101
|
Grewal IS, Grewal KD, Wong FS, Wang H, Picarella DE, Janeway CA, Flavell RA. Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J Autoimmun 2002; 19:9-22. [PMID: 12367555 DOI: 10.1006/jaut.2002.0599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To analyse the effects of TGF-beta in insulin dependent diabetes mellitus (IDDM), we have developed non-obese diabetic (NOD) transgenic mice expressing TGF-beta under the control of the rat insulin II promoter. Pancreata of TGF-beta transgenic mice were roughly one twentieth of the size of pancreata of wild-type NOD mice and showed small clusters of micro-islets rather than normal adult islets. However, these islets produced sufficient levels of insulin to maintain normal glucose levels and mice were protected from the diabetes, which developed in their negative littermates. A massive fibrosis was seen in the transgenic pancreata that was accompanied with infiltration of mononuclear cells that decreased with age. Interestingly, these mice showed normal anti-islet immune response in their spleens and remained susceptible to adoptive transfer of IDDM by mature cloned CD8 effector cells. TUNEL assays revealed increased apoptosis of invading cells when compared to non-transgenic NOD mice. Taken together, these results suggest that TGF-beta protects islets by a local event.
Collapse
Affiliation(s)
- Iqbal S Grewal
- Millennium Pharmaceuticals, Inc. Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Moustakas AK, Papadopoulos GK. Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: keys to the fate of islet beta-cells. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:37-47. [PMID: 12116175 DOI: 10.1002/ajmg.10342] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The major histocompatibility complex Class II alleles, HLA-DQ, and the related HLA-DR, are the chief genetic elements of human type 1 diabetes. These genes code for polymorphic heterodimeric proteins, whose chief function is to trap peptide antigens in the endosome and present them on the surface of antigen-presenting cells (dendritic cells, B lymphocytes, monocytes/macrophages) to CD4(+) T helper cells. A systematic investigation of the molecular properties of HLA-DQ alleles linked to susceptibility or resistance to type 1 diabetes has shown that these properties segregate along lines of susceptibility or resistance. A correlation of these features with the function of each particular segment of the HLA-DQ molecule yields interesting insights into the possible pathways leading to type 1 diabetes. There remain, however, areas to be clarified, including mechanisms by which dominant protection is conferred by certain alleles, the interplay between HLA-DQ and the related locus HLA-DR, that also shows autoantigen-specific reactivity, and the cross-Class help delivered to CD8(+) T cells, the final effectors in pancreatic beta-cell destruction. Clarification of these issues may lead to ways to prevent diabetes in predisposed individuals already exhibiting the genetic and immunological characteristics, and perhaps a cure in those with the disease, by means of transplantation, and measures for prevention of disease recurrence.
Collapse
|
103
|
Boulard O, Fluteau G, Eloy L, Damotte D, Bedossa P, Garchon HJ. Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4192-201. [PMID: 11937580 DOI: 10.4049/jimmunol.168.8.4192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nonobese diabetic (NOD) mouse strain provides a good study model for Sjögren's syndrome (SS). The genetic control of SS was investigated in this model using different matings, including a (NOD x C57BL/6 (B6))F(2) cross, a (NOD x NZW)F(2) cross, and ((NOD x B6) x NOD) backcross. Multiple and different loci were detected depending on parent strain combination and sex. Despite significant complexity, two main features were prominent. First, the middle region of chromosome 1 (chr.1) was detected in all crosses. Its effect was most visible in the (NOD x B6)F(2) cross and dominated over that of other loci, including those mapping on chr.8, 9, 10, and 16; the effect of these minor loci was observed only in the absence of the NOD haplotype on chr.1. Most critically, the chr.1 region was sufficient to trigger an SS-like inflammatory infiltrate of salivary glands as shown by the study of a new C57BL/6 congenic strain carrying a restricted segment derived from NOD chr.1. Second, several chromosomal regions were previously associated with NOD autoimmune phenotypes, including Iddm (chr.1, 2, 3, 9, and 17, corresponding to Idd5, Idd13, Idd3, Idd2, and Idd1, respectively), accounting for the strong linkage previously reported between insulitis and sialitis, and autoantibody production (chr.10 and 16, corresponding to Bana2 and Bah2, respectively). Interestingly, only two loci were detected in the (NOD x NZW)F(2) cross, on chr.1 in females and on chr.7 in males, probably because of the latent autoimmune predisposition of the NZW strain. Altogether these findings reflect the complexity and heterogeneity of human SS.
Collapse
Affiliation(s)
- Olivier Boulard
- Institut National de la Santé et de la Recherche Médicale, Unité 25, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | |
Collapse
|
104
|
Ikegami H, Fujisawa T, Makino S, Ogihara T. Genetic dissection of type 1 diabetes susceptibility gene, Idd3, by ancestral haplotype congenic mapping. Ann N Y Acad Sci 2002; 958:325-8. [PMID: 12021134 DOI: 10.1111/j.1749-6632.2002.tb02997.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the strongest non-MHC susceptibility genes for type 1 diabetes, Idd3, has been mapped to a 0.15-cM segment of chromosome 3, where a strong candidate gene, Il2, encoding cytokine IL2, is located. To prove that the NOD allele of Il2 is responsible for the Idd3 effect, it is necessary to find a recombinant chromosome with the NOD allele of Il2, but with different flanking markers from NOD mice, and to demonstrate that NOD mouse strains that are congenic for the recombinant Il2 region develop type 1 diabetes with similar incidence and age at onset of the disease. As a first step in this approach, we searched for recombinant Il2 region in NOD-related strains derived from the same outbred colony, Jcl:ICR. The same Il2 allele as is found in the NOD mouse was found in four out of seven NOD-related strains, indicating that the NOD allele of Il2 is common in NOD-related strains. One of these strains, IIS, was found to have a recombinant Il2 region with the same Il2 allele as the NOD, but different alleles at flanking markers from the NOD mouse. A preliminary study on a NOD strain congenic for the Il2 region of IIS has shown that the Il2 region of IIS confers susceptibility to type 1 diabetes, suggesting that Il2 may be responsible for the Idd3 effect.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
105
|
Wen L, Wong FS, Sherwin R, Mora C. Human DQ8 can substitute for murine I-Ag7 in the selection of diabetogenic T cells restricted to I-Ag7. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3635-40. [PMID: 11907129 DOI: 10.4049/jimmunol.168.7.3635] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The strong association of type 1 diabetes with specific MHC class II genes, such as I-A(g7) in nonobese diabetic mice and HLA-DQ8 in humans, suggests that MHC class II molecules play an important role in the development of the disease. To test whether human DQ8 molecules could cross the species barrier and functionally replace their murine homolog I-A(g7), we generated DQ8/BDC2.5 transgenic mice. We have shown that BDC2.5 transgenic T cells are selected on DQ8 in the thymus and cause diabetes in a manner similar to that seen when the T cells are selected on H2(g7). Splenocytes from DQ8/BDC2.5 mice also showed reactivity toward islets in vitro as seen in H-2(g7)/BDC2.5 mice. We conclude that DQ8 molecules not only share structural similarity with the murine homolog I-A(g7), but also can cross the species barrier and functionally replace I-A(g7) molecules to stimulate diabetogenic T cells and produce diabetes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Crosses, Genetic
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Epitopes, T-Lymphocyte/genetics
- Female
- HLA-DQ Antigens/chemistry
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/immunology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Humans
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Sequence Homology, Amino Acid
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
106
|
Abstract
In addition to developing a high incidence of type 1 diabetes caused by a specific autoimmune response against pancreatic beta cells in the islets of Langerhans, NOD mice also demonstrate spontaneous autoimmunity to other targets including the thymus, adrenal gland, salivary glands, thyroid, testis, nuclear components and red blood cells. Moreover, treatment of pre-diabetic NOD mice with an intravenous dose of heat killed Mycobacterium bovis (M. bovis; bacillus Calmette-Guèrin (BCG)) protects them from developing type 1 diabetes, but instead precipitates an autoimmune rheumatic disease similar to systemic lupus erythematosus (SLE), characterised by accelerated and increased incidence of haemolytic anaemia (HA), anti-nuclear autoantibody (ANA) production, exacerbation of sialadenitis, and the appearance of immune complex-mediated glomerulonephritis (GN). The reciprocal switching between the two phenotypes by a single environmental trigger (mycobacterial exposure) raised the possibility that genetic susceptibility for type 1 diabetes and SLE may be conferred by a single collection of genes in the NOD mouse. This review will focus on the genetic components predisposing NOD mice to SLE induced by BCG treatment and compare them to previously determined diabetes susceptibility genes in this strain and SLE susceptibility genes in the BXSB, MRL and the New Zealand mouse strains.
