101
|
Fan S, Li Y, Huang S, Wang W, Zhang B, Zhang J, Jian X, Song Z, Wu M, Tu H, Wen Y, Li H, Li S, Hu H. Microbiota-Derived L-SeMet Potentiates CD8 + T Cell Effector Functions and Facilitates Anti-Tumor Responses. Int J Mol Sci 2025; 26:2511. [PMID: 40141154 PMCID: PMC11941941 DOI: 10.3390/ijms26062511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Extensive studies have shown that gut microbiota-derived metabolites can enhance the antitumor efficacy of immunotherapy by modulating host immune responses. However, the more comprehensive spectrum of such metabolites and their mechanisms remain unclear. In this study, we demonstrated that L-selenomethionine (L-SeMet), a gut microbial metabolite, acts as a positive regulator of immunotherapy. Through screening of a repository of gut microbial metabolites, we identified that L-SeMet can effectively enhance the effector function of CD8+ T cells. Furthermore, intragastric administration of L-SeMet in mice significantly suppressed the growth of subcutaneous MC38 tumors. Mechanistically, L-SeMet enhances T cell receptor (TCR) signaling by promoting LCK phosphorylation. Collectively, our findings reveal that the gut microbial metabolite L-SeMet inhibits colorectal tumor growth by potentiating CD8+ T cell functions, providing a potential therapeutic strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Simiao Fan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Yaxin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Shaoyi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Jiamei Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Xiaoxiao Jian
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Yuqi Wen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| |
Collapse
|
102
|
Iliev ID, Ananthakrishnan AN, Guo CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 2025:10.1038/s41579-025-01163-0. [PMID: 40065181 DOI: 10.1038/s41579-025-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host-microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
103
|
Hao S, Sun W, Wei P, Wu H, Lu W, He Y. Supplementation with Rare Earth-Chitosan Chelate Improves Tibia Quality, Disease Resistance Capacity, and Performance in Nursery Pigs. Int J Mol Sci 2025; 26:2409. [PMID: 40141053 PMCID: PMC11942057 DOI: 10.3390/ijms26062409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study was to investigate the effects on the tibia, liver, and gut, and on performance, when supplementing nursery pigs with different levels of rare earth-chitosan chelate (RECC). A total of 80 piglets, weaned at 7.67 ± 0.09 kg, were randomly assigned to groups RECC0 (RECC, 0 mg/kg diet), RECC200 (RECC, 200 mg/kg diet), RECC400 (RECC, 400 mg/kg diet), and RECC600 (RECC, 600 mg/kg diet), with four replicates in each group and five pigs per replicate during a 28 d experiment. Samples of the left hind tibia, serum, and feces were collected for analysis. The results indicated that, compared to pigs from group RECC0, pigs from group RECC200 presented with the following: a longer trabecular perimeter (p < 0.05), a larger trabecular area (p < 0.01), a higher trabecular number (p < 0.05), a smaller degree of trabecular separation (p < 0.01), and a lower number of osteoclasts (p < 0.01) in the tibia; higher abundances of beneficial fecal bacteria such as g_Prevotellaceae_NK3B31_group, g_UCG_005, g_Rikenellaceae_RC9_gut_group, g_Acetitomaculum, g_Glutamicibacter, g_Frisingicoccus, and g_Alistipes; higher (p < 0.01) serum levels of IgM, IgA, IgG, and IL-10; a lower (p < 0.01) serum concentration of TNF-α; a higher (p < 0.05) average daily gain and feed conversion ratio; and a lower (p < 0.01) incidence of diarrhea. The dietary addition of RECC contributes to improvements in tibia quality, gut health, and performance in nursery pigs.
Collapse
Affiliation(s)
- Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
104
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 PMCID: PMC11878027 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D. Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W. Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A. Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
105
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 PMCID: PMC11876236 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
106
|
Lu X, Xv Y, Hu W, Sun B, Hu H. Targeting CD4+ T cells through gut microbiota: therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front Cell Infect Microbiol 2025; 15:1557331. [PMID: 40099014 PMCID: PMC11911530 DOI: 10.3389/fcimb.2025.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and CD4+T cells are important in the development of IBD. A lot of studies have shown that GM and their metabolites like short-chain fatty acids, bile acids and tryptophan can be involved in the differentiation of CD4+T cells through various mechanisms, which in turn regulate the immune homeostasis of the IBD patients. Therefore, regulating CD4+T cells through GM may be a potential therapeutic direction for the treatment of IBD. Many studies have shown that Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect CD4+T cell differentiation by regulating GM and its metabolites. In this review, we mainly focus on the role of GM and their metabolites in regulating the differentiation of CD4+T cells and their correlation with IBD. We also summarize the current research progress on the regulation of this process by TCM.
Collapse
Affiliation(s)
- Xingyao Lu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
107
|
Sharma M, Pudlo N, Järvå MA, Kaur A, John A, Burchill L, Lingford JP, Epa R, Abayakoon P, Scott NE, Turkenburg JP, Davies GJ, Martens EC, Goddard-Borger ED, Williams SJ. Sulfoglycolysis sustains Eubacterium rectale in low-fiber diets. J Biol Chem 2025; 301:108320. [PMID: 39956340 PMCID: PMC11968277 DOI: 10.1016/j.jbc.2025.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025] Open
Abstract
The production of short-chain fatty acids (SCFAs) by Firmicutes (Bacillota) within the human gastrointestinal tract is recognized as critical for gut health and the progression of a range of disease states. Firmicutes are the most diverse phylum of human gut bacteria, are highly studied, and are often specialized to degrade just a few polysaccharide substrates. Members of the Firmicutes include key bacteria that produce butyrate, an SCFA that is generally not produced by members of the other major phyla. Recently, it was shown that Eubacterium rectale, a widespread member of the Firmicutes belonging to the Clostridiales cluster XIVa, can grow on the unusual but ubiquitous plant-derived sugar SQ using a sulfoglycolytic sulfofructose transaldolase pathway. Here, we show that in addition to SQ, E. rectale can also grow on the SQ glycoside sulfoquinovosyl glycerol (SQGro). The 3D structure of the E. rectale sulfoquinovosidase (SftG) shares strong structural conservation with other carbohydrate-active enzyme family GH31 SQases. Using sequence-similarity networks, we provide new biological context to a conserved domain of unknown function protein SftX belonging to DUF4867, which is conserved in the sulfoglycolytic sulfofructose transaldolase pathway, and determine its 3D structure. Finally, with the aid of a synthetic mini-human microbiome reconstituted in germ-free mice, we show that an SQ dietary supplement can rescue E. rectale from population crashes that occur upon switching from a high-fiber to a low-fiber, high-fat diet. This suggests that SQ or SQGro has the potential as a prebiotic for promoting the maintenance of this important butyrate-producing bacterium within the colonic microbiota.
Collapse
Affiliation(s)
- Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Nicholas Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Järvå
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Arashdeep Kaur
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Alan John
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - James P Lingford
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ruwan Epa
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Palika Abayakoon
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom.
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Ethan D Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
108
|
Zhong X, Wang X, Xu L, Zhang J, Yu W, Ji L, Huang J, Zhong X, Zhang J, Long L. Alterations in gut microbiota in Rheumatoid arthritis patients with interstitial lung Disease: A Comparative study. Hum Immunol 2025; 86:111239. [PMID: 39983663 DOI: 10.1016/j.humimm.2025.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/06/2024] [Accepted: 01/11/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is considered one of the most severe complications of rheumatoid arthritis. The etiology of RA-ILD is complex, involving genetic and environmental factors. Recent studies suggest that the gut microbiota, a critical component of the immune system, may influence the pathogenesis of RA and other autoimmune disorders. However, specific data on the gut microbiota in patients with RA-ILD remain limited. OBJECTIVE This study aimed to investigate alterations in the gut microbiota of RA-ILD patients and compare these profiles with those of RA patients without ILD and health controls. METHODS We included three groups: RA-ILD patients (n = 30), RA patients without ILD (n = 31), and health controls (n = 30). Fresh fecal samples were collected and subjected to 16S rRNA gene sequencing to analyze microbial diversity. Statistical analyses involved α-diversity and β-diversity assessments, principal coordinates analysis (PCoA), and differential abundance testing with LEfSe and PICRUSt2. RESULTS Significant differences in gut microbiota composition were observed between RA-ILD patients and the other groups. Notably, g_Prevotella showed differential abundance, particularly in RA-ILD patients. KEGG pathway analysis revealed upregulation in several metabolic pathways in RA-ILD compared to RA and health controls, suggesting a distinct microbial metabolic activity associated with RA-ILD. CONCLUSION Our findings indicate that RA-ILD patients have a markedly different gut microbiota profile compared to RA patients without ILD and health controls. The observed microbial alterations may contribute to RA-ILD pathogenesis and could serve as potential biomarkers or therapeutic targets. Further studies are needed to explore these findings' clinical implications and validate the role of gut microbiota in RA-ILD progression.
