101
|
Mohamed E, Ansari N, Yadav DS, Agrawal M, Agrawal SB. Salinity alleviates the toxicity level of ozone in a halophyte Mesembryanthemum crystallinum L. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:689-704. [PMID: 33742348 DOI: 10.1007/s10646-021-02386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 05/26/2023]
Abstract
Mesembryanthemum crystallinum (Ice plant) is an annual halophytic plant species spread in the coastal areas of the Mediterranean Sea, Egypt. Information about the behaviour of halophytes under the future concentration of ozone (O3) is scanty. Therefore, we have assessed the effects of elevated O3 (ambient + 20 ppb), moderate salinity (200 mM NaCl), and their combined treatment (salinity + elevated O3) on various morphological, growth, physiological, biochemical and anatomical parameters of Egyptian ice plant. Under salinity stress, plant growth, percentage of pigmented leaf and its thickness, ROS levels, antioxidative enzymes, and ROS scavenging activities were increased, while photosynthetic pigments and efficiency were decreased compared to the control. Elevated O3 exposure led to reductions in most of the growth parameters and pigments, while ROS levels, histochemical localization of H2O2 and ·O2-, antioxidative enzymes and non-enzymatic antioxidants (betacyanin, phenolics, thiols and ascorbic acid) showed increases. Surprisingly, salinity alleviated the oxidative stress of elevated O3 due to the rise of SOD activity, antioxidant compounds, and a decrease of ·O2- production rate with concomitant increases of most of the growth parameters. Thick lower collenchyma and enhancement of xylem parenchyma under O3 and combined treatment suggested that anatomical acclimation also operated under O3 stress and salinity played a vital role in the growth of this plant under combined stress. Results showed that salt is essential for the optimum development of this species and its role is extended to alleviate the oxidative damage caused by elevated O3. The results further recommend the use of Egyptian M. crystallinum as a O3 tolerant crop for saline areas along the Mediterranean Sea coast.
Collapse
Affiliation(s)
- Elsayed Mohamed
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit, 71524, Egypt
| | - Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
102
|
Dai L, Xu Y, Harmens H, Duan H, Feng Z, Hayes F, Sharps K, Radbourne A, Tarvainen L. Reduced photosynthetic thermal acclimation capacity under elevated ozone in poplar (Populus tremula) saplings. GLOBAL CHANGE BIOLOGY 2021; 27:2159-2173. [PMID: 33609321 DOI: 10.1111/gcb.15564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The sensitivity of photosynthesis to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial carbon cycle response to future climate change. Although thermal acclimation of photosynthesis under rising temperature has been reported in many tree species, whether tropospheric ozone (O3 ) affects the acclimation capacity remains unknown. In this study, temperature responses of photosynthesis (light-saturated rate of photosynthesis (Asat ), maximum rates of RuBP carboxylation (Vcmax ), and electron transport (Jmax ) and dark respiration (Rdark ) of Populus tremula exposed to ambient O3 (AO3 , maximum of 30 ppb) or elevated O3 (EO3 , maximum of 110 ppb) and ambient or elevated temperature (ambient +5°C) were investigated in solardomes. We found that the optimum temperature of Asat (ToptA ) significantly increased in response to warming. However, the thermal acclimation capacity was reduced by O3 exposure, as indicated by decreased ToptA , and temperature optima of Vcmax (ToptV ) and Jmax (ToptJ ) under EO3 . Changes in both stomatal conductance (gs ) and photosynthetic capacity (Vcmax and Jmax ) contributed to the shift of ToptA by warming and EO3 . Neither Rdark measured at 25°C ( R dark 25 ) nor the temperature response of Rdark was affected by warming, EO3 , or their combination. The responses of Asat , Vcmax , and Jmax to warming and EO3 were closely correlated with changes in leaf nitrogen (N) content and N use efficiency. Overall, warming stimulated growth (leaf biomass and tree height), whereas EO3 reduced growth (leaf and woody biomass). The findings indicate that thermal acclimation of Asat may be overestimated if the impact of O3 pollution is not taken into account.
