101
|
Liu H, Zhu C, Luo J, Wang Y, Li D, Li Y, Zhou J, Yuan W, Ou Y, Liu M, Wu X. ZNF411, a novel KRAB-containing zinc-finger protein, suppresses MAP kinase signaling pathway. Biochem Biophys Res Commun 2004; 320:45-53. [PMID: 15207700 DOI: 10.1016/j.bbrc.2004.05.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Indexed: 11/25/2022]
Abstract
Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. The zinc-finger-containing transcription factor has been implicated as a critical regulator of multiple cardiac-expressed genes as well as a regulator of inducible gene expression in response to hypertrophic stimulation. Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of eukaryotic cell regulation. The MAPKs function inside the nucleus and target transcription factors that are prebound to DNA. Many transcription factors are probably important MAPK targets. Here, we have cloned a new zinc-finger gene named ZNF411 using degenerate primers from an early embryo heart cDNA library, which mapped to 19p13.11. The ZNF411 gene consists of 2360 nucleotides and encodes a protein of 499 amino acids with an amino-terminal KRAB domain and eleven carboxy-terminal C2H2 zinc-finger units. Northern blot analysis indicates that a 2.4 kb transcript specific for ZNF411 is expressed in heart, skeletal muscle, and placenta at adult stage and is expressed in most of the examined embryonic tissues, especially at a higher level in skeletal muscle, heart, and pancreas. ZNF411 protein distributes evenly in nuclei when overexpressed in the cells. Reporter gene assays show that ZNF411 is a transcriptional repressor and overexpression of ZNF411 in the COS-7 cells inhibits the transcriptional activities of AP-1 and SRE. These results indicate that ZNF411 is a member of the zinc-finger transcription factor family and may be involved in the heart development, and it probably works as a negative regulator in MAPK signaling pathway.
Collapse
Affiliation(s)
- Hui Liu
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Beom S, Cheong D, Torres G, Caron MG, Kim KM. Comparative Studies of Molecular Mechanisms of Dopamine D2 and D3 Receptors for the Activation of Extracellular Signal-regulated Kinase. J Biol Chem 2004; 279:28304-14. [PMID: 15102843 DOI: 10.1074/jbc.m403899200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine D(2) and D(3) receptors (D(2)R/D(3)R), which have similar structural architecture as well as functional similarities, are expressed in the same brain dopaminergic neurons. It is intriguing that two receptor proteins with virtually the same functional roles are expressed in the same neuron. Recently we have shown that D(2)R and D(3)R possess different regulatory processes including intracellular trafficking properties, which implies that they might employ different signaling mechanisms for regulation of the same cellular processes. Here we studied the signaling pathways of ERK activation mediated by D(2)R and D(3)R in HEK-293 cells and corroborated them with concomitant studies in COS-7 cells and C6 cells. Our results show that Src, phosphatidylinositol 3-kinase, and atypical protein kinase C were commonly involved in D(2)R-/D(3)R-mediated ERK activation. However, beta-arrestin and sequestration of D(2)R/D(3)R were found not to be involved. ERK activations mediated by D(3)R, but not D(2)R, were blocked by betaARK-CT, AG1478 epidermal growth factor receptor (EGFR) inhibitor, and by dominant negative mutants of Ras and Raf, suggesting the involvement of the Gbetagamma(i) pathway. The alpha-subunit of G(o) (Galpha(o)) was able to couple with D(3)R to mediate ERK activation. We conclude that D(3)R mainly utilizes the betagamma pathway of G(i) protein, which involves the transactivation of EGFR in HEK-293 cells. In contrast, the alpha-subunit of the G(i) protein plays a main role in D(2)R-mediated ERK activation. Our study suggests one example of intricate cellular regulations in the brain, that is, dopaminergic neurons could regulate ERK activity more flexibly through alternative usage of either the D(2)R or D(3)R pathway depending on the cellular situation.
Collapse
Affiliation(s)
- SunRyeo Beom
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju, 500-757 Korea
| | | | | | | | | |
Collapse
|
103
|
Lenoir M, Djerdjouri B, Périanin A. Stroma Cell-Derived Factor 1α Mediates Desensitization of Human Neutrophil Respiratory Burst in Synovial Fluid from Rheumatoid Arthritic Patients. THE JOURNAL OF IMMUNOLOGY 2004; 172:7136-43. [PMID: 15153537 DOI: 10.4049/jimmunol.172.11.7136] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Classical chemoattractants such as fMLP or the complement factor C5a use G protein (Gi)-coupled receptors to stimulate both chemotaxis and production of reactive oxygen species (respiratory burst, RB) by polymorphonuclear leukocytes (PMN). The chemokine stroma cell-derived factor 1alpha (SDF1alpha) and its Gi-coupled receptor, CXCR4, regulate leukocyte trafficking and recruitment to the synovial fluid of rheumatoid arthritic patients (RA-SF). However, the role of SDF1alpha in the RB is unknown and was studied in this work in vitro with healthy PMN in the absence and presence of RA-SF. In healthy PMN, SDF1alpha failed to stimulate the RB, even though the p38 mitogen-activated protein kinase was activated to a similar level as in fMLP-stimulated PMN. In contrast, the SDF1alpha-mediated calcium transients and activation of phosphatidylinositol 3-kinase/Akt were partially deficient, while p44/42 mitogen-activated protein kinases were not activated. SDF1alpha actually desensitized weakly the fMLP-mediated RB of healthy PMN. This cross-inhibitory effect was amplified in PMN treated with RA-SF, providing a protection against the exacerbation of RB induced by C5a or fMLP. This SDF1alpha beneficial effect, which was prevented by the CXCR4 antagonist AMD3100, was associated with impairment of C5a- and fMLP-mediated early signaling events. Thus, although SDF1alpha promotes leukocyte emigration into rheumatoid synovium, our data suggest it cross-desensitizes the production of oxidant by primed PMN, a property that may be beneficial in the context of arthritis.