Collapse
Affiliation(s)
- Xue Zhong
- Department of Gerontology, Chongqing General Hospital, Chongqing University, PR China.
| | - Xiaohong Wang
- Department of Gerontology, Chongqing General Hospital, Chongqing University, PR China
| | - Lulu Xu
- Department of Gerontology, Chongqing General Hospital, Chongqing University, PR China
| | - Jie Zhang
- Department of Gerontology, Chongqing General Hospital, Chongqing University, PR China
| | - Wei Yu
- Department of Nephrology, Chongqing General Hospital, Chongqing University, PR China
| | - Lei Ji
- Department of Nephrology, Chongqing General Hospital, Chongqing University, PR China
| | - Jing Huang
- Department of Respiratory Medicine, Chongqing General Hospital, Chongqing University, PR China
| | - Xun Zhong
- Department of Medical Affairs Office, Chongqing General Hospital, Chongqing University, PR China
| | - Jie Zhang
- Department of Rheumatology and Immunology, Deyang people's hospital, Deyang, PR China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
109
|
Sohouli MH, Zahmatkesh A, Khan Z, Behfar M, Hamidieh AA, Rohani P. Gut microbiota variation and diversity and gut graft-versus-host disease (GVHD) in pediatrics: A systematic review. Transpl Immunol 2025; 89:102199. [PMID: 39947487 DOI: 10.1016/j.trim.2025.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) provides children with life-threatening conditions an opportunity for survival. Complications from graft-versus-host disease (GVHD) are a major source of morbidity and death, recently linked to gut dysbiosis in the hematopoietic stem cell transplantation (HSCT) population. But so far, no comprehensive study has been conducted to investigate this relationship in the children population. In this systematic study, we investigated the Gut microbiota variation and diversity and gut GVHD in pediatrics. METHODS A systematic review according to PRISMA standards was performed from inception till August 2024. Out of 568 originally chosen publications, 10 studies involving 490 pediatric subjects satisfied the eligibility criteria and were included. RESULTS The findings obtained from the study included in the present systematic study mostly indicated the use of combined treatments including Busulfan, Cyclophosphamide, and total body irradiation and in some studies the use of anti-thymocyte globulin and Melphalan as conditioning regimens. In addition, out of 10 reviewed studies, 9 reported a significant decrease in gut microbiota diversity following GVHD. However, in all studies, an increased variation was reported. So that most of the studies showed a decrease in the levels of beneficial bacteria and producers of short-chain fatty acid products in the intestine such as Ruminococcaceae and Enterococcus, which is also observed in the intestinal microbiota population of healthy people. CONCLUSION As a result, our findings indicated a decrease in diversity as well as a change in intestinal microbiota in children with GVHD under HSCT in most of the studies.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zahmatkesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahid Khan
- Cardiology Specialist Registrar, Bart's Heart Centre London, UK
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14194, Iran.
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
110
|
Chenghan M, Wanxin L, Bangcheng Z, Yao H, Qinxi L, Ting Z, Xiaojie L, Kun Z, Yingqian Z, Zhihui Z. Short-chain fatty acids mediate gut microbiota-brain communication and protect the blood-brain barrier integrity. Ann N Y Acad Sci 2025; 1545:116-131. [PMID: 39998158 DOI: 10.1111/nyas.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
Collapse
Affiliation(s)
- Mei Chenghan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, China
| | - Li Wanxin
- Department of Pharmacy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | | | - He Yao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Li Qinxi
- Sichuan Junhui Biotechnology Co., Ltd, Chengdu, China
| | - Zhang Ting
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xiaojie
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Kun
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhang Yingqian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Junhui Biotechnology Co., Ltd, Chengdu, China
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong Zhihui
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Hollinger MK, Grayson EM, Ferreira CM, Sperling AI. Harnessing the Farm Effect: Microbial Products for the Treatment and Prevention of Asthma Throughout Life. Immunol Rev 2025; 330:e70012. [PMID: 40035333 PMCID: PMC11877632 DOI: 10.1111/imr.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
It has long been appreciated that farm exposure early in life protects individuals from allergic asthma. Understanding what component(s) of this exposure is responsible for this protection is crucial to understanding allergic asthma pathogenesis and developing strategies to prevent or treat allergic asthma. In this review, we introduce the concept of Farm-Friends, or specific microbes associated with both a farm environment and protection from allergic asthma. We review the mechanism(s) by which these Farm-Friends suppress allergic inflammation, with a focus on the molecule(s) produced by these Farm-Friends. Finally, we discuss the relevance of Farm-Friend administration (oral vs. inhaled) for preventing the development and severity of allergic asthma throughout childhood and adulthood. By developing a fuller understanding of which Farm-Friends modulate host immunity, a greater wealth of prophylactic and therapeutic options becomes available to counter the current allergy epidemic.
Collapse
Affiliation(s)
- Maile K. Hollinger
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily M. Grayson
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Caroline M. Ferreira
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Institute of Environmental, Chemistry and Pharmaceutics Sciences, Department of Pharmaceutics SciencesFederal University of São PauloSão PauloBrazil
| | - Anne I. Sperling
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
112
|
Leung AS, Xing Y, Fernández‐Rivas M, Wong GW. The Relationship Between Dietary Patterns and the Epidemiology of Food Allergy. Allergy 2025; 80:690-702. [PMID: 39723599 PMCID: PMC11891427 DOI: 10.1111/all.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Food allergies are increasing globally, particularly in Asia; however, the etiologies of allergic diseases remain poorly understood despite comprehensive studies conducted across a variety of populations. Epidemiological research demonstrates that food allergy is more prevalent in Westernized or urbanized societies than in rural or developing ones. As such, comparing the distribution and patterns of food allergies as well as the environmental exposures between regions may provide insight into potential causal and protective factors of food allergy. Diet is an important exposome that has been shown to modulate the immune system both directly and indirectly via pathways involving the microbiota. Changes in dietary patterns, especially the shift to a Westernized diet with reduced dietary fiber and an abundance of processed foods, impact the gut and skin epithelial barrier and contribute to the development of chronic inflammatory diseases, such as food allergy. Although dietary intervention is believed to have tremendous potential as a strategy to promote immunological health, it is essential to recognize that diet is only one of many factors that have changed in urbanized societies. Other factors, such as pollution, microplastics, the use of medications like antibiotics, and exposure to biodiversity and animals, may also play significant roles, and further research is needed to determine which exposures are most critical for the development of food allergies.