Collapse
Affiliation(s)
- Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Alan Radbourne
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
103
|
Tisdale RH, Zentella R, Burkey KO. Impact of elevated ozone on yield and carbon-nitrogen content in soybean cultivar 'Jake'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110855. [PMID: 33775362 DOI: 10.1016/j.plantsci.2021.110855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) is a pollutant that leads to significant global yield loss in soybean [Glycine max (L.) Merr.]. To ensure soybean productivity in areas of rising O3, it is important to identify tolerant genotypes. This work describes the response of the high-yielding soybean cultivar 'Jake' to elevated O3 concentrations. 'Jake' was treated with either low O3 [charcoal-filtered (CF) air, 12 h mean: 20 ppb] or with O3-enriched air (12 h mean: 87 ppb) over the course of the entire growing season. In contrast to the absence of O3-induced leaf injury under low O3, elevated O3 caused severe leaf injury and decreased stomatal conductance and photosynthesis. Although elevated O3 reduced total leaf area, leaf number, and plant height at different developmental stages, above-ground and root biomass remained unchanged. Analyzing carbon and nitrogen content, we found that elevated O3 altered allocation of both elements, which ultimately led to a 15 % yield loss by decreasing seed size but not seed number. We concluded that cultivar 'Jake' possesses developmental strength to tolerate chronic O3 conditions, attributes that make it suitable breeding material for the generation of new O3 tolerant lines.
Collapse
Affiliation(s)
- Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607 NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695 NC, USA.
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607 NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695 NC, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607 NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695 NC, USA
| |
Collapse
|
104
|
Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures. LAND 2021. [DOI: 10.3390/land10040357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.
Collapse
|
105
|
Zhao K, Luo H, Yuan Z, Xu D, Du Y, Zhang S, Hao Y, Wu Y, Huang J, Wang Y, Jiang R. Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. J Environ Sci (China) 2021; 102:373-383. [PMID: 33637263 PMCID: PMC7575429 DOI: 10.1016/j.jes.2020.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/23/2023]
Abstract
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.
Collapse
Affiliation(s)
- Kaihui Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huihong Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Danni Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuqi Hao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wu
- The City College of New York (CCNY), New York, NY 10031, USA; NOAA-Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, New York, NY 10031, USA
| | - Jianping Huang
- NOAA-NCEP Environmental Modeling Center and IM System Group Inc., College Park, MD 720740, USA; Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Wang
- Xianyang Meteorological Bureau, Xianyang 712000, China
| | - Rongsheng Jiang
- Climate, Environment and Sustainability Center, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
106
|
Li S, Moller CA, Mitchell NG, Lee D, Ainsworth EA. Bioenergy sorghum maintains photosynthetic capacity in elevated ozone concentrations. PLANT, CELL & ENVIRONMENT 2021; 44:729-746. [PMID: 33245145 PMCID: PMC7986789 DOI: 10.1111/pce.13962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 05/21/2023]
Abstract
Elevated tropospheric ozone concentration (O3 ) significantly reduces photosynthesis and productivity in several C4 crops including maize, switchgrass and sugarcane. However, it is unknown how O3 affects plant growth, development and productivity in sorghum (Sorghum bicolor L.), an emerging C4 bioenergy crop. Here, we investigated the effects of elevated O3 on photosynthesis, biomass and nutrient composition of a number of sorghum genotypes over two seasons in the field using free-air concentration enrichment (FACE), and in growth chambers. We also tested if elevated O3 altered the relationship between stomatal conductance and environmental conditions using two common stomatal conductance models. Sorghum genotypes showed significant variability in plant functional traits, including photosynthetic capacity, leaf N content and specific leaf area, but responded similarly to O3 . At the FACE experiment, elevated O3 did not alter net CO2 assimilation (A), stomatal conductance (gs ), stomatal sensitivity to the environment, chlorophyll fluorescence and plant biomass, but led to reductions in the maximum carboxylation capacity of phosphoenolpyruvate and increased stomatal limitation to A in both years. These findings suggest that bioenergy sorghum is tolerant to O3 and could be used to enhance biomass productivity in O3 polluted regions.