Collapse
Affiliation(s)
- Monique Lenoir
- Département de Biologie Cellulaire, Institut Cochin, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Recherche Médicale Unité 567, and Université René Descartes, Paris, France
| | | | | |
Collapse
|
104
|
Capra V, Ravasi S, Accomazzo MR, Parenti M, Rovati GE. CysLT1 signal transduction in differentiated U937 cells involves the activation of the small GTP-binding protein Ras. Biochem Pharmacol 2004; 67:1569-77. [PMID: 15041474 DOI: 10.1016/j.bcp.2003.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 12/23/2003] [Indexed: 11/23/2022]
Abstract
We investigated the signal transduction pathway(s) of leukotriene D(4) (LTD(4)) in the human promonocytic U937 cells, a cell line known to constitutively express CysLT(1) receptors. Herein, we demonstrate that LTD(4) specifically acts on a CysLT(1) receptor to dose-dependently increase (three to five-fold over basal) RasGTP through a G(i/o) protein. In fact, while cytosolic Ca(2+) ([Ca(2+)](i)) increase was only partially sensitive to pertussis toxin (PTx), Ras activation was almost completely inhibited by the same toxin. Furthermore, the phospholipase C (PLC) inhibitor U73122 completely inhibited both [Ca(2+)](i) and RasGTP increase, suggesting that in these cells PLC is the point of convergence for both PTx insensitive and sensitive pathways leading to [Ca(2+)](i) release and Ras activation. Indeed, chelating intracellular Ca(2+) strongly (>70%) prevented LTD(4)-induced Ras activation, indicating that this ion plays an essential role for CysLT(1)-induced downstream signaling in differentiated U937 (dU937) cells. In addition, while Src did not appear to be substantially involved in CysLT(1)-induced signaling, genistein was able to partially inhibit LTD(4)-induced [Ca(2+)](i) transient ( approximately 34%) and almost completely prevented Ras activation (>90%), suggesting a potential role for other Ca(2+)-dependent tyrosine kinases in LTD(4)-induced signaling. Finally, agonist-induced CysLT(1) stimulation was followed by a specific extracellular regulated kinase (ERK) 1/2 phosphorylation, an event with a pharmacological profile similar to that of Ras activation, partially ( approximately 40%) sensitive to Clostridium sordellii lethal toxin and totally blocked by PTx. In conclusion, LTD(4)-induced CysLT(1) receptor activation in dU937 cells leads to Ras activation and ERK phosphorylation mostly through a PTx-sensitive G(i/o) protein, PLC, and Ca(2+)-dependent tyrosine kinase(s).
Collapse
Affiliation(s)
- Valérie Capra
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
105
|
Tanski WJ, Roztocil E, Hemady EA, Williams JA, Davies MG. Role of Gαq in smooth muscle cell proliferation. J Vasc Surg 2004; 39:639-44. [PMID: 14981460 DOI: 10.1016/j.jvs.2003.10.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND G protein-linked receptors are involved in the processes that lead to intimal hyperplasia. This study examined the role of Galphaq signaling pathways in vascular smooth muscle cell (SMC) proliferation in vitro. METHODS Rat pulmonary artery SMCs were cultured in vitro. Standard assays of cellular DNA synthesis, proliferation, phospholipase C-beta (PLCbeta) activation, and extracellular signal-regulated kinase (ERK1/2) phosphorylation were used to study the response to angiotensin II (a specific Galphaq agonist; 0.1-100 micromol/L) in the presence and absence of GP-2A (a competitive Galphaq inhibitor; 10 micromol/L) and the PLCbeta inhibitor U73122 (10micromol/L). RESULTS Angiotensin II induced SMC DNA synthesis and cell proliferation. DNA synthesis was inhibited by both Galphaq inhibitor, GP-2A, and PLCbeta inhibitor U73122, in a dose-dependent manner (66% +/- 7% of angiotensin II alone at 10 micromol/L for GP-2A [P <.05] and 63% +/- 6% for U73122). GP-2A completely inhibited angiotensin II-induced Galphaq-mediated PLCbeta phosphorylation. Activation of ERK1/2 by angiotensin II was significantly reduced by GP-2A (P <.05) and by PLCbeta inhibition (P <.05). CONCLUSION Inhibition of Galphaq decreases PLCbeta and ERK1/2 phosphorylation, leading to decreased SMC proliferation in vitro. Understanding specific signal transduction pathways will be an integral component of anti-restenosis therapy.Clinical Relevance The universal response of a blood vessel to injury is chronic wound healing, which includes the development of intimal hyperplasia and subsequent remodeling of the vessel wall. This can lead to luminal narrowing in as many as 30% of patients undergoing angioplasty. Neointimal formation is the principal cause of in-stent recurrent stenosis. Intimal hyperplasia is in part produced by smooth muscle cell (SMC) proliferation. Understanding the keys to the proliferation of SMCs will enable therapies to be developed that may inhibit the initial development of intimal hyperplasia. Whereas in the past many studies focused on the multiple mechanical, humoral, and cellular elements that induce SMC proliferation, molecular therapeutics focuses on key choke points within the cell that can be used to inhibit proliferation. One of these key choke points is signal transduction. Galphaq is one of the ubiquitous signal transduction proteins on the membrane of SMCs. Inhibiting G proteins, such as Galphaq, would enable interference with a significant amount of the mechanical, humeral, and cellular elements that produce SMC proliferation, and thus decrease the development of intimal hyperplasia. The present study identifies and begins to map out the role of Galphaq in SMC proliferation and investigates the possible use of a small peptide in its inhibition. Other data suggest that inhibition of other G proteins will also decrease intimal hyperplasia. This is therefore a fertile area for the development of therapeutics to inhibit intimal hyperplasia. The direct relevance to the clinician is that this study identifies a transduction pathway that may be inhibited, and points in the direction of a possible molecular therapeutic target that would be beneficial as an adjunct to angioplasty or as part of a drug-eluding stent regimen.
Collapse
Affiliation(s)
- William John Tanski
- Division of Vascular Surgery, Department of Surgery, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
106
|
Zhao W, Bianchi R, Wang M, Wong RKS. Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. J Neurosci 2004; 24:76-84. [PMID: 14715940 PMCID: PMC6729577 DOI: 10.1523/jneurosci.4515-03.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient stimulation of group I metabotropic glutamate receptors (mGluRs) induces persistent prolonged epileptiform discharges in hippocampal slices via a protein synthesis-dependent process. At present, the signaling process underlying the induction of these epileptiform discharges remains unknown. We examined the possible role of extracellular signal-regulated kinases (ERK1 and ERK2) because these kinases can be activated by group I mGluRs, and their activation may regulate gene expression and alter protein synthesis. The group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG; 50 microm) induced activation of ERK1/2 in hippocampal slices. 2-(2-Diamino-3-methoxyphenyl-4H-1-benzopyran-4-one (PD98059) (50 microm) a specific inhibitor of mitogen-activated protein kinase kinase (MEK), suppressed ERK1/2 activation by DHPG. PD98059 or another MEK inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (10 microm), also prevented the induction of the prolonged epileptiform discharges by DHPG. In the presence of ionotropic glutamate receptor inhibitors and tetrodotoxin (blockers), DHPG-induced epileptiform discharges were suppressed, whereas ERK1/2 activation persisted. Protein kinase C inhibitors (2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl) maleimide, 1 microm; or chelerythrine, 10 microm) did not prevent the generation of DHPG-induced epileptiform discharges, nor did they suppress the activation of ERK1/2 by DHPG in slices pretreated with the blockers. Genistein (30 microm), a broad-spectrum tyrosine kinase inhibitor, suppressed the DHPG-induced epileptiform discharges and the ERK1/2 activation in the presence of blockers. Induction of DHPG-mediated epileptiform discharges was also suppressed by 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine (10 microm), an Src-family tyrosine kinase inhibitor. The study shows that group I mGluRs activate ERK1/2 through a tyrosine kinase-dependent process and that this activation of ERK1/2 is necessary for the induction of prolonged epileptiform discharges in the hippocampus.
