101
|
Agosto MA, Middleton JK, Freimont EC, Yin J, Nibert ML. Thermolabilizing pseudoreversions in reovirus outer-capsid protein micro 1 rescue the entry defect conferred by a thermostabilizing mutation. J Virol 2007; 81:7400-9. [PMID: 17507494 PMCID: PMC1933377 DOI: 10.1128/jvi.02720-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat-resistant mutants selected from infectious subvirion particles of mammalian reoviruses have determinative mutations in the major outer-capsid protein micro 1. Here we report the isolation and characterization of intragenic pseudoreversions of one such thermostabilizing mutation. From a plaque that had survived heat selection, a number of viruses with one shared mutation but different second-site mutations were isolated. The effect of the shared mutation alone or in combination with second-site mutations was examined using recoating genetics. The shared mutation, D371A, was found to confer (i) substantial thermostability, (ii) an infectivity defect that followed attachment but preceded viral protein synthesis, and (iii) resistance to micro 1 rearrangement in vitro, with an associated failure to lyse red blood cells. Three different second-site mutations were individually tested in combination with D371A and found to wholly or partially revert these phenotypes. Furthermore, when tested alone in recoated particles, each of these three second-site mutations conferred demonstrable thermolability. This and other evidence suggest that pseudoreversion of micro 1-based thermostabilization can occur by a general mechanism of micro 1-based thermolabilization, not requiring a specific compensatory mutation. The thermostabilizing mutation D371A as well as 9 of the 10 identified second-site mutations are located near contact regions between micro 1 trimers in the reovirus outer capsid. The availability of both thermostabilizing and thermolabilizing mutations in micro 1 should aid in defining the conformational rearrangements and mechanisms involved in membrane penetration during cell entry by this structurally complex nonenveloped animal virus.
Collapse
Affiliation(s)
- Melina A Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
102
|
Guglielmi KM, Kirchner E, Holm GH, Stehle T, Dermody TS. Reovirus binding determinants in junctional adhesion molecule-A. J Biol Chem 2007; 282:17930-40. [PMID: 17452315 DOI: 10.1074/jbc.m702180200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Junctional adhesion molecule-A (JAM-A) serves as a serotype-independent receptor for mammalian orthoreoviruses (reoviruses). The membrane-distal immunoglobulin-like D1 domain of JAM-A is required for homodimerization and binding to reovirus attachment protein sigma1. We employed a structure-guided mutational analysis of the JAM-A dimer interface to identify determinants of reovirus binding. We purified mutant JAM-A ectodomains for solution-phase and surface plasmon resonance binding studies and expressed mutant forms of full-length JAM-A in Chinese hamster ovary cells to assess reovirus binding and infectivity. Mutation of residues in the JAM-A dimer interface that participate in salt-bridge or hydrogen-bond interactions with apposing JAM-A monomers abolishes the capacity of JAM-A to form dimers. JAM-A mutants incapable of dimer formation form complexes with the sigma1 head that are indistinguishable from wild-type JAM-A-sigma1 head complexes, indicating that sigma1 binds to JAM-A monomers. Residues Glu(61) and Lys(63) of beta-strand C and Leu(72) of beta-strand C' in the dimer interface are required for efficient JAM-A engagement of strain type 3 Dearing sigma1. Mutation of neighboring residues alters the kinetics of the sigma1-JAM-A binding interaction. Prototype reovirus strains type 1 Lang and type 2 Jones share similar, although not identical, binding requirements with type 3 Dearing. These results indicate that reovirus engages JAM-A monomers via residues found mainly on beta-strands C and C' of the dimer interface and raise the possibility that the distinct disease phenotypes produced in mice following infection with different strains of reovirus are in part attributable to differences in contacts with JAM-A.
Collapse
Affiliation(s)
- Kristen M Guglielmi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
103
|
Schelling P, Guglielmi KM, Kirchner E, Paetzold B, Dermody TS, Stehle T. The reovirus sigma1 aspartic acid sandwich: a trimerization motif poised for conformational change. J Biol Chem 2007; 282:11582-9. [PMID: 17303562 DOI: 10.1074/jbc.m610805200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reovirus attachment protein sigma1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The sigma1 protein is a filamentous, trimeric molecule with a globular beta-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the sigma1 subunit interface. A 1.75-A structure of the sigma1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate that these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the sigma1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.
Collapse
Affiliation(s)
- Pierre Schelling
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
104
|
Maddaloni M, Staats HF, Mierzejewska D, Hoyt T, Robinson A, Callis G, Kozaki S, Kiyono H, McGhee JR, Fujihashi K, Pascual DW. Mucosal vaccine targeting improves onset of mucosal and systemic immunity to botulinum neurotoxin A. THE JOURNAL OF IMMUNOLOGY 2007; 177:5524-32. [PMID: 17015739 DOI: 10.4049/jimmunol.177.8.5524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Absence of suitable mucosal adjuvants for humans prompted us to consider alternative vaccine designs for mucosal immunization. Because adenovirus is adept in binding to the respiratory epithelium, we tested the adenovirus 2 fiber protein (Ad2F) as a potential vaccine-targeting molecule to mediate vaccine uptake. The vaccine component (the host cell-binding domain to botulinum toxin (BoNT) serotype A) was genetically fused to Ad2F to enable epithelial binding. The binding domain for BoNT was selected because it lies within the immunodominant H chain as a beta-trefoil (Hcbetatre) structure; we hypothesize that induced neutralizing Abs should be protective. Mice were nasally immunized with the Hcbetatre or Hcbetatre-Ad2F, with or without cholera toxin (CT). Without CT, mice immunized with Hcbetatre produced weak secretory IgA (sIgA) and plasma IgG Ab response. Hcbetatre-Ad2F-immunized mice produced a sIgA response equivalent to mice coimmunized with CT. With CT, Hcbetatre-Ad2F-immunized mice showed a more rapid onset of sIgA and plasma IgG Ab responses that were supported by a mixed Th1/Th2 cells, as opposed to mostly Th2 cells by Hcbetatre-dosed mice. Mice immunized with adjuvanted Hcbetatre-Ad2F or Hcbetatre were protected against lethal BoNT serotype A challenge. Using a mouse neutralization assay, fecal Abs from Hcbetatre-Ad2F or Hcbetatre plus CT-dosed mice could confer protection. Parenteral immunization showed that the inclusion of Ad2F enhances anti-Hcbetatre Ab titers even in the absence of adjuvant. This study shows that the Hcbetatre structure can confer protective immunity and that use of Hcbetatre-Ad2F gives more rapid and sustained mucosal and plasma Ab responses.
Collapse
Affiliation(s)
- Massimo Maddaloni
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennström B, Samarut J. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 2006; 58:705-11. [PMID: 17132849 DOI: 10.1124/pr.58.4.3] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Frédéric Flamant
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5665, Laboratoire Associé Institut National de la Recherche Agronomique 913, l'Institut Fédératif de Recherches 128, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. These viruses have a specific cell tropism in vivo, infecting primarily the mature enterocytes of the villi of the small intestine. It has been found that rotavirus cell entry is a complex multistep process, in which different domains of the rotavirus surface proteins interact sequentially with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include integrins (alpha2beta1, alphavbeta3, and alphaxbeta2) and a heat shock protein (hsc70), and have been found to be associated with cell membrane lipid microdomains. The requirement for several cell molecules, which might need to be present and organized in a precise fashion, could explain the cell and tissue tropism of these viruses. This review focuses on recent data describing the interactions between the virus and its receptors, the role of lipid microdomains in rotavirus infection, and the possible mechanism of rotavirus cell entry.