Collapse
Affiliation(s)
- Shuai Li
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Institute for Sustainability, Energy, and EnvironmentUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Christopher A. Moller
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| | - Noah G. Mitchell
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| | - DoKyoung Lee
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Elizabeth A. Ainsworth
- Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| |
Collapse
|
107
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
108
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
109
|
Xu Y, Shang B, Peng J, Feng Z, Tarvainen L. Stomatal response drives between-species difference in predicted leaf water-use efficiency under elevated ozone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116137. [PMID: 33272800 DOI: 10.1016/j.envpol.2020.116137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Ozone-induced changes in the relationship between photosynthesis (An) and stomatal conductance (gs) vary among species, leading to inconsistent water use efficiency (WUE) responses to elevated ozone (O3). Thus, few vegetation models can accurately simulate the effects of O3 on WUE. Here, we conducted an experiment exposing two differently O3-sensitive species (Cotinus coggygria and Magnolia denudata) to five O3 concentrations and investigated the impact of O3 exposure on predicted WUE using a coupled An-gs model. We found that increases in stomatal O3 uptake caused linear reductions in the maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) in both species. In addition, a negative linear correlation between O3-induced changes in the minimal gs of the stomatal model (g0) derived from the theory of optimal stomatal behavior and light-saturated photosynthesis was found in the O3-sensitive M. denudata. When the O3 dose-based responses of Vcmax and Jmax were included in a coupled An-gs model, simulated An under elevated O3 were in good agreement with observations in both species. For M. denudata, incorporating the O3 response of g0 into the coupled model further improved the accuracy of the simulated gs and WUE. In conclusion, the modified Vcmax, Jmax and g0 method presented here provides a foundation for improving the prediction for O3-induced changes in An, gs and WUE.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
110
|
Abstract
Tropospheric concentrations of phytotoxic ozone (O3) have undergone a great increase from preindustrial 10–15 ppbv to a present-day concentration of 35–40 ppbv in large parts of the industrialised world due to increased emissions of O3 precursors including NOx, CO, CH4 and volatile organic compounds. The rate of increase in O3 concentration ranges between 1 ppbv per decade in remote locations of the Southern hemisphere and 5 ppbv per decade in the Northern hemisphere, where largest sources of O3 precursors are located. Molecules of O3 penetrating into the leaves through the stomatal apertures trigger the formation of reactive oxygen species, leading thus to the damage of the photosynthetic apparatus. Accordingly, it is assumed, that O3 increase reduces the terrestrial carbon uptake relative to the preindustrial era. Here we summarise the results of previous manipulative experiments in laboratory growth cabinets, field open-top chambers and free-air systems together with O3 flux measurements under natural growth conditions. In particular, we focus on leaf-level physiological responses in trees, variability in stomatal O3 flux and changes in carbon fluxes and biomass production in forest stands. As the results reported in the literature are highly variable, ranging from negligible to severe declines in photosynthetic carbon uptake, we also discuss the possible interactions of O3 with other environmental factors including solar radiation, drought, temperature and nitrogen deposition. Those factors were found to have great potential to modulate stomata openness and O3 fluxes.
Collapse
|
111
|
Verrall B, Pickering CM. Alpine vegetation in the context of climate change: A global review of past research and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141344. [PMID: 32814293 DOI: 10.1016/j.scitotenv.2020.141344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Climate change is causing extensive alterations to ecosystems globally, with some more vulnerable than others. Alpine ecosystems, characterised by low-temperatures and cryophilic vegetation, provide ecosystems services for billions of people but are considered among the most susceptible to climate change. Therefore, it is timely to review research on climate change on alpine vegetation including assessing trends, topics, themes and gaps. Using a multicomponent bibliometric approach, we extracted bibliometric metadata from 3143 publications identified by searching titles, keywords and abstracts for research on 'climate change' and 'alpine vegetation' from Scopus and Web of Science. While primarily focusing on 'alpine vegetation', some literature that also assessed vegetation below the treeline was captured. There has been an exponential increase in research over 50 years, greater engagement and diversification in who does research, and where it is published and conducted, with increasing focus beyond Europe, particularly in China. Content analysis of titles, keywords and abstracts revealed that most of the research has focused on alpine grasslands but there have been relatively few publications that examine specialist vegetation communities such as snowbeds, subnival vegetation and fellfields. Important themes emerged from analysis of keywords, including treelines and vegetation dynamics, biodiversity, the Tibetan Plateau as well as grasslands and meadows. Traditional ecological monitoring techniques were important early on, but remote sensing has become the primary method for assessment. A key book on alpine plants, the IPCC reports and a few papers in leading journals underpin much of the research. Overall, research on this topic is increasing, with new methods and directions but thematic and geographical gaps remain particularly for research on extreme climatic events, and research in South America, in part due to limited capacity for research on these rare but valuable ecosystems.
