101
|
A booster with SARS-CoV-2 vaccines: protection against Omicron infection. Signal Transduct Target Ther 2022; 7:115. [PMID: 35383164 PMCID: PMC8980504 DOI: 10.1038/s41392-022-00973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
|
102
|
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614G Mutant: Conformational Plasticity and Frustration-Induced Allostery as Energetic Drivers of Highly Transmissible Spike Variants. J Chem Inf Model 2022; 62:1956-1978. [PMID: 35377633 DOI: 10.1021/acs.jcim.2c00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The structural and functional studies of the SARS-CoV-2 spike protein variants revealed an important role of the D614G mutation that is shared across many variants of concern (VOCs), suggesting the effect of this mutation on the enhanced virus infectivity and transmissibility. The recent structural and biophysical studies provided important evidence about multiple conformational substates of the D614G spike protein. The development of a plausible mechanistic model that can explain the experimental observations from a more unified thermodynamic perspective is an important objective of the current work. In this study, we employed efficient and accurate coarse-grained simulations of multiple structural substates of the D614G spike trimers together with the ensemble-based mutational frustration analysis to characterize the dynamics signatures of the conformational landscapes. By combining the local frustration profiling of the conformational states with residue-based mutational scanning of protein stability and network analysis of allosteric interactions and communications, we determine the patterns of mutational sensitivity in the functional regions and sites of variants. We found that the D614G mutation may induce a considerable conformational adaptability of the open states in the SARS-CoV-2 spike protein without compromising the folding stability and integrity of the spike protein. The results suggest that the D614G mutant may employ a hinge-shift mechanism in which the dynamic couplings between the site of mutation and the interprotomer hinge modulate the interdomain interactions, global mobility change, and the increased stability of the open form. This study proposes that mutation-induced modulation of the conformational flexibility and energetic frustration at the interprotomer interfaces may serve as an efficient mechanism for allosteric regulation of the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Ryan Kassab
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Keerthi Krishnan
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| |
Collapse
|
103
|
Xiang R, Wang Y, Wang L, Deng X, Huo S, Jiang S, Yu F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Curr Opin Virol 2022; 53:101199. [PMID: 35038651 PMCID: PMC8716168 DOI: 10.1016/j.coviro.2021.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) is a continuing worldwide threat to human health and social economy. Historically, SARS-CoV-2 follows SARS and MERS as the third coronavirus spreading across borders and continents, but far more dangerous with long-lasting symptomatic consequences. The current situation is strong evidence that coronaviruses will continue to be pathogens of consequence in the future, thus calling for the development of neutralizing antibody-based prophylactics and therapeutics for prevention and treatment of COVID-19 and other human coronavirus diseases. This review summarized the progresses of developing neutralizing monoclonal antibodies against infection of SARS-CoV-2, SARS-CoV, and MERS-CoV, and discussed their potential applications in prevention and treatment of COVID-19 and other human coronavirus diseases.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| |
Collapse
|
104
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
105
|
Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S, Huang B, Ji M, Hu H, Li Y, Xu S, Shi H, Zhang D, Liu L, Nawaz W, Hu Q, Ye S, Liu Y, Wu Z. Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Front Immunol 2022; 13:865401. [PMID: 35371009 PMCID: PMC8967979 DOI: 10.3389/fimmu.2022.865401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
Current COVID-19 vaccines need to take at least one month to complete inoculation and then become effective. Around 51% of the global population is still not fully vaccinated. Instantaneous protection is an unmet need among those who are not fully vaccinated. In addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All these highlight the unmet needing for short-term instantaneous prophylaxis (STIP) in the communities where SARS-CoV-2 is circulating. Previously, we reported nanobodies isolated from an alpaca immunized with the spike protein, exhibiting ultrahigh potency against SARS-CoV-2 and its variants. Herein, we found that Nb22, among our previously reported nanobodies, exhibited ultrapotent neutralization against Delta variant with an IC50 value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal structural analysis revealed that the binding of Nb22 to WH01 and Delta RBDs both effectively blocked the binding of RBD to hACE2. Additionally, intranasal Nb22 exhibited protection against SARS-CoV-2 Delta variant in the post-exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of note, intranasal Nb22 also demonstrated high efficacy against SARS-CoV-2 Delta variant in STIP for seven days administered by single dose and exhibited long-lasting retention in the respiratory system for at least one month administered by four doses, providing a strategy of instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh potency, long-lasting retention in the respiratory system and stability at room-temperature make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Yaxing Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Linjing Zhu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Sen Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Xu
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Haixia Shi
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Doudou Zhang
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Linshuo Liu
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
- Life Sciences Institute, Zhejiang University, Zhejiang, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Sheng Ye, ; Yalan Liu,
| |
Collapse
|
106
|
Chen J, Deng Y, Huang B, Han D, Wang W, Huang M, Zhai C, Zhao Z, Yang R, Zhao Y, Wang W, Zhai D, Tan W. DNA Vaccines Expressing the Envelope and Membrane Proteins Provide Partial Protection Against SARS-CoV-2 in Mice. Front Immunol 2022; 13:827605. [PMID: 35281016 PMCID: PMC8907653 DOI: 10.3389/fimmu.2022.827605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency of international concern, and an effective vaccine is urgently needed to control the pandemic. Envelope (E) and membrane (M) proteins are highly conserved structural proteins among SARS-CoV-2 and SARS-CoV and have been proposed as potential targets for the development of cross-protective vaccines. Here, synthetic DNA vaccines encoding SARS-CoV-2 E/M proteins (called p-SARS-CoV-2-E/M) were developed, and mice were immunised with three doses via intramuscular injection and electroporation. Significant cellular immune responses were elicited, whereas no robust humoral immunity was detected. In addition, novel H-2d-restricted T-cell epitopes were identified. Notably, although no drop in lung tissue virus titre was detected in DNA-vaccinated mice post-challenge with SARS-CoV-2, immunisation with either p-SARS-CoV-2-E or p-SARS-CoV-2-M provided minor protection and co-immunisation with p-SARS-CoV-2-E+M increased protection. Therefore, E/M proteins should be considered as vaccine candidates as they may be valuable in the optimisation of vaccination strategies against COVID-19.