Collapse
Affiliation(s)
- Agnes Sze‐Yin Leung
- Department of Paediatrics, Faculty of Medicine, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Hong Kong Hub of Paediatric Excellence (HOPE)The Chinese University of Hong KongHong KongChina
| | - Yuhan Xing
- School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | | | - Gary Wing‐Kin Wong
- Department of Paediatrics, Faculty of Medicine, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
113
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
114
|
Jevtić B, Stegnjaić G, Stanisavljević S, Lazarević M, Nikolić F, Fraser GL, Miljković Đ, Dimitrijević M. Amelioration of Central Nervous System Autoimmunity Through FFAR2 Agonism Is Associated With Changes in Gut Microbiota. Brain Behav 2025; 15:e70350. [PMID: 40021945 PMCID: PMC11870826 DOI: 10.1002/brb3.70350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE The intestinal immune compartment is increasingly recognized as an important player in central nervous system (CNS) autoimmunity. We have recently reported that oral administration of the free fatty acid receptor 2 (FFAR2) agonist Cpd1 in the inductive phase of experimental autoimmune encephalomyelitis (EAE) in rats ameliorates the disease by stimulating the regulatory immune response in the intestine. METHOD Here, the effects of Cpd1 on the gut microbiota and short-chain fatty acid (SCFA) composition were investigated in the same experimental system. FINDING Increased levels of the phylum Proteobacteria, the class Gammaproteobacteria, the orders Burkholderiales and Erysipelotrichales, the families Sutterellaceae and Erysipelotrichaceae, and the genera Parasutterella and Faecalibaculum were observed in agonist-treated rats. The genera Allobaculum and Ileibacterium were only detected in the agonist-treated group. The treatment led to changes in the functional profile of the gut microbiota both in the KEGG orthologous pathways and in the clusters of orthologous genes. In addition, an altered profile of intestinal SCFA content was observed in the agonist-treated group. CONCLUSION The effects of Cpd1 on the gut microbiota and SCFA composition are relevant to the observed treatment benefit of FFAR2 agonism in the EAE model during the inductive phase of the disease.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Rats
- Receptors, G-Protein-Coupled/agonists
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Fatty Acids, Volatile/metabolism
- Autoimmunity/drug effects
- Female
- Central Nervous System/immunology
- Central Nervous System/drug effects
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Bojan Jevtić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Filip Nikolić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
115
|
Sun Y, Yao J, Gao R, Hao J, Liu Y, Liu S. Interactions of non-starch polysaccharides with the gut microbiota and the effect of non-starch polysaccharides with different structures on the metabolism of the gut microbiota: A review. Int J Biol Macromol 2025; 296:139664. [PMID: 39798752 DOI: 10.1016/j.ijbiomac.2025.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Humans consume large amounts of non-starch polysaccharides(NPs) daily. Some NPs, not absorbed by the body, proceed to the intestines. An increasing number of studies reveal a close relationship between NPs and gut microbiota(GM) that impact the human body. This review not only describes in detail the structures of several common NPs and their effects on GM, but also elucidates the degradation mechanisms of NPs in the intestine. The purpose of this review is to elucidate how NPs interact with GM in the intestine, which can provide valuable information for further studies of NPs.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Jiaxuan Yao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Running Gao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junyu Hao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| |
Collapse
|
116
|
Meng W, Zhang J, Hou H, Yu L, Dong P. Exploring the structures and molecular mechanisms of bioactive compounds from marine foods for hyperuricemia prevention: a systematic review. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40020721 DOI: 10.1080/10408398.2025.2464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Hyperuricemia, characterized by an elevation in serum uric acid (UA) levels, stands as a significant metabolic ailment threatening human well-being. Presently, dietary adjustments have become a crucial strategy in managing serum UA levels among individuals grappling with hyperuricemia and gout. Given its unique ecosystem, the ocean hosts a plethora of organisms boasting distinct structures and active components. The marine bioactive substances, such as bioactive peptides, polysaccharides, lipids, and small molecules, have garnered attention in the research and development of modern functional foods and biomedicine due to their profound efficacy and distinctive compositions. Notably, the functional components of marine foods have been studied for their potential in preventing hyperuricemia. However, the precise molecular mechanism underlying their actions remain incompletely elucidated. This review article highlights the diversity of marine active compounds and the latest progress in understanding urate-lowering mechanism. Principal mechanisms primarily encompass the regulation of UA metabolism, maintenance of intestinal homeostasis, mitigation of inflammatory responses, and alleviation of oxidative stress. Furthermore, we scrutinized the constraints of prior studies and provided recommendations. In sum, this article furnished a valuable resource concerning the intervention of bioactive compounds sourced from marine foods in the context of hyperuricemia.
Collapse
Affiliation(s)
- Wenya Meng
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ping Dong
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
117
|
Beresford-Jones BS, Suyama S, Clare S, Soderholm A, Xia W, Sardar P, Lee J, Harcourt K, Lawley TD, Pedicord VA. Enterocloster clostridioformis protects against Salmonella pathogenesis and modulates epithelial and mucosal immune function. MICROBIOME 2025; 13:61. [PMID: 40022210 PMCID: PMC11869688 DOI: 10.1186/s40168-025-02050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Promoting resistance to enteric pathogen infection is a core function of the gut microbiota; however, many of the specific host-commensal interactions that mediate this protection remain uncharacterised. To address this knowledge gap, we monocolonised germ-free mice with mouse-derived commensal microbes to screen for microbiota-induced resistance to Salmonella Typhimurium infection. RESULTS We identified Enterocloster clostridioformis as a protective species against S. Typhimurium infection. E. clostridioformis selectively upregulates resistin-like molecule β and cell cycle pathway expression at the level of caecal epithelial cells and increases T-regulatory cells in the underlying mucosal immune system, potentially contributing to reduced infection-induced pathology. CONCLUSIONS We highlight novel mechanisms of host-microbe interactions that can mediate microbiota-induced resistance to acute salmonellosis. In the backdrop of increasing antibiotic resistance, this study identifies novel potential avenues for further research into protective host responses against enteric infections and could lead to new therapeutic approaches. Video Abstract.
Collapse
Affiliation(s)
- Benjamin S Beresford-Jones
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Satoshi Suyama
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Simon Clare
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amelia Soderholm
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Wangmingyu Xia
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Puspendu Sardar
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Junhee Lee
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Harcourt
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Trevor D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Virginia A Pedicord
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
118
|
Qu X, Ji Y, Long J, Zheng D, Qiao Z, Lin Y, Lu C, Zhou Y, Cheng H. Immuno- and gut microbiota-modulatory activities of β-1,6-glucans from Lentinus edodes. Food Chem 2025; 466:142209. [PMID: 39612846 DOI: 10.1016/j.foodchem.2024.142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
The β-1,6-glucans from Lentinus edodes have a variety of biological activities. However, the research on extraction and separation of β-1,6-glucans from L. edodes is limited and the yield is low. In the present study, we obtained the high-yield and -purity β-1,6-glucans (ALEPA) from L. edodes by using a sequential extraction and separation process, which is simple and suitable for industrialization. ALEPA significantly promoted the proliferation of splenic T lymphocytes and enhanced the phagocytosis activity of peritoneal macrophages in vivo. 16S rRNA sequencing results showed that ALEPA significantly increased the α diversity of gut microbiota and upregulated the relative abundances of short chain fatty acids (SCFAs)-producing bacterial species. Consistently, the SCFAs in the cecum of mice were upregulated. On a mechanical level, we found that the immunomodulatory effect of ALEPA depended on gut microbiota. Collectively, ALEPA is a promising functional food ingredient that regulates gut microbiota and enhances immune function.
Collapse
Affiliation(s)
- Xian Qu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yahui Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Donglin Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhonghui Qiao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Lin
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China..
| |
Collapse
|
119
|
Rondinella D, Raoul PC, Valeriani E, Venturini I, Cintoni M, Severino A, Galli FS, Mora V, Mele MC, Cammarota G, Gasbarrini A, Rinninella E, Ianiro G. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025; 17:859. [PMID: 40077728 PMCID: PMC11901572 DOI: 10.3390/nu17050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ultra-processed foods (UPFs) have become a widely consumed food category in modern diets. However, their impact on gut health is raising increasing concerns. This review investigates how UPFs impact the gut microbiome and gut barrier, emphasizing gut dysbiosis and increased gut permeability. UPFs, characterized by a high content of synthetic additives and emulsifiers, and low fiber content, are associated with a decrease in microbial diversity, lower levels of beneficial bacteria like Akkermansia muciniphila and Faecalibacterium prausnitzii, and an increase in pro-inflammatory microorganisms. These alterations in the microbial community contribute to persistent inflammation, which is associated with various chronic disorders including metabolic syndrome, irritable bowel syndrome, type 2 diabetes, and colorectal cancer. In addition, UPFs may alter the gut-brain axis, potentially affecting cognitive function and mental health. Dietary modifications incorporating fiber, fermented foods, and probiotics can help mitigate the effects of UPFs. Furthermore, the public needs stricter regulations for banning UPFs, along with well-defined food labels. Further studies are necessary to elucidate the mechanisms connecting UPFs to gut dysbiosis and systemic illnesses, thereby informing evidence-based dietary guidelines.