Collapse
Affiliation(s)
- Brodie Verrall
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia.
| | - Catherine Marina Pickering
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia
| |
Collapse
|
112
|
Ge D, Gao H, Guo N, Jiang M, Ma H, Li Y, Li L, Yang YI, Fang G, Zhu K, Gong P, Lv S. Heavy Metals in Grains from Jilin Province, China, and Human Health Risk. J Food Prot 2020; 83:2193-2199. [PMID: 32730590 DOI: 10.4315/jfp-20-075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Heavy metals are an indispensable part of industrial and agricultural development. As the cradle of China's industry and an important province for agricultural production, Jilin Province has been an area of concern about heavy metal pollution in the local environment and grains. In this study, we focused on four heavy metals that are harmful to humans: arsenic (As), cadmium (Cd), methylmercury (MeHg), and inorganic arsenic (iAs). We determined the contents of these metals in 341 grain samples by using graphite furnace atomic absorption spectrometry and liquid chromatography-atomic fluorescence spectrometry and compared our results with the limit value of national standards. To evaluate the potential risk to human health, we determined the target hazard quotient and hazard index. Heavy metals were detected at these rates, from high to low: Cd (48%) > iAs (20.8%) > MeHg (4.6%) > Pb (3%). Most of these values are far below the limit of national standards. The target hazard quotient and hazard index were both smaller than 1; thus, we conclude that heavy metal pollution in grains in Jilin Province is not serious and that people are not at high risk from heavy metals in grains. HIGHLIGHTS
Collapse
Affiliation(s)
- Danyang Ge
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Haicheng Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China.,School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Guo
- School of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Mengmeng Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Haixia Ma
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Yingchun Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Liannishang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Y I Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Guangxu Fang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Ketong Zhu
- School of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Pingsheng Gong
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
113
|
Choquette NE, Ainsworth EA, Bezodis W, Cavanagh AP. Ozone tolerant maize hybrids maintain Rubisco content and activity during long-term exposure in the field. PLANT, CELL & ENVIRONMENT 2020; 43:3033-3047. [PMID: 32844407 PMCID: PMC7756399 DOI: 10.1111/pce.13876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/21/2023]
Abstract
Ozone pollution is a damaging air pollutant that reduces maize yields equivalently to nutrient deficiency, heat, and aridity stress. Therefore, understanding the physiological and biochemical responses of maize to ozone pollution and identifying traits predictive of ozone tolerance is important. In this study, we examined the physiological, biochemical and yield responses of six maize hybrids to elevated ozone in the field using Free Air Ozone Enrichment. Elevated ozone stress reduced photosynthetic capacity, in vivo and in vitro, decreasing Rubisco content, but not activation state. Contrary to our hypotheses, variation in maize hybrid responses to ozone was not associated with stomatal limitation or antioxidant pools in maize. Rather, tolerance to ozone stress in the hybrid B73 × Mo17 was correlated with maintenance of leaf N content. Sensitive lines showed greater ozone-induced senescence and loss of photosynthetic capacity compared to the tolerant line.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| | - William Bezodis
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Amanda P. Cavanagh
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- School of Life SciencesUniversity of EssexColchesterUK
| |
Collapse
|
114
|