Collapse
Affiliation(s)
- Jinni Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yao Deng
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Di Han
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wen Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Mengjing Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Chengcheng Zhai
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,School of Public Health, Baotou Medical College, Baotou, China
| | - Zhimin Zhao
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ren Yang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wenling Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Tan
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
107
|
Wang K, Jia Z, Bao L, Wang L, Cao L, Chi H, Hu Y, Li Q, Zhou Y, Jiang Y, Zhu Q, Deng Y, Liu P, Wang N, Wang L, Liu M, Li Y, Zhu B, Fan K, Fu W, Yang P, Pei X, Cui Z, Qin L, Ge P, Wu J, Liu S, Chen Y, Huang W, Wang Q, Qin CF, Wang Y, Qin C, Wang X. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature 2022; 603:919-925. [PMID: 35090164 PMCID: PMC8967717 DOI: 10.1038/s41586-022-04466-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/immunology
- Disease Models, Animal
- Humans
- Memory B Cells/immunology
- Mice
- Neutralization Tests
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linilin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology AMMS, Beijing, China
| | | | - Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Qianhui Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology AMMS, Beijing, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Min Liu
- Sinovac Biotech, Beijing, China
| | | | - Boling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinran Pei
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen Cui
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | | | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology AMMS, Beijing, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
108
|
Reincke SM, Yuan M, Kornau HC, Corman VM, van Hoof S, Sánchez-Sendin E, Ramberger M, Yu W, Hua Y, Tien H, Schmidt ML, Schwarz T, Jeworowski LM, Brandl SE, Rasmussen HF, Homeyer MA, Stöffler L, Barner M, Kunkel D, Huo S, Horler J, von Wardenburg N, Kroidl I, Eser TM, Wieser A, Geldmacher C, Hoelscher M, Gänzer H, Weiss G, Schmitz D, Drosten C, Prüss H, Wilson IA, Kreye J. SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies. Science 2022; 375:782-787. [PMID: 35076281 PMCID: PMC8939768 DOI: 10.1126/science.abm5835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigenic Drift and Shift
- COVID-19/immunology
- COVID-19/virology
- Cross Reactions
- Female
- Humans
- Male
- Middle Aged
- Neutralization Tests
- Protein Binding
- Protein Domains
- Protein Interaction Domains and Motifs
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- S. Momsen Reincke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center (NWFZ), Cluster NeuroCure, Berlin, Germany
| | - Victor M. Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin
| | - Scott van Hoof
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Elisa Sánchez-Sendin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Melanie Ramberger
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Tien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Luisa Schmidt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Tatjana Schwarz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Lara Maria Jeworowski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Sarah E. Brandl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Helle Foverskov Rasmussen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Marie A. Homeyer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Laura Stöffler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Martin Barner
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow and Mass Cytometry Core Facility, Berlin, Germany
| | - Shufan Huo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
| | - Johannes Horler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Niels von Wardenburg
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Tabea M. Eser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Hannes Gänzer
- Department of Internal Medicine, BKH Schwaz, Schwaz, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center (NWFZ), Cluster NeuroCure, Berlin, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Harald Prüss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jakob Kreye
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Neurology, Berlin, Germany
| |
Collapse
|
109
|
SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity. Cell Rep Med 2022; 3:100510. [PMID: 35233544 PMCID: PMC8761540 DOI: 10.1016/j.xcrm.2022.100510] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.
Collapse
|
110
|
Miyakawa K, Jeremiah SS, Yamaoka Y, Koyama T, Tokumasu R, Kudo M, Kato H, Ryo A. Molecular and Epidemiological Characterization of Emerging Immune-Escape Variants of SARS-CoV-2. Front Med (Lausanne) 2022; 9:811004. [PMID: 35223905 PMCID: PMC8866700 DOI: 10.3389/fmed.2022.811004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
The successive emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has presented a major challenge in the management of the coronavirus disease (COVID-19) pandemic. There are growing concerns regarding the emerging variants escaping vaccines or therapeutic neutralizing antibodies. In this study, we conducted an epidemiological survey to identify SARS-CoV-2 variants that are sporadically proliferating in vaccine-advanced countries. Subsequently, we created HiBiT-tagged virus-like particles displaying spike proteins derived from the variants to analyze the neutralizing efficacy of the BNT162b2 mRNA vaccine and several therapeutic antibodies. We found that the Mu variant and a derivative of the Delta strain with E484K and N501Y mutations significantly evaded vaccine-elicited neutralizing antibodies. This trend was also observed in the Beta and Gamma variants, although they are currently not prevalent. Although 95.2% of the vaccinees exhibited prominent neutralizing activity against the prototype strain, only 73.8 and 78.6% of the vaccinees exhibited neutralizing activity against the Mu and the Delta derivative variants, respectively. A long-term analysis showed that 88.8% of the vaccinees initially exhibited strong neutralizing activity against the currently circulating Delta strain; the number decreased to 31.6% for the individuals at 6 months after vaccination. Notably, these variants were shown to be resistant to several therapeutic antibodies. Our findings demonstrate the differential neutralization efficacy of the COVID-19 vaccine and monoclonal antibodies against circulating variants, suggesting the need for pandemic alerts and booster vaccinations against the currently prevalent variants.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
| | | | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa, Japan
| | - Takahiko Koyama
- International Business Machines Corporation Thomas J. Watson Research Center, New York, NY, United States
| | | | | | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Kanagawa, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
| |
Collapse
|
111
|
Mou L, Zhang Y, Feng Y, Hong H, Xia Y, Jiang X. Multiplexed Lab-on-a-Chip Bioassays for Testing Antibodies against SARS-CoV-2 and Its Variants in Multiple Individuals. Anal Chem 2022; 94:2510-2516. [PMID: 35080377 PMCID: PMC8805706 DOI: 10.1021/acs.analchem.1c04383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Neutralization assays that can measure neutralizing antibodies in serum are vital for large-scale serodiagnosis and vaccine evaluation. Here, we establish multiplexed lab-on-a-chip bioassays for testing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Compared with enzyme-linked immunosorbent assay (ELISA), our method exhibits a low consumption of sample and reagents (10 μL), a low limit of detection (LOD: 0.08 ng/mL), a quick sample-to-answer time (about 70 min), and multiplexed ability (5 targets in each of 7 samples in one assay). We can also increase the throughput as needed. The concentrations of antibodies against RBD, D614G, N501Y, E484K, and L452R/E484Q-mutants after two doses of vaccines are 6.6 ± 3.6, 8.7 ± 4.6, 3.4 ± 2.8, 3.8 ± 2.8, and 2.8 ± 2.3 ng/mL, respectively. This suggests that neutralizing activities against N501Y, E484K, and L452R/E484Q-mutants were less effective than RBD and D614G-mutant. We performed a plaque reduction neutralization test (PRNT) for all volunteers. Compared with PRNT, our assay is fast, accurate, inexpensive, and multiplexed with multiple-sample processing ability, which is good for large-scale serodiagnosis and vaccine evaluation.