Collapse
Affiliation(s)
- S Lopez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| | | |
Collapse
|
107
|
Guglielmi KM, Johnson EM, Stehle T, Dermody TS. Attachment and cell entry of mammalian orthoreovirus. Curr Top Microbiol Immunol 2006; 309:1-38. [PMID: 16909895 DOI: 10.1007/3-540-30773-7_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) serve as a tractable model system for studies of viral pathogenesis. Reoviruses infect virtually all mammals, but cause disease only in the very young. Prototype strains of the three reovirus serotypes differ in pathogenesis following infection of newborn mice. Reoviruses are nonenveloped, icosahedral particles that consist of ten segments of double-stranded RNA encapsidated within two protein shells, the inner core and outer capsid. High-resolution structures of individual components of the reovirus outer capsid and a single viral receptor have been solved and provide insight into the functions of these molecules in viral attachment, entry, and pathogenesis. Attachment of reovirus to target cells is mediated by the reovirus sigma1 protein, a filamentous trimer that projects from the outer capsid. Junctional adhesion molecule-A is a serotype-independent receptor for reovirus, and sialic acid is a coreceptor for serotype 3 strains. After binding to receptors on the cell surface, reovirus is internalized via receptor-mediated endocytosis. Internalization is followed by stepwise disassembly of the viral outer capsid in the endocytic compartment. Uncoating events, which require acidic pH and endocytic proteases, lead to removal of major outer-capsid protein sigma3, resulting in exposure of membrane-penetration mediator micro1 and a conformational change in attachment protein sigma1. After penetration of endosomes by uncoated particles, the transcriptionally active viral core is released into the cytoplasm, where replication proceeds. Despite major advances in defining reovirus attachment and entry mechanisms, many questions remain. Ongoing research is aimed at understanding serotype-dependent differences in reovirus tropism, viral cell-entry pathways, the individual and corporate roles of acidic pH and proteases in viral entry, and micro1 function in membrane penetration.
Collapse
Affiliation(s)
- K M Guglielmi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
108
|
Li J, Lad S, Yang G, Luo Y, Iacobelli-Martinez M, Primus FJ, Reisfeld RA, Li E. Adenovirus fiber shaft contains a trimerization element that supports peptide fusion for targeted gene delivery. J Virol 2006; 80:12324-31. [PMID: 17020947 PMCID: PMC1676309 DOI: 10.1128/jvi.01331-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development.
Collapse
Affiliation(s)
- Jiali Li
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JSL. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 2006; 80:8422-38. [PMID: 16912293 PMCID: PMC1563861 DOI: 10.1128/jvi.02601-05] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus micro1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that micro1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic alpha-helices within a carboxyl-terminal portion of micro1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by micro1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated when micro1 was coexpressed with sigma3, with which it is known to coassemble. We propose that micro1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of micro1 to associate with intracellular membranes. Moreover, during reovirus infection, association with sigma3 may regulate apoptosis induction by micro1.
Collapse
Affiliation(s)
- Caroline M Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
110
|
Talsma SS, Babensee JE, Murthy N, Williams IR. Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Control Release 2006; 112:271-9. [PMID: 16549219 DOI: 10.1016/j.jconrel.2006.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/09/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Usage of DNA vaccination has been limited by inefficient cellular expression of plasmid constructs used in DNA vaccines. We describe a novel system for enhancing delivery of DNA vaccine plasmids into cells and their nuclei. This delivery system uses recombinant reovirus type 3 sigma1 attachment protein genetically modified with a nuclear localization sequence (sigma1-NLS) as a targeting ligand. Purified sigma1-NLS was covalently conjugated to the polycation polyethyleneimine (PEI) using a carboxyl-reactive cross-linking agent and complexed with plasmid DNA. The benefit of the NLS in enhancement of protein delivery into the nucleus was demonstrated by liposome-mediated loading of cells with sigma1 or sigma1-NLS. In L929 fibroblasts loaded with sigma1-NLS, 69% of the internalized protein was recovered in the nuclear fraction after 6 h compared to just 10% when using unmodified sigma1. Transfection of L929 cells with sigma1-NLS-conjugated PEI complexed with a luciferase expression plasmid resulted in a mean 16-fold increase in luciferase activity over complexes made with unmodified PEI, compared to a mean 3-fold boost obtained using sigma1-conjugated PEI. These results suggest that sigma1-NLS is a useful bifunctional targeting ligand suitable for enhancing DNA delivery and subsequent gene expression for both DNA vaccine applications and nonviral gene therapy.
Collapse
Affiliation(s)
- Silke S Talsma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Suite 2127, Atlanta, GA 30332-0535, USA
| | | | | | | |
Collapse
|
111
|
Yoder JD, Dormitzer PR. Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-fold rearrangement. EMBO J 2006; 25:1559-68. [PMID: 16511559 PMCID: PMC1440311 DOI: 10.1038/sj.emboj.7601034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 02/14/2006] [Indexed: 11/08/2022] Open
Abstract
The spike protein VP4 is a key component of the membrane penetration apparatus of rotavirus, a nonenveloped virus that causes childhood gastroenteritis. Trypsin cleavage of VP4 produces a fragment, VP5*, with a potential membrane interaction region, and primes rotavirus for cell entry. During entry, the part of VP5* that protrudes from the virus folds back on itself and reorganizes from a local dimer to a trimer. Here, we report that a globular domain of VP5*, the VP5* antigen domain, is an autonomously folding unit that alternatively forms well-ordered dimers and trimers. Because the domain contains heterotypic neutralizing epitopes and is soluble when expressed directly, it is a promising potential subunit vaccine component. X-ray crystal structures show that the dimer resembles the spike body on trypsin-primed virions, and the trimer resembles the folded-back form of the spike. The same structural elements pack differently to form key intermolecular contacts in both oligomers. The intrinsic molecular property of alternatively forming dimers and trimers facilitates the VP5* reorganization, which is thought to mediate membrane penetration during cell entry.
