101
|
Abstract
Membrane fusion of enveloped viruses with cellular membranes is mediated by viral glycoproteins (GP). Interaction of GP with cellular receptors alone or coupled to exposure to the acidic environment of endosomes induces extensive conformational changes in the fusion protein which pull two membranes into close enough proximity to trigger bilayer fusion. The refolding process provides the energy for fusion and repositions both membrane anchors, the transmembrane and the fusion peptide regions, at the same end of an elongated hairpin structure in all fusion protein structures known to date. The fusion process follows several lipidic intermediate states, which are generated by the refolding process. Although the major principles of viral fusion are understood, the structures of fusion protein intermediates and their mode of lipid bilayer interaction, the structures and functions of the membrane anchors and the number of fusion proteins required for fusion, necessitate further investigations.
Collapse
Affiliation(s)
- Winfried Weissenhorn
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Corresponding author.
| | - Andreas Hinz
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Yves Gaudin
- CNRS, UMR2472, INRA, UMR1157, IFR115, Laboratoire de Virologie Moléculaire et Structurale, 91198, Gif sur Yvette, France
| |
Collapse
|
102
|
Sugaya M, Hartley O, Root MJ, Blauvelt A. C34, a membrane fusion inhibitor, blocks HIV infection of langerhans cells and viral transmission to T cells. J Invest Dermatol 2007; 127:1436-43. [PMID: 17255952 DOI: 10.1038/sj.jid.5700736] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of topical microbicides that prevent sexual transmission of HIV is an active area of investigation. The purpose of this study was to test the ability of the potent membrane fusion inhibitor C34, an HIV gp41 antagonist, to block HIV infection of human Langerhans cells (LCs) in an epithelial environment that mimics a major route of HIV infection. We incubated freshly isolated epidermal explants containing LCs with various doses of C34 before, during, and after exposing explants to HIV. Although C34 only partially blocked HIV infection of LCs when pre-incubated with skin, it displayed full, dose-dependent inhibition when present during and after viral exposure. The poor protection from HIV infectivity in pre-incubated samples is consistent with mechanism of C34 inhibition and starkly contrasts to the full protection provided by PSC-RANTES, an entry inhibitor that prevents HIV gp120 interaction with its co-receptor CCR5. Real-time PCR confirmed that C34 blocked HIV infection of LCs before reverse transcription and inhibited LC-mediated transfer of virus to T cells. We conclude that C34, if used topically at susceptible mucosal sites, and if continually present, has the potential to block sexual transmission of HIV.
Collapse
Affiliation(s)
- Makoto Sugaya
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
103
|
Haim H, Steiner I, Panet A. Time frames for neutralization during the human immunodeficiency virus type 1 entry phase, as monitored in synchronously infected cell cultures. J Virol 2007; 81:3525-34. [PMID: 17251303 PMCID: PMC1866073 DOI: 10.1128/jvi.02293-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characterization of the neutralizing interaction between antibody and virus is hindered by the nonsynchronized progression of infection in cell cultures. Discrete steps of the viral entry sequence cannot be discerned, and thus, the mode of antibody-mediated interference with virus infectivity remains undefined. Here, we magnetically synchronize the motion and cell attachment of human immunodeficiency virus type 1 (HIV-1) to monitor the progression of neutralization, both in solution and following virus attachment to the cell. By simultaneous transfer of all viral particles from reaction solution with antibody to the cell-bound state, the precise rate of neutralization of cell-free virus could be determined for each antibody. HIV-1 neutralization by both monoclonal and polyclonal antibody preparations followed distinct pseudo-first-order kinetics. For all antibodies, cell types, and HIV-1 strains examined, postattachment interference served a major role in the neutralizing effect. To monitor the progression of postattachment interference, we synchronized the entry process at initiation and measured the escape of cell-bound virus from antibody. We found that different antibodies neutralized the virus over different time frames during the entry phase. Virus was observed to progress through a sequence of shifting sensitivities to different antibodies during entry, suggested here to correlate with the exposure time of the target epitope on receptor-activated viral envelope proteins. Thus, by monitoring the progression of HIV-1 entry under synchronized conditions, we identify a new and significant determinant of antibody neutralization capacity, namely, the time frames for neutralization during the course of the viral entry phase.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Virology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
104
|
Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS. Structure and function of the HIV envelope glycoprotein as entry mediator, vaccine immunogen, and target for inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:33-97. [PMID: 17586312 PMCID: PMC7111665 DOI: 10.1016/s1054-3589(07)55002-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the advances of the envelope glycoprotein (Env) structure as related to the interactions of conserved Env structures with receptor molecules and antibodies with implications for the design of vaccine immunogens and inhibitors. The human immunodeficiency virus (HIV) Env binds to cell surface–associated receptor (CD4) and coreceptor (CCR5 or CXCR4) by one of its two non-covalently associated subunits, gp120. The induced conformational changes activate the other subunit (gp41), which causes the fusion of the viral with the plasma cell membranes resulting in the delivery of the viral genome into the cell and the initiation of the infection cycle. As the only HIV protein exposed to the environment, the Env is also a major immunogen to which neutralizing antibodies are directed and a target that is relatively easy to access by inhibitors. A fundamental problem in the development of effective vaccines and inhibitors against HIV is the rapid generation of alterations at high levels of expression during long chronic infection and the resulting significant heterogeneity of the Env. The preservation of the Env function as an entry mediator and limitations on size and expression impose restrictions on its variability and lead to the existence of conserved structures.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
105
|
Huang JH, Lu L, Lu H, Chen X, Jiang S, Chen YH. Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem 2006; 282:6143-52. [PMID: 17197700 DOI: 10.1074/jbc.m607701200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus, type 1 (HIV-1) gp41 core plays an important role in fusion between viral and target cell membranes. A single chain polypeptide, N36(L8)C34, which forms a six-helix bundle in physiological solution, can be used as a model of gp41 core. Here we identified from a 12-mer phage peptide library a positive phage clone displaying a peptide sequence with high binding activity to the HIV-1 gp41 core. The peptide sequence contains a putative gp41-binding motif, PhiXXXXPhiXPhi (X is any amino acid residue, and Phi is any one of the aromatic amino acid residues Trp, Phe, or Tyr). This motif also exists in the scaffolding domain of caveolin-1 (Cav-1), a known gp41-binding protein. Cav-1-(61-101) and Cav-1-(82-101), two recombinant fusion proteins containing the Cav-1 scaffolding domain, bound significantly to the gp41 expressed in mammalian cells and interacted with the polypeptide N36(L8)C34. These results suggest that the scaffolding domain of Cav-1 may bind to the gp41 core via the motif. This interaction may be essential for formation of fusion pore or endocytosis of HIV-1 and affect the pathogenesis of HIV-1 infection. Further characterization of the gp41 core-binding motifs may shed light on the alternative mechanism by which HIV-1 enters into the target cell.
Collapse
Affiliation(s)
- Jing-He Huang
- Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of the Ministry of Education, Beijing 100084, P.R. China
| | | | | | | | | | | |
Collapse
|
106
|
Korazim O, Sackett K, Shai Y. Functional and Structural Characterization of HIV-1 gp41 Ectodomain Regions in Phospholipid Membranes Suggests that the Fusion-active Conformation Is Extended. J Mol Biol 2006; 364:1103-17. [PMID: 17045292 DOI: 10.1016/j.jmb.2006.08.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation. We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion inhibitors inhibit HIV entry in an analogous mechanism.