Collapse
Affiliation(s)
- Lei Mou
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yingying Zhang
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Clinical Laboratory, Bao’an Authentic
TCM Therapy Hospital, No. 99, Laian Road, Baoan District, Shenzhen, Guangdong 518101, P. R. China
| | - Yao Feng
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Honghai Hong
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Yong Xia
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xingyu Jiang
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
112
|
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Sci Immunol 2022; 7:eabl5652. [PMID: 34914544 PMCID: PMC8977051 DOI: 10.1126/sciimmunol.abl5652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)–based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cell–B cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine; New Haven, CT, USA
| | | | | | | | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Bridget L. Menasche
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington; Seattle, WA, USA
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School; Newark, NJ, USA
| | - Uthaman Gowthaman
- Deparment of Pathology, University of Massachusetts Medical School; Worcester, MA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | | | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| |
Collapse
|
113
|
Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog 2022; 18:e1010260. [PMID: 35176090 PMCID: PMC8853550 DOI: 10.1371/journal.ppat.1010260] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is continuously evolving, and this poses a major threat to antibody therapies and currently authorized Coronavirus Disease 2019 (COVID-19) vaccines. It is therefore of utmost importance to investigate and predict the putative mutations on the spike protein that confer immune evasion. Antibodies are key components of the human immune system's response to SARS-CoV-2, and the spike protein is a prime target of neutralizing antibodies (nAbs) as it plays critical roles in host cell recognition, fusion, and virus entry. The potency of therapeutic antibodies and vaccines partly depends on how readily the virus can escape neutralization. Recent structural and functional studies have mapped the epitope landscape of nAbs on the spike protein, which illustrates the footprints of several nAbs and the site of escape mutations. In this review, we discuss (1) the emerging SARS-CoV-2 variants; (2) the structural basis for antibody-mediated neutralization of SARS-CoV-2 and nAb classification; and (3) identification of the RBD escape mutations for several antibodies that resist antibody binding and neutralization. These escape maps are a valuable tool to predict SARS-CoV-2 fitness, and in conjunction with the structures of the spike-nAb complex, they can be utilized to facilitate the rational design of escape-resistant antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
114
|
Shi W, Wang L, Zhou T, Sastry M, Yang ES, Zhang Y, Chen M, Chen X, Choe M, Creanga A, Leung K, Olia AS, Pegu A, Rawi R, Shen CH, Stancofski ESD, Talana CA, Teng IT, Wang S, Corbett KS, Tsybovsky Y, Mascola JR, Kwong PD. Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.25.477770. [PMID: 35118472 PMCID: PMC8811906 DOI: 10.1101/2022.01.25.477770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immunization with SARS-CoV-2 spike elicits diverse antibodies, but can any of these neutralize broadly? Here, we report the isolation and characterization of antibody WS6, from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, MERS-CoV, and hCoV-OC43. The crystal structure at 2-Å resolution of WS6 with its S2 epitope revealed recognition to center on a conserved helix, which was occluded in both prefusion and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion, post-viral attachment. Comparison of WS6 to other antibodies recently identified from convalescent donors or mice immunized with diverse spikes indicated a stem-helical supersite - centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156 - to be a promising target for vaccine design. HIGHLIGHTS SARS-CoV-2 spike mRNA-immunized mouse elicited an antibody, WS6, that cross reacts with spikes of diverse human and bat beta-coronavirusesWS6 neutralizes SARS-CoV-2 variants, SARS-CoV, and related virusesCrystal structure at 2-Å resolution of WS6 in complex with a conserved S2 peptide reveals recognition of a helical epitopeWS6 neutralizes by inhibition of fusion, post-viral attachmentWS6 recognizes a supersite of vulnerability also recognized by other recently identified antibodiesHelical supersite of vulnerability comprises a hydrophobic cluster spanning three helical turns, with acid residues framing the center turnGenetic and structural analysis indicate supersite recognition to be compatible with diverse antibody ontogenies.
Collapse
Affiliation(s)
- Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwan Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D. Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Lead Contact
| |
Collapse
|
115
|
Nabel KG, Clark SA, Shankar S, Pan J, Clark LE, Yang P, Coscia A, McKay LGA, Varnum HH, Brusic V, Tolan NV, Zhou G, Desjardins M, Turbett SE, Kanjilal S, Sherman AC, Dighe A, LaRocque RC, Ryan ET, Tylek C, Cohen-Solal JF, Darcy AT, Tavella D, Clabbers A, Fan Y, Griffiths A, Correia IR, Seagal J, Baden LR, Charles RC, Abraham J. Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science 2022; 375:eabl6251. [PMID: 34855508 PMCID: PMC9127715 DOI: 10.1126/science.abl6251] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- BNT162 Vaccine/immunology
- Betacoronavirus/immunology
- COVID-19/immunology
- COVID-19/virology
- Cross Reactions
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Epitopes
- Evolution, Molecular
- Humans
- Immune Evasion
- Models, Molecular
- Mutation
- Polysaccharides/analysis
- Protein Binding
- Protein Domains
- Receptors, Coronavirus/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Pseudotyping
Collapse
Affiliation(s)
- Katherine G. Nabel
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah A. Clark
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sundaresh Shankar
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Junhua Pan
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lars E. Clark
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Coscia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay G. A. McKay
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Haley H. Varnum
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Vesna Brusic
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole V. Tolan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Guohai Zhou
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michaël Desjardins
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Centre Hospitalier de l’Université de Montréal, Montreal QC H2X 0C1, Canada
| | - Sarah E. Turbett
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Amy C. Sherman
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anand Dighe
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Casey Tylek
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | | | | | | | | | - Yao Fan
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Jane Seagal
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Lindsey R. Baden
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
116
|
A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res 2022; 32:269-287. [PMID: 35046518 PMCID: PMC8767042 DOI: 10.1038/s41422-022-00612-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.