Collapse
Affiliation(s)
- Joshua D Yoder
- Program in Virology, Laboratory of Molecular Medicine, Harvard Medical School, Children's Hospital, Boston, MA, USA
| | - Philip R Dormitzer
- Program in Virology, Laboratory of Molecular Medicine, Harvard Medical School, Children's Hospital, Boston, MA, USA
| |
Collapse
|
112
|
Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow GR, Bergelson JM, Dermody TS. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80:2760-70. [PMID: 16501085 PMCID: PMC1395463 DOI: 10.1128/jvi.80.6.2760-2770.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Microbiology and Immunology, Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Spinelli S, Campanacci V, Blangy S, Moineau S, Tegoni M, Cambillau C. Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J Biol Chem 2006; 281:14256-62. [PMID: 16549427 DOI: 10.1074/jbc.m600666200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactococcus lactis is a gram-positive bacterium widely used by the dairy industry. Several industrial L. lactis strains are sensitive to various distinct bacteriophages. Most of them belong to the Siphoviridae family and comprise several species, among which the 936 and P335 are prominent. Members of these two phage species recognize their hosts through the interaction of their receptor-binding protein (RBP) with external cell wall saccharidices of the host, the "receptors." We report here the 1.65 A resolution crystal structure of the RBP from phage TP901-1, a member of the P335 species. This RBP of 163 amino acids is a homotrimer comprising three domains: a helical N terminus, an interlaced beta-prism, and a beta-barrel, the head domain (residues 64-163), which binds a glycerol molecule. Fluorescence quenching experiments indicated that the RBP exhibits high affinity for glycerol, muramyl-dipeptide, and other saccharides in solution. The structural comparison of this RBP with that of lactococcal phage p2 RBP, a member of the 936 species (Spinelli, S., Desmyter, A., Verrips, C. T., de Haard, J. W., Moineau, S., and Cambillau, C. (2006) Nat. Struct. Mol. Biol. 13, 85-89) suggests a large extent of modularity in RBPs of lactococcal phages.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Université d'Aix-Marseille I, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
114
|
Schagen FHE, Wensveen FM, Carette JE, Dermody TS, Gerritsen WR, van Beusechem VW. Genetic targeting of adenovirus vectors using a reovirus sigma1-based attachment protein. Mol Ther 2006; 13:997-1005. [PMID: 16515889 DOI: 10.1016/j.ymthe.2005.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022] Open
Abstract
Targeting adenovirus vectors (AdV's) for selective transduction of specific cell types requires ablation of native adenovirus tropism and introduction of a unique target-binding moiety. To bring these requirements within reach, we developed a novel strategy to target AdV's genetically that relies on replacement of the entire adenovirus fiber protein with a fusion molecule comprising the virion-anchoring domain of fiber and the oligomerization domain of reovirus attachment protein sigma1. The chimeric molecule forms trimers, is transported to the nucleus, and assembles onto the adenovirus capsid. In contrast to previously reported genetically targeted vectors, the AdV presented herein propagates efficiently without a requirement for complementing fiber. Due to ablation of the native adenovirus tropism, the infectivity of this AdV was at least 35-fold reduced on 293 cells. Importantly, a His tag incorporated into the chimeric attachment protein conferred His-tag-dependent tropism to the AdV, which resulted in a 12- to 40-fold greater transduction efficiency on two different cell lines expressing a His-tag-binding receptor. In addition, the infection efficiency was strongly reduced by preincubation with a His-tag-specific Ab. Thus, this sigma1-based chimeric attachment molecule provides a promising new platform for the generation of truly targeted AdV's.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Division of Gene Therapy, Department of Medical Oncology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
115
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
116
|
Mitraki A, Papanikolopoulou K, Van Raaij MJ. Natural Triple β‐Stranded Fibrous Folds1. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:97-124. [PMID: 17190612 DOI: 10.1016/s0065-3233(06)73004-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.
Collapse
Affiliation(s)
- Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete, Greece
| | | | | |
Collapse
|
117
|
Spinelli S, Desmyter A, Verrips CT, de Haard HJW, Moineau S, Cambillau C. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol 2005; 13:85-9. [PMID: 16327804 DOI: 10.1038/nsmb1029] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 10/26/2005] [Indexed: 11/09/2022]
Abstract
Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, 163 Av. de Luminy 13288 Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
118
|
Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr Opin Struct Biol 2005; 15:655-63. [PMID: 16271469 DOI: 10.1016/j.sbi.2005.10.012] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 10/21/2005] [Indexed: 11/20/2022]
Abstract
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. The organization and origins of this enormous virosphere are profound open questions in biology. It has generally been considered that viruses infecting evolutionally widely separated organisms (e.g. bacteria and humans) are also distinct. However, recent research contradicts this picture. Structural analyses of virion architecture and coat protein topology have revealed unexpected similarities, not visible in sequence comparisons, suggesting a common origin for viruses that infect hosts residing in different domains of life (bacteria, archaea and eukarya).
Collapse
Affiliation(s)
- Dennis H Bamford
- Institute of Biotechnology, and Department of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
119
|
Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J Mol Biol 2005; 354:1103-17. [PMID: 16289113 DOI: 10.1016/j.jmb.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022]
Abstract
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
120
|
Tsuruta Y, Pereboeva L, Glasgow JN, Luongo CL, Komarova S, Kawakami Y, Curiel DT. Reovirus sigma1 fiber incorporated into adenovirus serotype 5 enhances infectivity via a CAR-independent pathway. Biochem Biophys Res Commun 2005; 335:205-14. [PMID: 16061208 DOI: 10.1016/j.bbrc.2005.07.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/18/2005] [Indexed: 11/16/2022]
Abstract
Adenovirus serotype 5 (Ad5) has been used for gene therapy with limited success because of insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). To enhance infectivity in tissues with low CAR expression, tropism expansion is required via non-CAR pathways. Serotype 3 Dearing reovirus utilizes a fiber-like sigma1 protein to infect cells expressing sialic acid and junction adhesion molecule 1 (JAM1). We hypothesized that replacement of the Ad5 fiber with sigma1 would result in an Ad5 vector with CAR-independent tropism. We therefore constructed a fiber mosaic Ad5 vector, designated as Ad5-sigma1, encoding two fibers: the sigma1 and the wild-type Ad5 fiber. Functionally, Ad5-sigma1 utilized CAR, sialic acid, and JAM1 for cell transduction and achieved maximum infectivity enhancement in cells with or without CAR. Thus, we have developed a new type of Ad5 vector with expanded tropism, possessing fibers from Ad5 and reovirus, that exhibits enhanced infectivity via CAR-independent pathway(s).
Collapse
Affiliation(s)
- Yuko Tsuruta
- Division of Human Gene Therapy, Department of Medicine, and The Gene Therapy Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML, Baker TS. Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Structure 2005; 13:1545-57. [PMID: 16216585 PMCID: PMC4126556 DOI: 10.1016/j.str.2005.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/14/2005] [Accepted: 07/16/2005] [Indexed: 12/23/2022]
Abstract
Reovirus is a useful model for addressing the molecular basis of membrane penetration by one of the larger nonenveloped animal viruses. We now report the structure of the reovirus virion at approximately 7.0 A resolution as obtained by electron cryomicroscopy and three-dimensional image reconstruction. Several features of the myristoylated outer capsid protein mu1, not seen in a previous X-ray crystal structure of the mu1-sigma3 heterohexamer, are evident in the virion. These features appear to be important for stabilizing the outer capsid, regulating the conformational changes in mu1 that accompany perforation of target membranes, and contributing directly to membrane penetration during cell entry.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Yongchang Ji
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Lan Zhang
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
- Howard Hughes Medical Institute Children’s Hospital Boston, Massachusetts 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Massachusetts 02115
| | - Dan C. Marinescu
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
- Department of Chemistry and Biochemistry and Department of Molecular Biology University of California, San Diego La Jolla, California 92093
| |
Collapse
|
122
|
Guardado Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J, van Raaij MJ. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol 2005; 354:137-49. [PMID: 16236316 DOI: 10.1016/j.jmb.2005.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/09/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Avian reovirus fibre, a homo-trimer of the sigmaC protein, is responsible for primary host cell attachment. The protein expressed in bacteria forms elongated fibres comprised of a carboxy-terminal globular head domain and a slender shaft, and partial proteolysis yielded a carboxy-terminal protease-stable domain that was amenable to crystallisation. Here, we show that this fragment retains receptor-binding capability and report its structure, solved using two-wavelength anomalous diffraction and refined using data collected from three different crystal forms at 2.1 angstroms, 2.35 angstroms and 3.0 angstroms resolution. The carboxy-terminal globular domain has a beta-barrel fold with the same overall topology as the mammalian reovirus fibre (sigma1). However, the monomers of the sigmaC trimer show a more splayed-out arrangement than in the sigma1 structure. Also resolved are two triple beta-spiral repeats of the shaft or stalk domain. The presence in the sequence of heptad repeats amino-terminal to these triple beta-spiral repeats suggests that the unresolved portion of the shaft domain contains a triple alpha-helical coiled-coil structure. Implications for the function and stability of the sigmaC protein are discussed.