Collapse
Affiliation(s)
- Ofir Korazim
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
107
|
Zheng Z, Yang R, Bodner ML, Weliky DP. Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. Biochemistry 2006; 45:12960-75. [PMID: 17059213 PMCID: PMC2570372 DOI: 10.1021/bi0615902] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human immunodeficiency virus (HIV) fusion peptide (HFP) is the N-terminal apolar region of the HIV gp41 fusion protein and interacts with target cell membranes and promotes membrane fusion. The free peptide catalyzes vesicle fusion at least to the lipid mixing stage and serves as a useful model fusion system. For gp41 constructs which lack the HFP, high-resolution structures show trimeric protein and suggest that at least three HFPs interact with the membrane with their C-termini in close proximity. In addition, previous studies have demonstrated that HFPs which are cross-linked at their C-termini to form trimers (HFPtr) catalyze fusion at a rate which is 15-40 times greater than that of non-cross-linked HFP. In the present study, the structure of membrane-associated HFPtr was probed with solid-state nuclear magnetic resonance (NMR) methods. Chemical shift and intramolecular (13)CO-(15)N distance measurements show that the conformation of the Leu-7 to Phe-11 region of HFPtr has predominant helical conformation in membranes without cholesterol and beta strand conformation in membranes containing approximately 30 mol % cholesterol. Interstrand (13)CO-(13)CO and (13)CO-(15)N distance measurements were not consistent with an in-register parallel strand arrangement but were consistent with either (1) parallel arrangement with adjacent strands two residues out-of-register or (2) antiparallel arrangement with adjacent strand crossing between Phe-8 and Leu-9. Arrangement 1 could support the rapid fusion rate of HFPtr because of placement of the apolar N-terminal regions of all strands on the same side of the oligomer while arrangement 2 could support the assembly of multiple fusion protein trimers.
Collapse
Affiliation(s)
- Zhaoxiong Zheng
- Department of Chemistry Michigan State University East Lansing, MI 48824
| | - Rong Yang
- Department of Physiology and Cellular Biophysics Columbia University New York, NY 11032
| | - Michele L. Bodner
- Department of Chemistry Michigan State University East Lansing, MI 48824
| | - David P. Weliky
- Department of Chemistry Michigan State University East Lansing, MI 48824
| |
Collapse
|
108
|
Abstract
Infection by human immunodeficiency virus type 1 (HIV-1) involves the fusion of viral and cellular membranes mediated by formation of the gp41 trimer-of-hairpins. A designed protein, 5-Helix, targets the C-terminal region of the gp41 ectodomain, disrupting trimer-of-hairpins formation and blocking viral entry. Here we show that the nanomolar inhibitory potency of 5-Helix (IC50 approximately 6 nm) is 4 orders of magnitude larger than its subpicomolar binding affinity (K(D) approximately 0.6 pm). This discrepancy results from the transient exposure of the 5-Helix binding site on gp41. As a consequence, inhibitory potency is determined by the association rate, not by binding affinity. For a series of 5-Helix variants with mutations in their gp41 binding sites, the IC50 and K(D) values poorly correlate. By contrast, an inverse relationship between IC50 values and association rate constants (k(on)) extends for over 2 orders of magnitude. The kinetic dependence to inhibition places temporal restrictions on an intermediate state of HIV-1 membrane fusion and suggests that access to the C-terminal region of the gp41 ectodomain is largely free from steric hindrance. Our results support the importance of association kinetics in the development of improved HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- H Kirby Steger
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
109
|
Chang DK, Cheng SF. pH-dependence of intermediate steps of membrane fusion induced by the influenza fusion peptide. Biochem J 2006; 396:557-63. [PMID: 16519629 PMCID: PMC1482821 DOI: 10.1042/bj20051920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane fusion mediated by the influenza-virus fusion protein is activated by low pH via a cascade of reactions. Some processes among them are irreversible, such as helix hairpin formation of the ectodomain, whereas others are reversible, such as exposure of the fusion peptide. Using this property, we attempted to dissect, in temporal order, different stages of the fusion reaction involving the fusion peptide by an acidic-neutral-acidic pH cycle. The fluorescence-quenching data indicated that both insertion depth and self-assembly are pH-reversible. In addition, lipid mixing assay was demonstrated to be arrested by neutral pH. By contrast, membrane leakage was shown to be irreversible with respect to pH. Our results, along with those from other studies on the pH-dependence of membrane fusion, are used to build a model for the virus-mediated fusion event from the perspective of pH-reversibility.
Collapse
Affiliation(s)
- Ding-Kwo Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, Republic of China.
| | | |
Collapse
|
110
|
Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ, Cole AM, Lu H, Yan X, Daly NL, Craik DJ, Jiang S, Lehrer RI, Blumenthal R. Theta-defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J Biol Chem 2006; 281:18787-92. [PMID: 16648135 DOI: 10.1074/jbc.m602422200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrocyclin-1, a -defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 microm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.
Collapse
Affiliation(s)
- Stephen A Gallo
- Center for Cancer Research Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Zipeto D, Matucci A, Ripamonti C, Scarlatti G, Rossolillo P, Turci M, Sartoris S, Tridente G, Bertazzoni U. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes. Microbes Infect 2006; 8:1424-33. [PMID: 16702010 DOI: 10.1016/j.micinf.2006.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Collapse
Affiliation(s)
- Donato Zipeto
- Laboratory of Molecular Virology, Department of Mother and Child, Biology and Genetics, Section of Biology and Genetics, University of Verona, Strada le Grazie n. 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Melikyan GB, Egelhofer M, von Laer D. Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion. J Virol 2006; 80:3249-58. [PMID: 16537592 PMCID: PMC1440409 DOI: 10.1128/jvi.80.7.3249-3258.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
113
|
Reese C, Mayer A. Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. ACTA ACUST UNITED AC 2006; 171:981-90. [PMID: 16365164 PMCID: PMC2171322 DOI: 10.1083/jcb.200510018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fusion pore opening and expansion are considered the most energy-demanding steps in viral fusion. Whether this also applies to soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE)- and Rab-dependent fusion events has been unknown. We have addressed the problem by characterizing the effects of lysophosphatidylcholine (LPC) and other late-stage inhibitors on lipid mixing and pore opening during vacuole fusion. LPC inhibits fusion by inducing positive curvature in the bilayer and changing its biophysical properties. The LPC block reversibly prevented formation of the hemifusion intermediate that allows lipid, but not content, mixing. Transition from hemifusion to pore opening was sensitive to guanosine-5'-(gamma-thio)triphosphate. It required the vacuolar adenosine triphosphatase V0 sector and coincided with its transformation. Pore opening was rate limiting for the reaction. As with viral fusion, opening the fusion pore may be the most energy-demanding step for intracellular, SNARE-dependent fusion reactions, suggesting that fundamental aspects of lipid mixing and pore opening are related for both systems.
Collapse
Affiliation(s)
- Christoph Reese
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | |
Collapse
|
114
|
Delcroix-Genête D, Quan PL, Roger MG, Hazan U, Nisole S, Rousseau C. Antiviral properties of two trimeric recombinant gp41 proteins. Retrovirology 2006; 3:16. [PMID: 16515685 PMCID: PMC1435769 DOI: 10.1186/1742-4690-3-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/03/2006] [Indexed: 01/30/2023] Open
Abstract
Background As it is the very first step of the HIV replication cycle, HIV entry represents an attractive target for the development of new antiviral drugs. In this context, fusion inhibitors are the third class of anti-HIV drugs to be used for treatment, in combination with nucleoside analogues and antiproteases. But the precise mechanism of HIV fusion mechanism is still unclear. Gp41 ectodomain-derived synthetic peptides represent ideal tools for clarifying this mechanism, in order to design more potent anti-HIV drugs. Results Two soluble trimeric recombinant gp41 proteins, termed Rgp41B and Rgp41A were designed. Both comprise the N- and C-terminal heptad repeat regions of the ectodomain of HIV-1 gp41, connected by a 7-residue hydrophilic linker, in order to mimic the trimeric fusogenic state of the transmembrane glycoprotein. Both recombinant proteins were found to inhibit HIV-1 entry into target cells in a dose-dependent manner. Rgp41A, the most potent inhibitor, was able to inhibit both X4 and R5 isolates into HeLa cells and primary T lymphocytes. X4 viruses were found to be more susceptible than R5 isolates to inhibition by Rgp41A. In order to elucidate how the trimeric recombinant gp41 protein can interfere with HIV-1 entry into target cells, we further investigated its mode of action. Rgp41A was able to bind gp120 but did not induce gp120-gp41 dissociation. Furthermore, this inhibitor could also interfere with a late step of the fusion process, following the mixing of lipids. Conclusion Taken together, our results suggest that Rgp41A can bind to gp120 and also interfere with a late event of the fusion process. Interestingly, Rgp41A can block membrane fusion without preventing lipid mixing. Although further work will be required to fully understand its mode of action, our results already suggest that Rgp41A can interfere with multiple steps of the HIV entry process.
