101
|
Haase AT. Overview of the landscape of HIV prevention. Am J Reprod Immunol 2014; 71:490-4. [PMID: 24702688 DOI: 10.1111/aji.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 12/25/2022] Open
Abstract
In this introductory essay on the landscape of HIV prevention, my intent is to provide context for the subsequent topics discussed at the Symposium on Hormone Regulation of the Mucosal Environment in the female reproductive tract (FRT) and the Prevention of HIV infection: FRT immunity, mucosal microenvironment and HIV prevention, and the risk and impact of hormonal contraceptives on HIV transmission.
Collapse
Affiliation(s)
- Ashley T Haase
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
102
|
Hafner LM, Cunningham K, Beagley KW. Ovarian steroid hormones: effects on immune responses and Chlamydia trachomatis infections of the female genital tract. Mucosal Immunol 2013; 6:859-75. [PMID: 23860476 DOI: 10.1038/mi.2013.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.
Collapse
Affiliation(s)
- L M Hafner
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia.
| | | | | |
Collapse
|
103
|
Sperling R, Kraus TA, Ding J, Veretennikova A, Lorde-Rollins E, Singh T, Lo Y, Quayle AJ, Chang TL. Differential profiles of immune mediators and in vitro HIV infectivity between endocervical and vaginal secretions from women with Chlamydia trachomatis infection: a pilot study. J Reprod Immunol 2013; 99:80-7. [PMID: 23993451 DOI: 10.1016/j.jri.2013.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/05/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Chlamydia trachomatis infection is one of the most prevalent bacterial STIs in the USA and worldwide, and women with C. trachomatis infection are at increased risk of acquiring HIV. Because immune activation at the genital mucosa facilitates HIV/SIV infection, C. trachomatis-mediated cytokine induction may contribute to increased HIV transmission in asymptomatic women. To begin to elucidate the mechanisms, we longitudinally analyzed profiles of innate immune factors and HIV infectivity in genital secretions from anatomically specific sites in asymptomatic women during C. trachomatis infection and post-antibiotic treatment. We found higher levels of cytokines and chemokines in endocervical secretions than vaginal secretions. Compared with the convalescent state, G-CSF, IL-1α, and RANTES were elevated in endocervical secretions, IFN-γ and TNF-α were elevated in vaginal secretions, and IFNγ, IL-1β, and MIP1-α were elevated in cervicolavage fluid (CVL), before adjustment of multiple comparisons. Elevated endocervical levels of IP-10 and MCP-1 were associated with the use of hormonal contraception in infected women after successful treatment, suggesting the role of hormonal contraception in inflammation independent of STIs. Importantly, soluble factors found in endocervical secretions during infection enhanced HIV infectivity while no difference in HIV infectivity was found with vaginal secretions or CVL during infection or at convalescence. Taken together, the profiles of immune mediators and in vitro HIV infectivity indicate that the endocervical and vaginal mucosa are immunologically distinct. Our results underscore the importance of considering anatomical site and local sampling methodology when measuring mucosal responses, particularly in the presence of C. trachomatis infection.
Collapse
Affiliation(s)
- Rhoda Sperling
- Department of Obstetrics, Gynecology and Reproductive Science, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Illanes SE, Maisey K, Sandoval M, Reyes FE, Figueroa-Gaete C, Pérez-Sepúlveda A, Busquets M, González P, Imarai M. Fas ligand+ fallopian tube epithelium induces apoptosis in both Fas receptor+ T lymphocytes and endometrial cells. Fertil Steril 2013; 100:550-60.e3. [DOI: 10.1016/j.fertnstert.2013.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 02/27/2013] [Accepted: 04/08/2013] [Indexed: 12/18/2022]
|
105
|
Racicot K, Cardenas I, Wünsche V, Aldo P, Guller S, Means R, Romero R, Mor G. Viral infection of the pregnant cervix predisposes to ascending bacterial infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:934-41. [PMID: 23752614 PMCID: PMC4153356 DOI: 10.4049/jimmunol.1300661] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Preterm birth is the major cause of neonatal mortality and morbidity, and bacterial infections that ascend from the lower female reproductive tract are the most common route of uterine infection leading to preterm birth. The uterus and growing fetus are protected from ascending infection by the cervix, which controls and limits microbial access by the production of mucus, cytokines, and antimicrobial peptides. If this barrier is compromised, bacteria may enter the uterine cavity, leading to preterm birth. Using a mouse model, we demonstrate, to our knowledge for the first time, that viral infection of the cervix during pregnancy reduces the capacity of the female reproductive tract to prevent bacterial infection of the uterus. This is due to differences in susceptibility of the cervix to infection by virus during pregnancy and the associated changes in TLR and antimicrobial peptide expression and function. We suggest that preterm labor is a polymicrobial disease, which requires a multifactorial approach for its prevention and treatment.
Collapse
Affiliation(s)
- Karen Racicot
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT
| | - Ingrid Cardenas
- Department of Obstetrics and Gynecology Tuffs University, Boston MA
| | - Vera Wünsche
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT
| | - Paulomi Aldo
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT
| | - Seth Guller
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT
| | - Robert Means
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Detroit
| | - Gil Mor
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
106
|
Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine 2013; 63:151-65. [PMID: 23673287 DOI: 10.1016/j.cyto.2013.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 01/19/2023]
Abstract
The endocervical epithelium is a major reservoir for Chlamydia trachomatis in women, and genital infections are extended in their duration. Epithelial cells act as mucosal sentinels by secreting cytokines and chemokines in response to pathogen challenge and infection. We therefore determined the signature cytokine and chemokine response of primary-like endocervix-derived epithelial cells in response to a common genital serovar (D) of C. trachomatis. For these studies, we used a recently-established polarized, immortalized, endocervical epithelial cell model (polA2EN) that maintains, in vitro, the architectural and functional characteristics of endocervical epithelial cells in vivo including the production of pro-inflammatory cytokines. PolA2EN cells were susceptible to C. trachomatis infection, and chlamydiae in these cells underwent a normal developmental cycle as determined by a one-step growth curve. IL1α protein levels were increased in both apical and basolateral secretions of C. trachomatis infected polA2EN cells, but this response did not occur until 72h after infection. Furthermore, protein levels of the pro-inflammatory cytokines and chemokines IL6, TNFα and CXCL8 were not significantly different between C. trachomatis infected polA2EN cells and mock infected cells at any time during the chlamydial developmental cycle up to 120h post-infection. Intriguingly, C. trachomatis infection resulted in a significant decrease in the constitutive secretion of T cell chemokines IP10 and RANTES, and this required a productive C. trachomatis infection. Examination of anti-inflammatory cytokines revealed a high constitutive apical secretion of IL1ra from polA2EN cells that was not significantly modulated by C. trachomatis infection. IL-11 was induced by C. trachomatis, although only from the basolateral membrane. These results suggest that C. trachomatis can use evasion strategies to circumvent a robust pro-inflammatory cytokine and chemokine response. These evasion strategies, together with the inherent immune repertoire of endocervical epithelial cells, may aid chlamydiae in establishing, and possibly sustaining, an intracellular niche in microenvironments of the endocervix in vivo.