Collapse
Affiliation(s)
- Wangfa Zhao
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
107
|
Hammarberg C, Fredholm BB, Schulte G. Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3′-kinase. Biochem Pharmacol 2004; 67:129-34. [PMID: 14667935 DOI: 10.1016/j.bcp.2003.08.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adenosine A(3) receptor generally couples to the G(i) class of heterotrimeric G proteins, thereby decreasing cAMP levels and also mediating signaling via release of betagamma subunits. Here we describe the central role of phosphatidylinositol-3'-kinase (PI3K) for adenosine A(3) receptor-induced intracellular signaling to the stress-activated protein kinase p38 and the extracellular signal-regulated protein kinases ERK1/2. We used Chinese hamster ovary cells expressing the human adenosine A(3) receptor, phospho-specific antibodies and different pharmacological tools to dissect the signaling pathways involving PI3K. The adenosine receptor agonist 5'N-ethylcarboxamidoadenosine induced a time- and dose-dependent increase in p38 and ERK1/2 phosphorylation, two signaling pathways that appeared also to be activated in the immortalized microglia cell line N13, which expressed endogenous adenosine A(3) receptors. The 5'N-ethylcarboxamidoadenosine-induced effects on p38 and ERK1/2 in CHO cells were blocked by pertussis toxin pretreatment and were sensitive to pharmacological inhibition of PI3K. In addition, inhibition of Rac/Cdc42, small GTPases of the Rho family, by clostridium toxin B, diminished p38 phosphorylation but did not affect ERK1/2. Furthermore, we identified the serine 727 site of signal transducer and activator of transcription STAT3 as a probable downstream target of ERK1/2, and thereby provide evidence that adenosine A(3) receptor mediated ERK1/2 activation has functional consequences.
Collapse
Affiliation(s)
- Christian Hammarberg
- Department of Physiology and Pharmacology, Section of Molecular Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
108
|
Affiliation(s)
- Leonidas G Koniaris
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | |
Collapse
|
109
|
Zagar Y, Chaumaz G, Lieberherr M. Signaling cross-talk from Gbeta4 subunit to Elk-1 in the rapid action of androgens. J Biol Chem 2003; 279:2403-13. [PMID: 14602719 DOI: 10.1074/jbc.m309132200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens act on transcription via intracellular androgen receptors (ARs), but they also have rapid AR-independent effects. We have identified the multistep processes involved in the rapid actions of androgens in male osteoblasts, which also possess the classical AR. Incubating cells with 5alpha-dihydroxytestosterone (100 pm, DHT) rapidly increased (1 min) the phosphorylation of the transcription factor Elk-1, and this was inhibited by pertussis toxin (PTX). DHT activated ERK1/2, a substrate of Elk-1, within 15 s but had no effect on p38 MAPK or JNK/SAPK. The inhibitors PD98059 (MEK1/2); Gö6976, Gö6983, and chelerythrine (protein kinase C); wortmannin and LY294002 (phosphatidylinositol 3-kinase); PP1 (Src); and PTX all blunted the DHT-stimulated phosphorylation of ERK1/2. DHT increased the phosphorylation of c-Raf-1 within 5 s; this was blocked by conventional protein kinase C and phosphatidylinositol 3-kinase inhibitors. The first activated membrane protein was the PTX-sensitive Gbeta(4) subunit coupled to phospholipase C-beta2, which triggered a rapid (5 s) increase in intracellular calcium and diacylglycerol formation. The androgen antagonist cyproterone acetate did not modify the responses to DHT. Lastly an anti-AR antibody directed against the ligand binding domain recognized a protein at the plasma membrane. The cascade of rapid effects triggered by androgens may involve the classical AR at the plasma membrane or an uncharacterized form of AR that is insensitive to nuclear antagonists.
Collapse
Affiliation(s)
- Yvrick Zagar
- Laboratoire de Nutrition et de Sécurité Alimentaire, The Institut National de la Recherche Agronomique, 78 350 Jouy-en-Josas, France
| | | | | |
Collapse
|
110
|
Cameron SJ, Abe JI, Malik S, Che W, Yang J. Differential role of MEK5alpha and MEK5beta in BMK1/ERK5 activation. J Biol Chem 2003; 279:1506-12. [PMID: 14583600 DOI: 10.1074/jbc.m308755200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Big mitogen-activated protein kinase 1/extracellular-regulated kinase 5 (BMK1/ERK5) is regulated sequentially by a series of upstream MAP kinase kinases (MEKs) in a signaling cascade. MEKs activate their downstream MAPK by phosphorylation of threonine and tyrosine in the T- X-Y motif. MEK5 is the upstream BMK1 kinase and exists as naturally occurring splice variants, MEK5alpha and MEK5beta. The full-length MEK5 (MEK5alpha) is 89 amino acids longer than MEK5beta at the N terminus, but the precise functional difference between the two splice variants is not known. Dual phosphorylation site mutation of MEK5alpha (Ser-311 --> Asp and Thr- 315 --> Asp; MEK5alpha(S311D/T315D)) activated BMK1, but the corresponding dual phosphorylation sites mutant of MEK5beta could not induce BMK1 kinase activation or nuclear translocation. Furthermore, MEK5beta inhibited epidermal growth factor-induced BMK1 activation and MEK5alpha(S311D/T315D)-induced MEF2 transcriptional activity. Both MEK5alpha and MEK5beta individually co-immunoprecipitated with BMK1, but the presence of MEK5beta prevented association of MEK5alpha with BMK1 suggesting a mechanistic basis for the dominant-negative behavior of MEK5beta on BMK1 activation. The ratio of MEK5alpha to MEK5beta expression was higher in cancer cell lines, and overexpression of MEK5beta-inhibited serum-induced DNA synthesis. These data suggest that alternative splicing of MEK5alpha and MEK5beta may play a critical role in BMK1 activation and subsequent cell proliferation.