Collapse
Affiliation(s)
- Pablo Guardado Calvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol 2005; 18:89-115. [PMID: 15802955 PMCID: PMC2366905 DOI: 10.1089/vim.2005.18.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reoviruses have provided insight into the roles played by specific viral genes and the proteins they encode in virus-induced cell death and tissue injury. Apoptosis is a major mechanism of cell death induced by reoviruses. Reovirus-induced apoptosis involves both death-receptor and mitochondrial cell death pathways. Reovirus infection is associated with selective activation of mitogen activated protein kinase (MAPK) cascades including JNK/SAPK. Infection also perturbs transcription factor signaling resulting in the activation of c-Jun and initial activation followed by strain-specific inhibition of NF-kappaB. Infection results in changes in the expression of genes encoding proteins involved in cell cycle regulation, apoptosis, and DNA damage and repair processes. Apoptosis is a major mechanism of reovirus-induced injury to key target organs including the CNS and heart. Inhibition of apoptosis through the use of caspase or calpain inhibitors, minocycline, or in caspase 3(-/-) mice all reduce virus-associated tissue injury and enhance survival of infected animals. Reoviruses induce apoptotic cell death (oncolysis) in a wide variety of cancer cells and tumors. The capacity of reoviruses to grow efficiently in transformed cells is enhanced by the presence of an activated Ras signaling pathway likely through mechanisms involving inhibition of antiviral PKR signaling and activation of Ras/RalGEF/p38 pathways. The potential of reovirus-induced oncolysis in therapy of human cancers is currently being investigated in phase I/II clinical trials.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
124
|
Affiliation(s)
- Karen L Visick
- Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
125
|
Nicklin SA, Wu E, Nemerow GR, Baker AH. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 2005; 12:384-93. [PMID: 15993650 DOI: 10.1016/j.ymthe.2005.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 01/02/2023] Open
Abstract
The collective attributes of adenoviruses (Ads), including ease of accomplishing replication deficiency, readily achievable high titers, encoding of large expression cassettes, efficiency of gene delivery to most cell types, and well-characterized biology, have made Ads, particularly Ad serotype 5 (Ad 5), some of the most utilized vectors for gene delivery. In recent years, however, it has become apparent that additional aspects of basic Ad virology must be uncovered for this vector system to succeed in the clinic. While local gene delivery is generally efficient, the broad tropism of Ad 5 and its tendency to home to the liver after systemic administration have proved to be limitations for other therapeutic applications, such as the treatment of disseminated cancers and cardiovascular disease. This has refocused research into the biology of Ad capsid components, particularly the main tropism determinant, the fiber/penton base complex, and their influence on transduction of selected cell types in vivo.
Collapse
Affiliation(s)
- Stuart A Nicklin
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Church Street, Glasgow G11 6NT, UK
| | | | | | | |
Collapse
|
126
|
Campbell JA, Schelling P, Wetzel JD, Johnson EM, Forrest JC, Wilson GAR, Aurrand-Lions M, Imhof BA, Stehle T, Dermody TS. Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J Virol 2005; 79:7967-78. [PMID: 15956543 PMCID: PMC1143703 DOI: 10.1128/jvi.79.13.7967-7978.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reovirus infections are initiated by the binding of viral attachment protein sigma1 to receptors on the surface of host cells. The sigma1 protein is an elongated fiber comprised of an N-terminal tail that inserts into the virion and a C-terminal head that extends from the virion surface. The prototype reovirus strains type 1 Lang/53 (T1L/53) and type 3 Dearing/55 (T3D/55) use junctional adhesion molecule A (JAM-A) as a receptor. The C-terminal half of the T3D/55 sigma1 protein interacts directly with JAM-A, but the determinants of receptor-binding specificity have not been identified. In this study, we investigated whether JAM-A also mediates the attachment of the prototype reovirus strain type 2 Jones/55 (T2J/55) and a panel of field-isolate strains representing each of the three serotypes. Antibodies specific for JAM-A were capable of inhibiting infections of HeLa cells by T1L/53, T2J/55, and T3D/55, demonstrating that strains of all three serotypes use JAM-A as a receptor. To corroborate these findings, we introduced JAM-A or the structurally related JAM family members JAM-B and JAM-C into Chinese hamster ovary cells, which are poorly permissive for reovirus infection. Both prototype and field-isolate reovirus strains were capable of infecting cells transfected with JAM-A but not those transfected with JAM-B or JAM-C. A sequence analysis of the sigma1-encoding S1 gene segment of the strains chosen for study revealed little conservation in the deduced sigma1 amino acid sequences among the three serotypes. This contrasts markedly with the observed sequence variability within each serotype, which is confined to a small number of amino acids. Mapping of these residues onto the crystal structure of sigma1 identified regions of conservation and variability, suggesting a likely mode of JAM-A binding via a conserved surface at the base of the sigma1 head domain.
Collapse
Affiliation(s)
- Jacquelyn A Campbell
- Department of Microbiology and Immunology, Elizabeth B. Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
van Raaij MJ, Hermo Parrado XL, Guardado Calvo P, Fox GC, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J. Crystallization of the C-terminal globular domain of avian reovirus fibre. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:651-4. [PMID: 16511119 PMCID: PMC1952445 DOI: 10.1107/s1744309105016933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/27/2005] [Indexed: 11/10/2022]
Abstract
Avian reovirus fibre, a homotrimer of the sigmaC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal sigmaC fragment containing amino acids 156-326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6(3)22 (unit-cell parameters a = 75.6, c = 243.1 A) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 A and a = 73.1, c = 69.9 A for the Zn(II)- and Cd(II)-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 A resolution and the second form to 2.2-2.3 A. Its closest related structure, the C-terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine.
Collapse
Affiliation(s)
- Mark J van Raaij
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Merckel MC, Huiskonen JT, Bamford DH, Goldman A, Tuma R. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol Cell 2005; 18:161-70. [PMID: 15837420 DOI: 10.1016/j.molcel.2005.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/15/2004] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.
