101
|
Ginsberg MD, Zhao W, Belayev L, Alonso OF, Liu Y, Loor JY, Busto R. Diminution of metabolism/blood flow uncoupling following traumatic brain injury in rats in response to high-dose human albumin treatment. J Neurosurg 2001; 94:499-509. [PMID: 11235957 DOI: 10.3171/jns.2001.94.3.0499] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECT The authors have recently demonstrated that high-dose human albumin is markedly neuroprotective in experimental traumatic brain injury (TBI) and cerebral ischemia. The pathophysiology of TBI involves acute uncoupling of cerebral glucose utilization and blood flow. The intent of this study was to establish whether the use of human albumin therapy in a model of acute TBI would influence this phenomenon. METHODS Anesthetized, physiologically regulated rats received moderate (1.5-2 atm) fluid-percussion injury to the parietal lobe. Fifteen minutes after trauma or sham injury, rats in one group received human albumin (2.5 g/kg) administered intravenously and those in another group received 0.9% saline vehicle. At 60 minutes and 24 hours posttrauma, autoradiographic studies of local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCMRglu) were conducted, and the LCMRglu/LCBF ratio was determined. Sham-injured rats had normal levels of LCBF and LCMRglu, and no differences between vehicle- and albumin-treated rats were evident. Sixty minutes after TBI, LCBF was moderately reduced bilaterally in vehicle-treated rats, whereas in albumin-treated animals, the LCBF contralateral to the side of injury was generally normal. Despite acutely depressed LCBF, LCMRglu in vehicle-treated rats at 60 minutes was paradoxically normal bilaterally, and foci of elevated LCMRglu were noted in the ipsilateral hippocampus and thalamus. By contrast, in albumin-treated rats studied 60 minutes post-TBI, reduced LCMRglu values were measured in the ipsilateral caudoputamen and parietal cortex, whereas LCMRglu in other ipsilateral and contralateral sites did not differ from that measured in sham-injured animals. The metabolism/blood flow ratio was normal in sham-injured rats, but became markedly elevated in vehicle-treated rats 60 minutes post-TBI (on average, by threefold ipsilaterally and 2.1-fold contralaterally). By contrast, the mean metabolism/blood flow ratio in albumin-treated animals was elevated by only 1.6-fold ipsilaterally and was normal contralaterally. Twenty-four hours after TBI, LCBF contralateral to the side of injury had generally returned to normal levels in the albumin-treated group. CONCLUSIONS These results demonstrate that human albumin therapy benefits the posttraumatic brain by diminishing the pronounced metabolism > blood flow dissociation that would otherwise occur within the 1st hour after injury. Viewed together with our previous evidence of histological neuroprotection, these findings indicate that human albumin therapy may represent a desirable treatment modality for acute TBI.
Collapse
Affiliation(s)
- M D Ginsberg
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Butovsky O, Hauben E, Schwartz M. Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7‐2 (
CD86
) and prevention of cyst formation. FASEB J 2001. [DOI: 10.1096/fsb2fj000550fje] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oleg Butovsky
- Department of Neurobiology The Weizmann Institute of Science Rehovot Israel
| | - Ehud Hauben
- Department of Neurobiology The Weizmann Institute of Science Rehovot Israel
| | - Michal Schwartz
- Department of Neurobiology The Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
103
|
Blázquez C, Geelen MJ, Velasco G, Guzmán M. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 2001; 489:149-53. [PMID: 11165240 DOI: 10.1016/s0014-5793(01)02089-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fatty acids induce apoptosis in primary astrocytes by enhancing ceramide synthesis de novo. The possible role of the AMP-activated protein kinase (AMPK) in the control of apoptosis was studied in this model. Long-term stimulation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevented apoptosis. AICAR blunted fatty acid-mediated induction of serine palmitoyltransferase and ceramide synthesis de novo, without affecting fatty acid synthesis and oxidation. Prevention of ceramide accumulation by AICAR led to a concomitant blockade of the Raf-1/extracellular signal-regulated kinase cascade, which selectively mediates fatty acid-induced apoptosis. Data indicate that AMPK may protect cells from apoptosis induced by stress stimuli.
Collapse
Affiliation(s)
- C Blázquez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
104
|
Djali S, Dawson LA. Characterization of endogenous amino acid efflux from hippocampal slices during chemically-induced ischemia. Neurochem Res 2001; 26:135-43. [PMID: 11478740 DOI: 10.1023/a:1011094728469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using sodium (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia, we have characterized the endogenous release of excitatory and inhibitory amino acids from superfused hippocampal slices. Chemical ischemia produced an azide (1-30 mM) dose-dependent increase in the efflux of glutamate, aspartate and GABA. These increases were attenuated to varying degrees by removal of Ca2+, or the addition of the voltage dependent Na+-channel blocker tetrodotoxin (TTX), the selective Ca2+ channel blockers conotoxin MVIIA, MVIIC, and nifedipine, the NMDA antagonist MK801, the AMPA antagonist GYKI-52466. Similarly, addition of the GLT-1 glutamate transport inhibitor dihydrokainate (DHK) and the anti-estrogen/anion channel blocker tamoxifen also attenuated the efflux of glutamate and GABA. It would therefore appear that the increases in amino acid efflux induced by chemical ischemia originates from both the neuronal pool, via conventional exocytotic release, and glial sources via reversal of the GLT-1 transporter and anion channel regulated cell swelling.
Collapse
Affiliation(s)
- S Djali
- Neuroscience Research, Wyeth Ayerst, Princeton, NJ 08543-8000, USA
| | | |
Collapse
|
105
|
Tariq M, Khan HA, Al Moutaery K, Al Deeb S. Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res Bull 2001; 54:77-82. [PMID: 11226716 DOI: 10.1016/s0361-9230(00)00427-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies provide evidence that phospholipase A2 (PLA2) may play a role in the development of experimental parkinsonism. In this investigation an attempt was made to determine a possible protective effect of quinacrine (QNC), a PLA2 inhibitor on MPTP as well as 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rodents. For MPTP studies, adult male mice (C57 BL) were treated with MPTP (30 mg/kg, i.p.) daily for 5 days. QNC was injected i.p. in the doses of 0, 10, 30 and 60 mg/kg daily 30 min before MPTP in four different groups. Two other groups of mice received either vehicle (control) or a high dose of QNC (60 mg/kg). Two hours after the last injection of MPTP, striata were collected for the analysis of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and glutathione (GSH). For the 6-OHDA study, male Wistar rats were infused with 6-OHDA (60 microg) in the right striatum under chloral hydrate anesthesia. The rats in different groups were treated with 0, 5, 15 and 30 mg/kg QNC (i.p.) for 4 days, while first injection was given 30 min before 6-OHDA. On day 5, rats were sacrificed and striata were stored at -80 degrees C. Administration of MPTP or 6-OHDA significantly reduced striatal DA, which was significantly attenuated by QNC. Concomitant treatment with QNC also protected animals against MPTP or 6-OHDA-induced depletion of striatal GSH. Our findings clearly suggest the role of PLA2 in MPTP and 6-OHDA induced neurotoxicity and oxidative stress. However, further studies are warranted to explore the therapeutic potential of PLA2 inhibitors for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M Tariq
- Neuroscience Research Group, Armed Forces Hospital, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
106
|
Dawson LA, Djali S, Gonzales C, Vinegra MA, Zaleska MM. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 2000; 53:767-76. [PMID: 11179841 DOI: 10.1016/s0361-9230(00)00363-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using middle cerebral artery occlusion (MCAO) and in vivo microdialysis, we have evaluated the changes in extracellular concentrations of the excitatory amino acids (EAA) glutamate and aspartate during varying periods of MCAO (0, 30, 60 min) in the striatum of spontaneously hypertensive rats (SHR). A positive correlation between occlusion time-dependent elevations in EAAs and the resulting ischemic injury was observed. This is the first demonstration of the temporal profile of EAA efflux during transient focal ischemia in SHRs. Possible sources and mechanisms of ischemia-induced EAA efflux were examined during 60 min of MCAO. Removal of Ca(2+) from the microdialysis infusion media significantly attenuated ischemia-induced increases in both glutamate (from ischemic peak of 4892 +/- 1298 to 1144 +/- 666% of preischemic values) and aspartate (from 2703 +/- 682 to 2090 +/- 599% of preischemic values). Similarly, infusion of the voltage dependent Na(+) channel blocker tetrodotoxin (TTX; 10 microM) significantly attenuated MCAO-induced increases in glutamate (to 1313 +/- 648%) and aspartate (to 359 +/- 114%). Infusion of the GLT-1 selective nontransportable inhibitor, dihydrokainate (DHK; 1 mM) also significantly attenuated the ischemia-induced increases in both EAAs (1285 +/- 508 and 1366 +/- 741% of the preischemic levels, respectively). These results indicate that during transient focal ischemia the increase in extracellular EAAs originates from both the neuronal pool, via conventional exocytotic release, and glial sources via the reversal of the GLT-1 transporter.