Collapse
Affiliation(s)
- Scott J Cameron
- Department of Pharmacology/Physiology, Center for Cardiovascular Research, Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
111
|
Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 2003. [PMID: 12967998 DOI: 10.1523/jneurosci.23-23-08360.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioid-receptor activation in cell lines results in phosphorylation of p42/44 mitogen-activated protein kinase (MAPK), which contributes to agonist-induced desensitization of adenylate cyclase signaling. In this study, morphine-induced MAPK modulation was examined in the mouse brain using antibodies against phosphorylated MAPK. Thirty minutes after systemic morphine, MAPK modulation was observed in brain areas associated with analgesia and reward. Activation of MAPK was increased in the anterior cingulate (Acc), somato-sensory and association cortices, and locus ceruleus (LC). In contrast, MAPK activation was decreased in the nucleus accumbens and central amygdala (CeA). Double-label confocal microscopy revealed that morphine-induced MAPK modulation occurred predominantly in cells not expressing mu-opioid receptors, with the exception of the LC. Furthermore, the NMDA receptor antagonist 3,3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonate blocked morphine-induced MAPK modulation in several cortical areas including the Acc. We then examined morphine-induced MAPK modulation during expression of either analgesic tolerance or locomotor sensitization, which were differentiated by two repeated morphine regimens. Analgesic tolerance was accompanied by tolerance to morphine-induced MAPK modulation in all of the brain areas examined except the CeA. Locomotor sensitization resulted in sensitization to morphine-induced MAPK activation in the posterior basolateral amygdala. Additionally, a pronounced instatement of morphine-induced MAPK activation was observed in CA3 hippocampal processes. This instatement was observed during expression of tolerance; however, it was not significant during sensitization. In summary, these results provide distinct, region-specific mechanisms for morphine-induced MAPK modulation in the mouse brain and give insight into the brain circuitry involved in acute and adaptive opioid behaviors.
Collapse
|
112
|
Bookout AL, Finney AE, Guo R, Peppel K, Koch WJ, Daaka Y. Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. J Biol Chem 2003; 278:37569-73. [PMID: 12869546 DOI: 10.1074/jbc.m306276200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer starts as androgen-dependent malignancy and responds initially to androgen ablative therapy. Beneficial effects of androgen ablation, however, are often temporary and the cancer reappears as androgen-independent tumor, suggesting the existence of additional factors responsible for progression of the disease. Attention has focused on receptor tyrosine kinases as the growth mediators of androgen-independent prostate cancer; overexpression of epidermal growth factor receptors or their ligand heparin-bound epidermal growth factor, for example, promotes transition to androgen independence. Emerging data demonstrate involvement of another class of cell membrane-anchored receptors, the heterotrimeric guanine-binding (G) protein-coupled receptors (GPCRs) in prostate cancer. In vitro, stimulation of many endogenous GPCRs induces mitogenic signaling and growth of prostate cancer cells. The GPCRs transduce mitogenic signals via activated G proteins in the form of Galpha-GTP and Gbetagamma subunits. Here, we show that expression of a Gbetagamma inhibitor peptide derived from carboxy terminus of G protein-coupled receptor kinase 2 obliterates serum-regulated prostate cancer cell growth in vitro and prevents prostate tumor formation in vivo. We also demonstrate that inhibition of Gbetagamma signaling retards growth of existing prostate tumors by inducing cell death. These data establish a central role for heterotrimeric G proteins in prostate cancer and suggest targeted inhibition of Gbetagamma signaling may serve as specific molecular therapy tool to limit pathologic growth of advanced prostate cancer.
Collapse
Affiliation(s)
- Angela L Bookout
- Department of Surgery, Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
113
|
Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 2003; 100:11406-11. [PMID: 13679574 PMCID: PMC208770 DOI: 10.1073/pnas.1936664100] [Citation(s) in RCA: 412] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is becoming increasingly clear that signaling via G protein-coupled receptors is a diverse phenomenon involving receptor interaction with a variety of signaling partners. Despite this diversity, receptor ligands are commonly classified only according to their ability to modify G protein-dependent signaling. Here we show that beta2AR ligands like ICI118551 and propranolol, which are inverse agonists for Gs-stimulated adenylyl cyclase, induce partial agonist responses for the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) 1/2 thus behaving as dual efficacy ligands. ERK1/2 activation by dual efficacy ligands was not affected by ADP-ribosylation of Galphai and could be observed in S49-cyc- cells lacking Galphas indicating that, unlike the conventional agonist isoproterenol, these drugs induce ERK1/2 activation in a Gs/i-independent manner. In contrast, this activation was inhibited by a dominant negative mutant of beta-arrestin and was abolished in mouse embryonic fibroblasts lacking beta-arrestin 1 and 2. The role of beta-arrestin was further confirmed by showing that transfection of beta-arrestin 2 in these knockout cells restored ICI118551 promoted ERK1/2 activation. ICI118551 and propranolol also promoted beta-arrestin recruitment to the receptor. Taken together, these observations suggest that beta-arrestin recruitment is not an exclusive property of agonists, and that ligands classically classified as inverse agonists rely exclusively on beta-arrestin for their positive signaling activity. This phenomenon is not unique to beta2-adrenergic ligands because SR121463B, an inverse agonist on the V2 vasopressin receptor-stimulated adenylyl cyclase, recruited beta-arrestin and stimulated ERK1/2. These results point to a multistate model of receptor activation in which ligand-specific conformations are capable of differentially activating distinct signaling partners.
Collapse
Affiliation(s)
- Mounia Azzi
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
114
|
Hochbaum D, Tanos T, Ribeiro-Neto F, Altschuler D, Coso OA. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger. J Biol Chem 2003; 278:33738-46. [PMID: 12783872 DOI: 10.1074/jbc.m305208200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.
Collapse
Affiliation(s)
- Daniel Hochbaum
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IFYBINE-CONICET, Buenos Aires 1428, Argentina
| | | | | | | | | |
Collapse
|
115
|
Cacace A, Banks M, Spicer T, Civoli F, Watson J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov Today 2003; 8:785-92. [PMID: 12946641 DOI: 10.1016/s1359-6446(03)02809-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.