Collapse
|
117
|
Abstract
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Department of Chemistry, Indian Institute
of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh,
India
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of
Denmark, Building 206, 2800 Kongens Lyngby,
Denmark
| |
Collapse
|
118
|
Li W, Chen Y, Prévost J, Ullah I, Lu M, Gong SY, Tauzin A, Gasser R, Vézina D, Anand SP, Goyette G, Chaterjee D, Ding S, Tolbert WD, Grunst MW, Bo Y, Zhang S, Richard J, Zhou F, Huang RK, Esser L, Zeher A, Côté M, Kumar P, Sodroski J, Xia D, Uchil PD, Pazgier M, Finzi A, Mothes W. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep 2022; 38:110210. [PMID: 34971573 PMCID: PMC8673750 DOI: 10.1016/j.celrep.2021.110210] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here, we elucidate the structural basis and mode of action for two potent SARS-CoV-2 spike (S)-neutralizing monoclonal antibodies, CV3-1 and CV3-25, which remain effective against emerging variants of concern in vitro and in vivo. CV3-1 binds to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the "RBD-up" position and triggers potent shedding of the S1 subunit. In contrast, CV3-25 inhibits membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among β-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in the RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rick K Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Esser
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zeher
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
119
|
Renk H, Dulovic A, Seidel A, Becker M, Fabricius D, Zernickel M, Junker D, Groß R, Müller J, Hilger A, Bode SFN, Fritsch L, Frieh P, Haddad A, Görne T, Remppis J, Ganzemueller T, Dietz A, Huzly D, Hengel H, Kaier K, Weber S, Jacobsen EM, Kaiser PD, Traenkle B, Rothbauer U, Stich M, Tönshoff B, Hoffmann GF, Müller B, Ludwig C, Jahrsdörfer B, Schrezenmeier H, Peter A, Hörber S, Iftner T, Münch J, Stamminger T, Groß HJ, Wolkewitz M, Engel C, Liu W, Rizzi M, Hahn BH, Henneke P, Franz AR, Debatin KM, Schneiderhan-Marra N, Janda A, Elling R. Robust and durable serological response following pediatric SARS-CoV-2 infection. Nat Commun 2022; 13:128. [PMID: 35013206 PMCID: PMC8748910 DOI: 10.1038/s41467-021-27595-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The quality and persistence of children's humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.
Collapse
Affiliation(s)
- Hanna Renk
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Hilger
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Linus Fritsch
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pauline Frieh
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anneke Haddad
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tessa Görne
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Tina Ganzemueller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Huzly
- Institute of Virology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Weber
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Maximilian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Corinna Engel
- University Children's Hospital Tübingen, Tübingen, Germany
- Center for Pediatric Clinical Studies, University Hospital Tübingen, Tübingen, Germany
| | - Weimin Liu
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Beatrice H Hahn
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel R Franz
- University Children's Hospital Tübingen, Tübingen, Germany
- Center for Pediatric Clinical Studies, University Hospital Tübingen, Tübingen, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | | | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Elling
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
120
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Teng IT, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 2022; 185:113-130.e15. [PMID: 34921774 PMCID: PMC8639396 DOI: 10.1016/j.cell.2021.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
121
|
Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, Liang KH, Hsieh TY, Wu HC. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci 2022; 29:1. [PMID: 34983527 PMCID: PMC8724751 DOI: 10.1186/s12929-021-00784-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tzung-Yang Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
122
|
Abstract
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
123
|
Kojima N, Klausner JD. Protective immunity after recovery from SARS-CoV-2 infection. THE LANCET INFECTIOUS DISEASES 2022; 22:12-14. [PMID: 34762853 PMCID: PMC8575467 DOI: 10.1016/s1473-3099(21)00676-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
|
124
|
Peisahovics F, Rohaim MA, Munir M. Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern highlight distinctive amino acid substitution patterns. Eur J Cell Biol 2022; 101:151275. [PMID: 36156414 PMCID: PMC9484102 DOI: 10.1016/j.ejcb.2022.151275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 02/08/2023] Open
Abstract
Since the onset of pandemic in 2019, SARS-CoV-2 has diverged into numerous variants driven by antigenic and infectivity-oriented selection. Some variants have accumulated fitness-enhancing mutations, evaded immunity and spread despite global vaccination campaigns. The spike (S) glycoprotein of SARS-CoV-2 demonstrated the greatest immunogenicity and amino acid substitution diversity owing to its importance in the interaction with human angiotensin receptor 2 (hACE2). The S protein consistently emerges as an amino acid substitution (AAS) hotspot in all six lineages, however, in Omicron this enrichment is significantly higher. This study attempts to design and validate a method of mapping S-protein substitution profile across variants to identify the conserved and AAS regions. A substitution matrix was created based on publicly available databases, and the substitution localization was illustrated on a cryo-electron microscopy generated S-protein model. Our analyses indicated that the diversity of N-terminal (NTD) and receptor-binding (RBD) domains exceeded that of any other regions but still contained extended low substitution density regions particularly considering significantly broader substitution profiles of Omicron BA.2 and BA.4/5. Finally, the substitution matrix was compared to a random sample alignment of variant sequences, revealing discrepancies. Therefore, it was suggested to improve matrix accuracy by processing a large number of S-protein sequences using an automated algorithm. Several critical immunogenic and receptor-interacting residues were identified in the conserved regions within NTD and RBD. In conclusion, the structural and topological analysis of S proteins of SARS-CoV-2 variants highlight distinctive amino acid substitution patterns which may be foundational in predicting future variants.
Collapse
Affiliation(s)
| | | | - Muhammad Munir
- Correspondence to: Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
125
|
Jeong BS, Cha JS, Hwang I, Kim U, Adolf-Bryfogle J, Coventry B, Cho HS, Kim KD, Oh BH. Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants. MAbs 2022; 14:2021601. [PMID: 35030983 PMCID: PMC8765073 DOI: 10.1080/19420862.2021.2021601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Broadly Neutralizing Antibodies/genetics
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- COVID-19/immunology
- Crystallography, X-Ray
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Immunoglobulin Fragments/immunology
- Molecular Docking Simulation
- Monte Carlo Method
- Neutralization Tests
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Domains
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Bo-Seong Jeong
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Insu Hwang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Uijin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jared Adolf-Bryfogle
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Coventry
- Molecular Engineering & Sciences Institute & Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyun-Do Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
126
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 PMCID: PMC8750702 DOI: 10.1101/2021.12.29.474491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
127
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 DOI: 10.1101/2021.01.18.426999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
128
|
Lupala CS, Ye Y, Chen H, Su XD, Liu H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res Commun 2021; 590:34-41. [PMID: 34968782 PMCID: PMC8702632 DOI: 10.1016/j.bbrc.2021.12.079] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.