Collapse
Affiliation(s)
- L A Dawson
- Neuroscience Research, Wyeth Ayerst, Princeton, NJ 08543-8000, USA.
| | | | | | | | | |
Collapse
|
107
|
Blázquez C, Galve-Roperh I, Guzmán M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J 2000; 14:2315-22. [PMID: 11053253 DOI: 10.1096/fj.00-0122com] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent observations support the importance of ceramide synthesis de novo in the induction of apoptosis. However, the downstream targets of de novo-synthesized ceramide are unknown. Here we show that palmitate incorporated into ceramide and induced apoptotic DNA fragmentation in astrocytes. These effects of palmitate were exacerbated when fatty acid breakdown was uncoupled and were not evident in neurons, which show a very low capacity to take up and metabolize palmitate. Palmitate-induced apoptosis of astrocytes was prevented by L-cycloserine and fumonisin B1, two inhibitors of ceramide synthesis de novo, and by PD098059, an inhibitor of the extracellular signal-regulated kinase (ERK) cascade. Accordingly, palmitate activated ERK by a process that was dependent on ceramide synthesis de novo and Raf-1, but independent of kinase suppressor of Ras. Other potential targets of ceramide in the control of cell fate, namely, c-Jun amino-terminal kinase, p38 mitogen-activated protein kinase, and protein kinase B, were not significantly affected in astrocytes exposed to palmitate. Results show that the Raf-1/ERK cascade is the selective downstream target of de novo-synthesized ceramide in the induction of apoptosis in astrocytes and also highlight the importance of ceramide synthesis de novo in apoptosis of astrocytes, which might have pathophysiological relevance.
Collapse
Affiliation(s)
- C Blázquez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain
| | | | | |
Collapse
|
108
|
Hebert MA, O'Callaghan JP. Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann N Y Acad Sci 2000; 914:238-62. [PMID: 11085325 DOI: 10.1111/j.1749-6632.2000.tb05200.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive gliosis is the most prominent response to diverse forms of central nervous system (CNS) injury. The signaling events that mediate this characteristic response to neural injury are under intense investigation. Several studies have demonstrated the activation of phosphoproteins within the mitogen-activated protein kinase (MAPK) and Janus kinase (JAK) pathways following neural insult. These signaling pathways may be involved or responsible for the glial response following injury, by virtue of their ability to phosphorylate and dynamically regulate the activity of various transcription factors. This study sought to delineate, in vivo, the relative contribution of MAPK- and JAK-signaling components to reactive gliosis as measured by induction of glial-fibrillary acidic protein (GFAP), following chemical-induced neural damage. At time points (6, 24, and 48 h) following methamphetamine (METH, 10 mg/kg x 4, s.c.) administration, female C57BL/6J mice were sacrificed by focused microwave irradiation, a technique that preserves steady-state phosphorylation. Striatal (target) and nontarget (hippocampus) homogenates were assayed for METH-induced changes in markers of dopamine (DA) neuron integrity as well as differences in the levels of activated phosphoproteins. GFAP upregulation occurred as early as 6 h, reaching a threefold induction 48 h following METH exposure. Neurotoxicant-induced reductions in striatal levels of DA and tyrosine hydroxylase (TH) paralleled the temporal profile of GFAP induction. Blots of striatal homogenates, probed with phosphorylation-state specific antibodies, demonstrated significant changes in activated forms of extracellular-regulated kinase 1/2 (ERK 1/2), c-jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), MAPK/ERK kinase (MEK1/2), 70-kDa ribosomal S6 kinase (p70 S6), cAMP responsive element binding protein (CREB), and signal transducer and activator of transcription 3 (STAT3). MAPK-related phosphoproteins exhibited an activation profile that peaked at 6 h, remained significantly increased at 24, and fell to baseline levels 48 h following neurotoxicant treatment. The ribosomal S6 kinase was enhanced over 60% for all time points examined. Immunoreactivity profiles for the transcription factors CREB and STAT3 indicated maximal increases in phosphorylation occurring at 24 h, and measuring greater than 2- or 17-fold, respectively. Specific signaling events were found to occur with a time course suggestive of their involvement in the gliotic response. The toxicant-induced activation of these growth-associated signaling cascades suggests that these pathways could be obligatory for the triggering and/or persistence of reactive gliosis and may therefore serve as potential targets for modulation of glial response to neural damage.
Collapse
Affiliation(s)
- M A Hebert
- Department of Health & Human Services, Public Health Service, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505-2888, USA
| | | |
Collapse
|
109
|
Feldman JD, Vician L, Crispino M, Hoe W, Baudry M, Herschman HR. The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem 2000; 74:2227-38. [PMID: 10820182 DOI: 10.1046/j.1471-4159.2000.0742227.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt-inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction.
Collapse
Affiliation(s)
- J D Feldman
- Department of Pediatrics, University of Southern California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
110
|
Abstract
Autoimmunity is usually considered only as a cause of disease; nevertheless, human T-cell repertoires are filled naturally with autoimmune lymphocytes. Here, we review evidence that autoimmune T cells can help heal damaged tissues, indicating that natural autoimmunity could also be a cause of health.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
111
|
Thang SH, Yasuda Y, Umezawa M, Murayama T, Nomura Y. Inhibition of phospholipase A(2) activity by S-nitroso-cysteine in a cyclic GMP-independent manner in PC12 cells. Eur J Pharmacol 2000; 395:183-91. [PMID: 10812048 DOI: 10.1016/s0014-2999(00)00172-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arachidonic acid and nitric oxide (NO) act as retrograde and intercellular messengers in the nervous system. Regulation of cyclooxygenase is well established, but regulation of phospholipase A(2), the enzyme responsible for the liberation of arachidonic acid, by NO has not been thoroughly investigated. Using the PC12 cell line as a neuronal model, we studied the effects of exogenous NO compounds on arachidonic acid release. Incubation with Ca(2+) ionophores or mastoparan (wasp venom peptide) stimulated [3H]arachidonic acid release from prelabeled PC12 cells. [3H]Arachidonic acid release was inhibited by cytosolic phospholipase A(2) inhibitors, but not by dithiothreitol. A cytosolic phospholipase A(2) protein band with a molecular mass of approximately 100 kDa was detected by immunoblotting. S-Nitroso-cysteine inhibited basal and stimulated [3H]arachidonic acid release in concentration-dependent manners. Other NO compounds such as sodium nitroprusside and S-nitroso-N-acetylpenicillamine did not affect [3H]arachidonic acid release. N-Ethylmaleimide also inhibited [3H]arachidonic acid release. The inhibitory effects of S-nitroso-cysteine and N-ethylmaleimide were irreversible, because [3H]arachidonic acid release from PC12 cells preincubated with S-nitroso-cysteine or N-ethylmaleimide was much lower than that from nontreated cells. These findings suggest (a) cytosolic phospholipase A(2) is activated by Ca(2+) or mastoparan, and inhibited by S-nitroso-cysteine in a cyclic GMP-independent manner, (b) N-ethylmaleimide also inhibits cytosolic phospholipase A(2) and arachidonic acid release in PC12 cells. S-Nitroso-cysteine can regulate the production of other retrograde messenger arachidonic acid.
Collapse
Affiliation(s)
- S H Thang
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
112
|
Samoilov MO, Mokrushin AA. The role of volume transmission of adaptogenic signals in forming the adaptive reactions of the brain. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:243-54. [PMID: 10970018 DOI: 10.1007/bf02471777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review presents published data and results from our own studies providing evidence for the important role of volume, non-synaptic transmission of adaptogenic signals in the mechanisms forming the long-term adaptive reactions of the brain. The importance of chemical factors involved in volume transmission and secreted by cells in this process is discussed. Special attention is paid to peptides-possible mediators of volume transmission of adaptive-type signals. Evidence has been obtained for the presence of peptides and their role in the mechanism of development of adaptive brain reactions of different origins, especially those arising in response to tetanic stimulation of neurons and transient hypoxic stress. An original method for testing for the effects of neuromodulator factors released by cells in donor slices subjected to these treatments on recipient slices was used to show that these factors had pronounced effects on synaptic transmission and could induce long-term potentiation of synaptic transmission, protecting against functional derangements due to prolonged anoxia. Blockade of protein synthesis in donor slices subjected to adaptogenic treatments suppressed the appearance of these effects. The review concludes with a discussion of the mechanisms of interaction of the synaptic and volume transmission of signals involved in forming long-term adaptive brain reactions.