Collapse
Affiliation(s)
- Delphine Delcroix-Genête
- Institut Cochin, Department of Infectious Diseases, 22 rue Méchain, 75014 Paris, France, INSERM, U 567, CNRS, UMR 8104, Faculté de Médecine René Descartes, UMR-S 8104, 75014 Paris, France
| | - Phenix-Lan Quan
- Institut Cochin, Department of Infectious Diseases, 22 rue Méchain, 75014 Paris, France, INSERM, U 567, CNRS, UMR 8104, Faculté de Médecine René Descartes, UMR-S 8104, 75014 Paris, France
- Mymetics Corporation, 14, rue de la Colombière, 1260 Nyon, Switzerland
| | | | - Uriel Hazan
- Institut Cochin, Department of Infectious Diseases, 22 rue Méchain, 75014 Paris, France, INSERM, U 567, CNRS, UMR 8104, Faculté de Médecine René Descartes, UMR-S 8104, 75014 Paris, France
- Université Paris 7-Denis Diderot, UFR de Biochimie, 2 Place Jussieu, 75251 Paris, France
| | - Sébastien Nisole
- Institut Cochin, Department of Infectious Diseases, 22 rue Méchain, 75014 Paris, France, INSERM, U 567, CNRS, UMR 8104, Faculté de Médecine René Descartes, UMR-S 8104, 75014 Paris, France
- Université Paris 7-Denis Diderot, UFR de Biochimie, 2 Place Jussieu, 75251 Paris, France
| | - Cécile Rousseau
- Institut Cochin, Department of Infectious Diseases, 22 rue Méchain, 75014 Paris, France, INSERM, U 567, CNRS, UMR 8104, Faculté de Médecine René Descartes, UMR-S 8104, 75014 Paris, France
| |
Collapse
|
115
|
Nolan S, Cowan AE, Koppel DE, Jin H, Grote E. FUS1 regulates the opening and expansion of fusion pores between mating yeast. Mol Biol Cell 2006; 17:2439-50. [PMID: 16495338 PMCID: PMC1446097 DOI: 10.1091/mbc.e05-11-1015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mating yeast cells provide a genetically accessible system for the study of cell fusion. The dynamics of fusion pores between yeast cells were analyzed by following the exchange of fluorescent markers between fusion partners. Upon plasma membrane fusion, cytoplasmic GFP and DsRed diffuse between cells at rates proportional to the size of the fusion pore. GFP permeance measurements reveal that a typical fusion pore opens with a burst and then gradually expands. In some mating pairs, a sudden increase in GFP permeance was found, consistent with the opening of a second pore. In contrast, other fusion pores closed after permitting a limited amount of cytoplasmic exchange. Deletion of FUS1 from both mating partners caused a >10-fold reduction in the initial permeance and expansion rate of the fusion pore. Although fus1 mating pairs also have a defect in degrading the cell wall that separates mating partners before plasma membrane fusion, other cell fusion mutants with cell wall remodeling defects had more modest effects on fusion pore permeance. Karyogamy is delayed by >1 h in fus1 mating pairs, possibly as a consequence of retarded fusion pore expansion.
Collapse
Affiliation(s)
- Scott Nolan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
116
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
117
|
Moreno MR, Giudici M, Villalaín J. The membranotropic regions of the endo and ecto domains of HIV gp41 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:111-23. [PMID: 16483537 DOI: 10.1016/j.bbamem.2006.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/20/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
118
|
Wallin M, Löving R, Ekström M, Li K, Garoff H. Kinetic analyses of the surface-transmembrane disulfide bond isomerization-controlled fusion activation pathway in Moloney murine leukemia virus. J Virol 2006; 79:13856-64. [PMID: 16254321 PMCID: PMC1280236 DOI: 10.1128/jvi.79.22.13856-13864.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface (SU) and transmembrane (TM) subunits of Moloney murine leukemia virus (Mo-MLV) Env are disulfide linked. The linking cysteine in SU is part of a conserved CXXC motif in which the other cysteine carries a free thiol. Recently, we showed that receptor binding activates its free thiol to isomerize the intersubunit disulfide bond into a disulfide within the motif instead (M. Wallin, M. Ekström and H. Garoff, EMBO J. 23:54-65, 2004). This facilitated SU dissociation and activation of TM for membrane fusion. The evidence was mainly based on the finding that alkylation of the CXXC-thiol prevented isomerization. This arrested membrane fusion, but the activity could be rescued by cleaving the intersubunit disulfide bond with dithiothreitol (DTT). Here, we demonstrate directly that receptor binding causes SU-TM disulfide bond isomerization in a subfraction of the viral Envs. The kinetics of the isomerization followed that of virus-cell membrane fusion. Arresting the fusion with lysophosphatidylcholine did not arrest isomerization, suggesting that isomerization precedes the hemifusion stage of fusion. Our earlier finding that native Env was not possible to alkylate but required isomerization induction by receptor binding intimated that alkylation trapped an intermediate form of Env. To further clarify this possibility, we analyzed the kinetics by which the alkylation-sensitive Env was generated during fusion. We found that it followed the fusion kinetics. In contrast, the release of fusion from alkylated, isomerization-blocked virus by DTT reduction of the SU-TM disulfide bond was much faster. These results suggest that the alkylation-sensitive form of Env is a true intermediate in the fusion activation pathway of Env.
Collapse
Affiliation(s)
- Michael Wallin
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
119
|
Abstract
The life cycle of HIV-1 involves a series of steps necessary for the successful infection of human target cells. First the RNA genome enters the cytoplasm after the fusion of the viral membrane and that of the target cell. The RNA genome is then converted to DNA form through the process of reverse transcription. The DNA genome is then integrated into the host cell DNA. Next, viral proteins and more copies of the viral genome are produced. These components assemble to form new virions that are then able to propagate. The cellular proteins involved in HIV-1 entry have been known for more than a decade now and the study of the cellular and viral components involved in HIV-1 entry has led to the development of many therapeutic strategies and drugs designed to block viral replication. Recently, there have been significant advances in the understanding of HIV-1 assembly as a consequence of the identification of the cellular factors that mediate this process. This review will provide a basic outline of the current understanding of HIV-1 entry and exit.
Collapse
Affiliation(s)
- Candace Gomez
- University of Illinois at Chicago, College of Medicine, 60612, USA
| | | |
Collapse
|
120
|
Dimitrov AS, Louis JM, Bewley CA, Clore GM, Blumenthal R. Conformational changes in HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion and inactivation. Biochemistry 2005; 44:12471-9. [PMID: 16156659 PMCID: PMC1314968 DOI: 10.1021/bi051092d] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 envelope glycoprotein-mediated fusion is driven by the concerted coalescence of the HIV-1 gp41 N- and C-helical regions, which results in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. However, the parameters that govern this inhibition have yet to be elucidated. We address this issue by monitoring the temporal sequence of conformational states of HIV-1 gp41 during the course of HIV-1-mediated cell-cell fusion by quantitative video microscopy using reagents that bind to N- and C-helical regions, respectively. Env-expressing cells were primed by incubation with target cells at different times at 37 degrees C followed by washing. The reactivity of triggered gp41 to the NC-1 monoclonal antibody, which we demonstrate here to bind to N-helical gp41 trimers, increased rapidly to a maximal level in the primed state but decreased once stable fusion junctions had formed. In contrast, reactivity with 5-helix, which binds to the C-helical region of gp41, increased continuously as a function of time following the priming. The peptide N36(Mut(e,g)) reduced NC-1 monoclonal antibody binding and enhanced 5-helix binding, consistent with the notion that this molecule promotes dissociation of gp41 trimers. This inactivation pathway may be important for the design of entry inhibitors and vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | - Robert Blumenthal
- * To whom correspondence should be addressed. Telephone: +1-301-846-5532. Fax: +1-301-846-5598. E-mail address:
| |
Collapse
|
121
|
Markosyan RM, Cohen FS, Melikyan GB. Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol Biol Cell 2005; 16:5502-13. [PMID: 16195349 PMCID: PMC1289397 DOI: 10.1091/mbc.e05-06-0496] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A method has been developed to follow fusion of individual pseudotyped virus expressing HIV-1 Env to cells by time-resolved fluorescence microscopy. Viral envelopes were labeled with a fluorescent lipid dye (DiD) and virus content was rendered visible by incorporating a Gag-GFP chimera. The Gag-GFP is naturally cleaved to the much smaller NC-GFP fragment in the mature virions. NC-GFP was readily released upon permeabilization of the viral envelope, whereas the capsid was retained. The NC-GFP thus provides a relatively small and mobile aqueous marker to follow viral content transfer. In fusion experiments, virions were bound to cells at low temperature, and fusion was synchronously triggered by a temperature jump. DiD transferred from virions to cells without a significant lag after the temperature jump. Some virions released DiD but retained NC-GFP. Surprisingly, the fraction of lipid mixing events yielding NC-GFP transfer was dependent on the type of target cell: of three infectable cell lines, only one permitted NC-GFP transfer within minutes of raising temperature. NC-GFP release did not correlate with the level of CD4 or coreceptor expression in the target cells. The data indicate that fusion pores formed by HIV-1 Env can remain small for a relatively long time before they enlarge.