Cao J, Wang X, Zhao H, Ma M, Chang M. Evaluating the effects of ground-level O 3 on rice yield and economic losses in Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115694. [PMID: 33254685 DOI: 10.1016/j.envpol.2020.115694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Ground-level ozone (O3) pollution and its impact on crop growth and yield have become one of the serious environmental problems in recent years, especially in economically active and densely populated areas. In this study, rice yield and the associated economic losses due to O3 were estimated by using observational O3 concentration ([O3]) data during growing seasons in Southern China. O3-induced yield losses were calculated by using O3 exposure metrics of AOT40 and M7. The spatial distribution of these two metrics is relatively consistent, the highest areas located in the Yangtze River Basin. Under the current O3 level, during double-early rice, double-late rice and single rice growing seasons, the relative yield losses estimated with AOT40 (M7) were 6.8% (1.2%), 10.2% (1.9%) and 10.4% (2.0%), respectively. O3-induced rice production loss for double-early rice, double-late rice and single rice totaled 2.4 million metric tons (0.4 million metric tons), 4.3 million metric tons (0.7 million metric tons) and 11.0 million metric tons (1.9 million metric tons) and associated economic losses were 108.1 million USD (18.3 million USD), 190.2 million USD (32.4 million USD) and 486.4 million USD (82.9 million USD) based on AOT40 (M7) metric. This study indicates that regional risks to rice from O3 exposure and provide quantitative evidence of O3-induced impacts on rice yields and economic losses across Southern China. Therefore, the establishment of scientific O3 risk assessment method is of great significance to prevent yield production and economic losses caused by O3 exposure. Policymakers should strengthen supervision of emissions of O3 precursors to mitigate the rise of O3 concentration, thereby reducing O3 damage to agricultural production.
Collapse
Affiliation(s)
- Jiachen Cao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China
| | - Hui Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
| | - Mingrui Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment, Nangjing University, Nanjing, China
| | - Ming Chang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China; Research Center on Low-carbon Economy for Guangzhou Region, Jinan University, Guangzhou, China.
| |
Collapse
|
115
|
Craig K, Erdakos G, Chang SY, Baringer L. Air quality and source apportionment modeling of year 2017 ozone episodes in Albuquerque/Bernalillo County, New Mexico. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1101-1120. [PMID: 32412852 DOI: 10.1080/10962247.2020.1764879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Albuquerque/Bernalillo County, New Mexico, is currently in attainment of the 2015 National Ambient Air Quality Standard (NAAQS) for ozone (70 ppb), but its ozone design values have increased in recent years. Air quality and source apportionment modeling with the Comprehensive Air Quality Model with Extensions (CAMx) was conducted for Albuquerque/Bernalillo County to develop a refined understanding of ozone source apportionment in the region, estimate ozone concentrations in the year 2025 based on projected changes in anthropogenic emissions, and evaluate the sensitivity of future ozone concentrations to various changes in local and non-local emissions. The study focused on two ozone episodes during June and July 2017 when 8-hr average ozone concentrations were greater than 70 ppb. Based on the modeling results, ozone during the June 2017 episode was found to be driven largely by contributions from non-local and regional emissions, whereas ozone during the July 2017 episode was driven more strongly by local emissions from within Albuquerque/Bernalillo County. On high ozone days, anthropogenic emissions from within Albuquerque/Bernalillo County contributed between 8% and 19% (6-14 ppb) of total ozone. Half of this local ozone contribution was from on-road mobile sources. Fire emissions contributed as much as 2 ppb of ozone on a given day. Contributions from large power plants in New Mexico were as large as 1 ppb on a given day but less than 0.5 ppb on most days. Modeled ozone concentrations in Albuquerque/Bernalillo County were also sensitive to emissions from oil and gas emissions in New Mexico. If projected emission reductions by 2025 materialize, these reductions could reduce future peak 8-hr average ozone concentrations by as much as 3-4% compared to 2017 values. Implications: The results of this study have important implications for air quality management in Albuquerque/Bernalillo County. Ozone in Albuquerque/Bernalillo County is the result of local and non-local emissions, is impacted by wildfires, and is sensitive to statewide oil and gas emissions. The magnitude of modeled contributions from anthropogenic emissions within Albuquerque/Bernalillo County is strongly influenced by meteorological conditions, transport pathways, and the presence of wildfire. This modeling is important for understanding the potential effectiveness of local emission controls in Albuquerque/Bernalillo County, and can serve as a basis for testing future regional and local emission control options.