Collapse
Affiliation(s)
- M O Samoilov
- Laboratory of the Regulation of Brain Neuron Function, IP Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg
| | | |
Collapse
|
113
|
Abstract
Spreading depression (SD) is a wave of sustained depolarization challenging the energy metabolism of the cells without causing irreversible damage. However, brain injury, especially focal ischemic stroke, triggers SD-like waves, which in the vicinity of the original damage site contribute to enlargement of the dying brain tissue. Brain injury induces expression of several genes, which are thought to play a role in neuronal death, and therefore represent potential targets for therapy. One such gene is cyclooxygenase-2 (COX-2), an inducible prostaglandin and superoxide producing enzyme. Here we review our recent studies on the regulation of COX-2 in SD.
Collapse
Affiliation(s)
- J Koistinaho
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
114
|
Yoshinaga N, Yasuda Y, Murayama T, Nomura Y. Possible involvement of cytosolic phospholipase A(2) in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res 2000; 855:244-51. [PMID: 10677596 DOI: 10.1016/s0006-8993(99)02340-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previously we reported that 1-methyl-4-phenylpyridinium ion (MPP(+)), a dopaminergic neurotoxin, induced apoptosis of GH3 cells established from rat anterior pituitary. In the present study, the role of MPP(+) along with that of other apoptotic factors such as Ca(2+) and H(2)O(2) in cell death was examined. Ionomycin induced DNA fragmentation and lactate dehydrogenase (LDH) leakage in GH3 cells. H(2)O(2) also induced LDH leakage. Co-addition of MPP(+), in conditions where MPP(+) had no effect by itself, enhanced ionomycin- and H(2)O(2)-induced cell death. Because the stimulation of phospholipase A(2) (PLA(2)) causing arachidonic acid (AA) release has been proposed to be involved in neuronal cell death, the effect of MPP(+) on AA release in GH3 cells was investigated. MPP(+) treatment for 8 h enhanced ionomycin- and H(2)O(2)-stimulated AA release mediated by activation of cytosolic PLA(2) in a concentration-dependent manner, although MPP(+) by itself had no effect on AA release. An inhibitor of cytosolic PLA(2) inhibited MPP(+)-induced cell death. These findings suggest a synergistic effect of MPP(+) on Ca(2+)- and H(2)O(2)-induced cell death, and the involvement of cytosolic PLA(2) activation in MPP(+)-induced cell death in GH3 cells. Pretreatment with a caspase inhibitor or EGF did not modify the ionomycin- or H(2)O(2)-induced AA release, or enhancement by MPP(+), but the pretreatment inhibited the cell death in the presence and absence of MPP(+). The involvement of caspase(s) on activation of PLA(2) by MPP(+) was excluded, and EGF inhibited MPP(+)-induced cell death downstream of the AA release.
Collapse
Affiliation(s)
- N Yoshinaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
115
|
Homayoun P, Parkins NE, Soblosky J, Carey ME, Rodriguez de Turco EB, Bazan NG. Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem Res 2000; 25:269-76. [PMID: 10786712 DOI: 10.1023/a:1007583806138] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotrauma activates the release of membrane phospholipid-derived second messengers, such as free arachidonic acid (20:4n-6, AA) and diacylglycerols (DAGs). In the present study, we analyze the effect of cortical impact injury of low-grade severity applied to the rat frontal right sensory-motor cortex (FRC) on the accumulation of free fatty acids (FFAs) and DAGs in eight brain areas 30 min and 24 hours after the insult. At these times, accumulation of FFAs and DAGs occurred mainly in the damaged FRC. The cerebellum was the only other brain area that displayed a significant accumulation of DAGs by day one post-injury. By 30 min, accumulation of free AA in the FRC displayed the greatest relative increase (300% over sham value), followed by free docosahexaenoic acid (22:6n-3, DHA, 150%), while both 20:4-DAGs and 22:6-DAGs were increased 100% over sham values. At day one, free 22:6 and 22:6-DAGs showed the greatest increase (590% and 230%, respectively). These results suggest that TBI elicits the hydrolysis of phospholipids enriched in excitable membranes, targeting early on 20:4-phospholipids (by 30 min post- trauma) and followed 24 hours later by preferential hydrolysis of DHA-phospholipids. These lipid metabolic changes may contribute to the initiation and maturation of neuronal and fiber track degeneration observed following cortical impact injury.
Collapse
Affiliation(s)
- P Homayoun
- Louisiana State University Health Sciences Center, Neuroscience Center of Excellence, New Orleans, USA
| | | | | | | | | | | |
Collapse
|
116
|
Toborek M, Garrido R, Malecki A, Kaiser S, Mattson MP, Hennig B, Young B. Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp Neurol 2000; 161:609-20. [PMID: 10686080 DOI: 10.1006/exnr.1999.7308] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary spinal cord trauma can initiate a cascade of pathophysiologic events which markedly contribute to the expansion and amplification of the primary insult. The detailed mechanisms of these secondary neurochemical reactions are largely unknown; however, they involve membrane lipid derangements with the release of free fatty acids, in particular, arachidonic acid (AA). AA can induce several injury effects on spinal cord neurons. We hypothesize that upregulation of nitric oxide synthase (NOS) is among the most important mechanisms of arachidonic-acid-induced neuronal dysfunction and that nicotine can attenuate this effect. To study these hypotheses, spinal cord neurons were exposed to AA and/or nicotine, and several markers of neuronal nitric oxide synthase (nNOS) metabolism were measured. In addition, cotreatments with either inhibitors of nicotinic receptors or inhibitors of specific NOS isoforms were employed. Treatment with AA markedly increased activity of nNOS, as well as mRNA and protein levels of this enzyme. Changes in nNOS expression were accompanied by an increase in cellular cGMP and medium nitrite levels. Pretreatment with nicotine decreased AA-induced overexpression of nNOS and elevation of nitrite levels. In addition, it appeared that these nicotine effects could be partially modulated both by the alpha7 nicotinic receptors or by nonreceptor mechanisms. Alternatively, the observed changes could also be mediated by an alternate nicotinic receptor mechanism which is not blocked by alpha-bungarotoxin or mecamylamine. Results of the present study indicate that exposure to AA can lead to induction of nNOS in cultured spinal cord neurons. In addition, nicotine can exert a neuroprotective effect by attenuation of AA-induced upregulation of nNOS metabolism. These data may have therapeutic implications for the treatment of acute spinal cord trauma.
Collapse
Affiliation(s)
- M Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
117
|
Dash PK, Mach SA, Moore AN. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J Neurotrauma 2000; 17:69-81. [PMID: 10674759 DOI: 10.1089/neu.2000.17.69] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostaglandins, potent mediators of inflammation, are generated from arachidonic acid (AA) via the action of cyclooxygenase-1 and -2 (COX-1 and COX-2). In this study, we report that lateral cortical impact injury in rats significantly increases COX-2 protein levels both in the cortex surrounding the injury site and the ipsilateral hippocampus. COX-2 protein level was elevated as early as 3 h postinjury and persisted for up to 3 days. Increases in immunoreactivity were detected not only in the adjacent cortex and hippocampus, but were also observed in the contralateral cortex and hippocampus, the ipsilateral piriform cortex and the ipsilateral amygdaloid complex. COX-2 immunoreactive cells appear morphologically normal and do not present any of the characteristic features of apoptosis. Double immunostaining experiments using either a neuron-specific or an astroglial-specific marker show that the expression of COX-2 is localized almost exclusively in neuronal cells. Administration of the COX-2 inhibitor 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfona mide (celecoxib, marketed as Celebrex) worsens motor, but not cognitive, performance, suggesting that COX-2 induction following traumatic brain injury may play a protective role.
Collapse
Affiliation(s)
- P K Dash
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77225, USA.
| | | | | |
Collapse
|
118
|
Abstract
The genesis of immune privilege high in the evolutionary tree suggests that immune privilege is necessary, if not advantageous for the progressive development of the CNS. Upon reaching a certain degree of complexity, it seems as if the CNS was obliged to restrain the immune system from penetrating the blood-brain barrier. CNS autoimmunity against myelin proteins is known to be a contributory factor in the pathophysiology of multiple sclerosis and in the animal model of experimental autoimmune encephalomyelitis (EAE) (Wekerle, 1993). Such autoimmunity has therefore been regarded as detrimental and hence obviously undesirable. However, recent findings in our laboratory suggest that T-cell autoimmunity to CNS self-antigens (Moalem et al., 1999), if expressed at the right time and the right place, can do much good in the CNS. We shall review the experiments briefly, and then discuss their implications for our understanding of immune privilege and CNS maintenance after injury.