Collapse
Affiliation(s)
- Ruben M Markosyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| | | | | |
Collapse
|
122
|
Mkrtchyan SR, Markosyan RM, Eadon MT, Moore JP, Melikyan GB, Cohen FS. Ternary complex formation of human immunodeficiency virus type 1 Env, CD4, and chemokine receptor captured as an intermediate of membrane fusion. J Virol 2005; 79:11161-9. [PMID: 16103167 PMCID: PMC1193594 DOI: 10.1128/jvi.79.17.11161-11169.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) Env-induced fusion is highly temperature dependent. When effector and target cells were coincubated at 37 degrees C, there was a kinetic delay before fusion commenced. When effector and target cells were coincubated for varied times at 23 degrees C, a temperature that does not permit fusion, a temperature-arrested stage was created. Raising temperature to 37 degrees C from the 23 degrees C intermediate eliminated the kinetic delay. Inhibitors (T22, AMD3100, and Sch-C) that block fusion by binding chemokine receptors were added after creating the intermediate so as to assess the extent of engagement between gp120 and chemokine receptors at that stage. For both CXCR4 and CCR5 as coreceptors, increasingly long times of coincubation at 23 degrees C reduced the efficacy of the coreceptor-binding inhibitors in blocking fusion. This implies that an increasing number of ternary Env/CD4/coreceptor complexes form over time at 23 degrees C. It also shows that ternary complex formation has a lower temperature threshold than the downstream steps that include Env folding into a six-helix bundle; this provides an experimental means to separate coreceptor binding by gp120 from the subsequent refolding of gp41 into a six-helix bundle structure. As the time of cell coincubation at 23 degrees C was prolonged, more cells quickly fused upon the raising of the temperature to 37 degrees C, and the increase quantitatively correlated with the greater percentage of fusion that was resistant to drugs. Therefore the pronounced kinetic delay in HIV Env-induced fusion is caused predominantly by the time needed for ternary complexes to form.
Collapse
Affiliation(s)
- Samvel R Mkrtchyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
123
|
Top D, de Antueno R, Salsman J, Corcoran J, Mader J, Hoskin D, Touhami A, Jericho MH, Duncan R. Liposome reconstitution of a minimal protein-mediated membrane fusion machine. EMBO J 2005; 24:2980-8. [PMID: 16079913 PMCID: PMC1201348 DOI: 10.1038/sj.emboj.7600767] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/13/2005] [Indexed: 11/08/2022] Open
Abstract
Biological membrane fusion is dependent on protein catalysts to mediate localized restructuring of lipid bilayers. A central theme in current models of protein-mediated membrane fusion involves the sequential refolding of complex homomeric or heteromeric protein fusion machines. The structural features of a new family of fusion-associated small transmembrane (FAST) proteins appear incompatible with existing models of membrane fusion protein function. While the FAST proteins function to induce efficient cell-cell fusion when expressed in transfected cells, it was unclear whether they function on their own to mediate membrane fusion or are dependent on cellular protein cofactors. Using proteoliposomes containing the purified p14 FAST protein of reptilian reovirus, we now show via liposome-cell and liposome-liposome fusion assays that p14 is both necessary and sufficient for membrane fusion. Stoichiometric and kinetic analyses suggest that the relative efficiency of p14-mediated membrane fusion rivals that of the more complex cellular and viral fusion proteins, making the FAST proteins the simplest known membrane fusion machines.
Collapse
Affiliation(s)
- Deniz Top
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roberto de Antueno
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jayme Salsman
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie Mader
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David Hoskin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ahmed Touhami
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Manfred H Jericho
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5. Tel.: +1 902 494 6770; Fax: +1 902 494 5125; E-mail:
| |
Collapse
|
124
|
Abstract
Current HIV entry inhibitors target the binding of the viral envelope glycoprotein gp120 to cellular CD4 and co-receptors, or block a late stage of the fusogenic activation of adjacent gp41. New targets are suggested by the role of cell surface protein disulfide isomerase (PDI), which attaches to the primary receptor CD4 close to the gp120-binding site. This could enable PDI to reduce gp120 disulfide bonds, which triggers the major conformational changes in gp120 and gp41 required for virus entry. Inhibiting cell surface PDI prevents HIV-1 entry. The new potential targets outlined are PDI activity as well as the sites of PDI-CD4 and PDI-gp120 interaction.
Collapse
Affiliation(s)
- Hugues J-P Ryser
- Departments of Pathology and Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
125
|
Abstract
The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.
Collapse
|
126
|
Sackett K, Shai Y. The HIV Fusion Peptide Adopts Intermolecular Parallel β-Sheet Structure in Membranes when Stabilized by the Adjacent N-Terminal Heptad Repeat: A 13C FTIR Study. J Mol Biol 2005; 350:790-805. [PMID: 15964015 DOI: 10.1016/j.jmb.2005.05.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
The HIV gp41 protein mediates fusion with target host cells. The region primarily involved in directing fusion, the fusion peptide (FP), is poorly understood at the level of structure and function due to its toxic effect in expression systems. To overcome this, we used a synthetic approach to generate the N70 construct, whereby the FP is stabilized in context of the adjacent auto oligomerization domain. The amide I profile of unlabeled N70 in membranes reveals prominent alpha-helical contribution, along with significant beta-structure. By truncating the N terminus (FP region) of N70, beta-structure is eliminated, suggesting that the FP adopts a beta-structure in membranes. To assess this directly, (13)C Fourier-transformed infra-red analysis was carried out to map secondary structure of the 16 N-terminal hydrophobic residues of the fusion peptide (FP16). The (13)C isotope shifted absorbance of the FP was filtered from the global secondary structure of the 70 residue construct (N70). On the basis of the peak shift induced by the (13)C-labeled residues of FP16, we directly assign beta-sheet structure in ordered membranes. A differential labeling scheme in FP16 allows us to distinguish the type of beta-sheet structure as parallel. Dilution of each FP16-labeled N70 peptide, by mixing with unlabeled N70, shows directly that the FP16 beta-strand region self-assembles. We discuss our structural findings in the context of the prevailing gp41 fusion paradigm. Specifically, we address the role of the FP region in organizing supramolecular gp41 assembly, and we also discuss the mechanism by which exogenous, free FP constructs inhibit gp41-induced fusion.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
127
|
Desmezieres E, Gupta N, Vassell R, He Y, Peden K, Sirota L, Yang Z, Wingfield P, Weiss CD. Human immunodeficiency virus (HIV) gp41 escape mutants: cross-resistance to peptide inhibitors of HIV fusion and altered receptor activation of gp120. J Virol 2005; 79:4774-81. [PMID: 15795263 PMCID: PMC1069567 DOI: 10.1128/jvi.79.8.4774-4781.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) infects cells by fusing with cellular membranes. Fusion occurs when the envelope glycoprotein (Env) undergoes conformational changes while binding to cellular receptors. Fusogenic changes involve assembly of two heptad repeats in the ectodomain of the gp41 transmembrane subunit to form a six-helix bundle (6HB), consisting of a trimeric N heptad repeat (N-HR) coiled-coil core with three antiparallel C heptad repeats (C-HRs) that pack in the coiled-coil grooves. Peptides corresponding to the N-and C-HRs (N and C peptides, respectively) interfere with formation of the 6HB in a dominant-negative manner and are emerging as a new class of antiretroviral therapeutics for treating HIV infection. We generated an escape mutant virus with resistance to an N peptide and show that early resistance involved two mutations, one each in the N- and C-HRs. The mutations conferred resistance not only to the selecting N peptide but also to C peptides, as well as other types of N-peptide inhibitors. Moreover, the N-HR mutation altered sensitivity to soluble CD4. Biophysical studies suggest that the 6HB with the resistance mutations is more stable than the wild-type 6HB and the 6HB formed by inhibitor binding to either wild-type or mutant C-HR. These findings provide new insights into potential mechanisms of resistance to HIV peptide fusion inhibitors and dominant-negative inhibitors in general. The results are discussed in the context of current models of Env-mediated membrane fusion.