Collapse
Affiliation(s)
- Michael C Merckel
- Programme on Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Viikinkaari 1 00014, Finland
| | | | | | | | | |
Collapse
|
129
|
Clarke P, Debiasi RL, Meintzer SM, Robinson BA, Tyler KL. Inhibition of NF-kappa B activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis 2005; 10:513-24. [PMID: 15909114 PMCID: PMC2394667 DOI: 10.1007/s10495-005-1881-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virus-induced activation of nuclear factor-kappa B (NF-kappaB) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-kappaB is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-kappaB activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-kappaB regulation, where NF-kappaB activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-kappaB activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-kappaB is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-kappaB also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-kappaB-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-kappaB activation in reovirus-infected cells. Further, inhibition of NF-kappaB activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-kappaB and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
130
|
Abstract
Adenoviruses have transitioned from tools for gene replacement therapy to bona fide vaccine delivery vehicles. They are attractive vaccine vectors as they induce both innate and adaptive immune responses in mammalian hosts. Currently, adenovirus vectors are being tested as subunit vaccine systems for numerous infectious agents ranging from malaria to HIV-1. Additionally, they are being explored as vaccines against a multitude of tumor-associated antigens. In this review we describe the molecular biology of adenoviruses as well as ways the adenovirus vectors can be manipulated to enhance their efficacy as vaccine carriers. We describe methods of evaluating immune responses to transgene products expressed by adenoviral vectors and discuss data on adenoviral vaccines to a selected number of pathogens. Last, we comment on the limitations of using human adenoviral vectors and provide alternatives to circumvent these problems. This field is growing at an exciting and rapid pace, thus we have limited our scope to the use of adenoviral vectors as vaccines against viral pathogens.
Collapse
Affiliation(s)
| | - Hildegund C.J. Ertl
- To whom correspondence and reprint requests should be addressed. Fax: +1 (215) 898 3953
| |
Collapse
|
131
|
Clarke P, Richardson-Burns SM, DeBiasi RL, Tyler KL. Mechanisms of apoptosis during reovirus infection. Curr Top Microbiol Immunol 2005; 289:1-24. [PMID: 15791949 PMCID: PMC2367090 DOI: 10.1007/3-540-27320-4_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Reovirus infection has proven to be an excellent experimental system for studying mechanisms of virus-induced pathogenesis. Reoviruses induce apoptosis in a wide variety of cultured cells in vitro and in target tissues in vivo, including the heart and central nervous system. In vivo, viral infection, tissue injury, and apoptosis colocalize, suggesting that apoptosis is a critical mechanism by which disease is triggered in the host. This review examines the mechanisms of reovirus-induced apoptosis and investigates the possibility that inhibition of apoptosis may provide a novel strategy for limiting virus-induced tissue damage following infection.
Collapse
Affiliation(s)
- P. Clarke
- Department of Neurology (B 182), University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
- Denver VA Medical Center, 1055 Clermont St, Denver, CO 80220, USA
| | - S. M. Richardson-Burns
- Department of Neurology (B 182), University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
- Denver VA Medical Center, 1055 Clermont St, Denver, CO 80220, USA
| | - R. L. DeBiasi
- Department of Neurology (B 182), University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
- Denver VA Medical Center, 1055 Clermont St, Denver, CO 80220, USA
| | - K. L. Tyler
- Department of Neurology (B 182), University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
- Denver VA Medical Center, 1055 Clermont St, Denver, CO 80220, USA
| |
Collapse
|
132
|
Cavalli A, Prota AE, Stehle T, Dermody TS, Recanatini M, Folkers G, Scapozza L. A molecular dynamics study of reovirus attachment protein sigma1 reveals conformational changes in sigma1 structure. Biophys J 2005; 86:3423-31. [PMID: 15189844 PMCID: PMC1304249 DOI: 10.1529/biophysj.103.030825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations were performed using the recently determined crystal structure of the reovirus attachment protein, sigma1. These studies were conducted to improve an understanding of two unique features of sigma1 structure: the protonation state of Asp(345), which is buried in the sigma1 trimer interface, and the flexibility of the protein at a defined region below the receptor-binding head domain. Three copies of aspartic acids Asp(345) and Asp(346) cluster in a solvent-inaccessible and hydrophobic region at the sigma1 trimer interface. These residues are hypothesized to mediate conformational changes in sigma1 during viral attachment or cell entry. Our results indicate that protonation of Asp(345) is essential to the integrity of the trimeric structure seen by x-ray crystallography, whereas deprotonation induces structural changes that destabilize the trimer interface. This finding was confirmed by electrostatic calculations using the finite difference Poisson-Boltzmann method. Earlier studies show that sigma1 can exist in retracted and extended conformations on the viral surface. Since protonated Asp(345) is necessary to form a stable, extended trimer, our results suggest that protonation of Asp(345) may allow for a structural transition from a partially detrimerized molecule to the fully formed trimer seen in the crystal structure. Additional studies were conducted to quantify the previously observed flexibility of sigma1 at a defined region below the receptor-binding head domain. Increased mobility was observed for three polar residues (Ser(291), Thr(292), and Ser(293)) located within an insertion between the second and third beta-spiral repeats of the crystallized portion of the sigma1 tail. These amino acids interact with water molecules of the solvent bulk and are responsible for oscillating movement of the head of approximately 50 degrees during 5 ns of simulations. This flexibility may facilitate viral attachment and also function in cell entry and disassembly. These findings provide new insights about the conformational dynamics of sigma1 that likely underlie the initiation of the reovirus infectious cycle.
Collapse
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
133
|
Benson SD, Bamford JKH, Bamford DH, Burnett RM. Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell 2005; 16:673-85. [PMID: 15574324 DOI: 10.1016/j.molcel.2004.11.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our discovery that the major coat protein of bacteriophage PRD1 resembles that of human adenovirus raised the unexpected possibility that viruses infecting bacteria could be related by evolution to those infecting animal hosts. We first review the development of this idea. We then describe how we have used structure-based modeling to show that several other viruses with no detectable sequence similarity are likely to have coats constructed from similar proteins-the "double-barrel trimer." There is evidence that the group includes a diversity of viruses infecting very different hosts in all three domains of life: Eukarya; Bacteria; and Archaea that diverged billions of years ago. The current classification of viruses obscures such similarities. We propose that the occurrence of a double-barrel trimer coat protein in an icosahedral dsDNA virus with large facets, irrespective of its host, is a very strong indicator of its membership in a lineage of viruses with a common ancestor.
Collapse
Affiliation(s)
- Stacy D Benson
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
134
|
Abstract
Structural studies continue to play an essential role as the focus of adenovirus research shifts in emphasis from basic biology to adenovirus-based vector technologies. A crucial step in developing novel therapeutics for gene replacement, cancer, and vaccines is often to modify the virion. Such engineered changes are designed to retarget the virus, or to reduce the immunological responses to infection. These efforts are far more effective when they are based on detailed structural knowledge. This minireview provides a brief summary of the wealth of information that has been obtained from the combined application of X-ray crystallography and electron microscopy. This knowledge now includes a good working model for the architectural organization of the virion, and atomic resolution molecular structures for all the major capsid proteins, hexon, penton, and fiber. We highlight new developments, which include the structure of the penton base and the discovery that adenovirus has several relatives. We sketch how the structural information can be used to engineer novel virions and conclude with the prospects for future progress.