Collapse
Affiliation(s)
- Cecylia S Lupala
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China
| | - Yongjin Ye
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China
| | - Hong Chen
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, People's Republic of China
| | - Xiao-Dong Su
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, People's Republic of China.
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China; Physics Department, Beijing Normal University, Haidian, Beijing, 100875, People's Republic of China.
| |
Collapse
|
129
|
Murano K, Guo Y, Siomi H. The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines. Biochem Soc Trans 2021; 49:2879-2890. [PMID: 34854887 PMCID: PMC8786300 DOI: 10.1042/bst20210859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease (COVID-19) pandemic. As of August 2021, more than 200 million people have been infected with the virus and 4.3 million have lost their lives. Various monoclonal antibodies of human origin that neutralize the SARS-CoV-2 infection have been isolated from convalescent patients for therapeutic and prophylactic purposes. Several vaccines have been developed to restrict the spread of the virus and have been rapidly administered. However, the rollout of vaccines has coincided with the spread of variants of concern. Emerging variants of SARS-CoV-2 present new challenges for therapeutic antibodies and threaten the efficacy of current vaccines. Here, we review the problems faced by neutralizing antibodies and vaccines in the midst of the increasing spread of mutant viruses.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
130
|
Groß R, Zanoni M, Seidel A, Conzelmann C, Gilg A, Krnavek D, Erdemci-Evin S, Mayer B, Hoffmann M, Pöhlmann S, Liu W, Hahn BH, Beil A, Kroschel J, Jahrsdörfer B, Schrezenmeier H, Kirchhoff F, Münch J, Müller JA. Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants. EBioMedicine 2021; 75:103761. [PMID: 34929493 PMCID: PMC8682749 DOI: 10.1016/j.ebiom.2021.103761] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022] Open
Abstract
Background Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. Methods To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). Findings Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. Interpretation In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. Funding This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Michelle Zanoni
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sümeyye Erdemci-Evin
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Weimin Liu
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Beatrice H Hahn
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexandra Beil
- Central Department for Clinical Chemistry, University Hospital Ulm, 89081, Ulm, Germany
| | - Joris Kroschel
- Central Department for Clinical Chemistry, University Hospital Ulm, 89081, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
131
|
Lubin JH, Markosian C, Balamurugan D, Pasqualini R, Arap W, Burley SK, Khare SD. Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.12.472313. [PMID: 34931193 PMCID: PMC8687476 DOI: 10.1101/2021.12.12.472313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is enormous ongoing interest in characterizing the binding properties of the SARS-CoV-2 Omicron Variant of Concern (VOC) (B.1.1.529), which continues to spread towards potential dominance worldwide. To aid these studies, based on the wealth of available structural information about several SARS-CoV-2 variants in the Protein Data Bank (PDB) and a modeling pipeline we have previously developed for tracking the ongoing global evolution of SARS-CoV-2 proteins, we provide a set of computed structural models (henceforth models) of the Omicron VOC receptor-binding domain (omRBD) bound to its corresponding receptor Angiotensin-Converting Enzyme (ACE2) and a variety of therapeutic entities, including neutralizing and therapeutic antibodies targeting previously-detected viral strains. We generated bound omRBD models using both experimentally-determined structures in the PDB as well as machine learningbased structure predictions as starting points. Examination of ACE2-bound omRBD models reveals an interdigitated multi-residue interaction network formed by omRBD-specific substituted residues (R493, S496, Y501, R498) and ACE2 residues at the interface, which was not present in the original Wuhan-Hu-1 RBD-ACE2 complex. Emergence of this interaction network suggests optimization of a key region of the binding interface, and positive cooperativity among various sites of residue substitutions in omRBD mediating ACE2 binding. Examination of neutralizing antibody complexes for Barnes Class 1 and Class 2 antibodies modeled with omRBD highlights an overall loss of interfacial interactions (with gain of new interactions in rare cases) mediated by substituted residues. Many of these substitutions have previously been found to independently dampen or even ablate antibody binding, and perhaps mediate antibody-mediated neutralization escape ( e.g ., K417N). We observe little compensation of corresponding interaction loss at interfaces when potential escape substitutions occur in combination. A few selected antibodies ( e.g ., Barnes Class 3 S309), however, feature largely unaltered or modestly affected protein-protein interfaces. While we stress that only qualitative insights can be obtained directly from our models at this time, we anticipate that they can provide starting points for more detailed and quantitative computational characterization, and, if needed, redesign of monoclonal antibodies for targeting the Omicron VOC Spike protein. In the broader context, the computational pipeline we developed provides a framework for rapidly and efficiently generating retrospective and prospective models for other novel variants of SARS-CoV-2 bound to entities of virological and therapeutic interest, in the setting of a global pandemic.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - D. Balamurugan
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Stephen K. Burley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92067
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
132
|
Dussupt V, Sankhala RS, Mendez-Rivera L, Townsley SM, Schmidt F, Wieczorek L, Lal KG, Donofrio GC, Tran U, Jackson ND, Zaky WI, Zemil M, Tritsch SR, Chen WH, Martinez EJ, Ahmed A, Choe M, Chang WC, Hajduczki A, Jian N, Peterson CE, Rees PA, Rutkowska M, Slike BM, Selverian CN, Swafford I, Teng IT, Thomas PV, Zhou T, Smith CJ, Currier JR, Kwong PD, Rolland M, Davidson E, Doranz BJ, Mores CN, Hatziioannou T, Reiley WW, Bieniasz PD, Paquin-Proulx D, Gromowski GD, Polonis VR, Michael NL, Modjarrad K, Joyce MG, Krebs SJ. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat Immunol 2021; 22:1503-1514. [PMID: 34716452 PMCID: PMC8642242 DOI: 10.1038/s41590-021-01068-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Binding Sites/genetics
- COVID-19/immunology
- COVID-19/metabolism
- COVID-19/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Humans
- Mice, Transgenic
- Neutralization Tests
- Protein Binding
- Protein Conformation
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- Sequence Homology, Amino Acid
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Vincent Dussupt
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Rajeshwer S. Sankhala
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Letzibeth Mendez-Rivera
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Samantha M. Townsley
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Fabian Schmidt
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - Lindsay Wieczorek
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Kerri G. Lal
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Gina C. Donofrio
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Ursula Tran
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Nathaniel D. Jackson
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Weam I. Zaky