Collapse
Affiliation(s)
- Emmanuel Desmezieres
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, HFM-466, Bldg. 29, Room 532, 8800 Rockville Pike, Bethesda, MD 20892-4555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 2005; 199:1-14. [PMID: 15366419 DOI: 10.1007/s00232-004-0669-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.
Collapse
Affiliation(s)
- F S Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1653 W Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
129
|
Platt EJ, Durnin JP, Kabat D. Kinetic factors control efficiencies of cell entry, efficacies of entry inhibitors, and mechanisms of adaptation of human immunodeficiency virus. J Virol 2005; 79:4347-56. [PMID: 15767435 PMCID: PMC1061535 DOI: 10.1128/jvi.79.7.4347-4356.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) in diverse conditions limiting for viral entry into cells frequently leads to adaptive mutations in the V3 loop of the gp120 envelope glycoprotein. This has suggested that the V3 loop limits the efficiencies of HIV-1 infections, possibly by directly affecting gp120-coreceptor affinities. In contrast, V3 loop mutations that enable HIV-1(JR-CSF) to use the low-affinity mutant coreceptor CCR5(Y14N) are shown here to have negligible effects on the virus-coreceptor affinity but to dramatically accelerate the irreversible conformational conversion of the envelope gp41 subunits from a three-stranded coil into a six-helix bundle. This slow step is blocked irreversibly by the inhibitor T-20. To further evaluate the role of entry rates in controlling infection efficiencies and viral adaptations, we developed methods to quantitatively measure viral entry kinetics. The virions were adsorbed by spinoculation at 4 degrees C onto HeLa-CD4/CCR5 cell clones that either had limiting or saturating concentrations of CCR5. After warming to 37 degrees C, the completion of entry was monitored over time by the resistance of infections to the competitive CCR5 inhibitor TAK-779. Our results suggest that the efficiency of entry of cell-attached infectious HIV-1 is principally controlled by three kinetic processes. The first is a lag phase that is caused in part by the concentration-dependent reversible association of virus with CD4 and CCR5 to form an equilibrium assemblage of complexes. Second, this assembly step lowers but does not eliminate a large activation energy barrier for a rate-limiting, CCR5-dependent conformational change in gp41 that is sensitive to blockage by T-20. The rate of infection therefore depends on the fraction of infectious virions that are sufficiently saturated with CCR5 to undergo this conformational change and on the magnitude of the activation energy barrier. Although only a small fraction of fully assembled viral complexes overcome this barrier per hour, the ensuing steps of entry are rapidly completed within 5 to 10 min. Thus, this barrier limits the overall flow rate at which the attached virions enter cells, but it has no effect on the lag time that precedes this entry flow. Third, a relatively rapid and kinetically dominant process of viral inactivation, which may partly involve endocytosis, competes with infectious viral entry. Our results suggest that the V3 loop of gp120 has a major effect on the rate-limiting coreceptor-dependent conformational change in gp41 and that adaptive viral mutations, including V3 loop mutations, function kinetically by accelerating this inherently slow step in the entry pathway.
Collapse
Affiliation(s)
- Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
130
|
Pascual R, Moreno MR, Villalaín J. A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism. J Virol 2005; 79:5142-52. [PMID: 15795298 PMCID: PMC1069547 DOI: 10.1128/jvi.79.8.5142-5152.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.
Collapse
Affiliation(s)
- Roberto Pascual
- Instituto de Biología Molecular y Celular, Universidad "Miguel Hernández," E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
131
|
West DS, Sheehan MS, Segeleon PK, Dutch RE. Role of the simian virus 5 fusion protein N-terminal coiled-coil domain in folding and promotion of membrane fusion. J Virol 2005; 79:1543-51. [PMID: 15650180 PMCID: PMC544100 DOI: 10.1128/jvi.79.3.1543-1551.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt alpha-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion.
Collapse
Affiliation(s)
- Dava S West
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose St., UKMC MN606, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
132
|
Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS. The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle. J Virol 2005; 79:106-15. [PMID: 15596806 PMCID: PMC538707 DOI: 10.1128/jvi.79.1.106-115.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Effects of the cytoplasmic tail (CT) of human immunodeficiency virus type 1 Env on the process of membrane fusion were investigated. Full-length Env (wild type [WT]) and Env with its CT truncated (DeltaCT) were expressed on cell surfaces, these cells were fused to target cells, and the inhibition of fusion by peptides that prevent Env from folding into a six-helix bundle conformation was measured. For both X4-tropic and R5-tropic Env proteins, DeltaCT induced faster fusion kinetics than did the WT, and peptides were less effective at inhibiting DeltaCT-induced fusion. We tested the hypothesis that the inhibitory peptides were less effective at inhibiting DeltaCT-induced fusion because DeltaCT folds more quickly into a six-helix bundle. Early and late intermediates of WT- and DeltaCT-induced fusion were captured, and the ability of peptides to block fusion when added at the intermediate stages was quantified. When added at the early intermediate, the peptides were still less effective at inhibiting DeltaCT-induced fusion but they were equally effective at preventing WT- and DeltaCT-induced fusion when added at the late intermediate. We conclude that for both X4-tropic and R5-tropic Env proteins, the CT facilitates conformational changes that allow the trimeric coiled coil of prebundles to become optimally exposed. But once Env does favorably expose its coiled coil to inhibitory peptides, the CT hinders subsequent folding into a six-helix bundle. Because of this facilitation of maximal exposure and hindrance of bundle formation, the coiled coil is optimally exposed for a longer time for WT than for DeltaCT. This accounts for the greater peptide inhibition of WT-induced fusion.
Collapse
Affiliation(s)
- Levon G Abrahamyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
Every enveloped virus fuses its membrane with a host cell membrane, thereby releasing its genome into the cytoplasm and initiating the viral replication cycle. In each case, one or a small set of viral surface transmembrane glycoproteins mediates fusion. Viral fusion proteins vary in their mode of activation and in structural class. These features combine to yield many different fusion mechanisms. Despite their differences, common principles for how fusion proteins function are emerging: In response to an activating trigger, the metastable fusion protein converts to an extended, in some cases rodlike structure, which inserts into the target membrane via its fusion peptide. A subsequent conformational change causes the fusion protein to fold back upon itself, thereby bringing its fusion peptide and its transmembrane domain-and their attached target and viral membranes-into intimate contact. Fusion ensues as the initial lipid stalk progresses through local hemifusion, and then opening and enlargement of a fusion pore. Here we review recent advances in our understanding of how fusion proteins are activated, how fusion proteins change conformation during fusion, and what is happening to the lipids during fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treating viral infections.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
134
|
Lenz O, Dittmar MT, Wagner A, Ferko B, Vorauer-Uhl K, Stiegler G, Weissenhorn W. Trimeric membrane-anchored gp41 inhibits HIV membrane fusion. J Biol Chem 2004; 280:4095-101. [PMID: 15574416 DOI: 10.1074/jbc.m411088200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 envelope glycoprotein is composed of a receptor binding subunit, gp120 that is non-covalently linked to the membrane-anchored fusion protein, gp41. Triggered by cellular receptor binding, the trimeric envelope complex mediates the fusion of viral and cellular membranes through the rearrangement of the fusion protein subunit into a six-helical bundle core structure. Here we describe the biophysical and functional properties of a membrane-anchored fragment of gp41 (gp41ctm) that includes the complete C-terminal heptad repeat region 2, the connecting part, and the transmembrane region. We show that the transmembrane domain of the envelope glycoprotein is sufficient for trimerization in vitro, contributing most of the alpha-helical content of gp41ctm. Trimeric gp41ctm is protease-resistant and recognizes neutralizing antibodies 2F5 and 4E10. However, gp41ctm and gp41ctm proteoliposomes elicit no clear neutralizing immune responses in preliminary mouse studies. We further show that gp41ctm and surprisingly also gp41ctm proteoliposomes have potent anti-viral activity. Our data suggest that liposome-anchored gp41ctm exerts its inhibitory action outside of the initial fusion contact site, and its implications for the fusion reaction are discussed.