Collapse
Affiliation(s)
- Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Pauline Celine Raoul
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Valeriani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Sofia Galli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzina Mora
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
120
|
Liu Y, Yan D, Chen R, Zhang Y, Wang C, Qian G. Recent insights and advances in gut microbiota's influence on host antiviral immunity. Front Microbiol 2025; 16:1536778. [PMID: 40083779 PMCID: PMC11903723 DOI: 10.3389/fmicb.2025.1536778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
A diverse array of microbial organisms colonizes the human body, collectively known as symbiotic microbial communities. Among the various pathogen infections that hosts encounter, viral infections represent one of the most significant public health challenges worldwide. The gut microbiota is considered an important biological barrier against viral infections and may serve as a promising target for adjuvant antiviral therapy. However, the potential impact of symbiotic microbiota on viral infection remains relatively understudied. In this review, we discuss the specific regulatory mechanisms of gut microbiota in antiviral immunity, highlighting recent advances in how gut microbiota regulate the host immune response, produce immune-related molecules, and enhance the host's defense against viruses. Finally, we also discuss the antiviral potential of oral probiotics.
Collapse
Affiliation(s)
- Ying Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Danying Yan
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ran Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuwen Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqing Qian
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
121
|
Lan Y, Wang X, Yan F, Zhang W, Zhao S, Song Y, Wang S, Zhu Z, Wang Y, Liu X. Quinoa Saponin Ameliorates Lipopolysaccharide-Induced Behavioral Disorders in Mice by Inhibiting Neuroinflammation, Modulating Gut Microbiota, and Counterbalancing Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4700-4715. [PMID: 39948027 DOI: 10.1021/acs.jafc.5c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triterpenoids derived from plants are a promising class of natural antidepressants. This research focused on the therapeutic potential of quinoa saponin (QS) in alleviating lipopolysaccharide (LPS)-induced anxiety and depressive-like behaviors in mice. The most abundant saponin fraction, QS-3, was isolated from QS extracts, and its major saponin components and chemical structure were elucidated. Six pentacyclic triterpene saponins and three tetracyclic triterpene saponins were identified in QS-3, with phytolaccagenin and oleanolic acid being the dominant sapogenins. In vivo studies demonstrated that QS significantly mitigated LPS-induced anxiety and depressive-like behaviors in mice, enhanced the levels of neurotrophic proteins, key synaptic proteins, and neurotransmitters, and restored synaptic function and neuronal damage. Furthermore, QS inhibited neuroinflammation by curtailing the activity of the TLR4/MyD88/NF-κB pathway and modulating microglial phenotypes. Notably, QS also ameliorated colonic inflammation by promoting gut microbiota homeostasis and increasing short-chain fatty acids (SCFAs) production, which contributed to the improvement of anxiety and depressive behaviors in mice. Our findings suggest that QS holds potential as a natural dietary supplement for the treatment and prevention of anxiety and depression, possibly through its modulation of gut-brain axis dynamics and suppression of the activation of the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Fanghua Yan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shuangxi Wang
- Lanzhou Industrial Research Institute, Lanzhou 730050, China
| | - Zhuofan Zhu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
122
|
Jeong H, Lee B, Cho SY, Lee Y, Kim J, Hur S, Cho K, Kim KH, Kim SH, Nam KT. Microbiota-derived short-chain fatty acids determine stem cell characteristics of gastric chief cells. Dev Cell 2025; 60:599-612.e6. [PMID: 39642880 DOI: 10.1016/j.devcel.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
The gastric mucosa is a highly dynamic tissue that undergoes constant self-renewal through stem cell differentiation. Chief cells maintain a quiescent state in homeostasis but are responsible for regeneration after injury. Although the role of microbiome-host interactions in the intestine is well studied, less is known about these interactions in the stomach. Using the mouse organoid and germ-free mouse models, we show that microbiota-derived short-chain fatty acids (SCFAs) suppress the proliferation of chief cells in mice. This effect is mediated by activation of G-protein-coupled receptor 43. Most importantly, through metabolomics and transplantation studies, we show butyrate-producing Lactobacillus intestinalis modulates the proliferation of chief cells in mice. Our findings identify a mechanism by which the microbiota regulates the cell characteristics of chief cells, providing insight into the complex interplay between the host and its microbial environment and the mechanisms underlying gastric homeostasis, with potential therapeutic implications for gastric diseases.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Buhyun Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Yura Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiseon Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sumin Hur
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyungrae Cho
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung-Hee Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
123
|
Prasad R, Rehman A, Rehman L, Darbaniyan F, Blumenberg V, Schubert ML, Mor U, Zamir E, Schmidt S, Hayase T, Chang CC, McDaniel L, Flores I, Strati P, Nair R, Chihara D, Fayad LE, Ahmed S, Iyer SP, Wang M, Jain P, Nastoupil LJ, Westin J, Arora R, Turner J, Khawaja F, Wu R, Dennison JB, Menges M, Hidalgo-Vargas M, Reid K, Davila ML, Dreger P, Korell F, Schmitt A, Tanner MR, Champlin RE, Flowers CR, Shpall EJ, Hanash S, Neelapu SS, Schmitt M, Subklewe M, Francois-Fahrmann J, Stein-Thoeringer CK, Elinav E, Jain MD, Hayase E, Jenq RR, Saini NY. Antibiotic-induced loss of gut microbiome metabolic output correlates with clinical responses to CAR T-cell therapy. Blood 2025; 145:823-839. [PMID: 39441941 DOI: 10.1182/blood.2024025366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Antibiotic (ABX)-induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) therapies. In this study, we observed that prior exposure to broad-spectrum ABXs with extended anaerobic coverage such as piperacillin-tazobactam and meropenem was associated with worse anti-CD19 CAR-T therapy survival outcomes in patients with large B-cell lymphoma (N = 422) than other ABX classes. In a discovery subset of these patients (n = 67), we found that the use of these ABXs was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n = 58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery, n = 40; validation, n = 28). These findings were recapitulated in an immune-competent CAR-T mouse model, in which meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-Ts, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy. This trial was registered at www.clinicaltrials.gov as #NCT06218602.
Collapse
Affiliation(s)
- Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdur Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lubna Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faezeh Darbaniyan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Viktoria Blumenberg
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Maria-Luisa Schubert
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Uria Mor
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Zamir
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Sabine Schmidt
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta J Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joel Turner
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meghan Menges
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Melanie Hidalgo-Vargas
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Marco L Davila
- Department of Stem Cell Transplantation and Cellular Therapy, Roswell Cancer Institute, Buffalo, NY
| | - Peter Dreger
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Felix Korell
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Mark R Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Johannes Francois-Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - C K Stein-Thoeringer
- Department of Internal Medicine I, University Clinic Tüebingen, Tüebingen, Germany
- M3 Research Institute, Faculty of Medicine, University of Tüebingen, Tüebingen, Germany
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neeraj Y Saini
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
124
|
Mukhatayev Z, Kovenskiy A, Ren Z, Rangel SM, Katkenov N, Khuanbai Y, Shivde R, Daniel M, Dellacecca ER, Cedercreutz K, Ostapchuk Y, Nurgozhina A, Chulenbayeva L, Nurgaziyev M, Jarmukhanov Z, Nurlankyzy M, Kozhdan K, Seidulla S, Mukhanbetzhanova Z, Sergazy S, Kozhakhmetov S, Ali Y, Daftary KM, Green SJ, Kundu RV, Kushugulova A, Le Poole IC. Escherichia Abundance and Metabolism Align with Vitiligo Disease Activity. J Invest Dermatol 2025:S0022-202X(25)00119-8. [PMID: 39983982 DOI: 10.1016/j.jid.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Vitiligo is a cutaneous autoimmune disorder characterized by progressive depigmentation due to melanocyte destruction by cytotoxic T cells. Genetic factors predispose patients to the disease and are supported by environmental factors that often initiate new disease episodes. We investigated whether disease outcomes were partially defined by pathogenic microbes that drive nutrient deficiency and inflammation. Our study presents the results of research on the diet and gut microbiome composition of patients with vitiligo and healthy controls from Kazakhstan and the United States. Dietary nutrient intake was assessed using the National Institutes of Health-generated Diet History Questionnaire. Patients with active vitiligo exhibit a limited intake of specific fatty acids, amino acids, fiber, and zinc. Disease activity was further characterized by the abundance of Odoribacter and Escherichia in the gut. Metabolic pathway analysis supported the role of the Escherichia genus in disease activity by limiting energy metabolism and amino acid biosynthetic pathways. Disease activity also aligned with elevated circulating pro-inflammatory cytokines. These findings suggest that nutritional limitations are not compensated by metabolites from the gut microbiome in active disease, potentially leaving room for inflammation and exacerbating vitiligo. The intricate relationship among diet, gut microbiome composition, and disease progression in vitiligo highlights potential avenues for targeted interventions to reduce autoimmune activity and improve patient outcomes.