Collapse
|
107
|
Ferreira VH, Nazli A, Mossman KL, Kaushic C. Proinflammatory cytokines and chemokines - but not interferon-β - produced in response to HSV-2 in primary human genital epithelial cells are associated with viral replication and the presence of the virion host shutoff protein. Am J Reprod Immunol 2013; 70:199-212. [PMID: 23621693 DOI: 10.1111/aji.12133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 01/12/2023] Open
Abstract
PROBLEM It is unknown whether viral replication or viral components that subvert innate responses in other cells, specifically the virion host shutoff (VHS) protein, play a role in determining primary genital epithelial cell (GEC) innate antiviral responses. METHOD OF STUDY Cultures of primary female GECs were exposed to wildtype (WT), VHS-deleted (vhsB), or UV-inactivated HSV-2. Antiviral pathway induction was evaluated by measuring nuclear factor-κB (NFκB) translocation by immunofluorescent microscopy. Proinflammatory cytokines, chemokines, and interferon (IFN) were measured by Luminex or ELISA. Biological activity of IFN-β was evaluated via VSV-GFP bioassay, by blocking secreted IFN-β with neutralizing antibodies and by measuring interferon-stimulated genes by RT-PCR. RESULTS Proinflammatory cytokines and chemokines were upregulated in primary GECs in response to replication-competent HSV-2, but suppressed in the presence of the VHS protein. In contrast, upregulation of IFN-β depended on viral replication, but was not affected by VHS. However, the IFN-β produced was biologically active and reduced the viral burden. CONCLUSION Viral factors such as replication and the presence of the VHS protein play important roles in regulating innate antiviral responses against HSV-2 from primary GECs.
Collapse
Affiliation(s)
- Victor H Ferreira
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
108
|
Brosnahan AJ, Vulchanova L, Witta SR, Dai Y, Jones BJ, Brown DR. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells. J Neuroimmunol 2013; 259:8-16. [PMID: 23571017 DOI: 10.1016/j.jneuroim.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 11/17/2022]
Abstract
The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 75 Animal Science/Veterinary Medicine, 1988 Fitch Ave, Saint Paul, MN 55108, United States
| | | | | | | | | | | |
Collapse
|
109
|
Barański W, Podhalicz-Dzięgielewska M, Zduńczyk S, Janowski T. The diagnosis and prevalence of subclinical endometritis in cows evaluated by different cytologic thresholds. Theriogenology 2013; 78:1939-47. [PMID: 23110950 DOI: 10.1016/j.theriogenology.2012.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 11/19/2022]
Abstract
The aims of our study were to determine (1) how the prevalence of cytologically determined subclinical endometritis varies when using three different cytological threshold ratios to categorize cows as either with or without endometritis, (2) how the number of animals categorized as having endometritis changes from the fourth to the sixth wk postpartum when using each threshold, (3) how subclinical endometritis influences the number of days open, and (4) how the results of cytological and bacterial examinations correlate. To answer these questions, 222 clinically healthy cows in two herds were examined in the fourth (Exam 1) and the sixth wk (Exam 2) postpartum, when endometrial surface scrapings for bacteriologic and cytologic examination were collected by cytobrush from their uterine horns. After each examination, all cows were categorized using three different thresholds: (1) > 18% polymorphonuclear leucocytes in Exam 1 and > 10% in Exam 2, (2) > 8% in both exams, and (3) > 5% in both exams. It was found that: (1) The number of cows categorized as having endometritis increased as the threshold was lowered, and ranged from 18.9% to 75.4% according to herd, time of examination, and the threshold used; (2) with all three thresholds and in both herds, the number of cows categorized as having endometritis in Exam 1 was approximately double that in Exam 2; whereas depending on the herd and the threshold used, 6.1% to 17.0% of the cows that were negative in the first exam were positive in the second, and 7.4% to 33.3% were positive in both exams; (3) cows were open for a significantly greater number of days if categorized as having endometritis with the first threshold in Exam 1 (mean ± SEM 151.5 ± 9.5 vs. 115.9 ± 7.8; P < 0.01), or with either the first or the second threshold in Exam 2 (mean ± SEM 155.0 ± 15.0 vs. 125.1 ± 6.6; P < 0.05); and (4) the most common bacteria were Streptococcus acidominimus and Escherichia coli, and the correlation between cytologic and bacteriologic findings was low (Φ = 0.08 to 0.17 for different tested thresholds). Subclinical endometritis seems to be associated more with the postpartum recovery of the endometrium than with bacterial infection.
Collapse
Affiliation(s)
- W Barański
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, Olsztyn, Poland.
| | | | | | | |
Collapse
|
110
|
MacKintosh SB, Schuberth HJ, Healy LL, Sheldon IM. Polarised bovine endometrial epithelial cells vectorially secrete prostaglandins and chemotactic factors under physiological and pathological conditions. Reproduction 2013; 145:57-72. [PMID: 23115348 DOI: 10.1530/rep-12-0253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells of the endometrium secrete prostaglandins to regulate the bovine oestrous cycle and form a functional barrier to microbes. However, bacterial infection of the endometrium commonly causes infertility in dairy cattle by disrupting endometrial physiology. Epithelial cell cultures are used to study the mechanisms of physiology and pathology, but 2D cultures may not reflect the 3D complexity of the epithelium. In this study, a polarised epithelial cell transwell culture was developed, using transepithelial resistance (TER), to monitor epithelial integrity. Polarised epithelial cells were treated with oxytocin and arachidonic acid to test physiological function and with lipopolysaccharide (LPS) to mimic bacterial infection. Supernatants were analysed for prostaglandin E(2) (PGE), prostaglandin F(2)(α), the chemokine interleukin-8 (IL8) and the ability of supernatants to induce neutrophil migration. Confluent epithelial cells established polarity when TER was >1800 Ω cm(2) and predominantly released prostaglandins basolaterally. In contrast, IL8 from epithelial cells accumulated apically and the supernatants were highly chemotactic for neutrophils. The striking exception was when the epithelial cells were treated with LPS in the apical or basolateral compartment independently, which led to the release of IL8 towards the treated compartment. Although stromal cells also accumulated PGE and IL8 in response to treatment, co-culture of stromal cells in the well below polarised epithelial cells did not influence cellular responses. In conclusion, polarised endometrial epithelial cells vectorially released prostaglandins and chemokines to reflect their respective mechanistic roles in physiology and pathology.
Collapse
Affiliation(s)
- Siân B MacKintosh
- School of Medicine, College of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
111
|
Endometrial epithelial cells are potent producers of tracheal antimicrobial peptide and serum amyloid A3 gene expression in response to E. coli stimulation. Vet Immunol Immunopathol 2013. [DOI: 10.1016/j.vetimm.2012.09.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
112
|
Drannik AG, Nag K, Yao XD, Henrick BM, Ball TB, Plummer FA, Wachihi C, Kimani J, Rosenthal KL. Anti-HIV-1 activity of elafin depends on its nuclear localization and altered innate immune activation in female genital epithelial cells. PLoS One 2012; 7:e52738. [PMID: 23300756 PMCID: PMC3531372 DOI: 10.1371/journal.pone.0052738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022] Open
Abstract
Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1(ADA), but not X4-HIV-1(IIIB). Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Charles Wachihi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth L. Rosenthal
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
113
|
Dezzutti CS, Brown ER, Moncla B, Russo J, Cost M, Wang L, Uranker K, Kunjara Na Ayudhya RP, Pryke K, Pickett J, Leblanc MA, Rohan LC. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity. PLoS One 2012; 7:e48328. [PMID: 23144863 PMCID: PMC3492332 DOI: 10.1371/journal.pone.0048328] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.