Collapse
Affiliation(s)
- I R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
119
|
Juurlink BH. Management of oxidative stress in the CNS: the many roles of glutathione. Neurotox Res 1999; 1:119-40. [PMID: 12835108 DOI: 10.1007/bf03033276] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An outline is given of mechanisms that generate oxidative stress and inflammation. Considered are the metabolic mechanisms that give rise to peroxides, the source of strong oxidants; the production of dicarbonyls that interact with macromolecules to form advanced glycation endproducts; and the role that activation of the transcription factor NF(Kappa)B has in the expression of pro-inflammatory genes. Management of oxidative stress is considered by outlining the central role of reduced glutathione (GSH) in peroxide scavenging, dicarbonyl scavenging and activation of NF(Kappa)B. Cellular GSH levels are dictated by the balance between consumption, oxidation of GSH, reduction of oxidized-glutathione, and synthesis. The rate-limiting enzyme in GSH synthesis is L-gamma-glutamyl-L-cysteine synthase, a phase II enzyme. Phase II enzyme inducers are found in many fruits and vegetables. It is suggested that dietary phase II enzyme inducers be investigated for their potential for preventing or retarding the development of degenerative diseases that have an underlying oxidative stress and inflammatory component.
Collapse
Affiliation(s)
- B H Juurlink
- Department of Anatomy and Cell Biology, The Cameco Multiple Sclerosis and Neuroscience Research Centre, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5 Canada.
| |
Collapse
|
120
|
|
121
|
Marmol F, Puig-Parellada P, Sanchez J, Trullas R. Influence of aging on thromboxane A2 and prostacyclin levels in rat hippocampal brain slices. Neurobiol Aging 1999; 20:695-7. [PMID: 10674436 DOI: 10.1016/s0197-4580(99)00069-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the influence of age (3, 18, 24 months) on Thromboxane A2 (TXA2) and Prostacyclin (PGI2) levels in hippocampal slices from F344/NHSD rats. A significant increase in TXA2 and PGI2 levels was observed in 18 and 24 months old compared to 3 months old animals. A significant reduction in the ratio TXA2/PGI2 produced by a higher increase in PGI2 was observed in 24 month old animals. The reduction in the TXA2/PGI2 ratio has been related to vasodilatory and antiaggregating effects that may contribute to protect the brain against neuronal damage.
Collapse
Affiliation(s)
- F Marmol
- Unitat de Farmacologia.IDIBAPS.(Institut d'Investigacions Biomèdiques August Pi I Sunyer) Facultat de Medicina, Universitat de Barcelona, Casanova, Spain
| | | | | | | |
Collapse
|
122
|
Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999; 22:295-9. [PMID: 10370250 DOI: 10.1016/s0166-2236(99)01405-8] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The limitation of immune responsiveness in the mammalian CNS has been attributed to the intricate nature of neuronal networks, which would appear to be more susceptible than other tissues to the threat of permanent disorganization when exposed to massive inflammation. This line of logic led to the conclusion that all forms of CNS inflammation would do more harm than good and, hence, the less immune intervention the better. However, mounting evidence indicates that some forms of immune-system intervention can help to protect or restore CNS integrity. We have shown that the innate immune system, represented by activated macrophages, can facilitate the processes of regeneration in the severed spinal cord. More recently, we found that autoimmune T cells that are specific for a component of myelin can protect CNS neurons from the catastrophic secondary degeneration, which extends traumatic lesions to adjacent CNS areas that did not suffer direct damage. The challenge, therefore, is to learn how to modify immune interactions in the traumatized CNS in order to promote its post-injury maintenance and repair.
Collapse
Affiliation(s)
- M Schwartz
- Dept of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
123
|
Dhillon HS, Carman HM, Zhang D, Scheff SW, Prasad MR. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus. J Neurotrauma 1999; 16:455-69. [PMID: 10391363 DOI: 10.1089/neu.1999.16.455] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lactate and free fatty acids (FFAs) were extracted from the cortices and hippocampi of rats subjected to sham operation, or mild (1.25 atm) or moderate (2.0 atm) fluid percussion (FP) injury, and their total tissue concentrations were measured. The elevation of lactate in the injured left cortex (IC) and ipsilateral hippocampus (IH) was significantly greater in the moderate-injury than in the mild-injury group at most test times between 5 min and 48 h after injury. Levels of total FFAs were elevated in the IC and IH to a greater extent and for a longer period after injury in the moderate-injury (up to 48 h) than in the mild-injury group (up to 20 min). In general, the extent and duration of the elevation of most of the individual FFAs (palmitic, stearic, oleic, and arachidonic acids) in the IC and IH were also greater in the moderate-injury group than in the mild-injury group. In the contralateral cortex (CC) and hippocampus (CH), the elevation of lactate and total FFAs (and individual stearic and arachidonic acids) were also greater in the moderate-injury group than in the low-injury group at 5 min after injury. The extravasation of Evans blue in the IC and IH from 3 to 6 h after injury was also the greatest in the moderate-injury group. The hippocampal CA3 neuronal cell loss, but not cortical lesion volume, also increased with the severity of injury. These findings suggest that certain neurochemical, physiological (blood-brain barrier permeability), and morphologic responses increase with the severity of FP brain injury, and such relationships are consistent with the increased behavioral deficits observed with the increase of severity of brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | | | | | | | |
Collapse
|
124
|
Montpied P, de Bock F, Lerner-Natoli M, Bockaert J, Rondouin G. Hippocampal alterations of apolipoprotein E and D mRNA levels in vivo and in vitro following kainate excitotoxicity. Epilepsy Res 1999; 35:135-46. [PMID: 10372566 DOI: 10.1016/s0920-1211(99)00003-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alteration in the expression of apolipoprotein E (ApoE) and apolipoprotein D (ApoD) genes was evaluated in rat, 7 days following status epilepticus (SE) induced by intra-amygdala injection of kainate (KA), and in organotypic hippocampal cultures, 2 days after a single 1 h exposure to KA. Global polyadenylated RNA (poly A+) steady state, assessing global regulation of mRNA transcription was first measured in cortices and hippocampi from each animal and in the organotypic cultures. No alteration due to KA treatment was observed and individual concentrations of ApoE and ApoD mRNA species were therefore measured and comparative analysis performed. In the cortices of KA-treated animals, ApoE and ApoD mRNA levels did not show statistically significant changes. In contrast, in hippocampi, 7 days after SE, ApoE and ApoD mRNA levels were significantly increased, respectively, by 123 and 138%. This in vivo effect was confirmed in vitro on organotypic cultures, where KA treatment increased ApoE and ApoD mRNA expressions, respectively, by 72 and 61%. These observations indicate that lipidic metabolism is modified in the lesioned structure and suggest an increased traffic of lipids and a need for more ApoE and D in the hippocampus during the period of recovery and restructuration that follows severe seizures.
Collapse
Affiliation(s)
- P Montpied
- CNRS UPR 9023, CCIPE, Montpellier, France.
| | | | | | | | | |
Collapse
|
125
|
Knapp S, Wurtman RJ. Enhancement of free fatty acid incorporation into phospholipids by choline plus cytidine. Brain Res 1999; 822:52-9. [PMID: 10082883 DOI: 10.1016/s0006-8993(99)01072-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytidine and choline, present in cytidine 5'-diphosphate choline (CDP-choline), are major precursors of the phosphatidylcholine found in cell membranes and important regulatory elements in phosphatide biosynthesis. Administration of CDP-choline to rats increases blood and brain cytidine and choline levels; this enhances the production of endogenous CDP-choline which then combines with fatty acids (as diacylglycerol), to yield phosphatidylcholine. We examined the effect of providing cytidine and choline on incorporation of free fatty acids into phosphatidylcholine and other major phospholipids in PC12 cells. Addition of equimolar cytidine and choline (100-500 microM) to [3H]-arachidonic acid (50 microM, 0.2 microCi, bound to bovine serum albumin) dose-dependently increased the accumulations of [3H]-phosphatidylcholine (PtdCho), [3H]-phosphatidylinositol (PtdIno) and [3H]-phosphatidylethanolamine (PtdEtn) (by up to 27+/-3%, 16+/-3% and 11+/-3%, respectively, means+/-S.E.M.). This effect was seen with 8-18 h of incubation. The incorporation of [3H]-oleic acid into [3H]-PtdCho was even more enhanced (by up to 42+/-3%) as were the incorporations of [14C]-choline and [3H]-glycerol. The effects of choline and cytidine were enhanced by 12-O-tetradecanoylphorbol-13-acetate (TPA, 1 microM), which activates CTP:phosphocholine cytidylyltransferase (CT) and facilitates choline uptake. Replacing choline by ethanolamine also enhanced the incorporation of [3H]-arachidonic acid into [3H]-PtdEtn, [3H]-PtdIno and [3H]-PtdCho. Arachidonic acid (10-200 microM) alone failed to affect the incorporation of [14C]-choline into phosphatidylcholine. We suggest that the increases in phospholipid synthesis caused by concurrent cytidine and choline supplementation enhance the incorporation of arachidonic acid and certain other fatty acids into the major glycerophospholipids. Removing these fatty acids as source of potentially toxic oxidation products could contribute to the beneficial effects of CDP-choline in treating stroke or other brain damage.