Collapse
Affiliation(s)
- Oliver Lenz
- European Molecular Biology Laboratory (EMBL), 6, rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
135
|
Campbell S, Gaus K, Bittman R, Jessup W, Crowe S, Mak J. The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated Brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity. J Virol 2004; 78:10556-65. [PMID: 15367622 PMCID: PMC516414 DOI: 10.1128/jvi.78.19.10556-10565.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are enriched in cholesterol and sphingomyelin and are isolated on the basis of insolubility in detergents, such as Brij 98 and Triton X-100. Recent work by Holm et al. has shown that rafts insoluble in Brig 98 can be found in human immunodeficiency virus type 1 (HIV-1) virus-like particles, although it is not known whether raft-like structures are present in authentic HIV-1 and it is unclear whether a virion-associated raft-like structure is required for HIV replication. Independently, it was previously reported that virion-associated cholesterol is critical for HIV-1 infectivity, although the specific requirement of virion cholesterol in HIV-1 was not examined. In the present study, we have demonstrated that infectious wild-type HIV-1 contains Brij 98 rafts but only minimal amounts of Triton X-100 rafts. To directly assess the functional requirement of virion-associated rafts and various features of cholesterol on HIV-1 replication, we replaced virion cholesterol with exogenous cholesterol analogues that have demonstrated either raft-promoting or -inhibiting capacity in model membranes. We observed that variable concentrations of exogenous analogues are required to replace a defined amount of virion-associated cholesterol, showing that structurally diverse cholesterol analogues have various affinities toward HIV-1. We found that replacement of 50% of virion cholesterol with these exogenous cholesterol analogues did not eliminate the presence of Brij 98 rafts in HIV-1. However, the infectivity levels of the lipid-modified HIV-1s directly correlate with the raft-promoting capacities of these cholesterol analogues. Our data provide the first direct assessment of virion-associated Brij 98 rafts in retroviral replication and illustrate the importance of the raft-promoting property of virion-associated cholesterol in HIV-1 replication.
Collapse
Affiliation(s)
- Shahan Campbell
- Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Punt and Commercial Roads, Melbourne 3004, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
136
|
Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. ACTA ACUST UNITED AC 2004; 199:283-93. [PMID: 14734528 PMCID: PMC2211771 DOI: 10.1084/jem.20030648] [Citation(s) in RCA: 485] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Direct cell–cell transfer is an efficient mechanism of viral dissemination within an infected host, and human immunodeficiency virus 1 (HIV-1) can exploit this mode of spread. Receptor recognition by HIV-1 occurs via interactions between the viral surface envelope glycoprotein (Env), gp120, and CD4 and a chemokine receptor, CCR5 or CXCR4. Here, we demonstrate that the binding of CXCR4-using HIV-1–infected effector T cells to primary CD4+/CXCR4+ target T cells results in rapid recruitment to the interface of CD4, CXCR4, talin, and lymphocyte function–associated antigen 1 on the target cell, and of Env and Gag on the effector cell. Recruitment of these membrane molecules into polarized clusters was dependent on Env engagement of CD4 and CXCR4 and required remodelling of the actin cytoskeleton. Transfer of Gag from effector to target cell was observed by 1 h after conjugate formation, was independent of cell–cell fusion, and was probably mediated by directed virion fusion with the target cell. We propose that receptor engagement by Env directs the rapid, actin-dependent recruitment of HIV receptors and adhesion molecules to the interface, resulting in a stable adhesive junction across which HIV infects the target cell.
Collapse
Affiliation(s)
- Clare Jolly
- The Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
137
|
Markosyan RM, Bates P, Cohen FS, Melikyan GB. A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle. Biophys J 2004; 87:3291-8. [PMID: 15339808 PMCID: PMC1304797 DOI: 10.1529/biophysj.104.047696] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fusion protein of avian sarcoma and leukosis virus is likely to fold into a six-helix bundle as part of its final configuration. A peptide, R99, inhibits fusion, probably by binding into the grooves of the triple-stranded coiled coil that becomes the central core of the six-helix bundle. The stages at which the envelope protein (Env) of avian sarcoma and leukosis virus subgroup A folds into a bundle during low pH-induced fusion were determined. Effector cells expressing Env were bound to target cells expressing the cognate receptor Tva, and intermediates of fusion were created. R99 was added and the extent of fusion inhibition was used to distinguish between a prebundle state with exposed grooves and a state in which the grooves were no longer exposed. The native conformation of Env was not sensitive to R99. But adding a soluble form of Tva to effector cells conferred sensitivity. Acidic pH applied at low temperature created an intermediate state of local hemifusion. Surprisingly, R99 caused these locally hemifused membranes to separate. This indicates that the grooves of Env were still exposed, that prebundle configurations of Env stabilized hemifused states, and that binding of R99 altered the conformation of Env. In the presence of an inhibitory lipid that blocks fusion before hemifusion, applying low pH at 37 degrees C created an intermediate in which R99 was without effect. This suggests that the six-helix bundle can form before hemifusion and that subsequent conformational changes, such as formation of the trimeric hairpin, are responsible for pore formation and/or growth.