Collapse
Affiliation(s)
- Charlene S Dezzutti
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh BN, Nibert ML. Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy. PLoS One 2012; 7:e48418. [PMID: 23144878 PMCID: PMC3492353 DOI: 10.1371/journal.pone.0048418] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022] Open
Abstract
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Shao R, Wang X, Wang W, Stener-Victorin E, Mallard C, Brännström M, Billig H. From mice to women and back again: causalities and clues for Chlamydia-induced tubal ectopic pregnancy. Fertil Steril 2012; 98:1175-85. [PMID: 22884019 DOI: 10.1016/j.fertnstert.2012.07.1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To provide an overview of knockout mouse models that have pathological tubal phenotypes after Chlamydia muridarum infection, discuss factors and pathological processes that contribute to inflammation, summarize data on tubal transport and progression of tubal implantation from studies in humans and animal models, and highlight research questions in the field. DESIGN A search of the relevant literature using PubMed and other online tools. SETTING University-based preclinical and clinical research laboratories. PATIENT(S) Women with tubal ectopic pregnancy after Chlamydia trachomatis infection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Critical review of the literature. RESULT(S) Chlamydia trachomatis infection poses a major threat to human reproduction. Biological and epidemiological evidence suggests that progression of Chlamydia infection causes intense and persistent inflammation, injury, and scarring in the fallopian tube, leading to a substantially increased risk of ectopic pregnancy and infertility. The main targets of Chlamydia infection are epithelial cells lining the mucosal surface, which play a central role in host immune responses and pathophysiology. Tubal phenotypes at the cellular level in mutant mice appear to reflect alterations in the balance between inflammatory mediator and factor deficiency. While studies in mice infected with Chlamydia muridarum have provided insight into potential inflammatory mediators linked to fallopian tube pathology, it is unclear how inflammation induced by Chlamydia infection prevents or retards normal tubal transport and causes embryo implantation in the fallopian tube. CONCLUSION(S) Given the similarities in the tubal physiology of humans and rodents, knockout mouse models can be used to study certain aspects of tubal functions, such as gamete transport and early embryo implantation. Elucidation of the exact molecular mechanisms of immune and inflammatory responses caused by Chlamydia infection in human fallopian tubal cells in vitro and understanding how Chlamydia infection affects tubal transport and implantation in animal studies in vivo may explain how Chlamydia trachomatis infection drives inflammation and develops the tubal pathology in women with tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
116
|
Characterization of the innate immune response in goats after intrauterine infusion of E. coli using histopathological, cytologic and molecular analyses. Theriogenology 2012; 78:593-604. [DOI: 10.1016/j.theriogenology.2012.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 11/17/2022]
|
117
|
Alan E, Liman N. Immunohistochemical localization of beta defensins in the endometrium of rat uterus during the postpartum involution period. Vet Res Commun 2012; 36:173-85. [PMID: 22777508 DOI: 10.1007/s11259-012-9529-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2012] [Indexed: 01/23/2023]
Abstract
β-Defensins are small cationic molecules that have antimicrobial actions against bacteria, fungi and viruses and contribute to mucosal immune responses at epithelial sites. The female reproductive tract is an important site of defensin production. This study was conducted to determine the possible changes in proportions and localization of β-defensin 1-4 in the rat uterus at the 1st, 3th, 5th, 10th and 15th days of postpartum and at the period of diestrus using immunohistochemical techniques. In the present study, it was determined that β-defensin 1-4 were generally found in all structural components of the endometrium (luminal and glandular epithelium, stromal cells and blood vessels) in both the nucleus and the cytoplasm of cells during the involution period and diestrus. Suprisingly, immunoreaction of β-defensin 2 was also observed in the lateral membrane of the luminal and glandular epithelial cells on the 10th day of involution and immunostaining of β-defensin 4 was also localized in the apical membrane of the luminal and glandular epithelial cells. The current study demonstrated β-defensin 1-4 immunoreactivities in the endothelium of blood vessels were stronger throughout the involution period. Although β-defensins 2 and 3 were localized in both the nuclei and the cytoplasm of endothelial cells, β-defensins 1 and 4 were present in only cytoplasm. These results show that the most component of rat endometrium expresses human β-defensin 1-4 in a involution-dependent manner. Therefore it may be asserted that these molecules constitute a organised protection to prevent uterus from probable infections during the involution process.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38090, Kayseri, Turkey
| | | |
Collapse
|
118
|
Jefferson WN, Padilla-Banks E, Phelps JY, Cantor AM, Williams CJ. Neonatal phytoestrogen exposure alters oviduct mucosal immune response to pregnancy and affects preimplantation embryo development in the mouse. Biol Reprod 2012; 87:10, 1-10. [PMID: 22553218 DOI: 10.1095/biolreprod.112.099846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are "posteriorized" as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
119
|
Krikun G, Trezza J, Shaw J, Rahman M, Guller S, Abrahams VM, Lockwood CJ. Lipopolysaccharide appears to activate human endometrial endothelial cells through TLR-4-dependent and TLR-4-independent mechanisms. Am J Reprod Immunol 2012; 68:233-7. [PMID: 22672000 DOI: 10.1111/j.1600-0897.2012.01164.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 01/10/2023] Open
Abstract
PROBLEM Uterine innate immunity remains poorly characterized, and while endometrial endothelial cells are known to express Toll-like receptors (TLRs), little is known about their function in these cells. The present study evaluated the effect of Gram-negative bacterial lipopolysaccharide (LPS) on human endometrial endothelial cell (HEECs) cytokine secretion and tissue factor expression, and the role of TLR-4 in these responses. METHODS Human endometrial endothelial cells were treated with or without LPS ± LPS-RS, a TLR-4 antagonist, via the binding of MD-2. After 24 hr, cell-free supernatants were evaluated for cytokines by multiplex analysis and cell lysates were analyzed for tissue factor expression by Western blot. RESULTS Treatment of HEECs with LPS significantly upregulated the secretion of IL-6, IL-8, and G-CSF, and this was prevented by LPS-RS. LPS also induced tissue factor expression by the HEECs; however, this was unaffected by LPS-RS. CONCLUSION These findings suggest that TLR-4 is functional in HEECs and its activation by bacterial LPS induces a specific cytokine/chemokine response. However, bacterial LPS also induced tissue factor expression in what seemed to be a TLR-4-independent fashion, suggesting that this bacterial component can act on the HEECs through TLR-4-dependent and TLR-4-independent pathways. These findings indicate that endometrial endothelial cells may play an active role in uterine innate immunity.
Collapse
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Marks MA, Eby Y, Howard R, Gravitt PE. Comparison of normalization methods for measuring immune markers in cervical secretion specimens. J Immunol Methods 2012; 382:211-5. [PMID: 22677266 DOI: 10.1016/j.jim.2012.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022]
Abstract
Ophthalmic sponges are used to collect undiluted cervical secretions for assessment of markers of genital tract immunity. Heterogeneity in absorbed and extracted sample volumes requires normalization in order to make valid inter-individual comparisons. We evaluated the performance of adjustment by weight and total protein on normalizing inter-individual variability of immune marker measurement due to differences in volume collection. Normalization to total protein resulted in a minimal loss of usable specimens and a significant reduction in the correlation of immune marker concentration to specimen weight compared to weight adjustment. Total protein normalization appeared to be more effective than weight adjustment in reducing the dependence of cervical immune marker concentrations on differences in specimen volume.
Collapse
Affiliation(s)
- Morgan A Marks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | | | | | | |
Collapse
|
121
|
Dunbar B, Patel M, Fahey J, Wira C. Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol Cell Endocrinol 2012; 354:85-93. [PMID: 22289638 PMCID: PMC4332593 DOI: 10.1016/j.mce.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/28/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
Abstract
The complexity of the human female reproductive tract (FRT) with its multiple levels of hormonally controlled immune protection has only begun to be understood. Dissecting the functions and roles of the immune system in the FRT is complicated by the differential hormonal regulation of its distinct anatomical structures that vary throughout the menstrual cycle. Although many fundamental mechanisms of steroid regulation of reproductive tract immune function have been determined, the effects of exogenous synthetic steroids or endocrine disruptors on immune function and disease susceptibility in the FRT have yet to be evaluated in detail. There is increasing evidence that environmental or synthetic molecules can alter normal immune function. This review provides an overview of the innate and adaptive immune systems, the current status of immune function in the FRT and the potential risks of environmental or pharmacological molecules that may perturb this system.