Collapse
Affiliation(s)
- S Knapp
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, E25-604, Cambridge, MA 02139, USA
| | | |
Collapse
|
126
|
Bazan NG. The neuromessenger platelet-activating factor in plasticity and neurodegeneration. PROGRESS IN BRAIN RESEARCH 1999; 118:281-91. [PMID: 9932449 DOI: 10.1016/s0079-6123(08)63215-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synaptic activation leads to the formation of arachidonic acid, platelet-activating factor (PAF, 1-O-alkyl-2-acyl-sn-3-phosphocholine) and other lipid messengers. PAF is a potent bioactive phospholipid in synaptic plasticity. PAF enhances presynaptic glutamate release, is a retrograde messenger in long-term potentiation and enhances memory formation. PAF also couples synaptic events with gene expression by stimulating a FOS/JUN/AP-1 transcriptional signaling system, as well as transcription of COX-2 (inducible prostaglandin synthase). Since the COX-2 gene is also involved in synaptic plasticity, the PAF-COX-2 pathway may have physiological significance. Seizures, ischemia and other forms of brain injury promote phospholipase A2 (PLA2) overactivation, resulting in the accumulation of bioactive lipids at the synapse. PAF, under these pathological conditions, behaves as a neuronal injury messenger by at least two mechanisms: (a) enhancing glutamate release; and, (b) by sustained augmentation of COX-2 transcription. These events link PAF with neurodegeneration. The upstream intracellular pathways of signal transduction involved in neuronal or photoreceptor cell apoptosis are not well understood and involve stress sensitive kinases. PAF is a transcriptional activator of the COX-2 gene. BN 50730, a potent intracellular PAF antagonist, blocks COX-2 induction. COX-2 transcription and protein expression are upregulated in the hippocampus in kainic acid induced epileptogenesis. There is a selectively elevated induction of COX-2 (72-fold) by kainic acid preceding neuronal cell death. BN 50730 administered by i.c.v. injection blocks seizure-induced COX-2 induction. Overall, PAF is a dual modulator of neural function and becomes an endogenous neurotoxin when over produced.
Collapse
Affiliation(s)
- N G Bazan
- Louisiana State University Medical Center, School of Medicine, Neuroscience Center of Excellence, New Orleans 70112, USA
| |
Collapse
|
127
|
Röhrenbeck AM, Bette M, Hooper DC, Nyberg F, Eiden LE, Dietzschold B, Weihe E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. Neurobiol Dis 1999; 6:15-34. [PMID: 10078970 DOI: 10.1006/nbdi.1998.0225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of immunocompetent adult rats with Borna disease virus (BDV) causes severe encephalitis and neural dysfunction. The expression of COX-2 and CGRP, genes previously shown to be implicated in CNS disease and peripheral inflammation, was dramatically upregulated in the cortical neurons of acutely BDV-infected rats. Neuronal COX-2 and CGRP upregulation was predominantly seen in brain areas where ED1-positive macrophages/microglia accumulated. In addition, COX-2 expression was strongly induced in brain endothelial cells and the number of COX-2 immunoreactive microglial cells was increased. In contrast, despite increased expression of viral antigens, neither COX-2 nor CGRP expression was altered in the CNS of BDV-infected rats treated with dexamethasone, or tolerant to BDV. Thus, increased CGRP and COX-2 expression in the BDV-infected brain is the result of the inflammatory response and likely to be involved in the pathogenesis of virus-induced encephalitis.
Collapse
Affiliation(s)
- A M Röhrenbeck
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
128
|
Eskew JD, Vanacore RM, Sung L, Morales PJ, Smith A. Cellular protection mechanisms against extracellular heme. heme-hemopexin, but not free heme, activates the N-terminal c-jun kinase. J Biol Chem 1999; 274:638-48. [PMID: 9872997 DOI: 10.1074/jbc.274.2.638] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemopexin protects cells lacking hemopexin receptors by tightly binding heme abrogating its deleterious effects and preventing nonspecific heme uptake, whereas cells with hemopexin receptors undergo a series of cellular events upon encountering heme-hemopexin. The biochemical responses to heme-hemopexin depend on its extracellular concentration and range from stimulation of cell growth at low levels to cell survival at otherwise toxic levels of heme. High (2-10 microM) but not low (0.01-1 microM) concentrations of heme-hemopexin increase, albeit transiently, the protein carbonyl content of mouse hepatoma (Hepa) cells. This is due to events associated with heme transport since cobalt-protoporphyrin IX-hemopexin, which binds to the receptor and activates signaling pathways without tetrapyrrole transport, does not increase carbonyl content. The N-terminal c-Jun kinase (JNK) is rapidly activated by 2-10 microM heme-hemopexin, yet the increased intracellular heme levels are neither toxic nor apoptotic. After 24 h exposure to 10 microM heme-hemopexin, Hepa cells become refractory to the growth stimulation seen with 0.1-0.75 microM heme-hemopexin but HO-1 remains responsive to induction by heme-hemopexin. Since free heme does not induce JNK, the signaling events, like phosphorylation of c-Jun via activation of JNK as well as the nuclear translocation of NFkappaB, G2/M arrest, and increased expression of p53 and of the cell cycle inhibitor p21(WAF1/CIP1/SDI1) generated by heme-hemopexin appear to be of paramount importance in cellular protection by heme-hemopexin.
Collapse
Affiliation(s)
- J D Eskew
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | |
Collapse
|
129
|
Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5:49-55. [PMID: 9883839 DOI: 10.1038/4734] [Citation(s) in RCA: 646] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmunity to antigens of the central nervous system is usually considered detrimental. T cells specific to a central nervous system self antigen, such as myelin basic protein, can indeed induce experimental autoimmune encephalomyelitis, but such T cells may nevertheless appear in the blood of healthy individuals. We show here that autoimmune T cells specific to myelin basic protein can protect injured central nervous system neurons from secondary degeneration. After a partial crush injury of the optic nerve, rats injected with activated anti-myelin basic protein T cells retained approximately 300% more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other antigens. Electrophysiological analysis confirmed this finding and suggested that the neuroprotection could result from a transient reduction in energy requirements owing to a transient reduction in nerve activity. These findings indicate that T-cell autoimmunity in the central nervous system, under certain circumstances, can exert a beneficial effect by protecting injured neurons from the spread of damage.
Collapse
Affiliation(s)
- G Moalem
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
130
|
Chan AC, Wagner M, Kennedy C, Chen E, Lanuville O, Mezl VA, Tran K, Choy PC. Vitamin E up-regulates arachidonic acid release and phospholipase A2 in megakaryocytes. Mol Cell Biochem 1998; 189:153-9. [PMID: 9879666 DOI: 10.1023/a:1006954015678] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The release of arachidonic acid is the rate limiting step in eicosanoid synthesis. In mammalian cells, the release of arachidonic acid is catalyzed by several enzymes. The 85 kDa cytosolic phospholipase A2 (cPLA2) is the key enzyme for the release reaction because of its specific acyl selectivity in phospholipid substrates. We have previously reported that vitamin E enrichment potentiates the arachidonic acid release as well as the spontaneous prostacyclin release in human endothelial cells. In contrast, similar enrichment of diets caused a dose-dependent suppression of platelet thromboxane synthesis. Therefore, the present study was undertaken to determine the effect of vitamin E on arachidonate release and phospholipaseA2 activity in a platelet precursor cell, the MEG-01 megakaryocyte cell line. When these cells were incubated with different concentrations of vitamin E, cellular incorporation was linear with the dosages of this vitamin. Determination of arachidonate release after labeling cells with [3H]-arachidonate showed that vitamin E enrichment caused a dose-dependent increase in ionophore A23187-induced [3H]-arachidonic acid release. Analysis of PLA2 activity showed that activity was detected in the cytosol and this activity was completely abolished by the addition of anti-cPLA2, antibody. Determination of cPLA2 activity demonstrated that vitamin E enrichment caused an increase in enzyme activity. Analysis of cPLA2 protein by Western blot revealed that vitamin E caused an increase in enzyme protein. These data showed that the potentiation of arachidonic acid release and cPLA2, activity by vitamin E was mediated by the enhanced expression of cPLA2 protein.