Collapse
Affiliation(s)
| | - Artur Kovenskiy
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephanie M Rangel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nurlubek Katkenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Rohan Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Moriel Daniel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | - Kamilya Kozhdan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Symbat Seidulla
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Shynggyss Sergazy
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Yasmeen Ali
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karishma M Daftary
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Roopal V Kundu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
125
|
Deng Y, Hou X, Fang Q, Wang H, Li X, Hu Z, Liu Z, Fan L, Liu Y, Fu Z, Shu X, Sun B, Huang L, Liu Y. High-salt diet decreases FOLFOX efficacy via gut bacterial tryptophan metabolism in colorectal cancer. Mol Med 2025; 31:66. [PMID: 39972411 PMCID: PMC11841010 DOI: 10.1186/s10020-025-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND FOLFOX is the recommended chemotherapy regimen for colorectal cancer (CRC), but its response rate remains low. Our previous studies have established a close relationship between gut microbiota and the anti-CRC effect of FOLFOX, though the underlying mechanisms remain unclear. Diet has been confirmed as a key factor influencing gut microbiota, and high-salt diets, representative of western dietary habits, has been shown to affect gut microbiota, immune function, and the risk of developing CRC. However, the impact of high-salt diets on the anti-CRC efficacy of FOLFOX remains unstudied. Therefore, we aimed to investigate the effect and mechanism of high-salt diets on the anti-CRC effect of FOLFOX. METHODS We performed 16 S rRNA sequencing and T500 targeted metabolomics analysis on fecal samples from CRC patients and healthy adults. A CRC orthotopic xenograft mouse model was used to study the effect of a high-salt diet on FOLFOX's anti-CRC efficacy. 16 S rRNA sequencing and non-targeted metabolomics were conducted on mouse fecal samples. Flow cytometry was used to assess immune cell infiltration in tumor and paracancerous tissues. A mouse macrophage conditioned medium system, with tryptophan metabolites, was employed to annotate the functional metabolites, followed by in vivo verification using the orthotopic xenograft mouse model. RESULTS The structure and metabolic profiles of gut microbiota are significantly different between 9 healthy adults and 6 CRC patients. A high-salt diet significantly reduced the efficacy of FOLFOX in mice, with notable changes in gut microbiota and related metabolites. Correlation analysis revealed a significant relationship between gut microbiota, tryptophan metabolites and FOLFOX efficacy. Flow cytometry indicated that a high-salt diet altered macrophage infiltration (CD45+F4/80+) in both the tumor and paracancerous tissues. In vitro experiments confirmed that the tryptophan metabolite SK reduced FOLFOX efficacy, while IPA enhanced it through macrophage-conditioned medium. In vivo, we verified that under a high-salt diet, SK inhibited the efficacy of FOLFOX, while IPA promoted it. CONCLUSION A high-salt diet reduces the anti-CRC efficacy of FOLFOX through gut bacterial tryptophan metabolism mediated macrophage immunomodulation.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
| | - Qian Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
| | - Xiaoxuan Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Zhaolu Liu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Limei Fan
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yunyi Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhengqi Fu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
| | - Lijun Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510620, China.
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
126
|
Cune D, Pitasi CL, Rubiola A, Jamma T, Simula L, Boucher C, Fortun A, Adoux L, Letourneur F, Saintpierre B, Donnadieu E, Terris B, Bossard P, Chassaing B, Romagnolo B. Inhibition of Atg7 in intestinal epithelial cells drives resistance against Citrobacter rodentium. Cell Death Dis 2025; 16:112. [PMID: 39971913 PMCID: PMC11840101 DOI: 10.1038/s41419-025-07422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Autophagy, a cytoprotective mechanism in intestinal epithelial cells, plays a crucial role in maintaining intestinal homeostasis. Beyond its cell-autonomous effects, the significance of autophagy in these cells is increasingly acknowledged in the dynamic interplay between the microbiota and the immune response. In the context of colon cancer, intestinal epithelium disruption of autophagy has been identified as a critical factor influencing tumor development. This disruption modulates the composition of the gut microbiota, eliciting an anti-tumoral immune response. Here, we report that Atg7 deficiency in intestinal epithelial cells shapes the intestinal microbiota leading to an associated limitation of colitis induced by Citrobacter rodentium infection. Mice with an inducible, intestinal epithelial-cell-specific deletion of the autophagy gene, Atg7, exhibited enhanced clearance of C. rodentium, mitigated hyperplasia, and reduced pathogen-induced goblet cell loss. This protective effect is linked to a higher proportion of neutrophils and phagocytic cells in the early phase of infection. At later stages, it is associated with the downregulation of pro-inflammatory pathways and an increase in Th17 and Treg responses-immune responses known for their protective roles against C. rodentium infection, modulated by specific gut microbiota. Fecal microbiota transplantation and antibiotic treatment approaches revealed that the Atg7-deficiency-shapped microbiota, especially Gram-positive bacteria, playing a central role in driving resistance to C. rodentium infection. In summary, our findings highlight that inhibiting autophagy in intestinal epithelial cells contributes to maintaining homeostasis and preventing detrimental intestinal inflammation through microbiota-mediated colonization resistance against C. rodentium. This underscores the central role played by autophagy in shaping the microbiota in promoting immune-mediated resistance against enteropathogens.
Collapse
Affiliation(s)
- David Cune
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Alessia Rubiola
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Luca Simula
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Camille Boucher
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Apolline Fortun
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Lucie Adoux
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Franck Letourneur
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Benjamin Saintpierre
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoît Terris
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Pathology Department, AP-HP, Hôpital Cochin, Paris, France
| | - Pascale Bossard
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Benoît Chassaing
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| |
Collapse
|
127
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
128
|
Parodi E, Novi M, Bottino P, La Porta E, Merlotti G, Castello LM, Gotta F, Rocchetti A, Quaglia M. The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target. Microorganisms 2025; 13:445. [PMID: 40005809 PMCID: PMC11858628 DOI: 10.3390/microorganisms13020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a "leaky gut" and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand.
Collapse
Affiliation(s)
- Emanuele Parodi
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Marialuisa Novi
- Gastroenterology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Paolo Bottino
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Edoardo La Porta
- Nephrology and Dialysis Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Luigi Mario Castello
- Internal Medicine Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Franca Gotta
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Andrea Rocchetti
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
129
|
Holle J, Reitmeir R, Behrens F, Singh D, Schindler D, Potapenko O, McParland V, Anandakumar H, Kanzelmeyer N, Sommerer C, Hartleif S, Andrassy J, Heemann U, Neuenhahn M, Forslund-Startceva SK, Gerhard M, Oh J, Wilck N, Löber U, Bartolomaeus H. Gut microbiome alterations precede graft rejection in kidney transplantation patients. Am J Transplant 2025:S1600-6135(25)00093-0. [PMID: 39978595 DOI: 10.1016/j.ajt.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease, with graft survival critically affected by the recipient's immune response. The role of the gut microbiome in modulating this immune response remains underexplored. Our study investigates how microbiome alterations might associate with allograft rejection by analyzing the gut microbiome using 16S rRNA gene amplicon sequencing of a multicenter prospective study involving 562 samples from 245 individuals of which 217 received KT. Overall, gut microbiome composition showed gradual recovery post-KT, mirroring CKD-to-health transition as indicated by an increase of Shannon diversity. Prior to graft rejection, we observed a decrease in microbial diversity and SCFA-producing taxa. Functional analysis highlighted a decreased potential for SCFA production in patients preceding the rejection event, validated by quantitative PCR for the production potential of propionate and butyrate. Post-rejection analysis revealed normalization of these microbiome features. Comparison to published microbiome signatures from CKD patients demonstrated a partial overlap of the microbiome alterations preceding graft rejection with the alterations typically found in CKD. Our findings suggest that alterations in gut microbiome composition and function may precede and influence KT rejection, suggesting potential implications as biomarkers or for early therapeutic microbiome-targeting interventions.