Collapse
Affiliation(s)
- B Dunbar
- Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.
| | | | | | | |
Collapse
|
122
|
Drannik AG, Nag K, Yao XD, Henrick BM, Sallenave JM, Rosenthal KL. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C. PLoS One 2012; 7:e35866. [PMID: 22545145 PMCID: PMC3335805 DOI: 10.1371/journal.pone.0035866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/27/2012] [Indexed: 12/24/2022] Open
Abstract
Background Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr) and its cleaved form, elafin (E), are alarm antimicrobials secreted by multiple cells, including genital epithelia. Methodology and Principal Findings We investigated whether and how each Tr and E (Tr/E) contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI∶C) and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr) to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI∶C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI∶C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI∶C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. Conclusions and Significance This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- Unité U874 INSERM, Paris, France
- Université Paris 7-Denis Diderot, Paris, France
| | - Kenneth L. Rosenthal
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
123
|
Schaefers MM, Breshears LM, Anderson MJ, Lin YC, Grill AE, Panyam J, Southern PJ, Schlievert PM, Peterson ML. Epithelial proinflammatory response and curcumin-mediated protection from staphylococcal toxic shock syndrome toxin-1. PLoS One 2012; 7:e32813. [PMID: 22431984 PMCID: PMC3303796 DOI: 10.1371/journal.pone.0032813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 02/05/2012] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS.
Collapse
Affiliation(s)
- Matthew M. Schaefers
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Laura M. Breshears
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele J. Anderson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ying-Chi Lin
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alex E. Grill
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter J. Southern
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Marnie L. Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
124
|
Abstract
There is an urgent need control the spread of the global HIV pandemic. A microbicide, or topical drug applied to the mucosal environment to block transmission, is a promising HIV prevention strategy. The development of a safe and efficacious microbicide requires a thorough understanding of the mucosal environment and its role in HIV transmission. Knowledge of the key events in viral infection identifies points at which the virus might be most effectively targeted by a microbicide. The cervicovaginal and rectal mucosa play an important role in the innate defense against HIV, and microbicides must not interfere with these functions. In this review, we discuss the current research on HIV microbicide development.
Collapse
|
125
|
Cronin JG, Turner ML, Goetze L, Bryant CE, Sheldon IM. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol Reprod 2012; 86:51. [PMID: 22053092 DOI: 10.1095/biolreprod.111.092718] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infection of the bovine endometrium with Gram-negative bacteria commonly causes uterine disease. Toll-like receptor 4 (TLR4) on cells of the immune system bind Gram-negative bacterial lipopolysaccharide (LPS), stimulating the secretion of the proinflammatory cytokines interleukin 1B (IL1B) and IL6, and the chemokine IL8. Because the endometrium is the first barrier to infection of the uterus, the signaling cascade triggered by LPS and the subsequent expression of inflammatory mediators were investigated in endometrial epithelial and stromal cells, and the key pathways identified using short interfering RNA (siRNA) and biochemical inhibitors. Treatment of endometrial cells with ultrapure LPS stimulated an inflammatory response characterized by increased IL1B, IL6, and IL8 mRNA expression, and IL6 protein accumulation in epithelial cells, and by increased IL1B and IL8 mRNA expression, and IL6 and IL8 protein accumulation in stromal cells. Treatment of endometrial cells with LPS also induced the degradation of IKB and the nuclear translocation of NFKB, as well as rapid phosphorylation of mitogen-activated protein kinase 3/1 (MAPK3/1) and MAPK14. Knockdown of TLR4 or its signaling adaptor molecule, myeloid differentiation factor 88 (MYD88), using siRNA reduced the inflammatory response to LPS in epithelial and stromal cells. Biochemical inhibition of MAPK3/1, but not JNK or MAPK14, reduced LPS-induced IL1B, IL6, and IL8 expression in endometrial cells. In conclusion, epithelial and stromal cells have an intrinsic role in innate immune surveillance in the endometrium, and in the case of LPS this recognition occurs via TLR4- and MYD88-dependent cell signaling pathways.
Collapse
Affiliation(s)
- James G Cronin
- Institute of Life Science, School of Medicine, Swansea University, United Kingdom.
| | | | | | | | | |
Collapse
|
126
|
Anti-HIV-1 activity of elafin is more potent than its precursor's, trappin-2, in genital epithelial cells. J Virol 2012; 86:4599-610. [PMID: 22345469 DOI: 10.1128/jvi.06561-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC(50)) of Tr and E anti-HIV-1 activity indicated that E is ∼130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual.
Collapse
|
127
|
Ochiel DO, Rossoll RM, Schaefer TM, Wira CR. Effect of oestradiol and pathogen-associated molecular patterns on class II-mediated antigen presentation and immunomodulatory molecule expression in the mouse female reproductive tract. Immunology 2012; 135:51-62. [PMID: 22043860 DOI: 10.1111/j.1365-2567.2011.03512.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cells of the female reproductive tract (FRT) can present antigen to naive and memory T cells. However, the effects of oestrogen, known to modulate immune responses, on antigen presentation in the FRT remain undefined. In the present study, DO11.10 T-cell antigen receptor transgenic mice specific for the class II MHC-restricted ovalbumin (OVA) 323-339 peptide were used to study the effects of oestradiol and pathogen-associated molecular patterns on antigen presentation in the FRT. We report here that oestradiol inhibited antigen presentation of OVA by uterine epithelial cells, uterine stromal cells and vaginal cells to OVA-specific memory T cells. When ovariectomized animals were treated with oestradiol for 1 or 3 days, antigen presentation was decreased by 20-80%. In contrast, incubation with PAMP increased antigen presentation by epithelial cells (Pam(3)Cys), stromal cells (peptidoglycan, Pam(3)Cys) and vaginal cells (Pam(3)Cys). In contrast, CpG inhibited both stromal and vaginal cell antigen presentation. Analysis of mRNA expression by reverse transcription PCR indicated that oestradiol inhibited CD40, CD80 and class II in the uterus and CD40, CD86 and class II in the vagina. Expression in isolated uterine and vaginal cells paralleled that seen in whole tissues. In contrast, oestradiol increased polymeric immunoglobulin receptor mRNA expression in the uterus and decreased it in the vagina. These results indicate that antigen-presenting cells in the uterus and vagina are responsive to oestradiol, which inhibits antigen presentation and co-stimulatory molecule expression. Further, these findings suggest that antigen-presenting cells in the uterus and vagina respond to selected Toll-like receptor agonists with altered antigen presentation.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | | | |
Collapse
|
128
|
Pan D, Das A, Liu D, Veazey RS, Pahar B. Isolation and characterization of intestinal epithelial cells from normal and SIV-infected rhesus macaques. PLoS One 2012; 7:e30247. [PMID: 22291924 PMCID: PMC3266894 DOI: 10.1371/journal.pone.0030247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023] Open
Abstract
Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing an important role in mucosal immune responses by regulating the expression of different important regulatory and adhesion molecules and their function.