Collapse
Affiliation(s)
- P A Silveira
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown NSW, Australia
| | | |
Collapse
|
107
|
Thiessen S, Serra P, Amrani A, Verdaguer J, Santamaria P. T-cell tolerance by dendritic cells and macrophages as a mechanism for the major histocompatibility complex-linked resistance to autoimmune diabetes. Diabetes 2002; 51:325-38. [PMID: 11812739 DOI: 10.2337/diabetes.51.2.325] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For poorly understood reasons, the development of autoimmune diabetes in humans and mice is dominantly inhibited by major histocompatibility complex (MHC) class II molecules with diverse antigen-binding sites. We have previously shown that thymocytes expressing a highly diabetogenic I-A(g7)-restricted T-cell receptor (TCR) (4.1-TCR) undergo negative selection in mice carrying one copy of the antidiabetogenic H-2(b) haplotype in an I-A(b)-dependent but superantigen-independent manner. Here, we show that 4.1-TCR-transgenic thymocytes undergo different forms of tolerance in NOD mice expressing antidiabetogenic I-A(d), I-A(g7PD), or I-Ealpha(k) transgenes. The ability of protective MHC class II molecules to induce thymocyte tolerance in 4.1-TCR-transgenic NOD mice correlates with their ability to prevent diabetes in non-TCR-transgenic mice and is associated with polymorphisms within positions 56-67 of their beta1 domains. The 4.1-thymocyte tolerogenic activity of these MHC class II molecules is mediated by dendritic cells and macrophages but not by B-cells or thymic epithelial cells and is a peptide-dependent process. Antidiabetogenic MHC class II molecules may thus afford diabetes resistance by presenting, on dendritic cells and macrophages, tolerogenic peptides to a subset of highly diabetogenic and MHC-promiscuous CD4(+) T-cells that play a critical role in the initiation of diabetes.
Collapse
Affiliation(s)
- Shari Thiessen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
108
|
Suri A, Vidavsky I, van der Drift K, Kanagawa O, Gross ML, Unanue ER. In APCs, the autologous peptides selected by the diabetogenic I-Ag7 molecule are unique and determined by the amino acid changes in the P9 pocket. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1235-43. [PMID: 11801660 DOI: 10.4049/jimmunol.168.3.1235] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We demonstrate in this study the great degree of specificity in peptides selected by a class II MHC molecule during processing. In this specific case of the diabetogenic I-A(g7) molecule, the P9 pocket of I-A(g7) plays a critical role in determining the final outcome of epitope selection, a conclusion that is important in interpreting the role of this molecule in autoimmunity. Specifically, we examined the display of naturally processed peptides from APCs expressing either I-A(g7) molecules or a mutant I-A(g7) molecule in which the beta57Ser residue was changed to an Asp residue. Using mass spectrometry analysis, we identified over 50 naturally processed peptides selected by I-A(g7)-expressing APCs. Many peptides were selected as families with a core sequence and variable flanks. Peptides selected by I-A(g7) were unusually rich in the presence of acidic residues toward their C termini. Many peptides contained short sequences of two to three acidic residues. In binding analysis, we determined the core sequences of many peptides and the interaction of the acidic residues with the P9 pocket. However, different sets of peptides were isolated from APCs bearing a modified I-A(g7) molecule. These peptides did not favor acidic residues toward the carboxyl terminus.
Collapse
Affiliation(s)
- Anish Suri
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
109
|
Grattan M, Mi QS, Meagher C, Delovitch TL. Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. Diabetes 2002; 51:215-23. [PMID: 11756344 DOI: 10.2337/diabetes.51.1.215] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Twenty diabetes susceptibility loci on 12 mouse chromosomes have been identified to control the development of type 1 diabetes at the level of either initiation of insulitis or progression from insulitis to overt diabetes or both. Previously, we demonstrated that the genetic control of T-cell proliferative unresponsiveness in nonobese diabetic (NOD) mice is linked to Idd4 on mouse chromosome 11. Here, we show by congenic mapping of three newly generated NOD.B6Idd4 diabetes-resistant mouse strains that Idd4 is limited to a 5.2-cM interval of chromosome 11. This B6-derived region expressed in NOD.B6Idd4A mice maps between the D11Nds1 (43.8 cM) and D11Mit38/D11Mit325 (49.0 cM) markers and dramatically reduces the development of both insulitis and type 1 diabetes. NOD.B6Idd4B and NOD.B6Idd4C mice, which carry a smaller B6-derived segment of chromosome 11 that spans <5.2 cM distal to D11Nds1, exhibit protection against type 1 diabetes with the restoration of T-cell proliferation. Our findings suggest that diabetes resistance conferred by Idd4 may be mediated by the Idd4.1 and Idd4.2 subloci. Idd4.1 is localized in the D11Nds1 interval that influences both diabetes and insulitis. Idd4.2 is localized within the D11Mit38/325 interval that mainly influences diabetes incidence and restores T-cell proliferative responsiveness. Three potential candidate genes, platelet activating factor acetylhydrolase Ib1, nitric oxide synthase-2, and CC chemokine genes, are localized in the 5.2-cM interval.
Collapse
Affiliation(s)
- Marsha Grattan
- Autoimmunity/Diabetes Group, the John P. Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
110
|
Wucherpfennig KW. Insights into autoimmunity gained from structural analysis of MHC-peptide complexes. Curr Opin Immunol 2001; 13:650-6. [PMID: 11677085 DOI: 10.1016/s0952-7915(01)00274-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structural and functional properties of HLA-DQ and -DR molecules that confer susceptibility to several common autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis and multiple sclerosis, have been defined. The relevant polymorphisms directly affect interaction with peptides, which provides strong support for the hypothesis that these diseases are peptide-antigen driven. Several studies indicate that structural modifications of peptides can affect MHC class II binding and/or TCR recognition and should be considered in the analysis of T cell responses in autoimmune diseases.
Collapse
Affiliation(s)
- K W Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Room D1410, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Rietz C, Screpanti V, Brenden N, Fernández C. Neonatal pattern of V(H) gene utilization in nonobese diabetic mice does not correlate with development of insulitis. Scand J Immunol 2001; 54:470-6. [PMID: 11696198 DOI: 10.1046/j.1365-3083.2001.00991.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonobese diabetic (NOD) mouse model is a model of human autoimmune insulin dependent diabetes, IDDM. The effector cells of the disease have been shown to be T cells, but also B cells seem to contribute. Adult NOD mice have been shown to display a bias in their utilization of immunoglobulin (Ig) variable heavy (V(H)) genes. In this study the analysis of VH gene utilization in NOD mice protected from insulitis by transgenic insertion of a major histocompatibility complex (MHC) class II E(alpha) gene, point out that the bias in V(H) gene expression is not correlated to disease development. The aberrant V(H) gene utilization pattern in mice with the NOD genetic background is instead suggested to be a consequence of a deregulation of the apoptosis inhibiting gene bcl-2. We also investigated if prolonged in vitro survival of NOD lymphocytes is correlated to disease development. The E(alpha) transgenic NOD mice were shown to display a prolonged in vitro survival of spleen T cells, similar to normal NOD mice. These results indicate that defective death mechanisms of T cells may not be primarily involved in the development of autoimmune disease in these mice. However, in contrast to results from other groups, no difference in in vitro survival could be detected for B cells from mice with NOD genetic background compared to C57BL/6 mice.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Survival
- DNA Primers/genetics
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Genes, Immunoglobulin
- Genes, MHC Class II
- Genes, bcl-2
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Lymphocytes/immunology
- Lymphocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
Collapse
Affiliation(s)
- C Rietz
- Transplantation Biology, Department of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
112
|
Abstract
Transgenic and 'knockout' models are increasingly used to study the role of the immune system, insulin signaling and beta-cell gene transcription in diabetes. Mice and humans have similar genetics, developmental biology and physiology. In interpreting these models, however, one needs to be mindful of some differences that exist between mice and humans.
Collapse
Affiliation(s)
- M Gannon
- Division of Diabetes and Endocrinology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
113
|
Quinn A, Melo M, Ethell D, Sercarz EE. Relative resistance to nasally induced tolerance in non-obese diabetic mice but not other I-A(g7)-expressing mouse strains. Int Immunol 2001; 13:1321-33. [PMID: 11581177 DOI: 10.1093/intimm/13.10.1321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
I-A(g7) is a unique class II MHC molecule that is clearly associated with autoimmune diabetes in non-obese diabetic (NOD) mice. To determine if I-A(g7) is defective in its ability to deliver tolerogenic signals in vivo, H-2(g7) mice were nasally pretreated with antigen, prior to immunization, to induce antigen-specific regulation. Nasally pretreated NOR (H-2(g7)) and (NON).NOD (H-2(g7)) congenic mice showed responses similar to those of NON (H-2(nb1)), BALB/c (H-2(d)) and B10.PL (H-2(u)) mice-a reduced recall response and a deviated T(h) cytokine profile. However, we found that NOD (H-2(g7)) mice are comparatively resistant to immunological tolerance induced by nasal pretreatment, such that at the usually effective dose no significant reduction was seen in the proliferative recall responses to nominal antigen after immunization. (NOD x BALB/c)F(1) (H-2(g7/d)) and (NOD x NOR)F(1) (H-2(g7)) mice were similarly resistant to nasal-induced tolerance, although significantly higher nasal doses of antigen were able to overcome the resistance in NOD and F(1) mice. Interestingly, activated NOD T cells were resistant to cell death induced by re-stimulation with plate-bound anti-CD3. These results demonstrate that activated T cells in NOD mice are defective in their ability to respond to regulatory signals delivered in vivo or in vitro. Furthermore, NOD T cells have an increased resistance to tolerance induced by I-A(g7)-dependent (antigen) or I-A(g7)-independent (anti-CD3) mechanisms. Thus, while I-A(g7) may contribute to insulin-dependent diabetes mellitus by selecting a particular repertoire of self-reactive T cell clones, additional defects in the peripheral T cells themselves are required to allow the expansion of diabetogenic clones and the development of autoimmune disease.