Collapse
Affiliation(s)
- Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of General Pediatrics and Hematology/Oncology, University Children's Hospital, University Hospital Tübingen, Tübingen, Germany.
| | - Rosa Reitmeir
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dharmesh Singh
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Daniela Schindler
- German Center for Infection Research (DZIF), Partner Site Braunschweig, Germany
| | - Olena Potapenko
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Children's Hospital, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover, Germany
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Germany
| | - Steffen Hartleif
- Paediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Joachim Andrassy
- German Center for Infection Research (DZIF), Partner Site München, Germany; Klinik für Allgemeine, Viszeral, und Transplantationschirurgie, Klinikum der Universität München, Munich, Germany
| | - Uwe Heemann
- German Center for Infection Research (DZIF), Partner Site München, Germany; Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Michael Neuenhahn
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Gerhard
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hendrik Bartolomaeus
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| |
Collapse
|
130
|
Dadey RE, Cui J, Rajasundaram D, Yano H, Liu C, Cohen JA, Liu AW, Kaplan DH, Workman CJ, Vignali DAA. Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile. Immunohorizons 2025; 9:vlae014. [PMID: 39965167 PMCID: PMC11841976 DOI: 10.1093/immhor/vlae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 02/20/2025] Open
Abstract
Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew W Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel H Kaplan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
131
|
Rissato JH, de Melo Pereira N, Romero CE, del Cisne Jadán Luzuriaga G, Kerges Bueno BV, Fonseca Cafezeiro CR, de Alencar Neto AC, Borges TS, Freitas Carvalhal S, Ramires FJA, Nastari L, Mady C, Fernandes F. Different Gut Microbiome Profiles in Patients with Transthyretin Amyloidosis with and Without Cardiac Involvement. Int J Mol Sci 2025; 26:1689. [PMID: 40004154 PMCID: PMC11855458 DOI: 10.3390/ijms26041689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Transthyretin amyloidosis (ATTR amyloidosis) is characterized by the buildup of amyloid protein in organs like the gut and the heart. As a result, hypoperfusion, edema, and dysautonomia cause an imbalance in the gut microbiome. We aimed to identify the gut microbiome composition in ATTR amyloidosis patients with and without heart involvement, as well in controls. Sixty participants were divided into three groups: 20 with ATTR amyloidosis and heart involvement (G1), 19 with ATTR amyloidosis but no heart disease (G2), and 21 controls (G3). The microbiome profiles were obtained through 16S rRNA gene sequencing. Additional evaluations included a clinical questionnaire, echocardiogram, six-minute walk tests, troponin, BNP, and genotype analysis. Compared to G3, G1, and G2 groups had different levels of Streptococcus, Lachnospiraceae, and Sellimonas, while the controls showed a higher relative abundance of Methanosphaera. Streptococcus was linked to higher troponin levels. Lachnospiraceae was associated with lower BNP levels and smaller left atrium volumes. Sellimonas was associated with a higher intestinal symptom score, while Methanosphaera with a lower symptom score. ATTR amyloidosis patients have a different intestinal microbiome profile compared to the control group. There were correlations with genotype, gastrointestinal symptoms, heart failure biomarkers, echocardiographic parameters, and the six-minute walk test.
Collapse
Affiliation(s)
- João Henrique Rissato
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05508-220, Brazil; (N.d.M.P.); (C.E.R.); (G.d.C.J.L.); (B.V.K.B.); (C.R.F.C.); (A.C.d.A.N.); (T.S.B.); (S.F.C.); (F.J.A.R.); (L.N.); (C.M.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Li C, Gu S, Zhang Y, Zhang Z, Wang J, Gao T, Zhong K, Shan K, Ye G, Ke Y, Chen Y. Histone deacetylase in inflammatory bowel disease: novel insights. Therap Adv Gastroenterol 2025; 18:17562848251318833. [PMID: 39963253 PMCID: PMC11831641 DOI: 10.1177/17562848251318833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is characterized by chronic nonspecific intestinal inflammation. Despite considerable efforts, IBD remains a heavy burden on society and human health, with increasing morbidity. Posttranslational modification, especially histone acetylation, is a key process in controlling DNA transcriptional activity. Histone deacetylases (HDACs) play a vital role in the mechanism of IBD pathogenesis through histone and nonhistone protein deacetylation. Herein, we present a summary of different categories of HDACs as well as HDAC inhibitors (HDACis) and analyze the role of HDAC inhibition in alleviating IBD along with its mechanism, as well as clinical potential of HDACis in IBD treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shaobo Gu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yihong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenruo Zhang
- Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Junzhuo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Gao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kangpeng Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Keshu Shan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yini Ke
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
133
|
Mao P, Hu J, Mai X, Li N, Liao Y, Feng L, Long Q. Multi-Omics Analysis of the Gut-Brain Axis Elucidates Therapeutic Mechanisms of Guhong Injection in the Treatment of Ischemic Stroke. Int J Mol Sci 2025; 26:1560. [PMID: 40004026 PMCID: PMC11855775 DOI: 10.3390/ijms26041560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Guhong injection (GH) is a compound preparation widely utilized in the treatment of cerebrovascular diseases. Accumulating evidence indicates that the gut microbiota is implicated in the development of ischemic stroke (IS). However, although the therapeutic potential of GH in IS may be mediated through the gut microbiota, the intricate relationships among the gut-brain axis, biomarkers, and target proteins remain to be completely explained. A rat model of middle cerebral artery occlusion (MCAO) was utilized to investigate the impact of GH on IS. Our 16S rRNA sequence analysis revealed that GH markedly enhanced the α-diversity of the intestinal microbiome and rectified the imbalance of short-chain fatty acids (SCFAs). Metabolomic analysis indicated that GH reversed 45 biomarkers and 6 disordered metabolic pathways in MCAO rats. Among these, the metabolic pathways of arachidonic acid, α-linolenic acid, fructose, and mannose were closely associated with gut microbiota comprising Lactobacillus modulated by GH. Furthermore, IS-related signaling pathways, including inflammation, autophagy, oxidative stress, and apoptosis, were significantly associated with three gut microbial species influenced by GH. The potential efficacy of GH in the context of IS is mediated through multiple pathways, involving the gut microbiota, SCFAs, biomarkers, and target proteins. This process partly relies on the gut-brain axis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Rats
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/therapeutic use
- Male
- Ischemic Stroke/drug therapy
- Ischemic Stroke/metabolism
- Brain/metabolism
- Brain/drug effects
- Disease Models, Animal
- Rats, Sprague-Dawley
- Metabolomics/methods
- RNA, Ribosomal, 16S/genetics
- Biomarkers/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/metabolism
- Fatty Acids, Volatile/metabolism
- Oxidative Stress/drug effects
- Multiomics
Collapse
Affiliation(s)
| | | | - Xi Mai
- School of Pharmacy, Nanchang University, Nanchang 330006, China; (P.M.); (J.H.); (N.L.); (Y.L.); (L.F.); (Q.L.)
| | | | | | | | | |
Collapse
|
134
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
135
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
136
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
137
|
Gong S, Sun L, Sun Y, Ju W, Wang G, Zhang J, Fu X, Lu C, Zhang Y, Song W, Li M, Sun L. Integrated Macrogenomics and Metabolomics Analysis of the Effect of Sea Cucumber Ovum Hydrolysates on Dextran Sodium Sulfate-Induced Colitis. Mar Drugs 2025; 23:73. [PMID: 39997197 PMCID: PMC11857712 DOI: 10.3390/md23020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease remains a significant challenge in clinical settings. This study investigated the therapeutic potential of sea cucumber ovum hydrolysates (SCH) in a dextran sulfate sodium (DSS)-induced colitis mouse model. SCH, defined by its elevated stability and solubility, with a molecular weight below 1000 Da, significantly alleviated DSS-induced colitis, as evidenced by enhanced splenic index, reduced colonic damage, and diminished serum pro-inflammatory cytokines. Furthermore, macrogenomic analysis demonstrated that SCH increased beneficial gut microbes and decreased pro-inflammatory bacteria. Furthermore, metabolomic analysis of colonic tissues identified elevated levels of anti-inflammatory metabolites, such as Phenyllactate, 2-Hydroxyglutarate, and L-Aspartic acid, in colitis mice after oral administration of SCH. In conclusion, SCH represents a promising candidate for the treatment of colitis.