Collapse
Affiliation(s)
- Diganta Pan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
129
|
War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans 2012; 39:1427-32. [PMID: 21936827 DOI: 10.1042/bst0391427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite tremendous advances in our understanding of HIV/AIDS since the first cases were reported 30 years ago, we are still a long way from understanding critical steps of HIV acquisition, pathogenesis and correlates of protection. Our new understanding of the importance of the mucosa as a target for HIV infection, as well as our recent observations showing that altered expression and responses of innate pattern recognition receptors are significantly associated with pathogenesis and resistance to HIV infection, indicate that correlates of immunity to HIV are more likely to be associated with mucosal and innate responses. Most of the heterosexual encounters do not result in productive HIV infection, suggesting that the female genital tract is protected against HIV by innate defence molecules, such as antiproteases, secreted mucosally. The present review highlights the role and significance of the serine protease inhibitors SLPI (secretory leucocyte protease inhibitor), trappin-2, elafin and ps20 (prostate stromal protein 20 kDa) in HIV susceptibility and infection. Interestingly, in contrast with SLPI, trappin-2 and elafin, ps20 has been shown to enhance HIV infectivity. Thus understanding the balance and interaction of these factors in mucosal fluids may significantly influence HIV infection.
Collapse
|
130
|
Kafka JK, Sheth PM, Nazli A, Osborne BJ, Kovacs C, Kaul R, Kaushic C. Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat. AIDS 2012; 26:27-36. [PMID: 22095191 DOI: 10.1097/qad.0b013e32834e57b2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Although more than 60% of HIV transmission occurs via semen, little is known about the immune impact of seminal plasma on HIV susceptibility. Here, we examined the level of selected immunomodulatory factors in seminal plasma from HIV-uninfected and therapy-naive, HIV-infected men in acute and chronic stages; the cytokine response elicited by seminal plasma in genital epithelial cells (GECs); and whether any GEC response to seminal plasma could drive HIV replication in infected T cells. METHODS A panel of nine cytokines and chemokines was measured in seminal plasma from HIV-uninfected and HIV-infected men and in primary GEC cultures following seminal plasma exposure. HIV-long terminal repeat (LTR) activation was measured in 1G5 T cells exposed to supernatants from seminal plasma-treated GECs. RESULTS Pro-inflammatory cytokines and chemokines were present at significantly higher levels in seminal plasma from acute men, whereas transforming growth factor (TGF)-β1 was significantly higher in seminal plasma from chronic men. Pro-inflammatory cytokine production by GECs was significantly decreased following incubation with seminal plasma from chronic men. Blocking the TGF-β1 receptor in GECs prior to seminal plasma exposure enhanced pro-inflammatory cytokine production. Exposure to seminal plasma activated nuclear factor (NF)-κB in GECs and blocking it significantly reduced pro-inflammatory cytokine production. GEC responses to seminal plasma, especially from acute men, significantly activated HIV-LTR activation in 1G5 T cells. CONCLUSION Immunomodulatory factors in seminal plasma vary, depending on presence and stage of HIV infection. Exposure to seminal plasma leads to NF-κB activation and pro-inflammatory cytokine production, whereas TGF-β in seminal plasma may suppress pro-inflammatory cytokine production by GECs. GEC responses to seminal plasma can activate HIV-LTR in infected CD4(+) T cells.
Collapse
|
131
|
Gilbert RO. The effects of endometritis on the establishment of pregnancy in cattle. Reprod Fertil Dev 2012; 24:252-7. [DOI: 10.1071/rd11915] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endometritis is common in post partum dairy cows and is associated with impaired reproductive performance reflected in reduced first service conception, reduced hazard of pregnancy over the breeding period and increased risk of reproductive culling. The observed effects may be mediated directly by bacterial products, such as lipopolysaccharide (LPS, endotoxin), or indirectly by inflammatory mediators, such as cytokines, eicosanoids, nitric oxide and oxidative stress affecting sperm, ovarian, uterine and embryonic function. An inflammatory milieu in the uterus has been associated with changes in sperm motility and function as well as increased sperm phagocytosis. Zygotes resulting from fertilisation of oocytes with sperm subjected to oxidative stress are less likely to develop to the blastocyst stage. In addition, LPS and tumour necrosis factor-α (TNFα) impair follicular steroidogenesis, growth and ovulation. Oocytes exposed to LPS or prostaglandin (PG) F2α during maturation are less likely to develop to blastocyst stage after fertilisation. Embryos exposed to inflammatory mediators during development have fewer trophoectoderm cells. Nitric oxide impairs development of preimplantation embryos and TNFα increases blastomere apoptosis. Endometritis in women has been associated with higher rates of implantation failure. Extragenital inflammation (e.g. mastitis) is also associated with an increased rate of embryonic loss in cattle. These observations make it clear that direct and indirect effects of endometritis, and inflammation in general, can interrupt successful reproduction at several crucial stages.
Collapse
|
132
|
Escobedo G, Camacho-Arroyo I, Nava-Luna P, Olivos A, Pérez-Torres A, Leon-Cabrera S, Carrero J, Morales-Montor J. Progesterone induces mucosal immunity in a rodent model of human taeniosis by Taenia solium. Int J Biol Sci 2011; 7:1443-56. [PMID: 22110394 PMCID: PMC3221950 DOI: 10.7150/ijbs.7.1443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/26/2011] [Indexed: 01/28/2023] Open
Abstract
More than one quarter of human world's population is exposed to intestinal helminth parasites. The Taenia solium tapeworm carrier is the main risk factor in the transmission of both human neurocysticercosis and porcine cysticercosis. Sex steroids play an important role during T. solium infection, particularly progesterone has been proposed as a key immunomodulatory hormone involved in susceptibility to human taeniosis in woman and cysticercosis in pregnant pigs. Thus, we evaluated the effect of progesterone administration upon the experimental taeniosis in golden hamsters (Mesocricetus auratus). Intact female adult hamsters were randomly divided into 3 groups: progesterone-subcutaneously treated; olive oil-treated as the vehicle group; and untreated controls. Animals were treated every other day during 4 weeks. After 2 weeks of treatment, all hamsters were orally infected with 4 viable T. solium cysticerci. After 2 weeks post infection, progesterone-treated hamsters showed reduction in adult worm recovery by 80%, compared to both vehicle-treated and non-manipulated infected animals. In contrast to control and vehicle groups, progesterone treatment diminished tapeworm length by 75% and increased proliferation rate of leukocytes from spleen and mesenteric lymph nodes of infected hamsters by 5-fold. The latter exhibited high expression levels of IL-4, IL-6 and TNF-α at the duodenal mucosa, accompanied with polymorphonuclear leukocytes infiltration. These results support that progesterone protects hamsters from the T. solium adult tapeworm establishment by improving the intestinal mucosal immunity, suggesting a potential use of analogues of this hormone as novel inductors of the gut immune response against intestinal helminth infections and probably other bowel-related disorders.