Collapse
Affiliation(s)
- A Quinn
- La Jolla Institute for Allergy and Immunology, Division of Immune Regulation, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
114
|
Trembleau S, Gregori S, Penna G, Gorny I, Adorini L. IL-12 administration reveals diabetogenic T cells in genetically resistant I-Ealpha-transgenic nonobese diabetic mice: resistance to autoimmune diabetes is associated with binding of Ealpha-derived peptides to the I-A(g7) molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4104-14. [PMID: 11564833 DOI: 10.4049/jimmunol.167.7.4104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoantigens
- Cells, Cultured
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/immunology
- HLA-DR Antigens/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Interleukin-12/pharmacology
- Membrane Proteins/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Peptide Fragments
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 8
- Receptors, Antigen, T-Cell
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Th1 Cells/immunology
Collapse
Affiliation(s)
- S Trembleau
- Roche Milan Ricerche, Via Olgettina 58, I-20132 Milan, Italy
| | | | | | | | | |
Collapse
|
115
|
Johnson EA, Silveira P, Chapman HD, Leiter EH, Serreze DV. Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2404-10. [PMID: 11490031 DOI: 10.4049/jimmunol.167.4.2404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic restoration of normally absent H2-E MHC class II molecules on APC dominantly inhibits T cell-mediated autoimmune diabetes (IDDM) in nonobese diabetic (NOD) mice. We analyzed the minimal requirements for transgenic H2-E expression on APC subtypes (B lymphocytes vs macrophages/dendritic cells (DC)) to inhibit IDDM. This issue was addressed through the use of NOD stocks transgenically expressing high levels of H2-E and/or made genetically deficient in B lymphocytes in a series of genetic intercross and bone marrow/lymphocyte chimera experiments. Standard (H2-E(null)) NOD B lymphocytes exert a pathogenic function(s) necessary for IDDM. However, IDDM was inhibited in mixed chimeras where H2-E was solely expressed on all B lymphocytes. Interestingly, this resistance was abrogated when even a minority of standard NOD H2-E(null) B lymphocytes were also present. In contrast, in NOD chimeras where H2-E expression was solely limited to approximately half the macrophages/DC, an active immunoregulatory process was induced that inhibited IDDM. Introduction of a disrupted IL-4 gene into the NOD-H2-E transgenic stock demonstrated that induction of this Th2 cytokine does not represent the IDDM protective immunoregulatory process mediated by H2-E expression. In conclusion, high numbers of multiple subtypes of APC must express H2-E MHC class II molecules to additively inhibit IDDM in NOD mice. This raises a high threshold for success in future intervention protocols designed to inhibit IDDM by introduction of putatively protective MHC molecules into hemopoietic precursors of APC.
Collapse
Affiliation(s)
- E A Johnson
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
116
|
Brenden N, Rabbani H, Abedi-Valugerdi M. Analysis of mercury-induced immune activation in nonobese diabetic (NOD) mice. Clin Exp Immunol 2001; 125:202-10. [PMID: 11529910 PMCID: PMC1906117 DOI: 10.1046/j.1365-2249.2001.01580.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In susceptible mice, the heavy metal ion mercury is able to induce a strong immune activation, which resembles a T helper 2 (Th2) type of immune response and is characterized by a polyclonal B cell activation, formation of high levels of IgG1 and IgE antibodies, production of autoantibodies of different specificities and development of renal IgG deposits. In the present study, we analysed the in vivo effects of mercury in nonobese diabetic (NOD) mice, which is believed to develop a spontaneous Th1 cell-mediated autoimmune diabetes similar to type 1 diabetes in humans. Three weeks of treatment with mercury induced a strong Th2 like immune/autoimmune response in NOD mice. This response was characterized by an intensive increase in splenic IgG1 antibody secreting cells, a marked elevation in serum IgE levels, a substantial increase in splenic IL-4 mRNA, but a significant decrease in splenic IFN-gamma mRNA. Mercury-induced IgG1 antibodies were mainly against ssDNA, TNP and thyroglobulin, but not against nucleolar antigen. Moreover, mercury-injected NOD mice developed high titres of IgG1 deposits in the kidney glomeruli. We further tested if the generated Th2 response could interfere with the development of insulitis and diabetes in NOD mice. We found that three weeks of treatment with mercury was also able to significantly suppress the development of insulitis and postpone the onset of diabetes in these mice. Thus, mercury-induced immune activation can counter-regulate the Th1 cell-mediated autoimmune responses and confer a partial protection against autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- N Brenden
- Hagedorn Research Institute, Gentofte, Denmark
| | | | | |
Collapse
|
117
|
Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001; 2:501-7. [PMID: 11376336 DOI: 10.1038/88694] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The class II major histocompatibility complex (MHC) glycoproteins HLA-DQ8 and HLA-DQ2 in humans and I-A(g7) in nonobese diabetic (NOD) mice are the major risk factors for increased susceptibility to type 1 diabetes. Using X-ray crystallography, we have determined the three-dimensional structure of DQ8 complexed with an immunodominant peptide from insulin. The similarity of the DQ8, DQ2 and I-A(g7) peptide-binding pockets suggests that diabetes is caused by the same antigen-presentation event(s) in humans and NOD mice. Correlating type 1 diabetes epidemiology and MHC sequences with the DQ8 structure suggests that other structural features of the P9 pocket in addition to position 57 contribute to susceptibility to type 1 diabetes.
Collapse
Affiliation(s)
- K H Lee
- Laboratory of Molecular Medicine, The Department of Medicine, The Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
118
|
Abiru N, Maniatis AK, Yu L, Miao D, Moriyama H, Wegmann D, Eisenbarth GS. Peptide and major histocompatibility complex-specific breaking of humoral tolerance to native insulin with the B9-23 peptide in diabetes-prone and normal mice. Diabetes 2001; 50:1274-81. [PMID: 11375327 DOI: 10.2337/diabetes.50.6.1274] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
NOD mice spontaneously develop anti-insulin autoantibodies and diabetes. A dominant peptide recognized by T-cell clones from NOD mice is insulin B-chain peptide B9-23. When administered subcutaneously to NOD mice, this peptide decreases the development of diabetes. In this study, we evaluated the autoantibody response to native insulin after administration of the B9-23 peptide. In NOD mice, administration of the B9-23 peptide in incomplete Freund's adjuvant enhanced their insulin autoantibody response with a higher level and longer persistence. Induction of insulin autoantibodies with the B9-23 peptide was observed in non-diabetes-prone BALB/c mice and NOR mice within 2 weeks of administration, but this was not observed in C57BL/6 mice. A series of A-chain, other B-chain, and proinsulin peptides did not induce insulin autoantibodies. Induced anti-insulin autoantibodies could not be absorbed with the peptide alone but could be absorbed with native insulin. The B13-23 peptide (one of two identified epitopes within B9-23) when administered to BALB/c mice, induced autoantibodies, whereas peptide B9-16 did not. Induction of autoantibodies mapped to the major histocompatibility complex (MHC) rather than to the background genes. Both splenocytes with I-A(d)/I-E(d) or I-A(g7)/I-E(null) presented the B9-23 peptide to NOD islet-derived T-cell clones. Finally, administration of the B9-23 peptide to BALB/c mice, even without adjuvant, could induce insulin autoantibodies. Our results indicate that B-cell tolerance to intact insulin is readily broken with the presentation of the B9-23 insulin peptide, depending on the host's specific MHC.
Collapse
Affiliation(s)
- N Abiru
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Rogner UC, Boitard C, Morin J, Melanitou E, Avner P. Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 2001; 74:163-71. [PMID: 11386752 DOI: 10.1006/geno.2001.6508] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of insulin-dependent diabetes mellitus in both human and mouse is dependent on the interaction between genetic and environmental factors. The analysis of newly created NOD.C3H congenic strains for spontaneous and cyclophosphamide-induced diabetes has allowed the definition of three controlling genetic loci on mouse chromosome 6. A NOD-derived susceptibility allele at the Idd6 locus strongly influences the onset of diabetes in spontaneous diabetes. A NOD-derived resistance allele at the Idd19 locus affects the final diabetes incidence observed in both models, while a novel locus, provisionally termed Idd20, appears to control Idd19 in an epistatic manner. Decreased diabetes incidence is observed in CY-induced diabetes when Idd20 is homozygous for the C3H allele, while heterozygosity is associated with an increase in diabetes incidence. The Idd20, Idd19, and Idd6 candidate regions fall respectively within genetically defined intervals of 4, 7, and 4.5 cM on mouse chromosome 6. From our YAC contig, Idd6 would appear to localize within a ca. 1.5-Mb region on distal chromosome 6.