Collapse
Affiliation(s)
- Shunmin Gong
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yongjun Sun
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Wenming Ju
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Gongming Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Jian Zhang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Xuejun Fu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Chang Lu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yu Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingbo Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Leilei Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| |
Collapse
|
138
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
139
|
Cai X, Ren F, Yao Y. Gut microbiota and their metabolites in the immune response of rheumatoid arthritis: Therapeutic potential and future directions. Int Immunopharmacol 2025; 147:114034. [PMID: 39805176 DOI: 10.1016/j.intimp.2025.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells. Dysbiosis of the gut microbiota in RA patients is closely associated with abnormal activation of immune cells and excessive secretion of inflammatory cytokines. Metabolites produced by the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan metabolites, bile acids, and amino acid metabolites, play a critical role in immune responses, regulating the functions of immune cells like T cells, B cells, and macrophages, and inhibiting the release of pro-inflammatory cytokines. Restoring the balance of the gut microbiota and optimizing the production of metabolic products may become a new strategy for RA treatment. This review discusses the role of gut microbiota and its metabolites in the immune response of RA, exploring how they influence the immunopathological process of RA through the regulation of immune cells and key immune factors. It also provides a theoretical basis for future therapeutic strategies based on gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Pharmacy Hangzhou First People's Hospital Hangzhou China.
| | - Fujia Ren
- Department of Pharmacy Hangzhou Women's Hospital Hangzhou China
| | - Yao Yao
- Department of Pharmacy Women's Hospital School of Medicine Zhejiang University Hangzhou China
| |
Collapse
|
140
|
Dou Y, Niu Y, Shen H, Wang L, Lv Y, Liu S, Xie X, Feng A, Liu X. Identification of disease-specific gut microbial markers in vitiligo. Front Microbiol 2025; 16:1499035. [PMID: 39967732 PMCID: PMC11833150 DOI: 10.3389/fmicb.2025.1499035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
There is a potential correlation between vitiligo and gut microbiota, although research in this area is currently limited. The research employed high-throughput sequencing of 16S rRNA to examine the gut microbiome in the stool samples of 49 individuals with vitiligo and 49 without the condition. The study encompassed four comparison groups: (1) DI (disease) group vs. HC (healthy control) group; (2) DI_m group (disease group of minors) vs. HC_m group (healthy control group of minors); (3) DI_a group (adult disease group) vs. HC_a group (adult healthy control group); (4) DI_m group vs. DI_a group. Research findings have indicated the presence of spatial heterogeneity in the gut microbiota composition between individuals with vitiligo and healthy controls. A significant reduction in gut microbiota diversity has been observed in vitiligo patients across both minors and adult groups. However, variations have been noted in the composition of disease-related differential microbial markers among different age groups. Specifically, Bacteroides and Parabacteroides have been identified as specific markers of the intestinal microbiota of vitiligo patients in both minor and adult groups. Correlative analyses have revealed a positive correlation of these two genera with the Vitiligo Area Scoring Index (VASI) and disease duration. It is noteworthy that there are no significant differences in diversity between the DI_m group and the DI_a group, with similarities in microbiota composition and functional characteristics. Nevertheless, correlative analyses suggest a declining trend in Bacteroides and Parabacteroides with increasing age. Individuals with vitiligo exhibit distinct features in their gut microbiome when contrasted with those in the healthy control group. Additionally, the microbial marker genera that show variances between patients and healthy controls vary among different age groups. Disease-specific microbial marker genera (Bacteroides and Parabacteroides) are associated with VASI, duration of the condition, and age. These findings are essential for improving early diagnosis and developing potential treatment strategies for individuals with vitiligo.
Collapse
Affiliation(s)
- Yimin Dou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, China
| | - Lan Wang
- School of Life Science, Hubei University, Wuhan, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiafei Xie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
141
|
Quraishi MN, Cheesbrough J, Rimmer P, Mullish BH, Sharma N, Efstathiou E, Acharjee A, Gkoutus G, Patel A, Marchesi JR, Camuzeaux S, Chappell K, Valdivia-Garcia MA, Ferguson J, Brookes MJ, Walmsley M, Rossiter AE, van Schaik W, McInnes RS, Cooney R, Trauner M, Beggs AD, Iqbal TH, Trivedi PJ. Open Label Vancomycin in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Improved Colonic Disease Activity and Associations With Changes in Host-Microbiome-Metabolomic Signatures. J Crohns Colitis 2025; 19:jjae189. [PMID: 39673746 PMCID: PMC11831226 DOI: 10.1093/ecco-jcc/jjae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND We conducted a single-arm interventional study, to explore mucosal changes associated with clinical remission under oral vancomycin (OV) treatment, in primary sclerosing cholangitis-associated inflammatory bowel disease (PSC-IBD); NCT05376228. METHODS Fifteen patients with PSC and active colitis (median fecal calprotectin 459 µg/g; median total Mayo score 5) were treated with OV (125 mg QID) for 4 weeks and followed-up for a further 4 weeks of treatment withdrawal (8 weeks, end-of-study). Colonic biopsies were obtained at baseline and Week 4. Clinical assessments, and serum and stool samples (metagenomics, metatranscriptomics, and metabolomics) were collected at Weeks 0, 2, 4, and 8. The primary efficacy outcome measure was the induction of clinical remission. RESULTS Oral vancomycin resulted in clinical remission in 12/15 patients and significant reductions in fecal calprotectin. Oral vancomycin was associated with reduced abundances of Lachnospiraceae, genera Blautia and Bacteroides; and enrichment of Enterobacteriaceae, and genera Veillonella, Akkermansia, and Escherichia. Oral vancomycin treatment was associated with the downregulation of multiple metatranscriptomic pathways (including short-chain fatty acid [SCFA] metabolism and bile acid [BA] biotransformation), along with host genes and multiple pathways involved in inflammatory responses and antimicrobial defence; and an upregulation of genes associated with extracellular matrix repair. Oral vancomycin use resulted in the loss of specific fecal SCFAs and secondary BAs, including lithocholic acid derivatives. Colitis activity relapsed following OV withdrawal, with host mucosal and microbial changes trending toward baseline. CONCLUSIONS Four weeks of OV induces remission in PSC-IBD activity, associated with a reduction in gut bacterial diversity and compositional changes relating to BA and SCFA homeostasis.