Collapse
Affiliation(s)
- R M Markosyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
138
|
Matsuyama S, Delos SE, White JM. Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J Virol 2004; 78:8201-9. [PMID: 15254191 PMCID: PMC446138 DOI: 10.1128/jvi.78.15.8201-8209.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 03/23/2004] [Indexed: 11/20/2022] Open
Abstract
A general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion. While there is ample biochemical and structural information on the trimer-of-hairpins conformation of class I viral fusion proteins, less is known about intermediate states between native metastable trimers and the final trimer of hairpins. In this study we analyzed conformational states of the transmembrane subunit (TM), the fusion subunit, of the Env glycoprotein of the subtype A avian sarcoma and leukosis virus (ASLV-A). By analyzing forms of EnvA TM on mildly denaturing sodium dodecyl sulfate gels we identified five conformational states of EnvA TM. Following interaction of virions with a soluble form of the ASLV-A receptor at 37 degrees C, the metastable form of EnvA TM (which migrates at 37 kDa) transits to a 70-kDa and then to a 150-kDa species. Following subsequent exposure to a low pH (or an elevated temperature or the fusion promoting agent chlorpromazine), an additional set of bands at >150 kDa, and then a final band at 100 kDa, forms. Both an EnvA C-helix peptide (which inhibits virus fusion and infectivity) and the fusion-inhibitory agent lysophosphatidylcholine inhibit the formation of the >150- and 100-kDa bands. Our data are consistent with the 70- and 150-kDa bands representing precursor and fully formed prehairpin conformations of EnvA TM. Our data are also consistent with the >150-kDa bands representing higher-order oligomers of EnvA TM and with the 100-kDa band representing the fully formed six-helix bundle. In addition to resolving fusion-relevant conformational intermediates of EnvA TM, our data are compatible with a model in which the EnvA protein is activated by its receptor (at neutral pH and a temperature greater than or equal to room temperature) to form prehairpin conformations of EnvA TM, and in which subsequent exposure to a low pH is required to stabilize the final six-helix bundle, which drives a later stage of fusion.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA
| | | | | |
Collapse
|
139
|
Melikyan GB, Barnard RJO, Markosyan RM, Young JAT, Cohen FS. Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol 2004; 78:3753-62. [PMID: 15016895 PMCID: PMC371058 DOI: 10.1128/jvi.78.7.3753-3762.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Binding of avian sarcoma and leukosis virus (ASLV) to its cognate receptor on the cell surface causes conformational changes in its envelope protein (Env). It is currently debated whether low pH is required for ASLV infection. To elucidate the role of low pH, we studied the association between ASLV subgroup B (ASLV-B) and liposomes and fusion between effector cells expressing Env from ASLV-A and ASLV-B and target cells expressing cognate receptors. Neither EnvA nor EnvB promoted cell-cell fusion at neutral pH, but lowering the pH resulted in quick and extensive fusion. As expected for a low-pH-triggered reaction, fusion was a steep function of pH. Steps that required low pH were identified. Binding a soluble form of the receptor caused ASLV-B to hydrophobically associate with liposome membranes at neutral pH, indicating that low pH is not required for insertion of Env's fusion peptides into membranes. But both cell-cell hemifusion and fusion pore formation were pH dependent. It is proposed that fusion peptide insertion stabilizes the conformation of ASLV Env into a form that can be acted upon by low pH. At this point, but not before, low pH can induce fusion and is in fact required for fusion to occur. However, low pH is no longer necessary after formation of the initial fusion pore: pore enlargement does not require low pH.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
140
|
Abstract
Viruses have evolved to enter cells from all three domains of life--Bacteria, Archaea and Eukaryotes. Of more than 3,600 known viruses, hundreds can infect human cells and most of those are associated with disease. To gain access to the cell interior, animal viruses attach to host-cell receptors. Advances in our understanding of how viral entry proteins interact with their host-cell receptors and undergo conformational changes that lead to entry offer unprecedented opportunities for the development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- Human Immunovirology and Computational Biology Group, Laboratory of Experimental & Computational Biology, Centre for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
141
|
Shnaper S, Sackett K, Gallo SA, Blumenthal R, Shai Y. The C- and the N-terminal Regions of Glycoprotein 41 Ectodomain Fuse Membranes Enriched and Not Enriched with Cholesterol, Respectively. J Biol Chem 2004; 279:18526-34. [PMID: 14981088 DOI: 10.1074/jbc.m304950200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To infect target cells, HIV-1 employs a virally encoded transmembrane protein (gp41) to fuse its viral envelope with the target cell plasma membrane. We describe the gp41 ectodomain as comprised of N- and C-terminal subdomains, each containing a heptad repeat as well as a fusogenic region, whose organization is mirrored by the intervening loop region. Recent evidence indicates that the gp41 directed fusion reaction proceeds to initial pore formation prior to gp41 folding into its low energy hairpin conformation. This implies that exposed regions of the gp41 ectodomain are responsible for the bulk of the fusion work, probably through direct protein-membrane interactions. Prevalent fusion models contend that the gp41 ectodomain initially interacts with the target cell surface through its highly hydrophobic N terminus, which is believed to insert into the target membrane, thereby linking the virus to the target cell. This arrangement allows the N-terminal subdomain to interact with the target cell surface, whereas the C-terminal subdomain remains proximal to the virion, allowing interaction with the viral envelope. The composition of the viral envelope and the target cell surface differ due to the virus budding from raft microdomains. We show here that constructs corresponding to the C-terminal subdomain specifically destabilize ordered and cholesterol rich membranes (33 molar %), whereas the N-terminal subdomain is more effective in fusing both unordered cholesterol-free membranes and those containing lower amounts of cholesterol (10 molar %). Moreover we show that, in the context of the C-terminal subdomain, the heptad repeat contributes helical structure, which may describe the enhanced inhibitory effect of the C-terminal subdomain relative to the C-terminal heptad repeat (C34) alone. Our results are discussed in light of recent findings that showcase the role of exposed gp41 regions in effecting membrane fusion.
Collapse
Affiliation(s)
- Sophie Shnaper
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
142
|
de Rosny E, Vassell R, Jiang S, Kunert R, Weiss CD. Binding of the 2F5 monoclonal antibody to native and fusion-intermediate forms of human immunodeficiency virus type 1 gp41: implications for fusion-inducing conformational changes. J Virol 2004; 78:2627-31. [PMID: 14963170 PMCID: PMC369236 DOI: 10.1128/jvi.78.5.2627-2631.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated how the broadly neutralizing monoclonal antibody 2F5 affects the human immunodeficiency virus type 1 envelope glycoprotein as it undergoes receptor-induced conformational changes and show that 2F5 binds both native and fusion-intermediate conformations, suggesting inhibition of a late step in virus entry. We also demonstrate conformational changes in the C heptad of gp41.
Collapse
Affiliation(s)
- Eve de Rosny
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 20892-4555, USA
| | | | | | | | | |
Collapse
|
143
|
Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 2004; 23:728-38. [PMID: 14963486 PMCID: PMC380989 DOI: 10.1038/sj.emboj.7600064] [Citation(s) in RCA: 462] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 12/04/2003] [Indexed: 01/07/2023] Open
Abstract
Enveloped viruses enter cells via a membrane fusion reaction driven by conformational changes of specific viral envelope proteins. We report here the structure of the ectodomain of the tick-borne encephalitis virus envelope glycoprotein, E, a prototypical class II fusion protein, in its trimeric low-pH-induced conformation. We show that, in the conformational transition, the three domains of the neutral-pH form are maintained but their relative orientation is altered. Similar to the postfusion class I proteins, the subunits rearrange such that the fusion peptide loops cluster at one end of an elongated molecule and the C-terminal segments, connecting to the viral transmembrane region, run along the sides of the trimer pointing toward the fusion peptide loops. Comparison with the low-pH-induced form of the alphavirus class II fusion protein reveals striking differences at the end of the molecule bearing the fusion peptides, suggesting an important conformational effect of the missing membrane connecting segment.
Collapse
Affiliation(s)
- Stéphane Bressanelli
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
- Institute of Virology, University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Institute of Virology, University of Vienna, Vienna, Austria
| | | | - Enrico A Stura
- Departement d'Ingénierie et d'Etudes des Protéines, CEA Saclay, Gif-sur-Yvette, France
| | - Stéphane Duquerroy
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
| | - Julien Lescar
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
| | - Franz X Heinz
- Institute of Virology, University of Vienna, Vienna, Austria
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A1095, Vienna, Austria. Tel.: +43 1 40490 79510; Fax: +43 1 40490 9795; E-mail:
| | - Félix A Rey
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, Avenue de la Terrasse, Gif-sur-Yvette Cedex, France. Tel.: +33 1 6982 3844; Fax: +33 1 6982 4308; E-mail:
| |
Collapse
|
144
|
Smith JG, Mothes W, Blacklow SC, Cunningham JM. The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. J Virol 2004; 78:1403-10. [PMID: 14722295 PMCID: PMC321377 DOI: 10.1128/jvi.78.3.1403-1410.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spring-loaded model stipulates that influenza virus infection is coupled to the transition of the virus hemagglutinin (HA) from a metastable conformation to a highly stable conformation at low pH. The properties of retrovirus envelope glycoproteins indicate that infection is coupled to an analogous conformational change. As a test of this hypothesis, the requirements for avian leukosis virus A (ALV-A) infection were examined. These studies indicate that, like HA, the conformation of the mature ALV-A envelope glycoprotein is metastable and that infection is linked to refolding at low pH. However, unlike HA, low-pH activation is only observed after priming by receptor. Therefore, ALV-A infection is dependent on the synergistic effects of receptor binding and low pH, suggesting that receptor binding superimposes an additional constraint on activation of ALV-A fusion that proceeds by a mechanism comparable to that of influenza virus.