Collapse
Affiliation(s)
- U C Rogner
- Génétique Moléculaire Murine CNRS URA 1947, Institut Pasteur, 25 rue du Docteur Roux, Paris Cedex 15, 75724, France.
| | | | | | | | | |
Collapse
|
120
|
Bhatnagar A, Milburn PJ, Lobigs M, Blanden RV, Gautam AM. Nonobese diabetic mice display elevated levels of class II-associated invariant chain peptide associated with I-Ag7 on the cell surface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4490-7. [PMID: 11254705 DOI: 10.4049/jimmunol.166.7.4490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptide presentation by MHC class II molecules plays a pivotal role in determining the peripheral T cell repertoire as a result of both positive and negative selection in the thymus. Homozygous I-A(g7) expression imparts susceptibility to autoimmune diabetes in the nonobese diabetic mouse, and recently, it has been proposed that this arises from ineffectual peptide binding. Following biosynthesis, class II molecules are complexed with class II-associated invariant chain peptides (CLIP), which remain associated until displaced by Ag-derived peptides. If I-A(g7) is a poor peptide binder, then this may result in continued occupation by CLIP to the point of translocation to the cell surface. To test this hypothesis we generated affinity-purified polyclonal antisera that recognized murine CLIP bound to class II molecules in an allele-independent fashion. We have found abnormally high natural levels of cell surface class II occupancy by CLIP on nonobese diabetic splenic B cells. Experiments using I-A-transfected M12.C3 cells showed that I-A(g7) alone was associated with elevated levels of CLIP, suggesting that this was determined solely by the amino acid sequence of the class II molecule. These results indicated that an intrinsic property of I-A(g7) would affect both the quantity and the repertoire of self-peptides presented during thymic selection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Antigen-Antibody Reactions
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Molecular Sequence Data
- Peptide Fragments/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transfection
Collapse
Affiliation(s)
- A Bhatnagar
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
121
|
Strid J, Lopes L, Marcinkiewicz J, Petrovska L, Nowak B, Chain BM, Lund T. A defect in bone marrow derived dendritic cell maturation in the nonobesediabetic mouse. Clin Exp Immunol 2001; 123:375-81. [PMID: 11298122 PMCID: PMC1906008 DOI: 10.1046/j.1365-2249.2001.01473.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of diabetes in the nonobese diabetic (NOD) mouse is characterized by a selective destruction of the insulin-producing beta-cells in the islets of Langerhans mediated by autoreactive T cells. The function of T cells is controlled by dendritic cells (DC), which are not only the most potent activators of naïve T cells, but also contribute significantly to the establishment of central and peripheral tolerance. In this study, we demonstrate that the NOD mouse (H2: K(d), Ag(7), E*, D(b)) shows selective phenotypic and functional abnormalities in DC derived from bone marrow progeny cells in response to GM-CSF (DC(NOD)). NOD DC, in contrast to CBA DC, have very low levels of intracellular I-A molecules and cell surface expression of MHC class II, CD80, CD86 and CD40 but normal beta 2-microglobulin expression. Incubation with the strong inflammatory stimulus of LPS and IFN-gamma does not increase class II MHC, CD80 or CD86, but upregulates the level of CD40. The genetic defect observed in the DC(NOD) does not map to the MHC, because the DC from the MHC congenic NOD.H2(h4) mouse (H2: K(k), A(k), E(k), D(k)) shares the cell surface phenotype of the DC(NOD). DC from these NOD.H2(h4) also fail to present HEL or the appropriate HEL-peptide to an antigen-specific T cell hybridoma. However all the DC irrespective of origin were able to produce TNF-alpha, IL-6, low levels of IL-12(p70) and NO in response to LPS plus IFN-gamma. A gene or genes specific to the NOD strain, but outside the MHC region, therefore must regulate the differentiation of DC in response to GM-CSF. This defect may contribute to the complex genetic aetiology of the multifactorial autoimmune phenotype of the NOD strain.
Collapse
Affiliation(s)
- J Strid
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Infectious Diseases, University College LondonLondon, UK
| | - L Lopes
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Infectious Diseases, University College LondonLondon, UK
| | - J Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical CollegePoland
| | - L Petrovska
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Infectious Diseases, University College LondonLondon, UK
| | - B Nowak
- Department of Immunology, Jagiellonian University Medical CollegePoland
| | - B M Chain
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Infectious Diseases, University College LondonLondon, UK
| | - T Lund
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Infectious Diseases, University College LondonLondon, UK
| |
Collapse
|
122
|
Arneson LS, Peterson M, Sant AJ. The MHC class II molecule I-Ag7 exists in alternate conformations that are peptide dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2059-67. [PMID: 10925290 DOI: 10.4049/jimmunol.165.4.2059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-dependent diabetes mellitus is an autoimmune disease that is genetically linked to the HLA class II molecule DQ in humans and to MHC I-Ag7 in nonobese diabetic mice. The I-Ag7 beta-chain is unique and contains multiple polymorphisms, at least one of which is shared with DQ alleles linked to insulin-dependent diabetes mellitus. This polymorphism occurs at position 57 in the beta-chain, in which aspartic acid is mutated to a serine, a change that results in the loss of an interchain salt bridge between alphaArg76 and betaAsp57 at the periphery of the peptide binding groove. Using mAbs we have identified alternative conformations of I-Ag7 class II molecules. By using an invariant chain construct with various peptides engineered into the class II-associated invariant chain peptide (CLIP) region we have found that formation of these conformations is dependent on the peptide occupying the binding groove. Blocking studies with these Abs indicate that these conformations are present at the cell surface and are capable of interactions with TCRs that result in T cell activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Binding Sites/genetics
- Binding Sites/immunology
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Genetic Vectors
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mutagenesis, Site-Directed
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protein Conformation
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- L S Arneson
- Department of Pathology, Committee on Immunology and Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
123
|
Jordan MA, Silveira PA, Shepherd DP, Chu C, Kinder SJ, Chen J, Palmisano LJ, Poulton LD, Baxter AG. Linkage analysis of systemic lupus erythematosus induced in diabetes-prone nonobese diabetic mice by Mycobacterium bovis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1673-84. [PMID: 10903779 DOI: 10.4049/jimmunol.165.3.1673] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus induced by Mycobacterium bovis in diabetes-prone nonobese diabetic mice was mapped in a backcross to the BALB/c strain. The subphenotypes-hemolytic anemia, antinuclear autoantibodies, and glomerular immune complex deposition-did not cosegregate, and linkage analysis for each trait was performed independently. Hemolytic anemia mapped to two loci: Bah1 at the MHC on chromosome 17 and Bah2 on distal chromosome 16. Antinuclear autoantibodies mapped to three loci: Bana1 at the MHC on chromosome 17, Bana2 on chromosome 10, and Bana3 on distal chromosome 1. Glomerular immune complex deposition did not show significant linkage to any genomic region. Mapping of autoantibodies (Coombs' or antinuclear autoantibodies) identified two loci: Babs1 at the MHC and Babs2 on distal chromosome 1. It has previously been reported that genes conferring susceptibility to different autoimmune diseases map nonrandomly to defined regions of the genome. One possible explanation for this clustering is that some alleles at loci within these regions confer susceptibility to multiple autoimmune diseases-the "common gene" hypothesis. With the exception of the H2, this study failed to provide direct support for the common gene hypothesis, because the loci identified as conferring susceptibility to systemic lupus erythematosus did not colocalize with those previously implicated in diabetes. However, three of the four regions identified had been previously implicated in other autoimmune diseases.
Collapse
MESH Headings
- Anemia, Hemolytic/genetics
- Anemia, Hemolytic/immunology
- Animals
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/genetics
- Antigen-Antibody Complex/metabolism
- Autoantibodies/genetics
- Complement C3c/metabolism
- Crosses, Genetic
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Genetic Linkage/immunology
- Genetic Markers
- Genotype
- Hematocrit
- Kidney Glomerulus/immunology
- Kidney Glomerulus/metabolism
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Microsatellite Repeats/immunology
- Mycobacterium bovis/immunology
- Phenotype
Collapse
Affiliation(s)
- M A Jordan
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Autoimmune diabetes is a polygenic disease process in man and rodents. To identify and characterize genes involved in the pathogenesis of diabetes in nonobese diabetic (NOD) mice, we initiated a repetitive backcross of diabetes-resistant C57L/J mice onto the NOD strain. This breeding scheme was based on the premise that selection for the trait of disease resistance among genetically mixed mice could be used to maintain transmission of nonpermissive alleles from the diabetes-resistant strain at critical diabetes susceptibility loci. Each of the three recombinant congenic mouse lines derived by this strategy retains a unique constellation of C57L/J-derived DNA segments. Consistent with the involvement of different genetic loci, the pancreatic histology of disease-resistant mice differs from that in NOD mice in a line-specific manner. Functional studies using these lines demonstrate that pathogenesis of autoimmune diabetes is a multistep process which can be blocked at a minimum of three critical, genetically determined points.