Collapse
Affiliation(s)
- Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, Inflammatory Bowel Disease Center, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Jonathan Cheesbrough
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Rimmer
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Elena Efstathiou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Translational Medicine, University Hospitals Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
| | - Georgios Gkoutus
- Institute of Translational Medicine, University Hospitals Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
| | - Arzoo Patel
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Julian R Marchesi
- Department of Gastroenterology, Inflammatory Bowel Disease Center, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | | | - Maria A Valdivia-Garcia
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, IRDB Building, Imperial College London, London, UK
| | - James Ferguson
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Matthew J Brookes
- Department of Gastroenterology, University of Wolverhampton, Wolverhampton, UK
| | | | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Ross S McInnes
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Rachel Cooney
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Palak J Trivedi
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
142
|
Staudt S, Nikolka F, Perl M, Franz J, Leblay N, Yuan XK, Larrayoz M, Lozano T, Warmuth L, Fante MA, Skorpskaite A, Fei T, Bromberg M, San Martin-Uriz P, Rodriguez-Madoz JR, Ziegler-Martin K, Adil-Gholam N, Benz P, Tran Huu P, Freitag F, Riester Z, Stein-Thoeringer C, Schmitt M, Kleigrewe K, Weber J, Mangold K, Ho P, Einsele H, Prosper F, Ellmeier W, Busch D, Visekruna A, Slingerland J, Shouval R, Hiller K, Lasarte JJ, Martinez-Climent JA, Pausch P, Neri P, van den Brink M, Poeck H, Hudecek M, Luu M. Metabolization of microbial postbiotic pentanoate drives anti-cancer CAR T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.19.608538. [PMID: 39314273 PMCID: PMC11418944 DOI: 10.1101/2024.08.19.608538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The microbiome is a complex host factor and key determinant of the outcome of antibody-based and cellular immunotherapy. Its postbiotics are a blend of soluble commensal byproducts that are released into the host environment and have been associated with the regulation of immune homeostasis, particularly through impacts on epigenetics and cell signaling. In this study, we show that the postbiotic pentanoate is metabolized to citrate within the TCA cycle via both the acetyl- and succinyl-CoA entry points, a feature uniquely enabled by the chemical structure of the C5 aliphatic chain. We identified ATP-citrate lyase as the crucial factor that redirects pentanoate-derived citrate from the succinyl-CoA route to the nucleus, thereby linking metabolic output and histone acetylation. This epigenetic-metabolic crosstalk mitigated T cell exhaustion and promoted naive-like differentiation in pentanoate-programmed chimeric antigen receptor (CAR) T cells. The predictive and therapeutic potential of pentanoate was corroborated in two independent patient cohorts and three syngeneic models of CAR T adoptive therapy. Our data demonstrate that postbiotics are integrated into mitochondrial metabolism and subsequently incorporated as epigenetic imprints. This bridge between microbial and mammalian interspecies communication can ultimately impact T cell differentiation and efficacy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Fabian Nikolka
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Markus Perl
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Julia Franz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli-Kat Yuan
- Precision Oncology Hub, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marta Larrayoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Linda Warmuth
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Matthias A. Fante
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
| | - Aiste Skorpskaite
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Bromberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patxi San Martin-Uriz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nazdar Adil-Gholam
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Phuc Tran Huu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Fabian Freitag
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zeno Riester
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | | | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Justus Weber
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Patrick Ho
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra (CUN), Hemato-Oncology Program, Cima Universidad de Navarra. Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | | | - Roni Shouval
- Adult Bone Marrow Transplantation Service and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Cancer Center Clinica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Hendrik Poeck
- University Hospital Regensburg, Department of Internal Medicine III, Hematology & Internal Oncology, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- National Center for Tumor Therapy (NCT WERA), Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg & Würzburg, Germany
| |
Collapse
|
143
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
144
|
Crabtree D, Seidler K, Barrow M. Pathophysiological mechanisms of gut dysbiosis and food allergy and an investigation of probiotics as an intervention for atopic disease. Clin Nutr ESPEN 2025; 65:189-204. [PMID: 39571752 DOI: 10.1016/j.clnesp.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have associated reduced bacterial diversity and abundance and food allergy. This mechanistic review investigated the link between gut dysbiosis and food allergy with a focus on the role of short-chain fatty acids (SCFAs) in modulating T-cells. T-cell differentiation poses an opportunity to direct the immune cells towards an anergic regulatory T cell (Treg) or allergic T helper 2 (Th2) response. Probiotic intervention to prevent and/or treat atopic disease symptoms through this mechanistic pathway was explored. METHODOLOGY A narrative review was conducted following a three-stage systematic literature search of EMBASE and Medline databases. Ninety-six of 571 papers were accepted and critically appraised using ARRIVE and SIGN50 forms. Thematic analysis identified key pathophysiological mechanisms within the narrative of included papers. RESULTS Preclinical studies provided compelling evidence for SCFAs' modulation of T-cell differentiation, which may act through G-protein coupled receptors 41, 43 and 109a and histone deacetylase inhibition. Foxp3 transcription factor was implicated in the upregulation of Tregs. Human probiotic intervention studies aimed at increasing SCFAs and Tregs and preventing atopic disease showed inconclusive results. However, evidence for probiotic intervention in children with cow's milk protein allergy (CMPA) was more promising and warrants further investigation. CONCLUSION Preclinical evidence suggests that the mechanism of gut dysbiosis and reduced SCFAs may skew T-cell differentiation towards a Th2 response, thus inducing allergy symptoms. Probiotic trials were inconclusive: probiotics were predominantly unsuccessful in the prevention of allergic disease, however, may be able to modulate food allergy symptoms in infants with CMPA.
Collapse
Affiliation(s)
- Danielle Crabtree
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| |
Collapse
|
145
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
146
|
Xiong J, Ma YJ, Liao XS, Li LQ, Bao L. Gut microbiota in infants with food protein enterocolitis. Pediatr Res 2025; 97:763-773. [PMID: 39033251 DOI: 10.1038/s41390-024-03424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND We explored the effects of two formulas, extensively hydrolyzed formula (EHF) and amino acid-based formula (AAF), on the gut microbiota and short-chain fatty acids (SCFAs) in infants with food protein-induced enterocolitis syndrome (FPIES). METHODS Fecal samples of thirty infants with bloody diarrhea receiving EHF or AAF feeding were collected at enrollment, diagnosis of FPIES, and four weeks after diagnosis. The gut microbiota and SCFAs were analyzed using 16 S rRNA gene sequencing and gas chromatography-mass spectrometry, respectively. RESULTS Microbial diversity of FPIES infants was significantly different from that of the controls. FPIES infants had a significantly lower abundance of Bifidobacterium and a higher level of hexanoic acid compared with controls. In EHF-fed FPIES infants, microbial richness was significantly decreased over time; while the microbial diversity and richness in AAF-fed FPIES infants exhibited no differences at the three time points. By four weeks after diagnosis, EHF-fed FPIES infants contained a decreased abundance of Acinetobacter, whereas AAF-fed FPIES infants contained an increased abundance of Escherichia-Shigella. EHF-fed infants experienced significantly decreased levels of butyric acid and hexanoic acid at four weeks after diagnosis. CONCLUSIONS Infants with FPIES had intestinal dysbiosis and different formulas differentially affected gut microbiota and SCFAs in FPIES infants. IMPACT We firstly report the impacts of two different nutritional milk formulas on the gut microbial composition and SCFAs levels in infants with FPIES. We show that infants with FPIES have obvious intestinal dysbiosis and different formulas differentially affect gut microbiota and SCFAs in FPIES infants. Understanding the effects of different types of formulas on gut microbial colonization and composition, as well as the related metabolites in infants with FPIES could help provide valuable insights for making choices about feeding practices.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Jue Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xing-Sheng Liao
- Department of Neonatology, The first People's Hospital of Jiulongpo District, Chongqing, China
| | - Lu-Quan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Lei Bao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
147
|
Luu M, Krause FF, Monning H, Wempe A, Leister H, Mainieri L, Staudt S, Ziegler-Martin K, Mangold K, Kappelhoff N, Shaul YD, Göttig S, Plaza-Sirvent C, Schulte LN, Bekeredjian-Ding I, Schmitz I, Steinhoff U, Visekruna A. Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells. Mucosal Immunol 2025; 18:66-75. [PMID: 39265892 DOI: 10.1016/j.mucimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Heide Monning
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Anne Wempe
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Lisa Mainieri
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nora Kappelhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Yoav D Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | | | - Leon N Schulte
- Institute for Lung Research, Philipps-University Marburg, Marburg, Germany
| | | | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
148
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2025; 46:561-578. [PMID: 39546084 PMCID: PMC11772541 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
149
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
150
|
Zhang Y, Ji W, Qin H, Chen Z, Zhou Y, Zhou Z, Wang J, Wang K. Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydr Polym 2025; 349:122829. [PMID: 39643403 DOI: 10.1016/j.carbpol.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Natural polysaccharides from Astragalus membranaceus have been shown to relieve ulcerative colitis (UC). However, the mechanism and causal relationship between the gut microbiota and Astragalus polysaccharides (APS) treatment of UC are unclear. The results of the present study showed that APS ameliorated colonic injury and the disruption of the gut microbiota and restored intestinal immune homeostasis in mice with DSS-induced colitis. Meanwhile, we found that APS treatment was ineffective in antibiotic-treated colitis mice but was effective when FMT (Fecal microbiota transplantation) was performed on UC mice using APS-treated mice as donors. APS increased the proportion of relevant microbiota that produce SCFAs and both direct administration of APS and administration of APS-adjusted gut microbiota significantly promoted the production of SCFAs in colitis mice. We demonstrated that APS dually inhibited NF-κB activation via the TLR4 and HDAC3 pathways and improved the balance in Th17/Treg cells in UC mice. In conclusion, our study revealed that APS is a promising prebiotic agent for the maintenance of intestinal health and demonstrated that APS may ameliorate colitis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hailong Qin
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zhihong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|