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Michelle Zemil
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Sarah R. Tritsch
- grid.253615.60000 0004 1936 9510Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Wei-Hung Chen
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Elizabeth J. Martinez
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Aslaa Ahmed
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Misook Choe
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - William C. Chang
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Agnes Hajduczki
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Ningbo Jian
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Caroline E. Peterson
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Phyllis A. Rees
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Magdalena Rutkowska
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - Bonnie M. Slike
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | | | - Isabella Swafford
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - I-Ting Teng
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Paul V. Thomas
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Tongqing Zhou
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | | | - Jeffrey R. Currier
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Peter D. Kwong
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Morgane Rolland
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | | | | | - Christopher N. Mores
- grid.253615.60000 0004 1936 9510Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Theodora Hatziioannou
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - William W. Reiley
- grid.250945.f0000 0004 0462 7513Trudeau Institute, Saranac Lake, NY USA
| | - Paul D. Bieniasz
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA ,grid.134907.80000 0001 2166 1519Howard Hughes Medical Institute, The Rockefeller University, New York, NY USA
| | - Dominic Paquin-Proulx
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Gregory D. Gromowski
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Victoria R. Polonis
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Nelson L. Michael
- grid.507680.c0000 0001 2230 3166Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Kayvon Modjarrad
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - M. Gordon Joyce
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Shelly J. Krebs
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| |
Collapse
|
133
|
Wang Y, Yuan M, Peng J, Wilson IA, Wu NC. A large-scale systematic survey of SARS-CoV-2 antibodies reveals recurring molecular features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.26.470157. [PMID: 34873599 PMCID: PMC8647650 DOI: 10.1101/2021.11.26.470157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past two years, the global research in combating COVID-19 pandemic has led to isolation and characterization of numerous human antibodies to the SARS-CoV-2 spike. This enormous collection of antibodies provides an unprecedented opportunity to study the antibody response to a single antigen. From mining information derived from 88 research publications and 13 patents, we have assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike from >200 donors. Analysis of antibody targeting of different domains of the spike protein reveals a number of common (public) responses to SARS-CoV-2, exemplified via recurring IGHV/IGK(L)V pairs, CDR H3 sequences, IGHD usage, and somatic hypermutation. We further present a proof-of-concept for prediction of antigen specificity using deep learning to differentiate sequences of antibodies to SARS-CoV-2 spike and to influenza hemagglutinin. Overall, this study not only provides an informative resource for antibody and vaccine research, but fundamentally advances our molecular understanding of public antibody responses to a viral pathogen.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
134
|
Maier HE, Balmaseda A, Ojeda S, Cerpas C, Sanchez N, Plazaola M, van Bakel H, Kubale J, Lopez R, Saborio S, Barilla C, Harris E, Kuan G, Gordon A. An immune correlate of SARS-CoV-2 infection and severity of reinfections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.23.21266767. [PMID: 34845458 PMCID: PMC8629202 DOI: 10.1101/2021.11.23.21266767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background An immune correlate of protection from SARS-CoV-2 infection is urgently needed. Methods We used an ongoing household cohort with an embedded transmission study that closely monitors participants regardless of symptom status. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity. Sequencing was performed to determine circulating strains of SARS-CoV-2. We investigated the protection associated with seropositivity resulting from prior infection, the anti-spike antibody titers needed for protection, and we compared the severity of first and second infections. Results In March 2021, 62.3% of the cohort was seropositive. After March 2021, gamma and delta variants predominated. Seropositivity was associated with 69.2% protection from any infection (95% CI: 60.7%-75.9%), with higher protection against moderate or severe infection (79.4%, 95% CI: 64.9%-87.9%). Anti-spike titers of 327 and 2,551 were associated with 50% and 80% protection from any infection; titers of 284 and 656 were sufficient for protection against moderate or severe disease. Second infections were less severe than first infections (Relative Risk (RR) of moderated or severe disease: 0.6, 95% CI: 0.38-0.98; RR of subclinical disease:1.9, 95% CI: 1.33-2.73). Conclusions Prior infection-induced immunity is protective against infection when predominantly gamma and delta SARS-CoV-2 circulated. The protective antibody titers presented may be useful for vaccine policy and control measures. While second infections were somewhat less severe, they were not as mild as ideal. A strategy involving vaccination will be needed to ease the burden of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Hannah E. Maier
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas at the Ministry of Health, Managua, Nicaragua
| | - Cristiam Cerpas
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | | | - John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| | - Roger Lopez
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Saira Saborio
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | | | | | | | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas at the Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| |
Collapse
|
135
|
Lou F, Li M, Pang Z, Jiang L, Guan L, Tian L, Hu J, Fan J, Fan H. Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Front Immunol 2021; 12:744242. [PMID: 34804024 PMCID: PMC8602852 DOI: 10.3389/fimmu.2021.744242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
The global pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), places a heavy burden on global public health. Four SARS-CoV-2 variants of concern including B.1.1.7, B.1.351, B.1.617.2, and P.1, and two variants of interest including C.37 and B.1.621 have been reported to have potential immune escape, and one or more mutations endow them with worrisome epidemiologic, immunologic, or pathogenic characteristics. This review introduces the latest research progress on SARS-CoV-2 variants of interest and concern, key mutation sites, and their effects on virus infectivity, mortality, and immune escape. Moreover, we compared the effects of various clinical SARS-CoV-2 vaccines and convalescent sera on epidemic variants, and evaluated the neutralizing capability of several antibodies on epidemic variants. In the end, SARS-CoV-2 evolution strategies in different transmission stages, the impact of different vaccination strategies on SARS-CoV-2 immune escape, antibody therapy strategies and COVID-19 epidemic control prospects are discussed. This review will provide a systematic and comprehensive understanding of the secret of SARS-CoV-2 variants of interest/concern and immune escape.