Collapse
Affiliation(s)
- A C Chan
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
131
|
McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998; 15:731-69. [PMID: 9814632 DOI: 10.1089/neu.1998.15.731] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury are poorly understood. Recent evidence from experimental models suggests that widespread neuronal loss is progressive and continues in selectively vulnerable brain regions for months to years after the initial insult. The mechanisms underlying delayed cell death are believed to result, in part, from the release or activation of endogenous "autodestructive" pathways induced by the traumatic injury. The development of sophisticated neurochemical, histopathological and molecular techniques to study animal models of TBI have enabled researchers to begin to explore the cellular and genomic pathways that mediate cell damage and death. This new knowledge has stimulated the development of novel therapeutic agents designed to modify gene expression, synthesis, release, receptor or functional activity of these pathological factors with subsequent attenuation of cellular damage and improvement in behavioral function. This article represents a compendium of recent studies suggesting that modification of post-traumatic neurochemical and cellular events with targeted pharmacotherapy can promote functional recovery following traumatic injury to the central nervous system.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104-6316, USA
| | | | | |
Collapse
|
132
|
Teasdale GM, Graham DI. Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 1998; 43:723-37; discussion 737-8. [PMID: 9766298 DOI: 10.1097/00006123-199810000-00001] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To review the consequences of mechanical injury to the brain with an emphasis on factors that may explain the variability of outcomes and how this might be influenced. METHODS Information regarding the pathophysiology of traumatic brain damage contained in original scientific reports and in review articles published in recent years was reviewed from the perspective of a clinical neurosurgeon and a neuropathologist, each with major research interests in traumatic brain damage. The information was compiled on the basis of the knowledge of and personal selection of articles that were identified through selective literature searches and current awareness profiles. A systematic literature review was not conducted. RESULTS Mechanical input affects neuronal and vascular elements and is translated into biological effects on the brain through a complex series of interacting cellular and molecular events. Whether these lead to permanent structural damage or to resolution and recovery is determined by the balance between processes that, on the one hand, mediate the effects of initial injury and subsequent secondary insults and, on the other, are manifestations of the brain's protective, reparative response. Experimental and clinical research has identified opportunities for altering the balance in a way that might promote recovery, but data demonstrating that this can lead to substantial clinical benefit are lacking. Recent evidence of genetically determined, individual susceptibility to the effects of injury may explain some of the puzzling variability in outcome after apparently similar insults and may also provide new opportunities for treatment. CONCLUSION The understanding of traumatic brain damage that is being gained from recent research is widening and broadening perspectives from the traditional focus on mechanical, vascular, and metabolic effects to encompass wider, neurobiological issues, drawn from the fields of neurodevelopment, neuroplasticity, neurodegeneration, and neurogenetics. Neurotrauma is a fascinating area of neuroscience research, with promise for the translation of knowledge to improved clinical management and outcome.
Collapse
Affiliation(s)
- G M Teasdale
- Institute of Neurological Sciences, Southern General Hospital NHS Trust, Glasgow, Scotland
| | | |
Collapse
|
133
|
Ogden F, DeCoster MA, Bazan NG. Recombinant plasma-type platelet-activating factor acetylhydrolase attenuates NMDA-induced hippocampal neuronal apoptosis. J Neurosci Res 1998; 53:677-84. [PMID: 9753196 DOI: 10.1002/(sici)1097-4547(19980915)53:6<677::aid-jnr6>3.0.co;2-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bioactive lipid platelet-activating factor (PAF) accumulates in brain during injury, seizures and ischemia and may, in addition, be significant in AIDS dementia and in other neurodegenerative diseases. We have used plasma-type recombinant PAF acetylhydrolase (rPAF-AH) to test the hypothesis that PAF accumulation is involved in early events leading to neuronal apoptosis during excitotoxic neuronal injury. Neuronal cultures were labeled with FITC-12-dUTP (TUNEL technique) and propidium iodide, digitized using fluorescence microscopy and a chilled 3CCD color camera, and analyzed with 2D graphics analysis software. N-methyl-D-aspartate (NMDA) (50 microM, 2 hr) induced a 2.5-fold increase in apoptosis of hippocampal neurons compared with controls when analyzed 24 hr after NMDA treatment. Hippocampal neurons receiving rPAF-AH (20 microg/ml) before, during, and after NMDA treatment demonstrated a concentration-dependent neuroprotective effect which resulted in 47% and 30% neuroprotection against 50 and 100 microM NMDA, respectively. The noncompetitive NMDA receptor antagonist MK-801(300 nM) completely inhibited apoptosis caused by NMDA. The neuroprotective effect of rPAF-AH against NMDA-induced apoptosis was confirmed using as additional criteria, histone release, electron microscopy, and DNA laddering. Neuroprotection elicited by rPAF-AH demonstrates that PAF is an injury mediator in NMDA-induced neuronal apoptosis and that the recombinant protein is potentially useful as a therapeutic approach.
Collapse
Affiliation(s)
- F Ogden
- Louisiana State University Neuroscience Center, Louisiana State University Medical Center School of Medicine, New Orleans 70112, USA
| | | | | |
Collapse
|
134
|
Monsonego A, Mizrahi T, Eitan S, Moalem G, Bárdos H, Adány R, Schwartz M. Factor XIIIa as a nerve-associated transglutaminase. FASEB J 1998; 12:1163-71. [PMID: 9737719 DOI: 10.1096/fasebj.12.12.1163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent findings have led to changes in the traditional concept of nerve recovery, including the realization that injured nerves, like any other injured tissue, need the assistance of blood-derived cells and factors in order to heal. We show that factor XIIIa (FXIIIa, the potentially active a2subunit of factor XIII), an enzyme that participates in blood coagulation by stabilizing the fibrin clot, is also active in the nervous system where it may play a key role in the healing of injured tissue. We demonstrate that the plasma, macrophages and nerves of fish contain a 55 kDa form of transglutaminase that cross-reacts immunologically with the a-subunit of FXIII in mammals (80 kDa). The fish enzyme in the plasma, unlike its mammalian counterpart, is active, pointing to a difference in control of the coagulation pathway in the two species. Analysis of FXIIIa expression in mammalian neural tissues and their response to injury revealed high levels of the enzyme in media conditioned by peripheral nerves as compared with medium conditioned by nerves of the central nervous system. Furthermore, similarity was observed in the postinjury behavior of FXIIIa in regenerating nerve tissues (peripheral nervous system of mammals and the central nervous system of fish). We suggest that the postinjury level of factor XIIIa in the nervous system may be related to the tissue's regenerative capacity, and that FXIIIa may therefore be a link underlying a possible association between the processes of blood coagulation and nerve healing.
Collapse
Affiliation(s)
- A Monsonego
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
135
|
Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol 1998; 153:1-7. [PMID: 9743562 DOI: 10.1006/exnr.1998.6811] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroprotective therapy is a relatively new development in the approach to the treatment of acute and chronic brain damage. Though initially viewed in the framework of acute CNS injuries, the concept was recently extended to include chronic injuries, in which at any given time there are some neurons in an acute phase of degeneration coexisting with others that are healthy, marginally damaged, or dead. The healthy neurons and those that are only marginally damaged are the potential targets for neuroprotection. For the development of neuroprotective therapies, it is essential to employ an animal model in which the damage resulting from secondary degeneration can be quantitatively distinguished from primary degeneration. This is of particular relevance when the site of the damage is in the white matter (nerve fibers) rather than in the gray matter (cell bodies). In the present work we reexamine the concepts of secondary degeneration and neuroprotection in white matter lesions. Using a partial crush injury of the adult rat optic nerve as a model, we were able to assess both primary and secondary nerve damage. We show that neurons whose axons were not damaged or only marginally damaged after an acute insult will eventually degenerate as a consequence of their existence in the degenerative environment produced by the injury. This secondary degeneration does not occur in all of the neurons at once, but affects them in a stepwise fashion related to the severity of the damage inflicted. These findings, which may be applicable to the progression of acute or chronic neuropathy, imply that neuroprotective therapy may have a beneficial effect even if there is a time lag between injury and treatment.