Collapse
Affiliation(s)
- John J Rux
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|
135
|
Helander A, Miller CL, Myers KS, Neutra MR, Nibert ML. Protective immunoglobulin A and G antibodies bind to overlapping intersubunit epitopes in the head domain of type 1 reovirus adhesin sigma1. J Virol 2004; 78:10695-705. [PMID: 15367636 PMCID: PMC516417 DOI: 10.1128/jvi.78.19.10695-10705.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonfusogenic mammalian orthoreovirus (reovirus) is an enteric pathogen of mice and a useful model for studies of how an enteric virus crosses the mucosal barrier of its host and is subject to control by the mucosal immune system. We recently generated and characterized a new murine immunoglobulin A (IgA)-class monoclonal antibody (MAb), 1E1, that binds to the adhesin fiber, sigma1, of reovirus type 1 Lang (T1L) and thereby neutralizes the infectivity of that strain in cell culture. 1E1 is produced in hybridoma cultures as a mixture of monomers, dimers, and higher polymers and is protective against peroral challenges with T1L either when the MAb is passively administered or when it is secreted into the intestines of mice bearing subcutaneous hybridoma tumors. In the present study, selection and analysis of mutants resistant to neutralization by 1E1 identified the region of T1L sigma1 to which the MAb binds. The region bound by a previously characterized type 1 sigma1-specific neutralizing IgG MAb, 5C6, was identified in the same way. Each of the 15 mutants isolated and analyzed was found to be much less sensitive to neutralization by either 1E1 or 5C6, suggesting the two MAbs bind to largely overlapping regions of sigma1. The tested mutants retained the capacity to recognize specific glycoconjugate receptors on rabbit M cells and cultured epithelial cells, even though viral binding to epithelial cells was inhibited by both MAbs. S1 sequence determinations for 12 of the mutants identified sigma1 mutations at four positions between residues 415 and 447, which contribute to forming the receptor-binding head domain. When aligned with the sigma1 sequence of reovirus type 3 Dearing (T3D) and mapped onto the previously reported crystal structure of the T3D sigma1 trimer, the four positions cluster on the side of the sigma1 head, across the interface between two subunits. Three such interface-spanning epitopes are thus present per sigma1 trimer and require the intact quaternary structure of the head domain for MAb binding. Identification of these intersubunit epitopes on sigma1 opens the way for further studies of the mechanisms of antibody-based neutralization and protection with type 1 reoviruses.
Collapse
Affiliation(s)
- Anna Helander
- GI Cell Biology Laboratory, Children's Hospital, Department of Pediatrics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
136
|
Odegard AL, Chandran K, Zhang X, Parker JSL, Baker TS, Nibert ML. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. J Virol 2004; 78:8732-45. [PMID: 15280481 PMCID: PMC479062 DOI: 10.1128/jvi.78.16.8732-8745.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several nonenveloped animal viruses possess an autolytic capsid protein that is cleaved as a maturation step during assembly to yield infectious virions. The 76-kDa major outer capsid protein micro1 of mammalian orthoreoviruses (reoviruses) is also thought to be autocatalytically cleaved, yielding the virion-associated fragments micro1N (4 kDa; myristoylated) and micro1C (72 kDa). In this study, we found that micro1 cleavage to yield micro1N and micro1C was not required for outer capsid assembly but contributed greatly to the infectivity of the assembled particles. Recoated particles containing mutant, cleavage-defective micro1 (asparagine --> alanine substitution at amino acid 42) were competent for attachment; processing by exogenous proteases; structural changes in the outer capsid, including micro1 conformational change and sigma1 release; and transcriptase activation but failed to mediate membrane permeabilization either in vitro (no hemolysis) or in vivo (no coentry of the ribonucleotoxin alpha-sarcin). In addition, after these particles were allowed to enter cells, the delta region of micro1 continued to colocalize with viral core proteins in punctate structures, indicating that both elements remained bound together in particles and/or trapped within the same subcellular compartments, consistent with a defect in membrane penetration. If membrane penetration activity was supplied in trans by a coinfecting genome-deficient particle, the recoated particles with cleavage-defective micro1 displayed much higher levels of infectivity. These findings led us to propose a new uncoating intermediate, at which particles are trapped in the absence of micro1N/micro1C cleavage. We additionally showed that this cleavage allowed the myristoylated, N-terminal micro1N fragment to be released from reovirus particles during entry-related uncoating, analogous to the myristoylated, N-terminal VP4 fragment of picornavirus capsid proteins. The results thus suggest that hydrophobic peptide release following capsid protein autocleavage is part of a general mechanism of membrane penetration shared by several diverse nonenveloped animal viruses.
Collapse
Affiliation(s)
- Amy L Odegard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
137
|
Papanikolopoulou K, Teixeira S, Belrhali H, Forsyth VT, Mitraki A, van Raaij MJ. Adenovirus Fibre Shaft Sequences Fold into the Native Triple Beta-Spiral Fold when N-terminally Fused to the Bacteriophage T4 Fibritin Foldon Trimerisation Motif. J Mol Biol 2004; 342:219-27. [PMID: 15313619 DOI: 10.1016/j.jmb.2004.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/02/2004] [Accepted: 07/09/2004] [Indexed: 11/24/2022]
Abstract
Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.
Collapse
|
138
|
Grudzien E, Stepinski J, Jankowska-Anyszka M, Stolarski R, Darzynkiewicz E, Rhoads RE. Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. RNA (NEW YORK, N.Y.) 2004; 10:1479-87. [PMID: 15317978 PMCID: PMC1370634 DOI: 10.1261/rna.7380904] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Synthetic analogs of the N7-methylated guanosine triphosphate cap at the 5' end of eukaryotic mRNAs and snRNAs have played an important role in understanding their splicing, intracellular transport, translation, and turnover. We report here a new series of N7-benzylated dinucleoside tetraphosphate analogs, b7Gp4G, b7m(3'-O)Gp4G, and b7m2Gp4G, that extend our knowledge of the role of the cap in translation. We used these novel analogs, along with 10 previously synthesized analogs, to explore five parameters: binding affinity to eIF4E, inhibition of cap-dependent translation in a rabbit reticulocyte lysate system, efficiency of incorporation into RNAs during in vitro transcription (% capping), orientation of the analog in the synthetic mRNA (% correct orientation), and in vitro translational efficiency of mRNAs capped with the analog. The 13 cap analogs differed in modifications of the first (distal) and second (proximal) guanine moieties, the first and second ribose moieties, and the number of phosphate residues. Among these were analogs of the naturally occurring cap m3(2,2,7)Gp3G. These compounds varied by 61-fold in affinity for eIF4E, 146-fold in inhibition of cap-dependent translation, 1.4-fold in % capping, and 5.6-fold in % correct orientation. The most stimulatory analog enhanced translation 44-fold compared with uncapped RNA. mRNAs capped with b7m2Gp4G, m7Gp3m7G, b7m(3'-OGp4G, and m7Gp4m7G were translated 2.5-, 2.6-, 2.8-, and 3.1-fold more efficiently than mRNAs capped with m7Gp3G, respectively. Relative translational efficiencies could generally be explained in terms of cap affinity for eIF4E, % capping, and % correct orientation. The measurement of all five parameters provides insight into factors that contribute to translational efficiency.