Collapse
Affiliation(s)
- Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiaming Hu
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
136
|
Martinez DR, Schäfer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Stalls V, Janowska K, Beaudoin E, Manne K, Mansouri K, Edwards RJ, Cronin K, Yount B, Anasti K, Montgomery SA, Tang J, Golding H, Shen S, Zhou T, Kwong PD, Graham BS, Mascola JR, Montefiori DC, Alam SM, Sempowski GD, Khurana S, Wiehe K, Saunders KO, Acharya P, Haynes BF, Baric RS. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 2021; 14:eabj7125. [PMID: 34726473 DOI: 10.1126/scitranslmed.abj7125] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Esther Beaudoin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A Montgomery
- Department of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Shaunna Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
137
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
138
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in nonhuman primates is coincident with an anamnestic antibody response in the lower airway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34729558 DOI: 10.1101/2021.10.23.465542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
|
139
|
Corbett KS, Gagne M, Wagner DA, O' Connell S, Narpala SR, Flebbe DR, Andrew SF, Davis RL, Flynn B, Johnston TS, Stringham CD, Lai L, Valentin D, Van Ry A, Flinchbaugh Z, Werner AP, Moliva JI, Sriparna M, O'Dell S, Schmidt SD, Tucker C, Choi A, Koch M, Bock KW, Minai M, Nagata BM, Alvarado GS, Henry AR, Laboune F, Schramm CA, Zhang Y, Yang ES, Wang L, Choe M, Boyoglu-Barnum S, Wei S, Lamb E, Nurmukhambetova ST, Provost SJ, Donaldson MM, Marquez J, Todd JPM, Cook A, Dodson A, Pekosz A, Boritz E, Ploquin A, Doria-Rose N, Pessaint L, Andersen H, Foulds KE, Misasi J, Wu K, Carfi A, Nason MC, Mascola J, Moore IN, Edwards DK, Lewis MG, Suthar MS, Roederer M, McDermott A, Douek DC, Sullivan NJ, Graham BS, Seder RA. Protection against SARS-CoV-2 beta variant in mRNA-1273 vaccine-boosted nonhuman primates. Science 2021; 374:1343-1353. [PMID: 34672695 DOI: 10.1126/science.abl8912] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O' Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher D Stringham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilin Lai
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | | | | | | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Sriparna
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shi Wei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha J Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eli Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Wu
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
140
|
Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, Yumoto K, Tian C, Fukuhara H, Sasaki M, Orba Y, Shiwa N, Iwata N, Nagata N, Suzuki T, Sasaki J, Sekizuka T, Tonouchi K, Sun L, Fukushi S, Satofuka H, Kazuki Y, Oshimura M, Kurosaki T, Kuroda M, Matsuura Y, Suzuki T, Sawa H, Hashiguchi T, Maenaka K, Takahashi Y. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity 2021; 54:2385-2398.e10. [PMID: 34508662 PMCID: PMC8382582 DOI: 10.1016/j.immuni.2021.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.
Collapse
Affiliation(s)
- Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kohei Yumoto
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Cong Tian
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Nozomi Shiwa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Naoko Iwata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tateki Suzuki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Jiei Sasaki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroyuki Satofuka
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan; Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan; Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan.
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
141
|
Shrestha LB, Tedla N, Bull RA. Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants. Front Immunol 2021; 12:752003. [PMID: 34646276 PMCID: PMC8502962 DOI: 10.3389/fimmu.2021.752003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have become a major concern in the containment of current pandemic. The variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta) have shown reduced sensitivity to monoclonal antibodies, plasma and/or sera obtained from convalescent patients and vaccinated individuals. Development of potent therapeutic monoclonal antibodies (mAbs) with broad neutralizing breadth have become a priority for alleviating the devastating effects of this pandemic. Here, we review some of the most promising broadly neutralizing antibodies obtained from plasma of patients that recovered from early variants of SARS-CoV-2 that may be effective against emerging new variants of the virus. This review summarizes several mAbs, that have been discovered to cross-neutralize across Sarbecoviruses and SARS-CoV-2 escape mutants. Understanding the characteristics that confer this broad and cross-neutralization functions of these mAbs would inform on the development of therapeutic antibodies and guide the discovery of second-generation vaccines.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| |
Collapse
|
142
|
Pegu A, O’Connell SE, Schmidt SD, O’Dell S, Talana CA, Lai L, Albert J, Anderson E, Bennett H, Corbett KS, Flach B, Jackson L, Leav B, Ledgerwood JE, Luke CJ, Makowski M, Nason MC, Roberts PC, Roederer M, Rebolledo PA, Rostad CA, Rouphael NG, Shi W, Wang L, Widge AT, Yang ES, Beigel JH, Graham BS, Mascola JR, Suthar MS, McDermott AB, Doria-Rose NA. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021; 373:1372-1377. [PMID: 34385356 PMCID: PMC8691522 DOI: 10.1126/science.abj4176] [Citation(s) in RCA: 386] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 01/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations may diminish vaccine-induced protective immune responses, particularly as antibody titers wane over time. Here, we assess the effect of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and angiotensin-converting enzyme 2 (ACE2)–competing antibodies elicited by the messenger RNA (mRNA) vaccine mRNA-1273 over 7 months. Cross-reactive neutralizing responses were rare after a single dose. At the peak of response to the second vaccine dose, all individuals had responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of the mRNA-1273 vaccine. Across all assays, B.1.351 had the lowest antibody recognition. These data complement ongoing studies to inform the potential need for additional boost vaccinations.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E. O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chloe A. Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilin Lai
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Evan Anderson
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | | | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine J. Luke
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Martha C. Nason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul C. Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paulina A. Rebolledo
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Christina A. Rostad
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nadine G. Rouphael
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia T. Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - The mRNA-1273 Study Group§
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emmes Company, Rockville, MD 20850, USA
- Moderna, Inc., Cambridge, MA 02139, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Hope Clinic, Department of Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - John H. Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
143
|
Pang NYL, Pang ASR, Chow VT, Wang DY. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil Med Res 2021; 8:47. [PMID: 34465396 PMCID: PMC8405719 DOI: 10.1186/s40779-021-00342-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a newly identified member of the coronavirus family that has caused the Coronavirus disease 2019 (COVID-19) pandemic. This rapidly evolving and unrelenting SARS-CoV-2 has disrupted the lives and livelihoods of millions worldwide. As of 23 August 2021, a total of 211,373,303 COVID-19 cases have been confirmed globally with a death toll of 4,424,341. A strong understanding of the infection pathway of SARS-CoV-2, and how our immune system responds to the virus is highly pertinent for guiding the development and improvement of effective treatments. In this review, we discuss the current understanding of neutralising antibodies (NAbs) and their implications in clinical practice. The aspects include the pathophysiology of the immune response, particularly humoral adaptive immunity and the roles of NAbs from B cells in infection clearance. We summarise the onset and persistence of IgA, IgM and IgG antibodies, and we explore their roles in neutralising SARS-CoV-2, their persistence in convalescent individuals, and in reinfection. Furthermore, we also review the applications of neutralising antibodies in the clinical setting-from predictors of disease severity to serological testing to vaccinations, and finally in therapeutics such as convalescent plasma infusion.