Collapse
Affiliation(s)
- Jason G Smith
- Department of Medicine. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
145
|
Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 2004; 427:320-5. [PMID: 14737160 DOI: 10.1038/nature02239] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022]
Abstract
Fusion of biological membranes is mediated by specific lipid-interacting proteins that induce the formation and expansion of an initial fusion pore. Here we report the crystal structure of the ectodomain of the Semliki Forest virus fusion glycoprotein E1 in its low-pH-induced trimeric form. E1 adopts a folded-back conformation that, in the final post-fusion form of the full-length protein, would bring the fusion peptide loop and the transmembrane anchor to the same end of a stable protein rod. The observed conformation of the fusion peptide loop is compatible with interactions only with the outer leaflet of the lipid bilayer. Crystal contacts between fusion peptide loops of adjacent E1 trimers, together with electron microscopy observations, suggest that in an early step of membrane fusion, an intermediate assembly of five trimers creates two opposing nipple-like deformations in the viral and target membranes, leading to formation of the fusion pore.
Collapse
Affiliation(s)
- Don L Gibbons
- Virologie Moléculaire & Structurale, UMR 2472/1157 CNRS-INRA, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Bär S, Alizon M. Role of the ectodomain of the gp41 transmembrane envelope protein of human immunodeficiency virus type 1 in late steps of the membrane fusion process. J Virol 2004; 78:811-20. [PMID: 14694113 PMCID: PMC368777 DOI: 10.1128/jvi.78.2.811-820.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane fusion process mediated by the gp41 transmembrane envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) was addressed by a flow cytometry assay detecting exchanges of fluorescent membrane probes (DiI and DiO) between cells expressing the HIV-1 envelope proteins (Env) and target cells. Double-fluorescent cells were detected when target cells expressed the type of chemokine receptor, CXCR4 or CCR5, matching the type of gp120 surface envelope protein, X4 or R5, respectively. Background levels of double-fluorescent cells were observed when the gp120-receptor interaction was blocked by AMD3100, a CXCR4 antagonist. The L568A mutation in the N-terminal heptad repeat (HR1) of gp41 resulted in parallel inhibition of the formation of syncytia and double-fluorescent cells, indicating that gp41 had a direct role in the exchange of fluorescent probes. In contrast, three mutations in the loop region of the gp41 ectodomain, located on either side of the Cys-(X)(5)-Cys motif (W596 M and W610A) or at the distal end of HR1 (D589L), had limited or no apparent effect on membrane lipid mixing between Env(+) and target cells, while they blocked formation of syncytia and markedly reduced the exchanges of cytoplasmic fluorescent probes. The loop region could therefore have a direct or indirect role in events occurring after the merging of membranes, such as the formation or dilation of fusion pores. Two types of inhibitors of HIV-1 entry, the gp41-derived peptide T20 and the betulinic acid derivative RPR103611, had limited effects on membrane exchanges at concentrations blocking or markedly reducing syncytium formation. This finding confirmed that T20 can inhibit the late steps of membrane fusion (post-lipid mixing) and brought forth an indirect argument for the role of the gp41 loop region in these steps, as mutations conferring resistance to RPR103611V were mapped in this region (I595S or L602H).
Collapse
Affiliation(s)
- Séverine Bär
- Department of Cell Biology, Institut Cochin, INSERM U567, CNRS UMR8104, 75014 Paris, France
| | | |
Collapse
|
147
|
Borrego-Diaz E, Peeples ME, Markosyan RM, Melikyan GB, Cohen FS. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology 2004; 316:234-44. [PMID: 14644606 DOI: 10.1016/j.virol.2003.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For influenza virus hemagglutinin, an N-cap structure, created at low pH, interacts with membrane-proximal residues (173-178), bringing fusion peptides and membrane-spanning domains close together. Mutational analysis was used to define the role of these interactions in membrane fusion. For all N-cap mutants, both lipid and aqueous dye spread was greatly reduced. Mutation at residues that interact with the N-cap did not reduce levels of fusion, except for substitutions made at residue I173. For N-cap and I173 mutants, the addition of chlorpromazine greatly promoted transfer of aqueous dye. Electrical capacitance measurements confirmed that fusion pores usually did not form for the I173 mutants. Thus, neither N-cap formation nor interactions with segment 173-178 are needed for hemifusion, but are required for reliable formation and enlargement of the fusion pore. It is proposed that binding of I173 into a deep hydrophobic cavity within the coiled-coil promotes the transition from hemifusion to fusion.
Collapse
Affiliation(s)
- E Borrego-Diaz
- Department of Molecular Biophysics and Physiology, Rush Medical College, 1653 W Congress Parkway, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
148
|
Park HE, Gruenke JA, White JM. Leash in the groove mechanism of membrane fusion. Nat Struct Mol Biol 2003; 10:1048-53. [PMID: 14595397 DOI: 10.1038/nsb1012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 09/09/2003] [Indexed: 11/08/2022]
Abstract
Formation of helix bundles has been proposed as a general mechanism for viral and cellular membrane fusion reactions. Class I viral fusion proteins, including HIV Env and influenza hemagglutinin (HA), form six-helix bundles in their fusogenic forms. The HIV Env six-helix bundle extends to the membrane proximal end of the protein, where it is poised to pull the fusing membranes together. In contrast, the HA six-helix bundle is located at the membrane distal end of the protein. It is followed by a C-terminal 'leash' that packs into the grooves and extends to the membrane proximal end of the coiled-coil. Here, we describe the ability of C-terminal leash mutants to change conformation and induce fusion. Our data indicate that packing of the C-terminal leash into the grooves of the coiled-coil is necessary for HA to mediate the lipid mixing stage of fusion, and that hydrophobic membrane proximal leash residues secure this interaction. Therefore, HA employs a 'leash in the groove,' rather than a helix-bundle, mechanism of membrane fusion.
Collapse
Affiliation(s)
- Heather E Park
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
149
|
Tamm LK, Crane J, Kiessling V. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol 2003; 13:453-66. [PMID: 12948775 DOI: 10.1016/s0959-440x(03)00107-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fusion of biological membranes is governed by the carefully orchestrated interplay of membrane proteins and lipids. Recently determined structures of fusion proteins, individual domains of fusion proteins and their complexes with regulatory proteins and membrane lipids have yielded much suggestive insight into how viral and intracellular membrane fusion might proceed. These structures may be combined with new knowledge on the fusion of pure lipid bilayer membranes in an attempt to begin to piece together the complex puzzle of how biological membrane fusion machines operate on membranes.
Collapse
Affiliation(s)
- Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908-0736, USA.
| | | | | |
Collapse
|
150
|
Abrahamyan LG, Markosyan RM, Moore JP, Cohen FS, Melikyan GB. Human immunodeficiency virus type 1 Env with an intersubunit disulfide bond engages coreceptors but requires bond reduction after engagement to induce fusion. J Virol 2003; 77:5829-36. [PMID: 12719576 PMCID: PMC154041 DOI: 10.1128/jvi.77.10.5829-5836.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant human immunodeficiency virus (HIV) envelope protein (Env) with an engineered disulfide bond between the gp120 and gp41 subunits (SOS-Env) was expressed on cell surfaces. With the disulfide bond intact, these cells did not fuse to target cells expressing CD4 and CCR5, but the fusion process did advance to an intermediate state: cleaving the disulfide bond with a reducing agent after but not before binding to target cells allowed fusion to occur. Through the use of an antibody directed against CCR5, it was found that at the intermediate stage, SOS-Env had associated with coreceptors. Reducing the disulfide bond after this intermediate had been reached resulted in hemifusion at low temperature and fusion at physiological temperature. The addition of C34 or N36, peptides that prevent six-helix bundle formation, at the hemifused state blocked the fusion that would have resulted after raising the temperature. Thus, Env has not yet folded into six-helix bundles after hemifusion has been achieved. Because SOS-Env binds CCR5, it is suggested that the conformational changes in wild-type Env that result from this binding cause disengagement of gp120 from gp41 in the region of the engineered bond. It is proposed that this disengagement is the event that directly frees gp41 to undergo the conformational changes that lead to fusion. The intermediate state achieved prior to reduction of the disulfide bond was stable. The capture of this configuration of Env could yield a suitable antigen for vaccine development, and it may also be a target for pharmacological intervention against HIV-1 entry.
Collapse
Affiliation(s)
- L G Abrahamyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|