Collapse
Affiliation(s)
- E Yoles
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
136
|
McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ. The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 1998; 24:251-67. [PMID: 9775390 DOI: 10.1046/j.1365-2990.1998.00121.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury (TBI) are poorly understood. Recent evidence from experimental models of TBI suggest that diffuse and widespread neuronal damage and loss is progressive and prolonged for months to years after the initial insult in selectively vulnerable regions of the cortex, hippocampus, thalamus, striatum, and subcortical nuclei. The development of new neuropathological and molecular techniques has generated new insights into the cellular and molecular sequelae of brain trauma. This paper will review the literature suggesting that alterations in intracellular calcium with resulting changes in gene expression, activation of reactive oxygen species (ROS), activation of intracellular proteases (calpains), expression of neurotrophic factors, and activation of cell death genes (apoptosis) may play a role in mediating delayed cell death after trauma. Recent data suggesting that TBI should be considered as both an inflammatory and/or a neurodegenerative disease is also presented. Further research concerning the complex molecular and neuropathological cascades following brain trauma should be conducted, as novel therapeutic strategies continue to be developed.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Matsumura K, Cao C, Watanabe Y, Watanabe Y. Prostaglandin system in the brain: sites of biosynthesis and sites of action under normal and hyperthermic states. PROGRESS IN BRAIN RESEARCH 1998; 115:275-95. [PMID: 9632940 DOI: 10.1016/s0079-6123(08)62040-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- K Matsumura
- Subfemtomole Biorecognition Project, Japan Science and Technology Corporation, Osaka, Japan
| | | | | | | |
Collapse
|
138
|
Abstract
NMDA receptor-induced excitotoxicity has been hypothesized to mediate abnormal choline (Cho) metabolism that is involved in alterations in membrane permeability and cell death in certain neurodegenerative disorders. To determine whether NMDA receptor overactivation modulates choline metabolism in vivo, we investigated the effects of NMDA on interstitial choline concentrations using microdialysis. Perfusion of NMDA by retrodialysis increased dialysate choline (approximately 400%) and reduced dialysate acetylcholine (Ach) (approximately 40%). Choline levels remained increased for at least 2.5 hr, but acetylcholine returned to pretreatment values 75 min after NMDA perfusion. The NMDA-evoked increase in dialysate choline was calcium and concentration dependent and was prevented with 1 mM AP-5, a competitive NMDA antagonist, but was not altered by mepacrine, a phospholipase A2 inhibitor. NMDA increased extracellular choline levels four- to fivefold in prefrontal cortex and hippocampus, produced a slight increase in neostriatum, and did not modify dialysate choline in cerebellum. Perfusion with NMDA for 2 hr produced a delayed, but not acute, reduction in choline acetyltransferase activity in the area surrounding the dialysis probe. Consistent with a lack of acute cholinergic neurotoxicity evoked by this treatment, basal acetylcholine levels were unaltered by 2 hr of continuous NMDA perfusion. Prolonged NMDA perfusion produced a 34% decrease in phosphatidylcholine content in the lipid fraction of the tissue surrounding the dialysis probe. These results show that NMDA modulates choline metabolism, eliciting a receptor-mediated, calcium-dependent, and region-specific increase in extracellular choline from membrane phospholipids that is not mediated by phospholipase A2 and precedes delayed excitotoxic neuronal cell death.
Collapse
|
139
|
Filipeanu CM, Brailoiu E, Petrescu G, Nelemans SA. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta. Eur J Pharmacol 1998; 349:67-73. [PMID: 9669498 DOI: 10.1016/s0014-2999(98)00180-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions by the L-type Ca2+ channel blocker, methoxyverapamil (D600), and the calmodulin inhibitor, calmidazolium. In contrast, contractions induced by arachidonic acid-filled liposomes were not affected by these compounds. Indomethacin did not affect the contractions induced by either extra- or intracellular arachidonic acid, whereas nordihydroguaiaretic acid relaxed contractions induced by extracellular arachidonic acid but not those induced by arachidonic acid-filled liposomes. Apart from a relaxing effect on contractions induced by extracellular arachidonic acid or by phenylephrine, protein kinase C inhibition with 1-(5-isoquinolinesulphonyl-2-methylpiperazine (H7)) had an even more prominent relaxing effect on contractions induced by arachidonic acid-filled liposomes. Therefore, arachidonic acid exerts a contractile effect on rat aorta, and this effect is regulated differently depending on the site of application.
Collapse
Affiliation(s)
- C M Filipeanu
- Groningen Institute for Drug Studies, Department of Clinical Pharmacology, University of Groningen, Netherlands
| | | | | | | |
Collapse
|
140
|
Dorandeu F, Antier D, Pernot-Marino I, Lapeyre P, Lallement G. Venom phospholipase A2-induced impairment of glutamate uptake: an indirect and nonselective effect related to phospholipid hydrolysis. J Neurosci Res 1998; 51:349-59. [PMID: 9486770 DOI: 10.1002/(sici)1097-4547(19980201)51:3<349::aid-jnr8>3.0.co;2-g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In a nominally calcium-free medium, a toxic phospholipase A2, paradoxin, PDX (1-200nM) was able to significantly decrease glutamate uptake by rat hippocampal mini-slices. Under the same experimental conditions, PDX could also inhibit the reuptake of choline and dopamine, suggesting a nonselective action. Furthermore, we found no evidence of competition between PDX and [3H]L-Aspartate described as a marker of glutamate carrier proteins. A direct blockage of glutamate uptake by binding to the glutamate transporters is thus unlikely to occur. Implication of the free fatty acids (FFAs), or their metabolites, was clearly shown by the total suppression of PDX effect on reuptake in a medium inhibiting its catalytic activity (EGTA/Sr2+ buffer). Moreover, analysis of the FFAs liberated showed a significant increase in polyunsaturated fatty acid (PUFA) levels. Arachidonic acid (AA) concentration reached in the water phase, though in the low micromolar range, may be especially relevant in explaining this effect. Much higher concentrations are found in the membranes and may also participate in the action on reuptake. Evidence for the involvement of FFAs was also provided by the antagonistic, although partial, action of bovine serum albumine (BSA, 1%). Finally, free radicals or eicosanoids did not seem to play a significant role given the persistence of inhibition in the presence of NDGA (1 microM) or indomethacin (10 microM), inhibitors of the two major AA metabolic pathways. Altogether, PDX-induced uptake impairment may thus be related to the direct action of AA and other PUFAs on the glutamate transporter, as well as through less selective actions.
Collapse
Affiliation(s)
- F Dorandeu
- Department of Pharmacology, Centre de Recherches du Service de Santé des Armees, La Tronche, France. 100437,
| | | | | | | | | |
Collapse
|
141
|
Blanc EM, Keller JN, Fernandez S, Mattson MP. 4-hydroxynonenal, a lipid peroxidation product, impairs glutamate transport in cortical astrocytes. Glia 1998; 22:149-60. [PMID: 9537835 DOI: 10.1002/(sici)1098-1136(199802)22:2<149::aid-glia6>3.0.co;2-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrocytes possess plasma membrane glutamate transporters that rapidly remove glutamate from the extracellular milieu and thereby prevent excitotoxic injury to neurons. Cellular oxidative stress is increased in neural tissues in a variety of acute and chronic neurodegenerative conditions. Recent findings suggest that oxidative stress increases neuronal vulnerability to excitotoxicity and that membrane lipid peroxidation plays a key role in this process. We now report that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, impairs glutamate transport in cultured cortical astrocytes. Impairment of glutamate transport occurred within 1-3 h of exposure to HNE; FeSO4, an inducer of membrane lipid peroxidation, also impaired glutamate transport. Vitamin E prevented impairment of glutamate transport induced by FeSO4, but not that induced by HNE, consistent with HNE acting as an effector of lipid peroxidation-induced impairment of glutamate transport. Glutathione, which binds and thereby detoxifies HNE, prevented HNE from impairing glutamate transport. Western blot, immunoprecipitation, and immunocytochemical analyses using an antibody against HNE-protein conjugates provided evidence that HNE covalently binds to many different astrocytic proteins including the glutamate transporter GLT-1. Data further suggest that HNE promotes intermolecular cross-linking of GLT-1 monomers to form dimers. HNE also induced mitochondrial dysfunction and accumulation of peroxides in astrocytes. Impairment of glutamate transport and mitochondrial function occurred with sublethal concentrations of HNE, concentrations known to be generated in cells exposed to various oxidative insults. Collectively, our data suggest that HNE may be an important mediator of oxidative stress-induced impairment of astrocytic glutamate transport and may thereby play a role in promoting neuronal excitotoxicity.
Collapse
Affiliation(s)
- E M Blanc
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | |
Collapse
|
142
|
Yoles E, Muller S, Schwartz M. NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 1997; 14:665-75. [PMID: 9337128 DOI: 10.1089/neu.1997.14.665] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Damage resulting from a partial acute lesion of white matter in the central nervous system (CNS) gradually spreads also to neurons that escaped the primary injury, resulting in their degeneration. Such spreading has been referred to as secondary degeneration. In order to demonstrate that this degeneration is indeed secondary to that caused by the acute insult, as well as to investigate the mechanism underlying the spread of damage and ways in which to protect neurons from such damage, we have proposed the use of partial lesion of the rodent optic nerve as a model. In this model we examined whether an antagonist of a receptor-mediated channel, shown to be beneficial in gray matter lesions, can protect neurons from undergoing secondary degeneration following white matter lesion. A well-calibrated partial crush lesion inflicted on the optic nerve of adult rats was immediately followed by a single intraperitoneal injection of the N-methyl-D-aspartate receptor antagonist, MK-801 (1 mg/kg). Protection of neurons from secondary degeneration was assessed by retrograde labeling and by measurement of the visual evoked potential (VEP) response to light. Two weeks after the injury, the mean number of neurons that were still intact was about threefold higher in the MK-801-treated group than in the saline-treated control group, indicating a treatment-induced protection of neurons that had escaped primary injury. A positive VEP response to light was obtained in 90% of the MK-801 treated animals and in only 50% of injured controls. The questions regarding whether the secondary degeneration of initially spared neurons starts in their cell bodies or in their axons, and consequently the identity of the primary site of their protection by MK-801, are discussed in relation to the absence of N-methyl-D-aspartate receptors on nerve fibers. The present findings may have implications for both acute and chronic injuries of the CNS.