Collapse
Affiliation(s)
- Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | | | - Vincent T Chow
- Department of Microbiology and Immunology, National University of Singapore, Science Drive 2, Singapore, 117545, Singapore. .,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - De-Yun Wang
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
144
|
Li D, Sempowski GD, Saunders KO, Acharya P, Haynes BF. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med 2021; 73:1-16. [PMID: 34428080 DOI: 10.1146/annurev-med-042420-113838] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prophylactic and therapeutic drugs are urgently needed to combat coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over the past year, SARS-CoV-2 neutralizing antibodies have been developed for preventive or therapeutic uses. While neutralizing antibodies target the spike protein, their neutralization potency and breadth vary according to recognition epitopes. Several potent SARS-CoV-2 antibodies have shown degrees of success in preclinical or clinical trials, and the US Food and Drug Administration has issued emergency use authorization for two neutralizing antibody cocktails. Nevertheless, antibody therapy for SARS-CoV-2 still faces potential challenges, including emerging viral variants of concern that have antibody-escape mutations and the potential for antibody-mediated enhancement of infection or inflammation. This review summarizes representative SARS-CoV-2 neutralizing antibodies that have been reported and discusses prospects and challenges for the development of the next generation of COVID-19 preventive or therapeutic antibodies. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
145
|
Yuan M, Huang D, Lee CCD, Wu NC, Jackson AM, Zhu X, Liu H, Peng L, van Gils MJ, Sanders RW, Burton DR, Reincke SM, Prüss H, Kreye J, Nemazee D, Ward AB, Wilson IA. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science 2021; 373:818-823. [PMID: 34016740 PMCID: PMC8284396 DOI: 10.1126/science.abh1139] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Neutralizing antibodies (nAbs) elicited against the receptor binding site (RBS) of the spike protein of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are generally less effective against recent variants of concern. RBS residues Glu484, Lys417, and Asn501 are mutated in variants first described in South Africa (B.1.351) and Brazil (P.1). We analyzed their effects on angiotensin-converting enzyme 2 binding, as well as the effects of two of these mutations (K417N and E484K) on nAbs isolated from COVID-19 patients. Binding and neutralization of the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2), which can both bind the RBS in alternative binding modes, are abrogated by K417N, E484K, or both. These effects can be structurally explained by their extensive interactions with RBS nAbs. However, nAbs to the more conserved, cross-neutralizing CR3022 and S309 sites were largely unaffected. The results have implications for next-generation vaccines and antibody therapies.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigenic Variation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Binding Sites
- Binding Sites, Antibody
- COVID-19/immunology
- COVID-19/virology
- Epitopes
- Humans
- Immune Evasion
- Mutation
- Protein Binding
- Protein Domains
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
146
|
Martinez DR, Schäfer A, Leist SR, Li D, Gully K, Yount B, Feng JY, Bunyan E, Porter DP, Cihlar T, Montgomery SA, Haynes BF, Baric RS, Nussenzweig MC, Sheahan TP. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Rep 2021; 36:109450. [PMID: 34289384 PMCID: PMC8270748 DOI: 10.1016/j.celrep.2021.109450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Improving clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small-molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAbs) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). It is not known whether combination RDV/mAb will improve outcomes over single-agent therapies or whether antibody therapies will remain efficacious against variants. Here, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 h after infection and have therapeutic efficacy in vivo against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared with single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David R Martinez
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kendra Gully
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michel C Nussenzweig
- The Rockefeller University, New York, NY, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Timothy P Sheahan
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
147
|
Li X, Zhang L, Chen S, Ouyang H, Ren L. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms 2021; 9:1479. [PMID: 34361915 PMCID: PMC8306356 DOI: 10.3390/microorganisms9071479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which caused Coronaviruses Disease 2019 (COVID-19) and a worldwide pandemic, is the seventh human coronavirus that has been cross-transmitted from animals to humans. It can be predicted that with continuous contact between humans and animals, more viruses will spread from animals to humans. Therefore, it is imperative to develop universal coronavirus or pan-coronavirus vaccines or drugs against the next coronavirus pandemic. However, a suitable target is critical for developing pan-coronavirus antivirals against emerging or re-emerging coronaviruses. In this review, we discuss the latest progress of possible targets of pan-coronavirus antiviral strategies for emerging or re-emerging coronaviruses, including targets for pan-coronavirus inhibitors and vaccines, which will provide prospects for the current and future research and treatment of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Linzhu Ren
- Key Laboratory for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, 5333 Xi’An Road, Changchun 130062, China; (X.L.); (L.Z.); (S.C.); (H.O.)
| |
Collapse
|
148
|
Gu R, Mao T, Lu Q, Tianjiao Su T, Wang J. Myeloid dysregulation and therapeutic intervention in COVID-19. Semin Immunol 2021; 55:101524. [PMID: 34823995 PMCID: PMC8576142 DOI: 10.1016/j.smim.2021.101524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The dysregulation of myeloid cell responses is increasingly demonstrated to be a major mechanism of pathogenesis for COVID-19. The pathological cellular and cytokine signatures associated with this disease point to a critical role of a hyperactivated innate immune response in driving pathology. Unique immunopathological features of COVID-19 include myeloid-cell dominant inflammation and cytokine release syndrome (CRS) alongside lymphopenia and acute respiratory distress syndrome (ARDS), all of which correlate with severe disease. Studies suggest a range of causes mediating myeloid hyperactivation, such as aberrant innate sensing, asynchronized immune cellular responses, as well as direct viral protein/host interactions. These include the recent identification of new myeloid cell receptors that bind SARS-CoV-2, which drive myeloid cell hyperinflammatory responses independently of lung epithelial cell infection via the canonical receptor, angiotensin-converting enzyme 2 (ACE2). The spectrum and nature of myeloid cell dysregulation in COVID-19 also differs from, at least to some extent, what is observed in other infectious diseases involving myeloid cell activation. While much of the therapeutic effort has focused on preventative measures with vaccines or neutralizing antibodies that block viral infection, recent clinical trials have also targeted myeloid cells and the associated cytokines as a means to resolve CRS and severe disease, with promising but thus far modest effects. In this review, we critically examine potential mechanisms driving myeloid cell dysregulation, leading to immunopathology and severe disease, and discuss potential therapeutic strategies targeting myeloid cells as a new paradigm for COVID-19 treatment.
Collapse
Affiliation(s)
- Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Tina Tianjiao Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA.
| |
Collapse
|