Collapse
Affiliation(s)
- Galileo Escobedo
- 1. Unidad de Medicina Experimental, Hospital General de México, México D.F. 06726, México
| | - Ignacio Camacho-Arroyo
- 2. Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Paul Nava-Luna
- 3. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Alfonso Olivos
- 4. Departamento de Medicina Experimental, Facultad de Medicina, Hospital General de México, Universidad Nacional Autónoma de México, México D.F. 06726, México
| | - Armando Pérez-Torres
- 5. Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Sonia Leon-Cabrera
- 6. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - J.C. Carrero
- 3. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Jorge Morales-Montor
- 3. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| |
Collapse
|
133
|
Fichorova RN, Yamamoto HS, Delaney ML, Onderdonk AB, Doncel GF. Novel vaginal microflora colonization model providing new insight into microbicide mechanism of action. mBio 2011; 2:e00168-11. [PMID: 22027006 PMCID: PMC3202752 DOI: 10.1128/mbio.00168-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/28/2011] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Several broad-spectrum microbicides, including cellulose sulfate (CS), have passed conventional preclinical and phase I clinical safety evaluation and yet have failed to protect women from acquiring HIV-1 in phase II/III trials. Concerns have been raised that current preclinical algorithms are deficient in addressing the complexity of the microflora-regulated vaginal mucosal barrier. We applied a novel microflora-colonized model to evaluate CS and hydroxyethylcellulose (HEC), which is used as a "universal placebo" in microbicide trials. Cervicovaginal epithelial cultures were colonized with normal vaginal microflora isolates representing common Lactobacillus species used as probiotics (L. acidophilus and L. crispatus) or Prevotella bivia and Atopobium vaginae, most prevalent in the disturbed microflora of bacterial vaginosis (BV). At baseline, all strains maintained constant epithelium-associated CFUs without inducing cytotoxicity and apoptosis. CS selectively reduced epithelium-associated CFUs and (to a lesser extent) planktonic CFUs, most significantly affecting L. crispatus. Inducing only minor changes in sterile epithelial cultures, CS induced expression of innate immunity mediators (RANTES, interleukin-8 [IL-8], and secretory leukocyte protease inhibitor [SLPI]) in microflora-colonized epithelia, most significantly potentiating effects of bacteria causing BV. In the absence of CS, all bacterial strains except L. acidophilus activated NF-κB, although IL-8 and RANTES levels were increased by the presence of BV-causing bacteria only. CS enhanced NF-κB activation in a dose-dependent manner under all conditions, including L. acidophilus colonization. HEC remained inert. These results offer insights into possible mechanisms of CS clinical failure. The bacterially colonized cervicovaginal model reveals unique aspects of microflora-epithelium-drug interactions and innate immunity in the female genital tract and should become an integral part of preclinical safety evaluation of anti-HIV microbicides and other vaginal formulations. IMPORTANCE This report provides experimental evidence supporting the concept that the vaginal microflora regulates the epithelial innate immunity in a species- and strain-specific manner and that topically applied microbicides may alter both the bacterial and epithelial components of this homeostatic interaction. Our data also highlight the importance of differentiating the effects of biomedical interventions on epithelium-associated versus conventional planktonic bacterial growth when assessing vaginal mucosal health and immunity.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
134
|
Kaushic C, Nazli A, Ferreira VH, Kafka JK. Primary human epithelial cell culture system for studying interactions between female upper genital tract and sexually transmitted viruses, HSV-2 and HIV-1. Methods 2011; 55:114-21. [PMID: 21996033 DOI: 10.1016/j.ymeth.2011.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022] Open
Abstract
Evidence from clinical and epidemiological studies indicates that women are disproportionately susceptible to sexually transmitted viral infections. To understand the underlying biological basis for this increased susceptibility, more studies are needed to examine the acute events in the female reproductive tract following exposure to viruses during sexual transmission. The epithelial lining of the female reproductive tract is the primary barrier that sexually transmitted viruses, such as HIV-1 and HSV-2 need to infect or traverse, in order to initiate and establish productive infection. We have established an ex-vivo primary culture system to grow genital epithelial cells from upper reproductive tract tissues of women. Using these cultures, we have extensively examined the interactions between epithelial cells of the female genital tract and HSV-2 and HIV-1. In this review, we describe in detail the experimental protocol to grow these cultures, monitor their differentiation and inoculate with HSV-2 and HIV-1. Prospective use of these cultures to re-create the microenvironment in the reproductive tract is discussed.
Collapse
Affiliation(s)
- Charu Kaushic
- McMaster Immunology Research Center, McMaster University, Department of Pathology and Molecular Medicine, 1280 Main Street West, Hamilton, Ontario, Canada L8S4K1.
| | | | | | | |
Collapse
|
135
|
Kumar R, Vicari M, Gori I, Achtari C, Fiche M, Surbeck I, Damnon F, Canny GO. Compartmentalized secretory leukocyte protease inhibitor expression and hormone responses along the reproductive tract of postmenopausal women. J Reprod Immunol 2011; 92:88-96. [PMID: 21940052 DOI: 10.1016/j.jri.2011.06.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/20/2011] [Accepted: 06/04/2011] [Indexed: 01/22/2023]
Abstract
Immunity and hormonal responses in the reproductive tissues of postmenopausal women are poorly understood. Secretory leukocyte protease inhibitor (SLPI), a multifunctional antimicrobial protein expressed at mucosal surfaces, is thought to play a key role in infectious and inflammatory contexts. The aim of this study was to measure SLPI production along the female reproductive tract in postmenopausal women with and without hormonal treatment. We additionally quantified estrogen receptor alpha (ERα) and progesterone receptor A (PRA) in these tissues. Expression of SLPI was decreased in the vagina and ectocervix of women under hormonal treatment. Endocervical ERα mRNA expression was increased while this did not reach significance at the protein level. SLPI expression in the endometrium was not influenced by hormonal treatment. We observed attenuated ERα expression in the cervix and endometrium of hormonally treated women, whereas vaginal expression was increased. PRA expression was augmented in the cervix and endometrium and unchanged in the vagina. Taken together, our results indicate that hormonal responses and receptor expression are differentially regulated in vaginal tissue compared with the cervix and endometrium.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Gynecology, Obstetrics and Medical Genetics, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jantra S, Paulesu L, Lo Valvo M, Lillo F, Ietta F, Avanzati AM, Romagnoli R, Bechi N, Brizzi R. Cytokine components and mucosal immunity in the oviduct of Xenopus laevis (amphibia, pipidae). Gen Comp Endocrinol 2011; 173:454-60. [PMID: 21819986 DOI: 10.1016/j.ygcen.2011.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/03/2023]
Abstract
Most studies on the mucosal immunity in female reproductive tissues have been performed in mammals. In all species, apart from their reproductive strategies, immunity in the genital mucosa is required to defend the host against luminal pathogens. In this study we investigated the role of the innate immunity of the oviductal mucosa of Xenopus laevis, an amphibian characterized by external fertilization. In particular we examined the expression and localization of Interleukin-1β (IL1B), Macrophage migration inhibitory factor (MIF) and Interleukin-1 receptor type 1 (IL1R1) in different oviductal portions including an upper glandular region, an intermediate and a lower aglandular region (the ovisac). Tissues were examined by immunohistochemistry and western blot using polyclonal antibodies against human molecules. IL1B, MIF and IL1R1 were all shown in the three oviductal regions examined, albeit with a general increase towards the external environment. A substantial difference among the cytokine components was also observed mainly in the epithelium of the glandular and intermediate regions. Specifically, all three molecules were expressed by the luminal ciliated cells while only IL1R1 was present in the unciliated cells at the bottom of the epithelial ingrowths. The expression of IL1R1 in these cells appeared as a continuous layer separating the epithelium from the underlying tissues. While supporting the role of the innate immune system for host's defense against pathogens, the peculiar distribution of the cytokine components in the oviduct of X. laevis suggests novel immunologic strategies useful to assure gland secretion essential for egg formation and fertilization.