Collapse
Affiliation(s)
- M McDuffie
- Diabetes Research Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| |
Collapse
|
125
|
Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS. Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 2000; 67:67-81. [PMID: 10848492 PMCID: PMC1287103 DOI: 10.1086/302995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1999] [Accepted: 05/08/2000] [Indexed: 12/21/2022] Open
Abstract
Insulin-dependent diabetes mellitus (IDDM) is a polygenic disease caused by progressive autoimmune infiltration (insulitis) of the pancreatic islets of Langerhan, culminating in the destruction of insulin-producing beta cells. Genome scans of families with diabetes suggest that multiple loci make incremental contributions to disease susceptibility. However, only the IDDM1 locus is well characterized, at a molecular and functional level, as alleleic variants of the major histocompatibility complex (MHC) class II HLA-DQB1, DRB1, and DPB1 genes that mediate antigen presentation to T cells. In the nonobese diabetic (NOD) mouse model, the Idd1 locus was shown to be the orthologous MHC gene I-Ab. Inheritance of susceptibility alleles at IDDM1/Idd1 is insufficient for disease development in humans and NOD mice. However, the identities and functions of the remaining diabetes loci (Idd2-Idd19 in NOD mice) are largely undefined. A crucial limitation in previous genetic linkage studies of this disease has been reliance on a single complex phenotype-diabetes that displays low penetrance and is of limited utility for high-resolution genetic mapping. Using the NOD model, we have identified an early step in diabetes pathogenesis that behaves as a highly penetrant trait. We report that NOD-derived alleles at both the Idd5 and Idd13 loci regulate a T lymphocyte-dependent progression from a benign to a destructive stage of insulitis. Human chromosomal regions orthologous to the Idd5 and -13 intervals are also linked to diabetes risk, suggesting that conserved genes encoded at these loci are central regulators of disease pathogenesis. These data are the first to reveal a role for individual non-MHC Idd loci in a specific, critical step in diabetes pathogenesis-T cell recruitment to islet lesions driving destructive inflammation. Importantly, identification of intermediate phenotypes in complex disease pathogenesis provides the tools required to progress toward gene identification at these loci.
Collapse
Affiliation(s)
- C J Fox
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
126
|
Kanagawa O, Xu G, Tevaarwerk A, Vaupel BA. Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-gamma receptor loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3919-23. [PMID: 10725755 DOI: 10.4049/jimmunol.164.7.3919] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) mice carrying a segment of chromosome flanking the disrupted IFN-gamma receptor gene from original 129 ES cells are resistant to development of diabetes. However, extended backcrossing of this mouse line to the NOD mouse resulted in a segregation of the IFN-gammaR-deficient genotype from the diabetes-resistant phenotype. These results indicate that the protection of NOD mice from the development of diabetes is not directly linked to the defective IFN-gamma receptor gene but, rather, is influenced by the presence of a diabetes-resistant gene(s) closely linked to the IFN-gammaR loci derived from the 129 mouse strain.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Linkage/immunology
- Genetic Markers/immunology
- Genetic Predisposition to Disease/etiology
- Genetic Predisposition to Disease/genetics
- Genotype
- Histocompatibility Antigens Class I/biosynthesis
- Immunity, Innate/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Islets of Langerhans/pathology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/genetics
- Interferon gamma Receptor
Collapse
Affiliation(s)
- O Kanagawa
- Center for Immunology, Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
127
|
Brenden N, Rietz C, Böhme J. E expression is needed on both bone marrow derived cells and thymic epithelium to increase IL-4 production and achieve protection in NOD bone marrow chimeras. Cytokine 1999; 11:766-72. [PMID: 10525315 DOI: 10.1006/cyto.1998.0482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The NOD mouse is an animal model for insulin-dependent diabetes with many similarities to the human disease. NOD mice which are transgenic for the Ea gene, allowing expression of the E molecule, are protected from diabetes and rarely develop insulitis. We have constructed bone marrow chimeras between transgenic and non-transgenic NOD mice to study the correlation of E expression on bone marrow derived cells and thymic epithelium vs the production of IL-4 and IFN-gamma. We show that NOD-E-->NOD-E and NOD-E-->NOD chimeras have elevated levels of IL-4 compared to NOD-->NOD and NOD-->NOD-E chimeras in the thymus. However, in the periphery the protected NOD-E-->NOD-E show much higher IL-4 levels than any of the other chimeras. This drop in peripheral IL-4 production seen in NOD-E-->NOD, NOD-->NOD-E and NOD-->NOD chimeras correlates with the increased insulitis seen in these mice compared to NOD-E-->NOD-E. In contrast, there were no differences in IFN-gamma production between the chimeras. We suggest that the precommitted, regulatory T cells, selected in an E-expressing thymic environment, need continuous interaction with E-expressing primary antigen presenting cells in the periphery for optimal IL-4 production. Decrease in IL-4 production correlates with increased insulitis.
Collapse
Affiliation(s)
- N Brenden
- Department of Immunology, Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | |
Collapse
|
128
|
Rietz C, Pilström B, Brenden N, Böhme J. Minute defects in the expression of MHC E molecules lead to impaired protection from autoimmunity in NOD mice. Scand J Immunol 1999; 50:405-10. [PMID: 10520181 DOI: 10.1046/j.1365-3083.1999.00613.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The E complex of the major histocompatibility complex (MHC) can prevent the spontaneous development of diabetes in nonobese diabetic (NOD) mice transgenic for the Ea gene. None of three promoter-mutated Ea constructs with Ea expression directed to different subsets of immunocompetent cells exerts full protection in NOD mice. The promoter-mutated constructs are all capable of mediating intrathymic elimination of I-E-restricted T cells. Thus, thymic negative selection is not responsible for the protective effect but a more complex effect is likely. Here we show that combinations of two or three different mutated Ea constructs do not protect against intra-islet insulitis either. We also show that spleen cells from protected animals are sufficient to protect NOD mice in adoptive transfer experiments. The only detectable expression defects in splenic cells or cells influencing the repertoire of splenic cells are in the B-cell compartment. Furthermore, in three construct combinations, the differences to wild-type expression are extremely small. Thus, we conclude that even minute disturbances of the E expression pattern might reduce the protection of NOD mice from insulitis.
Collapse
Affiliation(s)
- C Rietz
- Department of Immunology, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
129
|
Hattori M, Yamato E, Itoh N, Senpuku H, Fujisawa T, Yoshino M, Fukuda M, Matsumoto E, Toyonaga T, Nakagawa I, Petruzzelli M, McMurray A, Weiner H, Sagai T, Moriwaki K, Shiroishi T, Maron R, Lund T. Cutting Edge: Homologous Recombination of the MHC Class I K Region Defines New MHC-Linked Diabetogenic Susceptibility Gene(s) in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
To localize the MHC-linked diabetogenic genes in the nonobese diabetic (NOD) mouse, a recombinational hotspot from the B10.A(R209) mouse was introduced to the region between the MHC class I K and class II A of the NOD mouse with the recombinational site centromeric to the Lmp2/Tap1 complex by breeding the two strains. Replacement of the NOD region centromeric to the recombinational site with the same region in R209 mice prevented the development of diabetes (from 71 to 3%) and insulitis (from 61 to 15%) in the N7 intra-MHC recombinant NOD mice. Similarly, the replacement of the NOD class II A, E and class I D region with the same region in R209 mice prevented the diseases (diabetes, from 71 to 0%; insulitis, from 61 to 3%). In addition to the MHC class II genes, there are at least two MHC-linked diabetogenic genes in the region centromeric to Lmp2.
Collapse
Affiliation(s)
- Masakazu Hattori
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Eiji Yamato
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Naoto Itoh
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Hidenobu Senpuku
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Tomomi Fujisawa
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | | | - Masahiro Fukuda
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Eisaku Matsumoto
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Tetsushi Toyonaga
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Ichiro Nakagawa
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Maria Petruzzelli
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Armand McMurray
- ‡Whitehead Institute for Biomedical Research, Cambridge MA 02139
| | - Howard Weiner
- §Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | | | | | | | - Ruth Maron
- §Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Torben Lund
- ¶University College London, London, United Kingdom
| |
Collapse
|
130
|
Chao CC, Sytwu HK, Chen EL, Toma J, McDevitt HO. The role of MHC class II molecules in susceptibility to type I diabetes: identification of peptide epitopes and characterization of the T cell repertoire. Proc Natl Acad Sci U S A 1999; 96:9299-304. [PMID: 10430937 PMCID: PMC17775 DOI: 10.1073/pnas.96.16.9299] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Susceptibility to type I diabetes is linked to class II MHC alleles in both mouse and man. However, the molecular mechanisms by which MHC molecules mediate disease susceptibility are unknown. To analyze how I-A alleles predispose to, or prevent, the development of type I diabetes, we have chosen, as the first step, to investigate the immune response to an important islet cell protein in diabetes-susceptible and diabetes-resistant mice. MHC class II alleles conferring susceptibility and resistance to diabetes select completely different sets of immunogenic epitopes from the beta islet cell autoantigen glutamic acid decarboxylase 65. Peptide-binding studies, analysis of MHC restriction, and immunization with these peptide epitopes indicate that the two amino acid substitutions within the I-A(beta) chain that distinguish a diabetes-susceptibility from a diabetes-resistance allele are sufficient to alter peptide binding and MHC restriction and may also influence antigen presentation and the selection of the T cell repertoire. The data indicate that the molecular mechanisms for class II-mediated selection of immunodominant epitopes are complex and differ for each individual peptide epitope. Further study of the functional characteristics of the response to these epitopes should provide insight into mechanisms of MHC-mediated diabetes susceptibility.