Collapse
|
116
|
Otu-Larbi F, Conte A, Fares S, Wild O, Ashworth K. Current and future impacts of drought and ozone stress on Northern Hemisphere forests. GLOBAL CHANGE BIOLOGY 2020; 26:6218-6234. [PMID: 32893912 DOI: 10.1111/gcb.15339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Rising ozone (O3 ) concentrations, coupled with an increase in drought frequency due to climate change, pose a threat to plant growth and productivity which could negatively affect carbon sequestration capacity of Northern Hemisphere (NH) forests. Using long-term observations of O3 mixing ratios and soil water content (SWC), we implemented empirical drought and O3 stress parameterizations in a coupled stomatal conductance-photosynthesis model to assess their impacts on plant gas exchange at three FLUXNET sites: Castelporziano, Blodgett and Hyytiälä. Model performance was evaluated by comparing model estimates of gross primary productivity (GPP) and latent heat fluxes (LE) against present-day observations. CMIP5 GCM model output data were then used to investigate the potential impact of the two stressors on forests by the middle (2041-2050) and end (2091-2100) of the 21st century. We found drought stress was the more significant as it reduced model overestimation of GPP and LE by ~11%-25% compared to 1%-11% from O3 stress. However, the best model fit to observations at all the study sites was obtained with O3 and drought stress combined, such that the two stressors counteract the impact of each other. With the inclusion of drought and O3 stress, GPP at CPZ, BLO and HYY is projected to increase by 7%, 5% and 8%, respectively, by mid-century and by 14%, 11% and 14% by 2091-2100 as atmospheric CO2 increases. Estimates were up to 21% and 4% higher when drought and O3 stress were neglected respectively. Drought stress will have a substantial impact on plant gas exchange and productivity, off-setting and possibly negating CO2 fertilization gains in future, suggesting projected increases in the frequency and severity of droughts in the NH will play a significant role in forest productivity and carbon budgets in future.
Collapse
Affiliation(s)
| | - Adriano Conte
- Council for Agricultural Research and Economics (CREA) - Research Centre for Forestry and Wood, Rome, Italy
| | - Silvano Fares
- National Research Council (CNR) - Institute of BioEconomy (IBE), Rome, Italy
| | - Oliver Wild
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Kirsti Ashworth
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
117
|
Mahmood F, Khokhar MF, Mahmood Z. Examining the relationship of tropospheric ozone and climate change on crop productivity using the multivariate panel data techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111024. [PMID: 32854874 DOI: 10.1016/j.jenvman.2020.111024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Home to one-fourth of the world's population and ranked amongst the fastest growing economies, the South Asian countries are marred with the predicament of inexorable pollution. Amidst the growing pollutants, ground-level ozone has become an important component in understanding health, and productivity of agricultural crops. In this regard spatio-temporal analysis of tropospheric ozone for wheat, rice and cotton crops was carried out. Followed-up with a multivariate regression model; establishing a statistical relationship between tropospheric ozone (TO) and crop productivity. The results indicate that predominantly ozone is increasing, with a significant trend visible in all crop growing seasons. Observations indicate higher concentrations of TO in the rice & cotton growing seasons, with a seasonal average of 68 ppb, compared to wheat growing season (55 ppb). Regression results specify that with an increase of 1% in tropospheric ozone concentration within the study area; crop productivity decreases for cotton (-4.0%), rice (-2.3%), and wheat (-0.7%). Furthermore, with the presence of the dominant tropospheric ozone in the regression model, the temperature's impact on productivity becomes statistically inconsequential.
Collapse
Affiliation(s)
- Fatimah Mahmood
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Zafar Mahmood
- School of Social Sciences & Humanities, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
118
|
Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, Mace WJ, Martínez-Ghersa MA. Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. PLANT, CELL & ENVIRONMENT 2020; 43:2540-2550. [PMID: 32705695 DOI: 10.1111/pce.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichloë endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.