Collapse
Affiliation(s)
- Silke Jantra
- Department of Physiology, University of Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dezzutti CS, Hendrix CW, Marrazzo JM, Pan Z, Wang L, Louissaint N, Kalyoussef S, Torres NM, Hladik F, Parikh U, Mellors J, Hillier SL, Herold BC. Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators. PLoS One 2011; 6:e23136. [PMID: 21858008 PMCID: PMC3155537 DOI: 10.1371/journal.pone.0023136] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022] Open
Abstract
Background Measurement of immune mediators and antimicrobial activity in female genital tract secretions may provide biomarkers predictive of risk for HIV-1 acquisition and surrogate markers of microbicide safety. However, optimal methods for sample collection do not exist. This study compared collection methods. Methods Secretions were collected from 48 women (24 with bacterial vaginosis [BV]) using vaginal and endocervical Dacron and flocked swabs. Cervicovaginal lavage (CVL) was collected with 10 mL of Normosol-R (n = 20), saline (n = 14), or water (n = 14). The concentration of gluconate in Normosol-R CVL was determined to estimate the dilution factor. Cytokine and antimicrobial mediators were measured by Luminex or ELISA and corrected for protein content. Endogenous anti-HIV-1 and anti-E. coli activity were measured by TZM-bl assay or E. coli growth. Results Higher concentrations of protein were recovered by CVL, despite a 10-fold dilution of secretions, as compared to swab eluents. After protein correction, endocervical swabs recovered the highest mediator levels regardless of BV status. Endocervical and vaginal flocked swabs recovered significantly higher levels of anti-HIV-1 and anti-E. coli activity than Dacron swabs (P<0.001). BV had a significant effect on CVL mediator recovery. Normosol-R tended to recover higher levels of most mediators among women with BV, whereas saline or water tended to recover higher levels among women without BV. Saline recovered the highest levels of anti-HIV-1 activity regardless of BV status. Conclusions Endocervical swabs and CVL collected with saline provide the best recovery of most mediators and would be the optimal sampling method(s) for clinical trials.
Collapse
Affiliation(s)
- Charlene S Dezzutti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Cha HR, Ko HJ, Kim ED, Chang SY, Seo SU, Cuburu N, Ryu S, Kim S, Kweon MN. Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA plasma cells following mucosal vaccination via estrogen control. THE JOURNAL OF IMMUNOLOGY 2011; 187:3044-52. [PMID: 21832166 DOI: 10.4049/jimmunol.1100402] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated cross talk between mucosal and reproductive organs during secretory IgA Ab induction. In this study, we aimed to clarify the underlying mechanisms of this cross talk. We found significantly higher titers of Ag-specific secretory IgA Ab in the vaginal wash after mucosal vaccination by both the intranasal (i.n.) and the intravaginal routes but not by the s.c. route. Interestingly, Ag-specific IgA Ab-secreting cells (ASCs) were found mainly in the uterus but not in the cervix and vaginal canal after i.n. vaccination. The fact that most Ag-specific IgA ASCs isolated from the uteri of vaccinated mice migrated toward mucosa-associated epithelial chemokine (MEC)/CCL28 suggests dominant expression of CCR10 on the IgA ASCs. Further, IgA ASCs in the uteri of vaccinated mice were reduced drastically in mice treated with neutralizing anti-MEC/CCL28 Ab. Most intriguingly, the female sex hormone estrogen directly regulated MEC/CCL28 expression and was augmented by i.n. vaccination with cholera toxin or stimulators for innate immunity. Further, blockage of estrogen function in the uterus by oral administration of the estrogen antagonist raloxifene significantly inhibited migration of Ag-specific IgA ASCs after i.n. vaccination with OVA plus cholera toxin. Taken together, these data strongly suggest that CCR10(+) IgA ASCs induced by mucosal vaccination via the i.n. route migrate into the uterus in a MEC/CCL28-dependent manner and that estrogen might have a crucial role in the protection against genital infection by regulating MEC/CCL28 expression in the uterus.
Collapse
Affiliation(s)
- Hye-Ran Cha
- Mucosal Immunology Section, International Vaccine Institute, Seoul 151-818, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Haddad SN, Wira CR. Keratinocyte Growth Factor Stimulates Macrophage Inflammatory Protein 3α and Keratinocyte-derived Chemokine Secretion by Mouse Uterine Epithelial Cells. Am J Reprod Immunol 2011; 64:197-211. [PMID: 20455876 DOI: 10.1111/j.1600-0897.2010.00850.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PROBLEM communication between uterine epithelial cells and the underlying stromal fibroblasts is critical for proper endometrial function. Stromal fibroblast-derived growth factors have been shown to regulate epithelial immune functions. The purpose of this study was to determine whether keratinocyte growth factor (KGF) regulates uterine epithelial cell chemokine and antimicrobial secretion. METHOD OF STUDY uterine epithelial cells were isolated from Balb/c mice and cultured in either 96-well plates or transwell inserts. Epithelial cells were treated with KGF, epidermal growth factor (EGF), or hepatocyte growth factor (HGF). Macrophage inflammatory protein 3α (MIP3α) and keratinocyte-derived chemokine (KC) levels were measured by ELISA. RESULTS keratinocyte growth factor stimulated the secretion of MIP3α and KC. The effects on MIP3α by KGF were specific because EGF and HGF had no effect. In contrast, KGF, EGF, and HGF had similar effects on KC. Furthermore, KGF administered to the apical side of epithelial cells had no effect on MIP3α or KC secretion, indicating that the KGF receptor is located on the basolateral surface of uterine epithelial cells. CONCLUSION we demonstrate that KGF plays a role in uterine epithelial cell secretion of MIP3α and KC, key immune mediators involved in the protection of mucosal surfaces in the female reproductive tract.
Collapse
Affiliation(s)
- Severina N Haddad
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
140
|
Hall JV, Schell M, Dessus-Babus S, Moore CG, Whittimore JD, Sal M, Dill BD, Wyrick PB. The multifaceted role of oestrogen in enhancing Chlamydia trachomatis infection in polarized human endometrial epithelial cells. Cell Microbiol 2011; 13:1183-99. [PMID: 21615662 DOI: 10.1111/j.1462-5822.2011.01608.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oestrogen receptor (ER) α-β+ HEC-1B and the ERα+β+ Ishikawa (IK) cell lines were investigated to dissect the effects of oestrogen exposure on several parameters of Chlamydia trachomatis infection. Antibody blockage of ERα or ERβ alone or simultaneously significantly decreased C. trachomatis infectivity (45-68%). Addition of the ERβ antagonist, tamoxifen, to IK or HEC-1B prior to or after chlamydial infection caused a 30-90% decrease in infectivity, the latter due to disrupted eukaryotic organelles. In vivo, endometrial glandular epithelial cells are stimulated by hormonally influenced stromal signals. Accordingly, chlamydial infectivity was significantly increased by 27% and 21% in IK and HEC-1B cells co-cultured with SHT-290 stromal cells exposed to oestrogen. Endometrial stromal cell/epithelial cell co-culture revealed indirect effects of oestrogen on phosphorylation of extracellular signal-regulated kinase and calcium-dependant phospholipase A2 and significantly increased production of interleukin (IL)-8 and IL-6 in both uninfected and chlamydiae-infected epithelial cells. These results indicate that oestrogen and its receptors play multiple roles in chlamydial infection: (i) membrane oestrogen receptors (mERs) aid in chlamydial entry into host cells, and (ii) mER signalling may contribute to inclusion development during infection. Additionally, enhancement of chlamydial infection is affected by hormonally influenced stromal signals in conjunction with direct oestrogen stimulation of the human epithelia.
Collapse
Affiliation(s)
- Jennifer Vanover Hall
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Epithelial cell secretions from the human female reproductive tract inhibit sexually transmitted pathogens and Candida albicans but not Lactobacillus. Mucosal Immunol 2011; 4:335-42. [PMID: 21048705 PMCID: PMC3094926 DOI: 10.1038/mi.2010.72] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Female reproductive tract (FRT) epithelial cells protect against potential pathogens and sexually transmitted infections. The purpose of this study was to determine if epithelial cells from the upper FRT secrete antimicrobials that inhibit reproductive tract pathogens that threaten women's health. Apical secretions from primary cultures of Fallopian tube, uterine, cervical, and ectocervical epithelial cells were incubated with Neisseria gonorrhoeae, Candida albicans (yeast and hyphal forms), human immunodeficiency virus 1 (HIV-1), and Lactobacillus crispatus before being tested for their ability to grow and/or infect target cells. Epithelial cell secretions from the upper FRT inhibit N. gonorrhoeae and both forms of Candida, as well as reduce HIV-1 (R5) infection of target cells. In contrast, none had an inhibitory effect on L. crispatus. An analysis of cytokines and chemokines in uterine secretions revealed several molecules that could account for pathogen inhibition. These findings provide definitive evidence for the critical role of epithelial cells in protecting the FRT from infections, without comprising the beneficial presence of L. crispatus, which is part of the normal vaginal microflora of humans.