Collapse
Affiliation(s)
- C C Chao
- Departments of Microbiology and Immunology, and Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
131
|
Noorchashm H, Lieu YK, Noorchashm N, Rostami SY, Greeley SAS, Schlachterman A, Song HK, Noto LE, Jevnikar AM, Barker CF, Naji A. I-Ag7-Mediated Antigen Presentation by B Lymphocytes Is Critical in Overcoming a Checkpoint in T Cell Tolerance to Islet β Cells of Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
B cell-deficient nonobese diabetic (NOD) mice are protected from the development of spontaneous autoimmune diabetes, suggesting a requisite role for Ag presentation by B lymphocytes for the activation of a diabetogenic T cell repertoire. This study specifically examines the importance of B cell-mediated MHC class II Ag presentation as a regulator of peripheral T cell tolerance to islet β cells. We describe the construction of NOD mice with an I-Ag7 deficiency confined to the B cell compartment. Analysis of these mice, termed NOD BCIID, revealed the presence of functionally competent non-B cell APCs (macrophages/dendritic cells) with normal I-Ag7 expression and capable of activating Ag-reactive T cells. In addition, the secondary lymphoid organs of these mice harbored phenotypically normal CD4+ and CD8+ T cell compartments. Interestingly, whereas control NOD mice harboring I-Ag7-sufficient B cells developed diabetes spontaneously, NOD BCIID mice were resistant to the development of autoimmune diabetes. Despite their diabetes resistance, histologic examination of pancreata from NOD BCIID mice revealed foci of noninvasive peri-insulitis that could be intentionally converted into a destructive process upon treatment with cyclophosphamide. We conclude that I-Ag7-mediated Ag presentation by B cells serves to overcome a checkpoint in T cell tolerance to islet β cells after their initial targeting has occurred. Overall, this work indicates that the full expression of the autoimmune potential of anti-islet T cells in NOD mice is intimately regulated by B cell-mediated MHC class II Ag presentation.
Collapse
Affiliation(s)
- Hooman Noorchashm
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Yen K. Lieu
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Negin Noorchashm
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Susan Y. Rostami
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Siri Atma S. Greeley
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Alexander Schlachterman
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Howard K. Song
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Lauren E. Noto
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Anthony M. Jevnikar
- †Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Clyde F. Barker
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| | - Ali Naji
- *Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104; and
| |
Collapse
|
132
|
Gregori S, Trembleau S, Penna G, Gallazzi F, Hammer J, Papadopoulos GK, Adorini L. A Peptide Binding Motif for I-Eg7, the MHC Class II Molecule That Protects Eα-Transgenic Nonobese Diabetic Mice from Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The nonobese diabetic (NOD) mouse, a model of spontaneous insulin-dependent diabetes mellitus (IDDM), fails to express surface MHC class II I-Eg7 molecules due a deletion in the Eα gene promoter. Eα-transgenic NOD mice express the EαEβg7 dimer and fail to develop either insulitis or IDDM. A number of hypotheses have been proposed to explain the mechanisms of protection, most of which require peptide binding to I-Eg7. To define the requirements for peptide binding to I-Eg7, we first identified an I-Eg7-restricted T cell epitope corresponding to the sequence 4–13 of Mycobacterium tuberculosis 65-kDa heat shock protein (hsp). Single amino acid substitutions at individual positions revealed a motif for peptide binding to I-Eg7 characterized by two primary anchors at relative position (p) 1 and 4, and two secondary anchors at p6 and p9. This motif is present in eight of nine hsp peptides that bind to I-Eg7 with high affinity. The I-Eg7 binding motif displays a unique p4 anchor compared with the other known I-E motifs, and major differences are found between I-Eg7 and I-Ag7 binding motifs. Analysis of peptide binding to I-Eg7 and I-Ag7 molecules as well as proliferative responses of draining lymph node cells from hsp-primed NOD and Eα-transgenic NOD mice to overlapping hsp peptides revealed that the two MHC molecules bind different peptides. Of 80 hsp peptides tested, none bind with high affinity to both MHC molecules, arguing against some of the mechanisms hypothesized to explain protection from IDDM in Eα-transgenic NOD mice.
Collapse
Affiliation(s)
| | | | | | | | | | - George K. Papadopoulos
- †Laboratory of Biochemistry and Biophysics, Technological Educational Institute of Epirus, Arta, Greece
| | | |
Collapse
|
133
|
Kanagawa O, Vaupel BA, Xu G, Unanue ER, Katz JD. Cutting Edge: Thymic Positive Selection and Peripheral Activation of Islet Antigen-Specific T Cells: Separation of Two Diabetogenic Steps by an I-Ag7 Class II MHC β-Chain Mutant. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The diabetes-susceptible class II MHC genes (in human and mouse) share unique nonaspartic acid residues at position 57 of the class II β-chain. Transgenic expression of a mutant I-Ag7, substituting histidine and serine at position 56 and 57 of β-chain with proline and aspartic acid (I-Ag7PD), respectively, inhibits diabetes development in the nonobese diabetic mouse model. Here, we demonstrate that immature thymocytes expressing a diabetogenic islet Ag-specific transgenic TCR are positively selected by I-Ag7PD class II MHC to give rise to mature CD4+ T cells. However, splenic APCs expressing the same I-Ag7PD fail to present pancreatic islet Ag to mature T cells bearing this diabetogenic TCR. These results indicate that nonaspartic acid residues at position 57 of class II MHC β-chain is important for diabetogenic CD4+ T cell activation in the periphery but is not essential for the formation of a diabetogenic T cell repertoire in the thymus.
Collapse
Affiliation(s)
- Osami Kanagawa
- Department of Pathology, Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Barbara A. Vaupel
- Department of Pathology, Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Guan Xu
- Department of Pathology, Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Emil R. Unanue
- Department of Pathology, Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jonathan D. Katz
- Department of Pathology, Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
134
|
Abstract
Nerve injury pain remains a complex clinical challenge. Although the development of animal models of nerve injury pain has aided our understanding of potential pathophysiologic mechanisms for this condition, effective treatment still remains beyond our reach. Several classes of agents appear to block pain behavior in these animal models and humans, but they are often limited in their use by low efficacy, or undesirable side-effects. A prerequisite for the improvement of nerve injury pain includes the development of clinically-relevant animal models in which therapeutic targets can be identified.
Collapse
Affiliation(s)
- G Hans
- Molecular Neurobiology of Pain Laboratory, Anesthesia Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
135
|
Peterson M, Sant AJ. The Inability of the Nonobese Diabetic Class II Molecule to Form Stable Peptide Complexes Does Not Reflect a Failure to Interact Productively with DM. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Sequence variability in MHC class II molecules plays a major role in genetically determined susceptibility to insulin-dependent diabetes mellitus (IDDM). It is not yet clear whether MHC class II polymorphism allows selective binding of diabetogenic peptides or regulates some key intracellular events associated with class II-restricted Ag presentation. In this study, we have employed gene transfer techniques to analyze the intracellular events that control peptide acquisition by the unique class II molecule expressed by nonobese diabetic mice (I-Ag7). This structurally unique class II molecule fails to demonstrate stable binding to antigenic peptides and fails to undergo the conformational change associated with stable peptide binding to class II molecules. The experiments reported here demonstrate that I-Ag7 can productively associate with two protein cofactors important in class II-restricted Ag presentation, invariant chain (Ii) and DM. DM participates in the removal of the Ii-derived class II-associated Ii chain peptide and the p12 degradation product from the I-Ag7 molecule. In addition, I-Ag7 undergoes a conformational change when DM is expressed within the APC. Finally, DM can mediate accumulation of peptide/class II complexes on the surface of APCs. Collectively, our experiments indicate that the failure of the I-Ag7 molecule to stably bind peptide cannot be attributed to a failure to interact with the DM or Ii glycoproteins.
Collapse
Affiliation(s)
- Mary Peterson
- Department of Pathology, Committees on Immunology and Cancer Biology, University of Chicago, Chicago, IL 60637
| | - Andrea J. Sant
- Department of Pathology, Committees on Immunology and Cancer Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
136
|
Brenden N, Böhme J. Disease-protected major histocompatibility complex Ea-transgenic non-obese diabetic (NOD) mice show interleukin-4 production not seen in susceptible Ea-transgenic and non-transgenic NOD mice. Immunology 1998; 95:1-7. [PMID: 9767450 PMCID: PMC1364369 DOI: 10.1046/j.1365-2567.1998.00580.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The non-obese diabetic (NOD) mouse is an animal model for insulin-dependent diabetes that has many similarities to the human disease. NOD mice transgenic for the Ea gene, allowing expression of the E molecule, are protected from diabetes and rarely develop insulitis. An Ea transgene mutated in the promoter region, (DeltaY) lacks E expression on most B cells, thymic medullary epithelium and primary antigen-presenting cells, and confers no protection whatsoever. We have used these transgenic NOD mice, together with non-transgenic NOD mice, to study the correlation of E expression and production of interleukin-4 (IL-4) and interferon-gamma (IFN-gamma). We show that protected E-transgenic NOD mice have elevated levels of IL-4 compared with non-transgenic mice, both in the thymus and in the periphery. However, susceptible DeltaY-transgenic mice have elevated thymic IL-4 levels, but express almost as little IL-4 as non-transgenic NOD mice in the periphery. This drop in peripheral IL-4 production seen in DeltaY-transgenic mice thus correlates with the decreased E expression in the periphery of DeltaY-transgenic NOD mice. In contrast, there were no differences in IFN-gamma production between the three NOD lines. We suggest that Ea-transgenic NOD mice have E-selected regulatory T cells producing IL-4, which are subsequently activated by E-expressing primary antigen-presenting cells in the periphery. This activation would then be instrumental for the E-mediated protection from disease in NOD mice. Such a process would explain the total absence of protection in DeltaY-transgenic NOD mice, despite their widespread E expression.