Collapse
Affiliation(s)
- Angela Cacace
- Department of Lead Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA.
| | | | | | | | | |
Collapse
|
116
|
Abstract
The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated protein kinases (MAPK), which could give them a role in cell growth, survival, death and differentiation. Although each of the adenosine receptors can activate one or more of the MAPKs, the mechanisms appear to differ substantially, both between receptor subtypes in the same cell type and between the same receptor in different cell types.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
117
|
Dina OA, McCarter GC, de Coupade C, Levine JD. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 2003; 39:613-24. [PMID: 12925276 DOI: 10.1016/s0896-6273(03)00473-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) and epinephrine act directly on nociceptors to produce mechanical hyperalgesia through protein kinase A (PKA) alone or through a combination of PKA, protein kinase C epsilon (PKCepsilon), and extracellular signal-regulated kinase (ERK), respectively. Disruptors of the cytoskeleton (microfilaments, microtubules, and intermediate filaments) markedly attenuated the hyperalgesia in rat paws caused by injection of epinephrine or its downstream mediators. In contrast, the hyperalgesia induced by PGE(2) or its mediators was not affected by any of the cytoskeletal disruptors. These effects were mimicked in vitro, as measured by enhancement of the tetrodotoxin-resistant sodium current. When PGE(2) hyperalgesia was shifted to dependence on PKCepsilon and ERK as well as PKA, as when the tissue is "primed" by prior treatment with carrageenan, it too became dependent on an intact cytoskeleton. Thus, inflammatory mediator-induced mechanical hyperalgesia was differentially dependent on the cytoskeleton such that cytoskeletal dependence correlated with mediation by PKCepsilon and ERK.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
118
|
Abstract
Analyses of early molecular and cellular events associated with long-term plasticity remain hampered in Drosophila by the lack of an acute procedure to activate signal transduction pathways, gene expression patterns, and other early cellular events associated with long-term synaptic change. Here we describe the development and first use of such a technique. Bursts of neural activity induced in Drosophila comatosets and CaP60A Kumts mutants, with conditional defects in N-ethylmaleimide-sensitive fusion factor 1 and sarco-endoplasmic reticulum Ca2+ ATPase, respectively, result in persistent (>4 hr) activation of neuronal extracellular signal-regulated kinase (ERK). ERK activation at the larval neuromuscular junction coincides with rapid reduction of synaptic Fasciclin II; in soma, nuclear translocation of activated ERK occurs together with increased transcription of the immediate-early genes Fos and c/EBP (CCAAT element binding protein). The effect of "seizure-stimulation" on ERK activation requires neural activity and is mediated through activation of MEK (MAPK/erk kinase), the MAPKK (mitogen-activated protein kinase kinase) that functions upstream of ERK. Our results (1) provide direct proof for the conservation of synaptic signaling pathways in arthropods, (2) demonstrate the utility of a new genetic tool for analysis of synaptic plasticity in Drosophila, and (3) potentially enable new proteomic and genomic analyses of activity-regulated molecules in an important model organism.
Collapse
|
119
|
Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, Vauthey JN, Carbone A, Younes A. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 2003; 102:1019-27. [PMID: 12689928 DOI: 10.1182/blood-2002-11-3507] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) (also called extracellular signal-regulated kinase [ERK]) pathway has been implicated in malignant transformation and in the regulation of cellular growth and proliferation of several tumor types, but its expression and function in Hodgkin disease (HD) are unknown. We report here that the active phosphorylated form of MAPK/ERK is aberrantly expressed in cultured and primary HD cells. Inhibition of the upstream MAPK kinase (also called MEK) by the small molecule UO126 inhibited the phosphorylation of ERK and demonstrated a dose- and time-dependent antiproliferative activity in HD cell lines. UO126 modulated the levels of several intracellular proteins including B-cell lymphoma protein 2 (Bcl-2), myeloid cell leukemia-1 (Mcl-1) and caspase 8 homolog FLICE-inhibitory protein (cFLIP), and induced G2M cell-cycle arrest or apoptosis. Furthermore, UO126 potentiated the activity of apoliprotein 2/tumor necrosis factor-related apoptosis-inducing ligand (APO2L/TRAIL) and chemotherapy-induced cell death. Activation of CD30, CD40, and receptor activator of nuclear kappabeta (RANK) receptors in HD cells by their respective ligands increased ERK phosphorylation above the basal level and promoted HD cell survival. UO126 inhibited basal and ligand-induced ERK phosphorylation, and inhibited ligand-induced cell survival of HD cell lines. These findings provide a proof-of-principle that inhibition of the MEK/ERK pathway may have therapeutic value in HD.
Collapse
Affiliation(s)
- Bei Zheng
- Department of Lymphoma/Myeloma, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 429, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Wetzker R, Böhmer FD. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 2003; 4:651-7. [PMID: 12923527 DOI: 10.1038/nrm1173] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many agonists of G-protein-coupled receptors (GPCRs) can stimulate receptor tyrosine kinases and the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. A 'transactivation' mechanism, which links these events in one signalling chain, inspired many researchers, but inevitably raised new questions. A 'multi-track' model for GPCR signalling to the ERK/MAPK pathway might resolve some of the puzzles in the transactivation field.
Collapse
Affiliation(s)
- Reinhard Wetzker
- Institute for Molecular Cell Biology, Jena University Hospital, Drackendorfer Strasse 1, D-07747 JENA, Germany.
| | | |
Collapse
|
121
|
Lai WC, Zhou M, Shankavaram U, Peng G, Wahl LM. Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6244-9. [PMID: 12794156 DOI: 10.4049/jimmunol.170.12.6244] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction events in monocyte matrix metalloproteinase (MMP) production have been shown to include a PGE(2)-cAMP-dependent step. To determine earlier pathway components, we examined the role of mitogen-activated protein kinases (MAPKs) in the regulation of monocyte MMP-1 and MMP-9, two major MMPs induced by LPS. Stimulation with LPS resulted in the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen-activated kinase p38. The p38-specific inhibitor SB203580 suppressed p38 activity and MMP-1 mRNA and protein, but increased ERK activity and MMP-9 mRNA and protein. In contrast, the MAPK kinase 1/2-specific inhibitor PD98059 inhibited MMP-1 and MMP-9. However, both MAPK inhibitors decreased the production of cyclooxygenase-2 and PGE(2), but only the inhibition of MMP-1 by SB203580 was reversed by PGE(2) or dibutyryl cAMP. Examination of the effect of these MAPK inhibitors on the promoters of MMP-1 and MMP-9 revealed that PD98059 inhibited the binding of transcription factors to all of the MMP promoter-specific complementary oligonucleotides tested. However, SB203580 only inhibited the binding of MMP-1-specific CREB and SP 1 oligonucleotides, which was reversed by PGE(2). Additionally, SB203580 enhanced transcription factor binding to the oligonucleotides complementary to a NF-kappaB site in the promoter of MMP-9. Thus, LPS induction of MMP-1 production by monocytes is regulated by both ERK1/2 and p38, whereas MMP-9 stimulation occurred mainly through the ERK1/2 pathway. Moreover, p38 regulates MMP-1 mainly through a PGE(2)-dependent pathway, whereas ERK1/2-mediated MMP-1 and MMP-9 production involves the activation of additional MMP promoter sites through a PGE(2)-independent mechanism.
