response is associated with severe disease outcome and can be the tipping point towards immunopathological deterioration, often preceding death in COVID-19 patients. Further, adaptive immune response during COVID-19 is heterogeneous and poorly understood. At the same time, some studies suggest activated T and B cell response in severe and critically ill patients and the presence of SARS-CoV2-specific antibodies. Thus, understanding this problem and the underlying molecular pathways implicated in host immune function/dysfunction is imperative to devise effective therapeutic interventions. In this comprehensive review, we discuss the emerging immunopathological determinants and the mechanism of virus evasion by the host cell immune system. Using the knowledge gained from previous respiratory viruses and the emerging clinical and molecular findings on SARS-CoV-2, we have tried to provide a holistic understanding of the host innate and adaptive immune response that may determine disease outcome. Considering the critical role of the adaptive immune system during the viral clearance, we have presented the molecular insights of the plausible mechanisms involved in impaired T cell function/dysfunction during various stages of COVID-19.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Haryana, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
137
|
Leeansyah E, Hey YY, Sia WR, Ng JHJ, Gulam MY, Boulouis C, Zhu F, Ahn M, Mak JYW, Fairlie DP, Kwa ALH, Sandberg JK, Wang LF. MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto. iScience 2020; 23:101876. [PMID: 33344919 PMCID: PMC7736909 DOI: 10.1016/j.isci.2020.101876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023] Open
Abstract
Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense. MR1T cells are present in Pa bats and react to MR1-presented microbial metabolites Pa MR1T cells upregulate Prf and MAIT-associated TFs upon culture with MR1 agonists Upon stimulation, Pa MR1T cells rapidly and transiently express TNF and IL-17 Pa MR1T cells kill E. coli and MR1 agonist-pulsed cells in an MR1-dependent manner
Collapse
Affiliation(s)
- Edwin Leeansyah
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden.,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055 Shenzhen, People's Republic of China
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Justin Han Jia Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Lay Hoon Kwa
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| |
Collapse
|
138
|
Xu G, Qi F, Li H, Yang Q, Wang H, Wang X, Liu X, Zhao J, Liao X, Liu Y, Liu L, Zhang S, Zhang Z. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov 2020; 6:73. [PMID: 33101705 PMCID: PMC7574992 DOI: 10.1038/s41421-020-00225-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanism that leads to immune dysfunction in severe coronavirus disease 2019 (COVID-19) is crucial for the development of effective treatment. Here, using single-cell RNA sequencing, we characterized the peripheral blood mononuclear cells (PBMCs) from uninfected controls and COVID-19 patients and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DCs) and increased monocytes resembling myeloid-derived suppressor cells (MDSCs), which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to healthy controls. In contrast, the proportions of various activated CD4+ T cell subsets among the T cell compartment, including Th1, Th2, and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients' peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4, CCL5, etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the severe patients' lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Hanjie Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Xin Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Xiaoju Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Xuejiao Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Lei Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112 China
| |
Collapse
|
139
|
Hanidziar D, Robson SC. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 320:L12-L16. [PMID: 33050737 PMCID: PMC7816427 DOI: 10.1152/ajplung.00304.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxygen is the most commonly used therapy in hospitalized patients with COVID-19. In those patients who develop worsening pneumonia and acute respiratory distress syndrome (ARDS), high concentrations of oxygen may need to be administered for prolonged time periods, often together with mechanical ventilation. Hyperoxia, although lifesaving and essential for maintaining adequate oxygenation in the short term, may have adverse long-term consequences upon lung parenchymal structure and function. How hyperoxia per se impacts lung disease in COVID-19 has remained largely unexplored. Numbers of experimental studies have previously established that hyperoxia is associated with deleterious outcomes inclusive of perturbations in immunologic responses, abnormal metabolic function, and alterations in hemodynamics and alveolar barrier function. Such changes may ultimately progress into clinically evident lung injury and adverse remodeling and result in parenchymal fibrosis when exposure is prolonged. Given that significant exposure to hyperoxia in patients with severe COVID-19 may be unavoidable to preserve life, these sequelae of hyperoxia, superimposed on the cytopathic effects of SARS-CoV-2 virus, may well impact pathogenesis of COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Dusan Hanidziar
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Simon C Robson
- Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
140
|