Collapse
Affiliation(s)
- Andrea C Ueno
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Claudio M Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Patricia V Demkura
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - María Alejandra Martínez-Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
119
|
Screening of forty Indian Amaranthus hypochondriacus cultivars for tolerance and susceptibility to tropospheric ozone stress. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
120
|
Yu Y, Ji J, Li K, Huang H, Shrestha RP, Kim Oanh NT, Winijkul E, Deng J. Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
121
|
Duarte‐Sierra A, Tiznado‐Hernández ME, Jha DK, Janmeja N, Arul J. Abiotic stress hormesis: An approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest. Compr Rev Food Sci Food Saf 2020; 19:3659-3682. [DOI: 10.1111/1541-4337.12628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Arturo Duarte‐Sierra
- Department of Food Science and Plant Research and Innovation Center Laval University Quebec QC G1V 0A6 Canada
| | - Martin Ernesto Tiznado‐Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Deepak Kumar Jha
- Department of Food Science and Plant Research and Innovation Center Laval University Quebec QC G1V 0A6 Canada
| | - Navina Janmeja
- Department of Food Science and Plant Research and Innovation Center Laval University Quebec QC G1V 0A6 Canada
| | - Joseph Arul
- Department of Food Science and Plant Research and Innovation Center Laval University Quebec QC G1V 0A6 Canada
| |
Collapse
|
122
|
Dave PN, Sahu LK, Tripathi N, Bajaj S, Yadav R, Patel K. Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: impact on local air quality. Heliyon 2020; 6:e04537. [PMID: 32760835 PMCID: PMC7393429 DOI: 10.1016/j.heliyon.2020.e04537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Emissions from landfills are a significant source of non-methane volatile organic compounds (NMVOCs) in urban environments. NMVOCs play an important role in atmospheric chemistry, and elevated concentrations of some compounds are responsible for air quality deterioration. This study is based on the measurements of a suite of 20 C2–C8 NMVOCs at 21 upwind and downwind sites of the largest landfill in western India. Ethane, ethylene and aromatics were the dominant compounds; the concentrations of BTEX in the downwind regions were up to three times higher than their concentrations at upwind sites. The emission ratios of BTEX and other NMVOCs were different from those for residential, commercial, and industrial sources characterizing the emissions from burning and decomposition of organic material. The slope of ΔToluene/ΔBenzene of 0.64 is about three times higher than that determined at the main road junctions of the city. Ranking by Prop-Equiv, the top NMVOCs were isoprene, cis-2-Butene, m + p-xylenes, propylene, ethylene and trans-2-Butene account for 72–75% of the total Prop-Equiv concentrations. Alkenes played the dominant role in ozone formation, followed by aromatic and alkane groups. In addition to landfill emissions, contributions from traffic-related emissions to ambient concentrations of aromatic VOCs were also significant at some sites. Although the experiment was not designed to characterize the emissions from a specific source, the analysis suggests the substantial contributions from both decomposition and burning of landfill materials. The main difficulty in characterizing VOC emissions from landfills is the spatial and temporal variability of emissions from a large area.
Collapse
Affiliation(s)
| | | | - Nidhi Tripathi
- Physical Research Laboratory, Ahmedabad, 380009, India.,Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, 382355, India
| | | | - Ravi Yadav
- Indian Institute of Tropical Meteorology (IITM), Pashan, Pune, 411008, India
| | - Kashyap Patel
- Physical Research Laboratory, Ahmedabad, 380009, India
| |
Collapse
|
123
|
Urban Tree Health Classification Across Tree Species by Combining Airborne Laser Scanning and Imaging Spectroscopy. REMOTE SENSING 2020. [DOI: 10.3390/rs12152435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Declining urban tree health can affect critical ecosystem services, such as air quality improvement, temperature moderation, carbon storage, and biodiversity conservation. The application of state-of-the-art remote sensing data to characterize tree health has been widely examined in forest ecosystems. However, such application to urban trees has not yet been fully explored—due to the presence of heterogeneous tree species and backgrounds, severely complicating the classification of tree health using remote sensing information. In this study, tree health was represented by a set of field-assessed tree health indicators (defoliation, discoloration, and a combination thereof), which were classified using airborne laser scanning (ALS) and hyperspectral imagery (HSI) with a Random Forest classifier. Different classification scenarios were established aiming at: (i) Comparing the performance of ALS data, HSI and their combination, and (ii) examining to what extent tree species mixtures affect classification accuracy. Our results show that although the predictive power of ALS and HSI indices varied between tree species and tree health indicators, overall ALS indices performed better. The combined use of both ALS and HSI indices results in the highest accuracy, with weighted kappa coefficients (Kc) ranging from 0.53 to 0.79 and overall accuracy ranging from 0.81 to 0.89. Overall, the most informative remote sensing indices indicating urban tree health are ALS indices related to point density, tree size, and shape, and HSI indices associated with chlorophyll absorption. Our results further indicate that a species-specific modelling approach is advisable (Kc points improved by 0.07 on average compared with a mixed species modelling approach). Our study constitutes a basis for future urban tree health monitoring, which will enable managers to guide early remediation management.