Collapse
Affiliation(s)
- Wan-Ching Lai
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
122
|
Ge B, Xiong X, Jing Q, Mosley JL, Filose A, Bian D, Huang S, Han J. TAB1beta (transforming growth factor-beta-activated protein kinase 1-binding protein 1beta ), a novel splicing variant of TAB1 that interacts with p38alpha but not TAK1. J Biol Chem 2003; 278:2286-93. [PMID: 12429732 DOI: 10.1074/jbc.m210918200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.
Collapse
Affiliation(s)
- Baoxue Ge
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Yowell CW, Daaka Y. G Protein–Coupled Receptors Provide Survival Signals in Prostate Cancer. ACTA ACUST UNITED AC 2002; 1:177-81. [PMID: 15046693 DOI: 10.3816/cgc.2002.n.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prostate cancer is the leading cause for noncutaneous cancer-related deaths among men in the United States. The disease is biologically characterized as being either androgen dependent or androgen independent. Whereas androgen-dependent prostate cancer can be successfully treated with androgen ablative therapy, to date no cure exists for androgen-independent disease. Mechanisms involved in the progression of prostate cancer to androgen independence are not known. Here we present evidence that in addition to growth factor receptor tyrosine kinases, G protein- coupled receptors can mediate survival signals in prostate cancer cells. The G protein- coupled receptors exert their effects by activating multiple intracellular signal transduction networks that promote prostate cancer cell survival, including the activation of c-Jun N-terminal kinase, protein kinase B (Akt) and nuclear factor-kB. Prostate-expressed G protein- coupled receptors and their downstream effectors may prove to be effective targets in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Charles W Yowell
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
124
|
Piiper A, Dikic I, Lutz MP, Leser J, Kronenberger B, Elez R, Cramer H, Müller-Esterl W, Zeuzem S. Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J Biol Chem 2002; 277:43623-30. [PMID: 12218049 DOI: 10.1074/jbc.m203926200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.
Collapse
Affiliation(s)
- Albrecht Piiper
- Department of Internal Medicine and Institute for Biochemistry II, Johann Wolfgang Goethe-University, D-60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Orr AW, Pallero MA, Murphy-Ullrich JE. Thrombospondin stimulates focal adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK activation. J Biol Chem 2002; 277:20453-60. [PMID: 11923291 DOI: 10.1074/jbc.m112091200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The matricellular protein thrombospondin (TSP) stimulates stress fiber and focal adhesion disassembly through a sequence (hep I) in its heparin-binding domain. TSP/hep I signals focal adhesion disassembly by binding cell surface calreticulin (CRT) and activating phosphoinositide 3-kinase (PI3K). However, other components of this signaling pathway have not been identified. We now show that TSP induces focal adhesion disassembly through activation of pertussis toxin (PTX)-sensitive G proteins and ERK phosphorylation. PTX pretreatment inhibits TSP/hep I-mediated focal adhesion disassembly as well as PI3K activation. In addition, membrane-permeable Galpha(i2)- and Gbetagamma-blocking peptides inhibit hep I-mediated focal adhesion disassembly. Hep I stimulates a transient increase in ERK activation, which is abrogated by both PTX and PI3K inhibitors. Inhibiting ERK activation with MEK inhibitors blocks hep I-mediated focal adhesion disassembly, indicating that ERK activation is required for cytoskeletal reorganization. G protein signals and ERK phosphorylation are induced by TSP binding to cell surface CRT, because CRT null mouse embryonic fibroblasts (MEF) fail to stimulate ERK phosphorylation in response to TSP/hep I treatment. These data show that G(i) protein and ERK, in concert with PI3K, are stimulated by TSP.CRT interactions at the cell surface to induce de-adhesive changes in the cytoskeleton.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294-0019, USA
| | | | | |
Collapse
|
126
|
Zatechka SD, Lou MF. Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. 1. The mitogenic and stress responses. Exp Eye Res 2002; 74:703-17. [PMID: 12126944 DOI: 10.1006/exer.2002.1168] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current understanding of the cellular signal transduction system is that cells initially respond to outside stimuli, such as growth factors or neurotransmitters, through ligand binding to the respective growth factor receptors or the G-protein-coupled receptors, to initiate transduction of the stimulus. This is followed by a series of association-dissociation and phosphorylation-dephosphorylation processes among the components of a well-defined and intricate infrastructure between the cell membrane and the cytosolic protein kinases to activate and initiate nuclear target genes for cell proliferation, differentiation and other cellular functions. Although some past reports have indicated this signaling machinery is present in the lens, certain pathways, namely the mitogen-response pathway (Raf-MEK-ERK cascade), the stress-response pathways (p38 and SAPK/JNK cascades) and the survival pathway (PI-3K-Akt), have not been thoroughly explored in an intact lens. These pathways were studied using porcine lenses cultured under mitogenic (10 ngml(-1) growth factor) or osmotic stress (30 mM galactose) conditions to examine the cellular response in the epithelial layer, using unstimulated lenses as controls. It was found that all the key members in the Raf-MEK-ERK cascade and PI-3K-Akt cascade were present and that growth factors had a differential stimulatory effect on them. Basic-FGF was the most potent stimulator for ERK followed by EGF and IGF-1, while PDGFab and VEGF were less active. The opposite was true for their stimulatory effect on PI-3K. Hyperglycemic-induced osmotic stress stimulated p38 but not SAPK/JNK, while bFGF could stimulate SAPK/JNK but not p38. Both stimuli activated the Raf-MEK-ERK and PI-3K-Akt pathways. Osmotic-induced activation could be normalized using an aldose reductase inhibitor.
Collapse
Affiliation(s)
- Steven D Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | |
Collapse
|
127
|
Abstract
Calcium is a universal intracellular signal that is responsible for controlling a plethora of cellular processes. Understanding how such a simple ion can regulate so many diverse cellular processes is a key goal of calcium- and cell-biologists. One molecule that is sensitive to changes in intracellular calcium levels is Ras. This small GTPase operates as a binary molecular switch, and regulates cell proliferation and differentiation. Here, we focus on examining the link between calcium and Ras signalling and, in particular, we speculate as to how the complexity of calcium signalling could regulate Ras activity.