Collapse
Affiliation(s)
- Ewa Grudzien
- Department of Biophysics, Warsaw University, Poland
| | | | | | | | | | | |
Collapse
|
139
|
Mu X, Lee YF, Liu NC, Chen YT, Kim E, Shyr CR, Chang C. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol Cell Biol 2004; 24:5887-99. [PMID: 15199144 PMCID: PMC480911 DOI: 10.1128/mcb.24.13.5887-5899.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Testicular orphan nuclear receptor 4 (TR4) is specifically and stage-dependently expressed in late-stage pachytene spermatocytes and round spermatids. In the developing mouse testis, the highest expression of TR4 can be detected at postnatal days 16 to 21 when the first wave of spermatogenesis progresses to late meiotic prophase. Using a knockout strategy to delete TR4 in mice, we found that sperm production in TR4(-/-) mice is reduced. The comparison of testes from developing TR4(+/+) and TR4(-/-) mice shows that spermatogenesis in TR4(-/-) mice is delayed. Analysis of the first wave of spermatogenesis shows that the delay can be due to delay and disruption of spermatogenesis at the end of late meiotic prophase and subsequent meiotic divisions. Seminiferous tubule staging shows that stages X to XII, where late meiotic prophase and meiotic divisions take place, are delayed and disrupted in TR4(-/-) mice. Histological examination of testis sections from TR4(-/-) mice shows degenerated primary spermatocytes and some necrotic tubules. Testis-specific gene analyses show that the expression of sperm 1 and cyclin A1, which are genes expressed at the end of meiotic prophase, was delayed and decreased in TR4(-/-) mouse testes. Taken together, results from TR4(+/+) and TR4(-/-) mice indicate that TR4 is essential for normal spermatogenesis in mice.
Collapse
Affiliation(s)
- Xiaomin Mu
- Department of Pathology, Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N. Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 2004; 78:7727-36. [PMID: 15220447 PMCID: PMC434083 DOI: 10.1128/jvi.78.14.7727-7736.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus serotype 37 (Ad37) belongs to species D and can cause epidemic keratoconjunctivitis, whereas the closely related Ad19p does not. Primary cell attachment by adenoviruses is mediated through receptor binding of the knob domain of the fiber protein. The knobs of Ad37 and Ad19p differ at only two positions, Lys240Glu and Asn340Asp. We report the high-resolution crystal structures of the Ad37 and Ad19p knobs, both native and in complex with sialic acid, which has been proposed as a receptor for Ad37. Overall, the Ad37 and Ad19p knobs are very similar to previously reported knob structures, especially to that of Ad5, which binds the coxsackievirus-adenovirus receptor (CAR). Ad37 and Ad19p knobs are structurally identical with the exception of the changed side chains and are structurally most similar to CAR-binding knobs (e.g., that of Ad5) rather than non-CAR-binding knobs (e.g., that of Ad3). The two mutations in Ad19p result in a partial loss of the exceptionally high positive surface charge of the Ad37 knob but do not affect sialic acid binding. This site is located on the top of the trimer and binds both alpha(2,3) and alpha(2,6)-linked sialyl-lactose, although only the sialic acid residue makes direct contact. Amino acid alignment suggests that the sialic acid binding site is conserved in several species D serotypes. Our results show that the altered viral tropism and cell binding of Ad19p relative to those of Ad37 are not explained by a different binding ability toward sialyl-lactose.
Collapse
Affiliation(s)
- Wim P Burmeister
- Laboratoire de Virologie Moléculaire et Structurale, Université Joseph Fourier, Faculté de Médecine de Grenoble, F-38042 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Eugene Wu
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
142
|
Stehle T, Dermody TS. Structural Similarities in the Cellular Receptors Used by Adenovirus and Reovirus. Viral Immunol 2004; 17:129-43. [PMID: 15279694 DOI: 10.1089/0882824041310621] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenovirus and reovirus are nonenveloped viruses that engage cell-surface receptors using filamentous attachment proteins with head-and-tail morphology. The coxsackievirus and adenovirus receptor (CAR) and reovirus receptor junctional adhesion molecule 1 (JAM1) are immunoglobulin superfamily members that form homodimers stabilized by ionic and hydrophobic contacts between their N-terminal immunoglobulin-like domains. Both proteins are expressed at regions of cell-cell contact and contain sequences in their cytoplasmic tails that anchor the proteins to the actin cytoskeleton. Like CAR and JAM1, the attachment proteins of adenovirus and reovirus, fiber and sigma1, respectively, also share key structural features. Both fiber and sigma1 have defined regions of flexibility within the tail, which is constructed in part using an unusual triple beta-spiral motif. The head domains of both proteins are formed by an 8-stranded beta-barrel with identical beta-strand connectivity. Strikingly, both adenovirus fiber and reovirus 1 engage their receptors by interacting with sequences that also mediate formation of receptor homodimers. Therefore, while adenovirus and reovirus belong to different virus families and have few overall properties in common, the observed similarities between the receptors and attachment proteins of these viruses suggest a conserved mechanism of attachment and an evolutionary relationship.
Collapse
Affiliation(s)
- Thilo Stehle
- Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
143
|
Richardson-Burns SM, Tyler KL. Regional differences in viral growth and central nervous system injury correlate with apoptosis. J Virol 2004; 78:5466-75. [PMID: 15113925 PMCID: PMC400348 DOI: 10.1128/jvi.78.10.5466-5475.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of neonatal mice with reovirus T3 Dearing (T3D), the prototypic neurotropic reovirus, causes fatal encephalitis associated with neuronal injury and virus-induced apoptosis throughout the brain. T3D variant K (VarK) is an antigenic variant that has a nearly 1 million-fold reduction in neurovirulence following intracerebral (i.c.) inoculation compared to T3D and a restricted pattern of central nervous system injury with damage limited to the hippocampus, sparing other brain regions. We wished to determine whether the restricted pattern of VarK-induced injury was due to a reduced capacity to replicate in or injure cortical, as opposed to hippocampal, tissue. We found that following i.c. inoculation, VarK grew to similar titers as T3D in the hippocampus but had significantly lower titers in the cortex. Both viruses grew to identical titers and infected the same percentage of cells in mouse primary hippocampal cultures (MHC). In mouse primary cortical cultures (MCC) both the number of infected cells and the viral yield per infected cell were significantly lower for VarK than T3D. VarK-induced apoptosis was limited to the hippocampus in vivo, and in vitro both viruses induced apoptosis equally in MHC but VarK induced significantly less apoptosis than T3D in MCC. Growth of T3D in MCC was reduced to levels comparable to those of VarK following treatment of MCC with caspase inhibitors. Conversely, induction of apoptosis in VarK-infected MCC with fatty acid synthase-activating antibody significantly enhanced viral yield. These results suggest that the decreased neurovirulence of VarK may be due to its failure to efficiently induce apoptosis in cortical neurons.