Collapse
Affiliation(s)
- N Brenden
- Department of Immunology, Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
137
|
Tabata H, Kanai T, Yoshizumi H, Nishiyama S, Fujimoto S, Matsuda I, Yasukawa M, Matsushita S, Nishimura Y. Characterization of self-glutamic acid decarboxylase 65-reactive CD4+ T-cell clones established from Japanese patients with insulin-dependent diabetes mellitus. Hum Immunol 1998; 59:549-60. [PMID: 9757911 DOI: 10.1016/s0198-8859(98)00050-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate autoimmunity to glutamic acid decarboxylase (GAD) 65 in Japanese patients with insulin-dependent diabetes mellitus (IDDM, type I diabetes), we established seven CD4+ T-cell clones, by stimulating peripheral blood mononuclear cells (PBMC) of six IDDM patients, using a mixture of overlapping human GAD65 peptides. No GAD65 autoreactive T-cell clones were evidenced in four healthy controls. Specificities of T-cell clones were as follows: (a) two clones specific to GAD65 p111-131 (residue 111 to 131) + DR53 (DRB4*0103); (b) one clone specific to GAD65 p413-433 + DR1 (DRB1*0101); (c) two clones specific to GAD65 p200-217 + either DR9 (DRB1*0901) or DR8 (DRB1*0802); and (d) two clones specific to GAD65 p368-388 + DP2 (DPA1*01 or 0201-DPB1*0201). Two DR53-restricted and one DR1-restricted T-cell clones, responded to a recombinant human GAD65 protein, and showed cytotoxicity against B lymphoblastoid cell lines pre-pulsed with the peptides. Six T-cell clones exhibited the Th1-like phenotype. Interestingly, two DR53-restricted T-cell clones killed a Fas-deficient B lymphoblastoid cell line, thereby indicating that cytotoxicity was not completely dependent on a Fas-Fas ligand interaction. Thus, the T-cell epitopes were mapped in a limited portion of GAD65 protein, with a tendency to be restricted by disease-associated HLA-DR, but not DQ molecules.
Collapse
Affiliation(s)
- H Tabata
- Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Melanitou E, Joly F, Lathrop M, Boitard C, Avner P. Evidence for the presence of insulin-dependent diabetes-associated alleles on the distal part of mouse chromosome 6. Genome Res 1998; 8:608-20. [PMID: 9647636 PMCID: PMC310738 DOI: 10.1101/gr.8.6.608] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1997] [Accepted: 04/13/1998] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes (IDDM) is a complex disorder with multifactorial and polygenic etiology. A genome-wide screen performed in a BC1 cohort of a cross between the nonobese diabetic (NOD) mouse with the diabetes-resistant feral strain PWK detected a major locus contributing to diabetes development on the distal part of chromosome 6. Unlike the majority of other Idd loci identified in intraspecific crosses, susceptibility is associated with the presence of the PWK allele. Genetic linkage analysis of congenic lines segregating PWK chromosome 6 segments in a NOD background confirmed the presence of the Idd locus within this region. The genetic interval defined by analysis of congenic animals showed a peak of significant linkage (P = 0.0005) centered on an approximately 9-cM region lying between D6Mit11 and D6Mit25 genetic markers within distal mouse chromosome 6. [Genetic markers polymorphic between the NOD and PWK strains are available as a supplement at http://www.genome.org]
Collapse
Affiliation(s)
- E Melanitou
- Unité de Génétique Moléculaire Murine, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
139
|
Kanagawa O, Martin SM, Vaupel BA, Carrasco-Marin E, Unanue ER. Autoreactivity of T cells from nonobese diabetic mice: an I-Ag7-dependent reaction. Proc Natl Acad Sci U S A 1998; 95:1721-4. [PMID: 9465083 PMCID: PMC19165 DOI: 10.1073/pnas.95.4.1721] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mice bearing the I-Ag7 class II major histocompatibility complex molecules contain a high number of spontaneous autoreactive T cells, as estimated by limiting-dilution assays. We found this autoreactivity in various strains that bear the I-Ag7 molecule, such as the nonobese diabetic (NOD) mouse strain, which spontaneously develops autoimmune diabetes. However, NOD mice strains that do not express the I-Ag7 molecule, but instead express I-Ab, do not have a high incidence of autoreactive T cells. About 15% of the autoreactive T cells also recognize the I-Ag7 molecule expressed in the T2 line, which is defective in the processing of protein antigens. We interpret this to mean that some of the T cells may interact with class II molecules that are either devoid of peptides or contain a limited peptide content. We also find a high component of autoreactivity among antigen-specific T cell clones. These T cell clones proliferate specifically to protein antigens but also have a high level of reactivity to antigen-presenting cells not pulsed with antigen. Thus, the library of T cell receptors in NOD mice is skewed to autoreactivity, which we speculate is based on the weak peptide-binding properties of I-Ag7 molecules.
Collapse
Affiliation(s)
- O Kanagawa
- Center for Immunology and Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
140
|
Lühder F, Katz J, Benoist C, Mathis D. Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J Exp Med 1998; 187:379-87. [PMID: 9449718 PMCID: PMC2212118 DOI: 10.1084/jem.187.3.379] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II-mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2(g7) allele exhibited strong insulitis at approximately 3 wk of age and most developed diabetes a few weeks later. When one of the H-2(g7) alleles was replaced by H-2(b), insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Abetab gene, and did not merely reflect haplozygosity of the Abetag7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4(+) cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR alpha-chains. When the synthesis of endogenously encoded alpha-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II-mediated positive selection of T cells expressing additional specificities.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigens, CD/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Haplotypes/genetics
- Hemocyanins/immunology
- Hybridomas/immunology
- Interleukin-2/metabolism
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Muramidase/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
- Transgenes/genetics
Collapse
Affiliation(s)
- F Lühder
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 67404 Illkirch, Strasbourg, France
| | | | | | | |
Collapse
|
141
|
Ridgway WM, Fathman CG. The association of MHC with autoimmune diseases: understanding the pathogenesis of autoimmune diabetes. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 86:3-10. [PMID: 9434791 DOI: 10.1006/clin.1997.4449] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current paradigm of MHC and disease association is efficient binding of autoantigens by disease-associated MHC molecules leading to a T cell-mediated immune response and resultant autoimmune sequelae. Data presented here offer a different model for this association of MHC with autoimmune diabetes. This new explanation suggests that the association of MHC with autoimmunity results from "altered" thymic selection in which high-affinity self-reactive (potentially autoreactive) T cells escape negative selection. This model offers an explanation for the requirement of homozygous MHC class II expression in NOD mice (and in man) in susceptibility to IDDM.
Collapse
Affiliation(s)
- W M Ridgway
- Department of Medicine, Stanford University School of Medicine, California 94305-5111, USA
| | | |
Collapse
|
142
|
Schmidt D, Verdaguer J, Averill N, Santamaria P. A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J Exp Med 1997; 186:1059-75. [PMID: 9314555 PMCID: PMC2199069 DOI: 10.1084/jem.186.7.1059] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Certain major histocompatibility complex (MHC) class II haplotypes encode elements providing either susceptibility or dominant resistance to the development of spontaneous autoimmune diseases via mechanisms that remain undefined. Here we show that a pancreatic beta cell-reactive, I-Ag7-restricted, transgenic TCR that is highly diabetogenic in nonobese diabetic mice (H-2(g7)) undergoes thymocyte negative selection in diabetes-resistant H-2(g7/b), H-2(g7/k), H-2(g7/q), and H-2(g7/nb1) NOD mice by engaging antidiabetogenic MHC class II molecules on thymic bone marrow-derived cells, independently of endogenous superantigens. Thymocyte deletion is complete in the presence of I-Ab, I-Ak + I-Ek or I-Anb1 + I-Enb1 molecules, partial in the presence of I-Aq or I-Ak molecules alone, and absent in the presence of I-As molecules. Mice that delete the transgenic TCR develop variable degrees of insulitis that correlate with the extent of thymocyte deletion, but are invariably resistant to diabetes development. These results provide an explanation as to how protective MHC class II genes carried on one haplotype can override the genetic susceptibility to an autoimmune disease provided by allelic MHC class II genes carried on a second haplotype.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Bone Marrow/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Disease Susceptibility
- Female
- Gene Expression Regulation
- Genes, MHC Class II
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Haplotypes/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Immunity, Innate
- Islets of Langerhans/immunology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- D Schmidt
- Department of Microbiology and Infectious Diseases and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, Health Sciences Centre, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
143
|
Itoh N, Imagawa A, Hanafusa T, Waguri M, Yamamoto K, Iwahashi H, Moriwaki M, Nakajima H, Miyagawa J, Namba M, Makino S, Nagata S, Kono N, Matsuzawa Y. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J Exp Med 1997; 186:613-8. [PMID: 9254659 PMCID: PMC2199040 DOI: 10.1084/jem.186.4.613] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin-dependent diabetes mellitus (IDDM) is assumed to be a T cell-mediated autoimmune disease. To investigate the role of Fas-mediated cytotoxicity in pancreatic beta cell destruction, we established nonobese diabetic (NOD)-lymphoproliferation (lpr)/lpr mice lacking Fas. Out of three genotypes, female NOD-+/+ and NOD-+/lpr developed spontaneous diabetes by the age of 10 mo with the incidence of 68 and 62%, respectively. In contrast, NOD-lpr/lpr did not develop diabetes or insulitis. To further explore the role of Fas, adoptive transfer experiments were performed. When splenocytes were transferred from diabetic NOD, male NOD-+/+ and NOD-+/lpr developed diabetes with the incidence of 89 and 83%, respectively, whereas NOD-lpr/lpr did not show glycosuria by 12 wk after transfer. Severe mononuclear cell infiltration was revealed in islets of NOD-+/+ and NOD-+/lpr, whereas islet morphology remained intact in NOD-lpr/lpr. These results suggest that Fas-mediated cytotoxicity is required to initiate beta cell autoimmunity in NOD mice. Fas-Fas ligand system might be critical for autoimmune beta cell destruction leading to IDDM.