Collapse
|
142
|
Thurman AR, Doncel GF. Innate immunity and inflammatory response to Trichomonas vaginalis and bacterial vaginosis: relationship to HIV acquisition. Am J Reprod Immunol 2011; 65:89-98. [PMID: 20678168 DOI: 10.1111/j.1600-0897.2010.00902.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Most women contract HIV-1 through sexual intercourse with an infected partner. Highly prevalent, unreported and often asymptomatic lower genital tract infections, including bacterial vaginosis (BV) and trichomoniasis (Trichomonas vaginalis- TV), increase a woman's susceptibility to HIV-1 genital infection, given an exposure. A review of the literature from 1989 to the present was conducted. This article will review potential mechanisms by which BV and TV serve as HIV-1-enhancing cofactors including (i) initiation of a clinical or subclinical mucosal inflammatory response, (ii) alteration of innate mucosal immunity, (iii) alteration of normal vaginal microflora and pH, and (iv) weakening or breach of intact cervico-vaginal mucosa. The transmission of HIV-1, in the absence of cofactors, is poorly efficient. Understanding the mechanisms by which these infections enhance HIV-1 acquisition is important to designing effective, safe and evidence-based prevention modalities.
Collapse
Affiliation(s)
- Andrea R Thurman
- Department of Obstetrics and Gynecology, CONRAD Clinical Research Center and CONRAD Microbicide Research Laboratory, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | |
Collapse
|
143
|
Immunity to infections in the lower genital tract of bulls. J Reprod Immunol 2011; 89:55-61. [PMID: 21474188 DOI: 10.1016/j.jri.2011.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 02/12/2011] [Accepted: 02/15/2011] [Indexed: 02/07/2023]
Abstract
The mucosa of the bovine prepuce has unique immunological characteristics critical to defense against sexually transmitted diseases. Tritrichomonas foetus and Campylobacter fetus subspecies venerealis persistently colonize the lower genital tract of bulls but usually do not cause either major clinical signs or inflammation. These microbes may be sexually transmitted to female cattle to cause reproductive failure. Although the male genital immune responses to T. foetus and C. fetus subspecies venerealis are inefficient in clearing infection, systemic immunization with T. foetus and C. fetus subspecies venerealis antigens does prevent or eliminate these infections with induction of IgG antibodies in genital secretions and serum.
Collapse
|
144
|
Firoz Mian M, Ashkar AA. Induction of innate immune responses in the female genital tract: friend or foe of HIV-1 infection? Am J Reprod Immunol 2011; 65:344-51. [PMID: 21223417 DOI: 10.1111/j.1600-0897.2010.00945.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heterosexual transmission of HIV-1 and HSV-2 across the genital tract epithelial tissue is one of the primary routes for dissemination of these viral infections. Mucosal innate immunity is the first line of defense against invading pathogens. A vast majority of mucosal HIV-1 exposures do not result in productive infections which may indicate that the innate mucosal immune system is highly protective. It has been shown that Toll-like receptors (TLR)-induced innate antiviral immunity in the genital mucosa lead to induction of type I and III interferon and prevention of HSV-2 infection. The innate antiviral function of type I and III interferons and other innate factors at genital mucosa against HIV-1 is not well defined. In this review, we summarize our current understanding and advances of the innate mucosal response to genital viral infections, including HIV-1 and HSV-2, focusing on those factors that may prevent or accelerate initial infection. Understanding how each of these components contributes to mucosal innate antiviral immunity may lead to the development of novel and effective strategies to use microbicides or antiviral agents to control HIV-1 acquisition and/or transmission.
Collapse
Affiliation(s)
- M Firoz Mian
- Centre for Gene Therapeutics, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
145
|
Mucosal junctions: open doors to HPV and HIV infections? Trends Microbiol 2011; 19:114-20. [DOI: 10.1016/j.tim.2010.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 12/29/2022]
|
146
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
147
|
Kaushic C. HIV-1 Infection in the Female Reproductive Tract: Role of Interactions between HIV-1 and Genital Epithelial Cells. Am J Reprod Immunol 2011; 65:253-60. [DOI: 10.1111/j.1600-0897.2010.00965.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
148
|
Mirmonsef P, Gilbert D, Zariffard MR, Hamaker BR, Kaur A, Landay AL, Spear GT. The effects of commensal bacteria on innate immune responses in the female genital tract. Am J Reprod Immunol 2010; 65:190-5. [PMID: 21143335 DOI: 10.1111/j.1600-0897.2010.00943.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The innate and adaptive immune systems are important mechanisms for resistance to pathogens in the female lower genital tract. Lactobacilli at this site help maintain a healthy vagina by producing several factors including lactic acid. Indeed, bacterial vaginosis, a condition in which the genital microbiota is altered, is strongly associated with increased rates of a number of infections including HIV. However, the precise factors that contribute to increased rates of microbial and viral infections in bacterial vaginosis remain to be elucidated. We have studied the effects of bacterial microbiota in the lower genital tract on innate immunity and have found that Toll-like receptor ligands and short chain fatty acids, produced by bacterial microbiota, have dramatic effects on immune function. In this review, we will discuss these results, in addition to some recent articles that we believe will enhance our understanding of how microbes might interact with the immune system.
Collapse
Affiliation(s)
- Paria Mirmonsef
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Zegels G, Van Raemdonck GA, Tjalma WA, Van Ostade XW. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci 2010; 8:63. [PMID: 21143851 PMCID: PMC3016264 DOI: 10.1186/1477-5956-8-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/08/2010] [Indexed: 11/17/2022] Open
Abstract
Cervicovaginal fluid has an important function in the homeostasis and immunity of the lower female genital tract. Analysis of the cervicovaginal fluid proteome may therefore yield important information about the pathogenesis of numerous gynecological pathologies. Additionally, cervicovaginal fluid has great potential as a source of biomarkers for these conditions. This review provides a detailed discussion about the human cervicovaginal proteome and the proteomics studies performed to characterize this biological fluid. Furthermore, infection-correlated pathological conditions of the female genital tract are discussed for which cervicovaginal fluid has been used in order to identify potential biomarkers. Recent years, numerous studies have analyzed cervicovaginal fluid samples utilizing antibody-based technologies, such as ELISA or Western blotting, to identify biomarkers for preterm birth, premature preterm rupture of membranes, bacterial vaginosis and cervical cancer. The present article will discuss the importance of proteomic technologies as alternative techniques to gain additional meaningful information about these conditions. In addition, the review focuses on recent proteomic studies on cervicovaginal fluid samples for the identification of potential biomarkers. We conclude that the use of proteomic technology for analysis of human cervicovaginal fluid samples is promising and may lead to the discovery of new biomarkers which can improve disease prevention and therapy development.
Collapse
Affiliation(s)
- Geert Zegels
- Laboratory of Proteinscience, Proteomics and Epigenetic Signaling, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | |
Collapse
|
150
|
Soni S, Rath G, Prasad CP, Salhan S, Jain AK, Saxena S. Fas-FasL System in Molar Pregnancy. Am J Reprod Immunol 2010; 65:512-20. [DOI: 10.1111/j.1600-0897.2010.00926.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|