Collapse
Affiliation(s)
- Peter J Cullen
- The Henry Wellcome Laboratories for Integrated Cell Signalling, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
128
|
Gur G, Bonfil D, Safarian H, Naor Z, Yaron Z. GnRH signaling pathways regulate differentially the tilapia gonadotropin subunit genes. Mol Cell Endocrinol 2002; 189:125-34. [PMID: 12039071 DOI: 10.1016/s0303-7207(01)00724-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of tilapia pituitary cells in culture to salmon gonadotropin-releasing hormone (sGnRH; 0.01-100 nM) elevated the phosphorylated extracellular signal-regulated kinase (pERK) levels. sGnRH also elevated the alpha, FSHbeta and LHbeta subunit mRNA levels. The phorbol ester, 1-O-tetradecanoyl phorbol-13-acetate (TPA; 12.5 nM) increased pERK levels, whereas protein kinase C (PKC) depletion or inhibition by GF109203X (GF; 0.01-10 microM) suppressed GnRH-activated ERKs. GF too abated the GnRH-induced alpha and LHbeta mRNA levels, but had no effect on those of FSHbeta. Forskolin (0.001-100 microM) activated ERK, while inhibition of protein kinase A (PKA) by H89 (0.01-10 microM) suppressed pERK levels and all GnRH-stimulated gonadotropin subunit transcripts. Exposure of cells to the mitogen-activated protein kinase kinase (MAPK kinase; MEK) inhibitor (PD98059; PD 10, 25 and 50 microM) completely blocked GnRH-induced increase in ERKs activation. Furthermore, PD suppressed the alpha and LHbeta mRNA responses to GnRH, but had no effect on FSHbeta mRNA levels. It is suggested that in tilapia the differential regulation of gonadotropin subunit gene expression by GnRH results from a divergent recruitment of signal transduction pathways, activated upon GnRH binding; PKC-ERK cascade is involved in elevating alpha and LHbeta mRNAs, whereas induction of FSHbeta transcript is ERK-independent and is under direct cAMP-PKA regulation or through other MAPK cascades.
Collapse
Affiliation(s)
- G Gur
- Department of Zoology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
129
|
Ziltener P, Mueller C, Haenig B, Scherz MW, Nayler O. Urotensin II mediates ERK1/2 phosphorylation and proliferation in GPR14-transfected cell lines. J Recept Signal Transduct Res 2002; 22:155-68. [PMID: 12503613 DOI: 10.1081/rrs-120014593] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Urotensin-II (U-II), a vasoactive cyclic neuropeptide, was recently identified as the natural ligand for the G-protein coupled receptor GPR14. The expression pattern of U-II and GPR14 are consistent with a role as a neurohormonal regulatory system in cardiovascular homeostasis. Urotensin-II induces a rapid and short-lasting rise in intracellular calcium in recombinant GPR14 expressing cells. In the present study we show that U-II induces signal transduction pathways leading to the long-lasting activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in chinese hamster ovary cells expressing human GPR14 (CHO-GPR14). Furthermore, we observed a growth-stimulating and PD98059 sensitive activity of U-II in CHO-GPR14 cells, but not CHO-K1 cells. The investigation of the GPR14 induced signal transduction pathways leading to ERKI/2 phosphorylation revealed a previously unsuspected role for G(i/o)-protein coupling and showed an involvement of phospatidylinositol-3-kinase, phospholipase C and calcium channel mediated mechanisms. Our results suggest that U-II and its receptor GPR14 may be involved in long-lasting physiological effects such as cardiovascular remodeling.
Collapse
Affiliation(s)
- Patrick Ziltener
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | | | | | | | |
Collapse
|
130
|
Hislop JN, Everest HM, Flynn A, Harding T, Uney JB, Troskie BE, Millar RP, McArdle CA. Differential internalization of mammalian and non-mammalian gonadotropin-releasing hormone receptors. Uncoupling of dynamin-dependent internalization from mitogen-activated protein kinase signaling. J Biol Chem 2001; 276:39685-94. [PMID: 11495905 DOI: 10.1074/jbc.m104542200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.
Collapse
Affiliation(s)
- J N Hislop
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol, BS2 8HW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Penela P, Elorza A, Sarnago S, Mayor F. Beta-arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 2001; 20:5129-38. [PMID: 11566877 PMCID: PMC125273 DOI: 10.1093/emboj/20.18.5129] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of G-protein-coupled receptors (GPCRs). GRK2 expression is altered in several pathological conditions, but the molecular mechanisms that modulate GRK2 cellular levels are largely unknown. We recently have described that GRK2 is degraded rapidly by the proteasome pathway. This process is enhanced by GPCR stimulation and is severely impaired in a GRK2 mutant that lacks kinase activity (GRK2-K220R). In this report, we find that beta-arrestin function and Src-mediated phosphorylation of GRK2 are critically involved in GRK2 proteolysis. Overexpression of beta-arrestin triggers GRK2-K220R degradation based on its ability to recruit c-Src, since this effect is not observed with beta-arrestin mutants that display an impaired c-Src interaction. The presence of an inactive c-Src mutant or of tyrosine kinase inhibitors strongly inhibits co-transfected or endogenous GRK2 turnover, respectively, and a GRK2 mutant with impaired phosphorylation by c-Src shows a markedly retarded degradation. This pathway for the modulation of GRK2 protein stability puts forward a new feedback mechanism for regulating GRK2 levels and GPCR signaling.
Collapse
Affiliation(s)
| | | | | | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Corresponding author e-mail: P.Penela and A.Elorza contributed equally to this work
| |
Collapse
|
132
|
Cao W, Medvedev AV, Daniel KW, Collins S. beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 2001; 276:27077-82. [PMID: 11369767 DOI: 10.1074/jbc.m101049200] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of increasing evidence that G protein-coupled receptors activate multiple signaling pathways, it becomes important to determine the coordination of these pathways and their physiological significance. Here we show that the beta(3)-adrenergic receptor (beta(3)AR) stimulates p38 mitogen-activated protein kinase (p38 MAPK) via PKA in adipocytes and that cAMP-dependent transcription of the mitochondrial uncoupling protein 1 (UCP1) promoter by beta(3)AR requires p38 MAPK. The selective beta(3)AR agonist CL316,243 (CL) stimulates phosphorylation of MAP kinase kinase 3/6 and p38 MAPK in a time- and dose-dependent manner in both white and brown adipocytes. Isoproterenol and forskolin mimicked the effect of CL on p38 MAPK. In all cases activation was blocked by the specific p38 MAPK inhibitor SB202190 (SB; 1-10 microm). The involvement of PKA in beta(3)AR-dependent p38 MAPK activation was confirmed by the ability of the PKA inhibitors H89 (20 microm) and (R(p))-cAMP-S (1 mm) to block phosphorylation of p38 MAPK. Treatment of primary brown adipocytes with CL or forskolin induced the expression of UCP1 mRNA levels (6.8- +/- 0.8-fold), and this response was eliminated by PKA inhibitors and SB202190. A similar stimulation of a 3.7-kilobase UCP1 promoter by CL and forskolin was also completely inhibited by PKA inhibitors and SB202190, indicating that these effects on UCP1 expression are transcriptional. Moreover, the PKA-dependent transactivation of the UCP1 promoter, as well as its sensitivity to SB202190, was fully reproduced by a 220-nucleotide enhancer element from the UCP1 gene. We similarly observed that increased phosphorylation of ATF-2 by CL was sensitive to both H89 and SB202190, while phosphorylation of cAMP-response element-binding protein was inhibited only by H89. Together, these studies illustrate that p38 MAPK is an important downstream target of the beta-adrenergic/cAMP/PKA signaling pathway in adipocytes, and one of the functional consequences of this cascade is stimulation of UCP1 gene expression in brown adipocytes.