Collapse
Affiliation(s)
- E Yoles
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
143
|
Miettinen S, Fusco FR, Yrjänheikki J, Keinänen R, Hirvonen T, Roivainen R, Närhi M, Hökfelt T, Koistinaho J. Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci U S A 1997; 94:6500-5. [PMID: 9177247 PMCID: PMC21079 DOI: 10.1073/pnas.94.12.6500] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Repetitive spreading depression (SD) waves, involving depolarization of neurons and astrocytes and up-regulation of glucose consumption, is thought to lower the threshold of neuronal death during and immediately after ischemia. Using rat models for SD and focal ischemia we investigated the expression of cyclooxygenase-1 (COX-1), the constitutive form, and cyclooxygenase-2 (COX-2), the inducible form of a key enzyme in prostaglandin biosynthesis and the target enzymes for nonsteroidal anti-inflammatory drugs. Whereas COX-1 mRNA levels were undetectable and uninducible, COX-2 mRNA and protein levels were rapidly increased in the cortex, especially in layers 2 and 3 after SD and transient focal ischemia. The cortical induction was reduced by MK-801, an N-methyl-D-aspartic acid-receptor antagonist, and by dexamethasone and quinacrine, phospholipase A2 (PLA2) inhibiting compounds. MK-801 acted by blocking SD whereas treatment with PLA2 inhibitors preserved the wave propagation. NBQX, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-receptor antagonist, did not affect the SD-induced COX-2 expression, whereas COX-inhibitors indomethacin and diclofenac, as well as a NO synthase-inhibitor, NG-nitro-L-arginine methyl ester, tended to enhance the COX-2 mRNA expression. In addition, ischemia induced COX-2 expression in the hippocampal and perifocal striatal neurons and in endothelial cells. Thus, COX-2 is transiently induced after SD and focal ischemia by activation of N-methyl-D-aspartic acid-receptors and PLA2, most prominently in cortical neurons that are at a high risk to die after focal brain ischemia.
Collapse
Affiliation(s)
- S Miettinen
- A. I. Virtanen Institute, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Baldwin SA, Gibson T, Callihan CT, Sullivan PG, Palmer E, Scheff SW. Neuronal cell loss in the CA3 subfield of the hippocampus following cortical contusion utilizing the optical disector method for cell counting. J Neurotrauma 1997; 14:385-98. [PMID: 9219853 DOI: 10.1089/neu.1997.14.385] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unilateral cortical contusion in the rat results in cell loss in both the cortex and hippocampus. Pharmacological intervention with growth factors or excitatory neurotransmitter antagonists may reduce cell loss and improve neurological outcome. The window of opportunity for such intervention remains unclear because a detailed temporal analysis of neuronal loss has not been performed in the rodent cortical contusion model. To elucidate the time course of hippocampal CA3 neuronal death ensuing cortical contusion, we employed the optical disector method for assessing the total number of CA3 neurons at 1 and 6 hours, 1, 2, 10, and 30 days following injury. This stereological technique allows reporting of total cell numbers within a given region and is unaffected by change in the volume of the structure or cell size. A rapid and significant reduction in neurons/mm3 in the ipsilateral CA3 field was observed by 1 h following trauma. However, a significant increase in neurons/mm3 was seen at 30 days postinjury. This surprising finding is a result of CA3 volume shrinkage and redistribution of CA3 neurons. Utilization of the optical disector reveals that regardless of an increase in neurons/mm3 at 30 days following injury, CA3 cell loss reaches 41% of control animals by 1 day posttrauma and remains near that level at all subsequent time points examined. It is estimated that there are about 156,000 neurons in the CA3 region in control animals. By 1 h following cortical contusion the cell population decreases to 93,000 neurons indicating a very rapid cell loss. This suggests a window of less than 24 h for pharmacological intervention in order to save CA3 neurons following cortical contusion.
Collapse
Affiliation(s)
- S A Baldwin
- Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
The recent appreciation that traumatic brain injury is a dynamic process, initiated at the time of injury but not concluded for hours to days afterward, has resulted in the expectation that treatments can be designed to interrupt the processes that result in delayed cellular dysfunction and, thus, can decrease the amount of traumatic brain damage. Thus, for the first time, treatments specific for brain damage are envisioned. These can provide a fundamentally different approach to the treatment of the damaged brain than currently used treatments that deal with epiphenomena of traumatic injury, such as increased intracranial pressure or secondary ischemia. The processes that result in delayed cellular damage may be initiated by transient ionic fluxes induced by traumatic, temporary holes in the cell membrane lipid bilayer (mechanoporation). Resulting changes in intracellular ionic composition, if uncorrected, result in 1) traumatic depolarization with resultant neurotransmitter release, postsynaptic receptor dysfunction, and excitability changes; 2) calcium-mediated activation of proteases and phospholipases, with resultant cytoskeletal protein dissolution and free radical-induced lipid peroxidation; 3) inflammatory processes that elicit tissue-damaging cytokines; and 4) immediate and delayed activation of numerous genes with a resultant production of a panoply of new proteins. The future challenge to neurotrauma investigators is to better understand these processes and to develop interventions that will halt them before permanent brain damage occurs.
Collapse
Affiliation(s)
- Thomas A. Gennarelli
- Department of Neurosurgery and Center for Neurosciences Allegheny University of the Health Sciences Philadelphia, Pennsylvania
| |
Collapse
|
146
|
Alix SN, Woodbury DJ. Phospholipase A2 action on planar lipid bilayers generates a small, transitory current that is voltage independent. Biophys J 1997; 72:247-53. [PMID: 8994609 PMCID: PMC1184313 DOI: 10.1016/s0006-3495(97)78663-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Addition of either bee venom or Trimeresurus flavoviridis phospholipase A2 (PLA2) to the solution bathing the front side of a voltage-clamped, planar lipid bilayer consistently produced a transitory current lasting approximately 100 s. This current is consistent with anions moving through the membrane to the rear side. The peak current is independent of holding potential. PLA2 activity on phospholipid membranes not only produced a current but also led to membrane rupture within 300 s. The current depends on Ca2+ and lipid type. Addition of PLA2 in the absence of Ca2+ or to membranes made of nonsubstrate lipids (e.g., glycerol monooleate or lysophosphatidylcholine) produced no current and did not break the bilayer. Peak current height, signal decay time, and time to membrane rupture all depended on PLA2 dose, whereas total charge produced was constant. This current does not flow through ion channels because there are no channels present and the current is not voltage dependent. The evidence is consistent with the hypothesis that the current is generated by the movement of ionized fatty acid produced by PLA2 action. These results demonstrate a simple method to measure enzyme activity in the presence of different substrates and varied environmental conditions.
Collapse
Affiliation(s)
- S N Alix
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
147
|
Kolko M, DeCoster MA, de Turco EB, Bazan NG. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 1996; 271:32722-8. [PMID: 8955105 DOI: 10.1074/jbc.271.51.32722] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (</=100 ng/ml), induced a decrease of [3H]arachidonate-phospholipids and preferential reesterification of the fatty acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations, below those exerting highest toxicity. Synergy in neurotoxicity and [3H]arachidonate release was observed when low, nontoxic (10 ng/ml, 0.71 nM), or mildly toxic (25 ng/ml, 1. 78 nM) concentrations of sPLA2 were added together with glutamate (80 microM). A similar synergy was observed with the sPLA2 OS2, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role for this enzyme in the modulation of glutamatergic synaptic function and of excitotoxicity.
Collapse
Affiliation(s)
- M Kolko
- LSU Neuroscience Center and Department of Ophthalmology, Louisiana State University Medical Center, School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
148
|
Dhillon HS, Dose JM, Prasad MR. Regional generation of leukotriene C4 after experimental brain injury in anesthetized rats. J Neurotrauma 1996; 13:781-9. [PMID: 9002063 DOI: 10.1089/neu.1996.13.781] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Regional concentrations of leukotriene C4 and extravasation of Evans blue were measured after lateral fluid-percussion brain injury in rats. Tissue levels of LTC4 were elevated in the injured cortex at 10 min, 30 min, and 1 h after injury; these levels returned to normal by 2 h after injury. Increases in the levels of LTC4 were also observed in the ipsilateral hippocampus after brain injury, and these elevations persisted for 2 h after injury. No significant increase in levels of LTC4 was observed in the contralateral cortex at any time after injury. A substantial extravasation of Evans blue was observed only in the ipsilateral cortex and hippocampus at 3 h and 6 h after brain injury. Although a temporal association between LTC4 and blood-brain barrier (BBB) breakdown is suggested by these data, no cause-and-effect relationship has been addressed in this study. However, it is possible that, as is true for cerebral ischemia, LTC4 may play a role as a mediator in the BBB breakdown associated with fluid-percussion brain injury in rats.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536, USA
| | | | | |
Collapse
|