Collapse
Affiliation(s)
- N Itoh
- Department of Clinical Laboratory Science, School of Allied Health Sciences, Faculty of Medicine, Osaka University, Suita, Osaka 565, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Carrasco-Marin E, Kanagawa O, Unanue ER. Insights into the chemistry and biology of the I-Ag7 class II molecule. RESEARCH IN IMMUNOLOGY 1997; 148:291-301. [PMID: 9352592 DOI: 10.1016/s0923-2494(97)87237-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- E Carrasco-Marin
- Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
145
|
Thomas-Vaslin V, Damotte D, Coltey M, Le Douarin NM, Coutinho A, Salaün J. Abnormal T cell selection on nod thymic epithelium is sufficient to induce autoimmune manifestations in C57BL/6 athymic nude mice. Proc Natl Acad Sci U S A 1997; 94:4598-603. [PMID: 9114036 PMCID: PMC20769 DOI: 10.1073/pnas.94.9.4598] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate the role of primary T cell repertoire selection in the immunopathogenesis of autoimmune diseases, pure thymic epithelium (TE) from nonobese diabetic (NOD) embryos was grafted into non autoimmune prone newborn C57BL/6 athymic mice. The results show that NOD TE selects host T cell repertoires that establish autoimmunity in otherwise nondiabetic animals. Thus, such chimeras regularly show CD4 and CD8 T cell-mediated insulitis and sialitis, in contrast with syngeneic or allogeneic chimeras produced with TE from nonautoimmune strains. This is the first demonstration that autoimmunity to pancreatic beta cells and salivary glands can be established by the sole alteration of the thymic environment involved in T cell selection, regardless of the nature and presentation of both major histocompatibility complex and tissue-specific antigens on the target organ. These data indicate that T cell repertoire selection by the NOD thymic epithelium is sufficient to induce specific autoimmune characteristics in the context of an otherwise normal host.
Collapse
Affiliation(s)
- V Thomas-Vaslin
- Institut d'Embryologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique, Collège de France, Nogent sur Marne, France
| | | | | | | | | | | |
Collapse
|
146
|
Slover RH, Eisenbarth GS. Prevention of type I diabetes and recurrent beta-cell destruction of transplanted islets. Endocr Rev 1997; 18:241-58. [PMID: 9101139 DOI: 10.1210/edrv.18.2.0299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R H Slover
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
147
|
Pilström B, Böhme J. Alleviation of insulitis in NOD mice is associated with expression of transgenic MHC E molecules on primary antigen-presenting cells. Immunol Suppl 1997; 90:483-8. [PMID: 9176099 PMCID: PMC1456693 DOI: 10.1046/j.1365-2567.1997.00194.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Major histocompatibility complex (MHC) class II genes are important in the pathogenesis of insulin-dependent diabetes mellitus (IDDM) both in the mouse and in man. The non-obese diabetic (NOD) mouse, which is a good model for human IDDM, has a particular MHC class II with an A complex consisting of A alpha d and the unique A beta g7 chain, as well as an absent E molecule due to a deletion in the Ea promoter region. Transgenic insertion of a functional Ea gene protects against insulitis and diabetes, but when the transgene expression is restricted to certain compartments of the immune system by deleting parts of the promoter region, the protection against insulitis is disrupted. We have analysed three promoter-mutated lines where one lacks expression on B cells and has a reduced expression on approximately 1/3 of the dendritic cells and macrophages (Sma), one lacks thymic cortical expression and has a slightly reduced B-cell expression (delta X), and one lacks expression in the thymic medulla, on macrophages, dendritic cells and about half of the B cells (delta Y). None of these lines is protected against insulitis, but Sma and delta X display a reduced intensity of insulitis, with an average of 10-15% of the islets infiltrated in each mouse, while delta Y resembles non-transgenic mice with 30-35% infiltrated islets. Bone-marrow chimeras between Sma and delta Y mice demonstrate that peripheral cells of Sma origin reduce insulitis significantly when developed in the delta Y host, while insulitis is enhanced when delta Y bone marrow is given to Sma mice. This shows that E expression on the primary antigen-presenting macrophages and dendritic cells is of crucial importance to the alleviation of insulitis.
Collapse
Affiliation(s)
- B Pilström
- Department of Immunology, Stockholm University, Sweden.
| | | |
Collapse
|
148
|
Simone E, Daniel D, Schloot N, Gottlieb P, Babu S, Kawasaki E, Wegmann D, Eisenbarth GS. T cell receptor restriction of diabetogenic autoimmune NOD T cells. Proc Natl Acad Sci U S A 1997; 94:2518-21. [PMID: 9122227 PMCID: PMC20120 DOI: 10.1073/pnas.94.6.2518] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/1996] [Accepted: 12/30/1996] [Indexed: 02/04/2023] Open
Abstract
Restricted use of T cell receptor (TCR) gene segments is characteristic of several induced autoimmune disease models. TCR sequences have previously been unavailable for pathogenic T cells which react with a defined autoantigen in a spontaneous autoimmune disease. The majority of T cell clones, derived from islets of NOD mice which spontaneously develop type I diabetes, react with insulin peptide B-(9-23). We have sequenced the alpha and beta chains of TCRs from these B-(9-23)-reactive T cell clones. No TCR beta chain restriction was found. In contrast, the clones (10 of 13) used V alpha13 coupled with one of two homologous J alpha segments (J alpha45 or J alpha34 in 8 of 13 clones). Furthermore, 9 of 10 of the V alpha13 segments are a novel NOD sequence that we have tentatively termed V alpha13.3. This dramatic alpha chain restriction, similar to the beta chain restriction of other autoimmune models, provides a target for diagnostics and immunomodulatory therapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Clone Cells
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Insulin/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Molecular Sequence Data
- Peptide Fragments/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Spleen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- E Simone
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Jackerott M, Hornum L, Andreasen BE, Markholst H. Segregation of autoimmune type 1 diabetes in a cross between diabetic BB and brown Norway rats. J Autoimmun 1997; 10:35-41. [PMID: 9080298 DOI: 10.1006/jaut.1996.0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diabetes-prone DP-BB rats spontaneously develop insulin-dependent diabetes mellitus resembling type 1 diabetes mellitus in man. Expression of T cell lymphopenia and presence of at least one class II major histocompatibility complex (MHC) RT1u haplotype are required for development of diabetes. Diabetes segregation was studied in lymphopenic backcross (BC) offspring from a cross between male DP-BB/HRI and female BN/Mol rats. Diabetes occurred in 75% of BC rats with genotype RT1u/u and in 18% of those being RT1n/u in genotype. The latter developed diabetes significantly later than MHC homozygotes and parental DP-BBs. Our data further point to the existence of additional genes of minor importance for development of IDDM. One of these seemed to be positioned on the X chromosome. The recently published linkage to chromosome 18 could not be confirmed however. Finally, the BN-derived non-albino allele of the C gene was associated with higher diabetes incidence. This points to the existence of minor susceptibility genes in other strains of rats.
Collapse
Affiliation(s)
- M Jackerott
- Department of Immunogenetics, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | |
Collapse
|
150
|
Abstract
Autoimmune disease results from the action of environmental factors on a predisposed genotype. In this review, the role of genetic susceptibility in the aetiology of autoimmune disease is examined. As the genetics of autoimmune diabetes has been studied more intensively than that of other autoimmune diseases, supporting evidence is drawn principally from that example. Autoimmune diseases are not inherited as entities but as constitutions which confer an increased probability of developing disease. It is proposed that there are two components to autoimmune disease susceptibility. One confers susceptibility to autoimmunity per se, while the other determines tissue specificity. In this review, the concept of liability is introduced as a tool used in quantitative genetics and is applied to the analysis of autoimmune diabetes by considering a threshold model. In this example, empirically derived incidence figures are used to calculate heritability which is a relative measure of the influence of genetics and environmental factors. The validity of applying the concept of liability to diabetes is confirmed by examining the values of heritability calculated from empirical data obtained from different kindred relationships, and by confirming that the assumptions on which liability is based are supported by recent gene mapping data. Finally, the physiological significance of liability is considered and its significance to the cause of autoimmunity discussed.
Collapse
Affiliation(s)
- A G Baxter
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown NSW, Australia.
| |
Collapse
|