Dequin PF, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, François B, Aubron C, Ricard JD, Ehrmann S, Jouan Y, Guillon A, Leclerc M, Coffre C, Bourgoin H, Lengellé C, Caille-Fénérol C, Tavernier E, Zohar S, Giraudeau B, Annane D, Le Gouge A. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA 2020; 324:1298-1306. [PMID: 32876689 PMCID: PMC7489432 DOI: 10.1001/jama.2020.16761] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Importance Coronavirus disease 2019 (COVID-19) is associated with severe lung damage. Corticosteroids are a possible therapeutic option. Objective To determine the effect of hydrocortisone on treatment failure on day 21 in critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute respiratory failure. Design, Setting, and Participants Multicenter randomized double-blind sequential trial conducted in France, with interim analyses planned every 50 patients. Patients admitted to the intensive care unit (ICU) for COVID-19-related acute respiratory failure were enrolled from March 7 to June 1, 2020, with last follow-up on June 29, 2020. The study intended to enroll 290 patients but was stopped early following the recommendation of the data and safety monitoring board. Interventions Patients were randomized to receive low-dose hydrocortisone (n = 76) or placebo (n = 73). Main Outcomes and Measures The primary outcome, treatment failure on day 21, was defined as death or persistent dependency on mechanical ventilation or high-flow oxygen therapy. Prespecified secondary outcomes included the need for tracheal intubation (among patients not intubated at baseline); cumulative incidences (until day 21) of prone position sessions, extracorporeal membrane oxygenation, and inhaled nitric oxide; Pao2:Fio2 ratio measured daily from day 1 to day 7, then on days 14 and 21; and the proportion of patients with secondary infections during their ICU stay. Results The study was stopped after 149 patients (mean age, 62.2 years; 30.2% women; 81.2% mechanically ventilated) were enrolled. One hundred forty-eight patients (99.3%) completed the study, and there were 69 treatment failure events, including 11 deaths in the hydrocortisone group and 20 deaths in the placebo group. The primary outcome, treatment failure on day 21, occurred in 32 of 76 patients (42.1%) in the hydrocortisone group compared with 37 of 73 (50.7%) in the placebo group (difference of proportions, -8.6% [95.48% CI, -24.9% to 7.7%]; P = .29). Of the 4 prespecified secondary outcomes, none showed a significant difference. No serious adverse events were related to the study treatment. Conclusions and Relevance In this study of critically ill patients with COVID-19 and acute respiratory failure, low-dose hydrocortisone, compared with placebo, did not significantly reduce treatment failure (defined as death or persistent respiratory support) at day 21. However, the study was stopped early and likely was underpowered to find a statistically and clinically important difference in the primary outcome. Trial Registration ClinicalTrials.gov Identifier: NCT02517489.
Collapse
Affiliation(s)
- Pierre-François Dequin
- Médecine Intensive-Réanimation, CHU de Tours, Tours, France
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- INSERM CIC1415, CHU de Tours, Tours, France
| | - Nicholas Heming
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré (GHU APHP Université Paris Saclay), Garches, France, and RHU RECORDS and FHU SEPSIS
- INSERM U1173, Université de Versailles SQY-Université Paris Saclay, Garches, France
| | - Ferhat Meziani
- Médecine Intensive Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR 1260, Université de Strasbourg, Strasbourg, France
| | | | - Guillaume Voiriot
- Médecine Intensive Réanimation, Hôpital Tenon (Assistance Publique–Hôpitaux de Paris), Paris, France
- Sorbonne Université, Paris, France
| | - Julio Badié
- Réanimation Polyvalente, Hôpital Nord Franche-Comté, Trevenans, France
| | - Bruno François
- Réanimation Polyvalente, CHU de Limoges, Limoges, France
- INSERM UMR 1092, Université de Limoges, Limoges, France
- INSERM CIC 1435, CHU de Limoges, Limoges, France
| | - Cécile Aubron
- Médecine Intensive Réanimation, CHRU de Brest, Brest, France
- Université de Bretagne Occidentale, Brest, France
| | - Jean-Damien Ricard
- Université de Paris, IAME U1137, Médecine Intensive Réanimation, DMU ESPRIT, Hôpital Louis Mourier, Assistance Publique–Hôpitaux de Paris, Colombe, France
| | - Stephan Ehrmann
- Médecine Intensive-Réanimation, CHU de Tours, Tours, France
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- INSERM CIC1415, CHU de Tours, Tours, France
| | - Youenn Jouan
- Médecine Intensive-Réanimation, CHU de Tours, Tours, France
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- INSERM CIC1415, CHU de Tours, Tours, France
| | - Antoine Guillon
- Médecine Intensive-Réanimation, CHU de Tours, Tours, France
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- INSERM CIC1415, CHU de Tours, Tours, France
| | - Marie Leclerc
- Délégation à la Recherche Clinique et à l’Innovation, CHU de Tours, Tours, France
| | - Carine Coffre
- Délégation à la Recherche Clinique et à l’Innovation, CHU de Tours, Tours, France
| | | | - Céline Lengellé
- Centre régional de pharmacovigilance et d'information sur le médicament, service de pharmacosurveillance, CHU de Tours, Tours, France
| | | | | | - Sarah Zohar
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bruno Giraudeau
- INSERM CIC1415, CHU de Tours, Tours, France
- Université de Tours, Université de Nantes, INSERM, SPHERE U1246, Tours, France
| | - Djillali Annane
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré (GHU APHP Université Paris Saclay), Garches, France, and RHU RECORDS and FHU SEPSIS
- INSERM U1173, Université de Versailles SQY-Université Paris Saclay, Garches, France
| | | |
Collapse
|
141
|
Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, Perez-Potti A, Sekine T, Rivera-Ballesteros O, Gredmark-Russ S, Rooyackers O, Folkesson E, Eriksson LI, Norrby-Teglund A, Ljunggren HG, Björkström NK, Aleman S, Buggert M, Klingström J, Strålin K, Sandberg JK. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci Immunol 2020; 5:eabe1670. [PMID: 32989174 PMCID: PMC7857393 DOI: 10.1126/sciimmunol.abe1670] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in the circulation of patients with active disease paired with strong activation. Furthermore, transcriptomic analyses indicated significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and later release back into the circulation when disease is resolved. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their possible involvement in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - André Perez-Potti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Elin Folkesson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|