Collapse
Affiliation(s)
- Sarah M Richardson-Burns
- Neuroscience Program, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
144
|
Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS, Barry MA. A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci U S A 2004; 101:6188-93. [PMID: 15079060 PMCID: PMC395944 DOI: 10.1073/pnas.0400542101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/23/2004] [Indexed: 12/13/2022] Open
Abstract
The utility of adenovirus (Ad) vectors for gene transduction can be limited by receptor specificity. We developed a gene-delivery vehicle in which the potent Ad5 vector was genetically reengineered to display the mucosal-targeting sigma1 protein of reovirus type 3 Dearing (T3D). A sigma1 construct containing all but a small virion-anchoring domain was fused to the N-terminal 44 aa of Ad5 fiber. This chimeric attachment protein Fibtail-T3Dsigma1 forms trimers and assembles onto Ad virions. Fibtail-T3Dsigma1 was recombined into the Ad5 genome, replacing sequences encoding wild-type fiber. The resulting vector, Ad5-T3Dsigma1, expresses Fibtail-T3Dsigma1 and infects Chinese hamster ovary cells transfected with human or mouse homologs of the reovirus receptor, junctional adhesion molecule 1 (JAM1), but not the coxsackievirus and Ad receptor. Treatment of Caco-2 intestinal epithelial cells with either JAM1-specific antibody or neuraminidase reduced transduction by Ad5-T3Dsigma1, and their combined effect decreased transduction by 95%. Ad5-T3Dsigma1 transduces primary cultures of human dendritic cells substantially more efficiently than does Ad5, and this transduction depends on expression of JAM1. These data provide strong evidence that Ad5-T3Dsigma1 can be redirected to cells expressing JAM1 and sialic acid for application as a vaccine vector.
Collapse
Affiliation(s)
- George T Mercier
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
Viruses have evolved to enter cells from all three domains of life--Bacteria, Archaea and Eukaryotes. Of more than 3,600 known viruses, hundreds can infect human cells and most of those are associated with disease. To gain access to the cell interior, animal viruses attach to host-cell receptors. Advances in our understanding of how viral entry proteins interact with their host-cell receptors and undergo conformational changes that lead to entry offer unprecedented opportunities for the development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- Human Immunovirology and Computational Biology Group, Laboratory of Experimental & Computational Biology, Centre for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
146
|
Papanikolopoulou K, Forge V, Goeltz P, Mitraki A. Formation of Highly Stable Chimeric Trimers by Fusion of an Adenovirus Fiber Shaft Fragment with the Foldon Domain of Bacteriophage T4 Fibritin. J Biol Chem 2004; 279:8991-8. [PMID: 14699113 DOI: 10.1074/jbc.m311791200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.
Collapse
|
147
|
Chandran K, Parker JSL, Ehrlich M, Kirchhausen T, Nibert ML. The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 2004; 77:13361-75. [PMID: 14645591 PMCID: PMC296072 DOI: 10.1128/jvi.77.24.13361-13375.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell entry by reoviruses requires a large, transcriptionally active subvirion particle to gain access to the cytoplasm. The features of this particle have been the subject of debate, but three primary candidates-the infectious subvirion particle (ISVP), ISVP*, and core particle forms-that differ in whether putative membrane penetration protein micro 1 and adhesin sigma1 remain particle bound have been identified. Experiments with antibody reagents in this study yielded new information about the steps in particle disassembly during cell entry. Monoclonal antibodies specific for the delta region of micro 1 provided evidence for a conformational change in micro 1 and for release of the delta proteolytic fragment from entering particles. Antiserum raised against cores provided evidence for entry-related changes in particle structure and identified entering particles that largely lack the delta fragment inside cells. Antibodies specific for sigma1 showed that it is also largely shed from entering particles. Limited coimmunostaining with markers for late endosomes and lysosomes indicated the particles lacking delta and sigma1 did not localize to those subcellular compartments, and other observations suggested that both the particles and free delta were released into the cytoplasm. Essentially equivalent findings were obtained with native ISVPs and highly infectious recoated particles containing wild-type proteins. Poorly infectious recoated particles containing a hyperstable mutant form of micro 1, however, showed no evidence for the in vitro and intracellular changes in particle structure normally detected by antibodies, and these particles instead accumulated in late endosomes or lysosomes. Recoated particles with hyperstable micro 1 were also ineffective at mediating erythrocyte lysis in vitro and promoting alpha-sarcin coentry and intoxication of cells in cultures. Based on these and other findings, we propose that ISVP* is a transient intermediate in cell entry which mediates membrane penetration and is then further uncoated in the cytoplasm to yield particles, resembling cores, that largely lack the delta fragment of micro 1.
Collapse
Affiliation(s)
- Kartik Chandran
- Departments of Microbiology and Molecular Genetics. Cell Biology. Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
148
|
Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J Virol 2004; 78:947-57. [PMID: 14694126 PMCID: PMC368743 DOI: 10.1128/jvi.78.2.947-957.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/02/2003] [Indexed: 12/18/2022] Open
Abstract
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.
Collapse
Affiliation(s)
- Amy B Hutchings
- GI Cell Biology Laboratory, Children's Hospital, Departments of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Forrest JC, Campbell JA, Schelling P, Stehle T, Dermody TS. Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment. J Biol Chem 2003; 278:48434-44. [PMID: 12966102 DOI: 10.1074/jbc.m305649200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses are nonenveloped viruses with a long, filamentous attachment protein that dictates disease phenotypes following infection of newborn mice and is a structural homologue of the adenovirus attachment protein. Reoviruses use junctional adhesion molecule 1 (JAM1) as a serotype-independent cellular receptor. JAM1 is a broadly expressed immunoglobulin superfamily protein that forms stable homodimers and regulates tight-junction permeability and lymphocyte trafficking. We employed a series of structure-guided binding and infection experiments to define residues in human JAM1 (hJAM1) important for reovirus-receptor interactions and to gain insight into mechanisms of reovirus attachment. Binding and infection experiments using chimeric and domain deletion mutant receptor molecules indicate that the amino-terminal D1 domain of hJAM1 is required for reovirus attachment, infection, and replication. Reovirus binding to hJAM1 occurs more rapidly than homotypic hJAM1 association and is competed by excess hJAM1 in vitro and on cells. Cross-linking hJAM1 diminishes the capacity of reovirus to bind hJAM1 in vitro and on cells and negates the competitive effects of soluble hJAM1 on reovirus attachment. Finally, mutagenesis studies demonstrate that residues intimately associated with the hJAM1 dimer interface are critical for reovirus interactions with hJAM1. These results suggest that reovirus attachment disrupts hJAM1 dimers and highlight similarities between the attachment strategies of reovirus and adenovirus.
Collapse
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and Immunology, and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
150
|
Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Mol Biol 2003; 10:1011-8. [PMID: 14608373 PMCID: PMC4152824 DOI: 10.1038/nsb1009] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 09/18/2003] [Indexed: 01/13/2023]
Abstract
Reovirus is an icosahedral, double-stranded (ds) RNA virus that uses viral polymerases packaged within the viral core to transcribe its ten distinct plus-strand RNAs. To localize these polymerases, the structure of the reovirion was refined to a resolution of 7.6 A by cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image reconstruction. X-ray crystal models of reovirus proteins, including polymerase lambda 3, were then fitted into the density map. Each copy of lambda 3 was found anchored to the inner surface of the icosahedral core shell, making major contacts with three molecules of shell protein lambda 1 and overlapping, but not centering on, a five-fold axis. The overlap explains why only one copy of lambda 3 is bound per vertex. lambda 3 is furthermore oriented with its transcript exit channel facing a small channel through the lambda 1 shell, suggesting how the nascent RNA is passed into the large external cavity of the pentameric capping enzyme complex formed by protein lambda 2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|