Collapse
Affiliation(s)
- W Cao
- Department of Psychiatry and Behavioral Sciences and the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
133
|
Schwindinger WF, Robishaw JD. Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 2001; 20:1653-60. [PMID: 11313913 DOI: 10.1038/sj.onc.1204181] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G-proteins are components of the signal transduction pathways for the soluble and cell-contact signals that regulate normal growth and differentiation. There is now a greater appreciation of the role of the Gbetagamma-dimer in the regulation of a variety of intracellular effectors, including ion channels, adenylyl cyclase, and phospholipase Cbeta. In many cases, Gbetagamma-dimers are required for the activation of mitogen activated protein kinase (MAPK) pathways that promote cellular proliferation, although the underlying mechanisms have yet to be fully elucidated. Activation of phosphotidylinositol-3-kinase (PI3K) is a critical step in the intracellular transduction of survival signals. Gbetagamma-dimers directly activate PI3Kgamma as well as the more widely distributed PI3Kbeta. The activation of PI3Kgamma by Gbetagamma-dimers likely involves direct binding of specific Gbetagamma-dimers to both subunits of PI3Kgamma. Thus, Gbetagamma-dimers transmit signals from numerous receptors to a variety of intracellular effectors in distinct cellular contexts. Five distinct Gbeta-subunits and 12 distinct Ggamma-subunits have been identified. New experimental approaches are needed to elucidate the specific roles of individual Gbetagamma-dimers in the pathways that transduce signals for proliferation and survival.
Collapse
Affiliation(s)
- W F Schwindinger
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | | |
Collapse
|
134
|
Abstract
A large variety of neurotransmitters, hormones, and chemokines regulate cellular functions via cell surface receptors that are coupled to guanine nucleotide-binding regulatory proteins (G proteins) belonging to the G(i) subfamily. All members of the G(i) subfamily, with the sole exception of G(z), are substrates for the pertussis toxin ADP-ribosyl transferase. G(z) also exhibits unique biochemical and regulatory properties. Initial portrayals of the cellular functions of G(z) bear high resemblance to those of other G(i) proteins both in terms of the receptors and effectors linked to G(z). However, recent discoveries have begun to insinuate a distinct role for G(z) in cellular communication. Functional interactions of the alpha subunit of G(z) (Galpha(z)) with the NKR-P1 receptor, Galpha(z)-specific regulator of G protein signaling, p21-activated kinase, G protein-regulated inducers of neurite outgrowth, and the Eya2 transcription cofactor have been demonstrated. These findings provide possible links for G(z) to participate in cellular development, survival, proliferation, differentiation and even apoptosis. In this review, we have drawn a sketch of a signaling network with G(z) as the centerpiece. The emerging picture is one that distinguishes G(z) from other members of the G(i) subfamily.
Collapse
Affiliation(s)
- M K Ho
- Department of Biochemistry and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
135
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes, unique to eukaryotes, that are involved in many facets of cellular regulation. Initial research concentrated on defining the components and organization of MAPK signalling cascades, but recent studies have begun to shed light on the physiological functions of these cascades in the control of gene expression, cell proliferation and programmed cell death.
Collapse
Affiliation(s)
- L Chang
- Department of Pharmacology, University of California San Diego, La Jolla 92093-0636, USA
| | | |
Collapse
|
136
|
Abstract
Synchronization used to study cell cycle progression may change the characteristics of rapidly proliferating cells. By combining time-lapse, quantitative fluorescent microscopy and microinjection, we have established a method to analyze the cell cycle progression of individual cells without synchronization. This new approach revealed that rapidly growing NIH3T3 cells make a Ras-dependent commitment for completion of the next cell cycle while they are in G2 phase of the preceding cell cycle. Thus, Ras activity during G2 phase induces cyclin D1 expression. This expression continues through the next G1 phase even in the absence of Ras activity, and drives cells into S phase.
Collapse
Affiliation(s)
- M Hitomi
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
137
|
|
138
|
Cao W, Luttrell LM, Medvedev AV, Pierce KL, Daniel KW, Dixon TM, Lefkowitz RJ, Collins S. Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Biol Chem 2000; 275:38131-4. [PMID: 11013230 DOI: 10.1074/jbc.c000592200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both beta(2)- and beta(3)-adrenergic receptors (ARs) are able to activate the extracellular signal-regulated kinase (ERK) pathway. We previously showed that c-Src is required for ERK activation by beta(2)AR and that it is recruited to activated beta(2)AR through binding of the Src homology 3 (SH3) domain to proline-rich regions of the adapter protein beta-arrestin1. Despite the absence of sites for phosphorylation and beta-arrestin binding, ERK activation by beta(3)AR still requires c-Src. Agonist activation of beta(2)AR, but not beta(3)AR, led to redistribution of green fluorescent protein-tagged beta-arrestin to the plasma membrane. In beta-arrestin-deficient COS-7 cells, beta-agonist-dependent co-precipitation of c-Src with the beta(2)AR required exogenous beta-arrestin, but activated beta(3)AR co-precipitated c-Src in the absence or presence of beta-arrestin. ERK activation and Src co-precipitation with beta(3)AR also occurred in adipocytes in an agonist-dependent and pertussis toxin-sensitive manner. Protein interaction studies show that the beta(3)AR interacts directly with the SH3 domain of Src through proline-rich motifs (PXXP) in the third intracellular loop and the carboxyl terminus. ERK activation and Src co-precipitation were abolished in cells expressing point mutations in these PXXP motifs. Together, these data describe a novel mechanism of ERK activation by a G protein-coupled receptor in which the intracellular domains directly recruit c-Src.
Collapse
Affiliation(s)
- W Cao
- Departments of Psychiatry and Behavioral Sciences, Pharmacology, and Medicine and the Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|