Collapse
|
124
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
125
|
Feng Z, Hu T, Tai APK, Calatayud V. Yield and economic losses in maize caused by ambient ozone in the North China Plain (2014-2017). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137958. [PMID: 32208283 DOI: 10.1016/j.scitotenv.2020.137958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Maize is the second most important crop per harvested area in the world. The North China Plain (NCP) is a highly populated and relevant agricultural region in China, experiencing some of the highest ozone (O3) concentrations worldwide. It produces ~24% of the total maize production of China in years 2014-2017. For these years, we used observational O3 data in combination with geostatistic methods to estimate county-level production and economic losses due to O3 in the NCP. AOT40 (accumulated ozone exposure over an hourly threshold of 40 ppb) values during the maize growing season (90 days before maturity) progressively increased in the four consecutive years: 13.7 ppm h, 15.4 ppm h, 16.9 ppm h and 22.7 ppm h. Mean relative yield losses were 8.2% in 2014, 9.2% in 2015, 10.4% in 2016 and 13.4% in 2017. These yield losses, derived from exposure-response functions, resulted in crop production losses of 530.3 × 104 t, 617.8 × 104 t, 713.8 × 104 t, and 953.4 × 104 t, as well as economic losses of 2343 million USD, 2672 million USD, 1887 million USD, and 2404 million USD from 2014 to 2017. The NCP is a key area in China for monitoring the effectiveness of the clean air action policies aiming at reducing emissions of air pollutants. Despite these measures, O3 concentrations have increased in NCP, and reduction of this pollutant are challenging. We suggest an increase in the number of rural air quality stations for better characterizing O3 trends in cropland areas, as well as the application of different mitigation measures. They may involve more stringent air quality regulations and changes in crops, breeding tolerant cultivars and a crop management taking into account O3 pollution.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tingjian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Amos P K Tai
- Earth System Science Programme, State Key Laboratory of Agrobiotechnology, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| |
Collapse
|
126
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
127
|
Schneuwly J, Ammann C. Large regional differences of soil water limitation effect on ozone induced yield loss for wheat and potato in Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135257. [PMID: 31848059 DOI: 10.1016/j.scitotenv.2019.135257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/23/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The accumulated stomatal ozone (O3) uptake over a threshold (Phytotoxic Ozone Dose POD6), calculated by an ozone deposition model, has been shown to be the most appropriate metric to quantify negative effects of O3 on food crops. In this study we used data of 13 sites in different regions of Switzerland with multiple years of O3 measurements to quantify the stomatal O3 uptake and the related yield loss of wheat and potato. Flux patterns for different years were calculated with the DO3SE model to disentangle the influence of contrasting seasonal environmental conditions. Regional and inter-annual differences in meteorological conditions led to considerable variations in soil water conditions and the POD6 values for wheat. Potato stomatal uptake was much less influenced by soil water and showed a more even distribution of POD6 values across sites and years. The estimated nationally and temporally average yield loss was 3.2 ± 1.2% for wheat and 2.4 ± 0.8% for potato, calculated based on an area weighting. It was found that soil water deficit, observed frequently in the western part of Switzerland, had a large attenuation effect on stomatal O3 uptake by wheat and on corresponding yield losses. This highlights the importance of including soil moisture limitation in O3 uptake modelling even in moist climatic regions. The comparison of modelled evapotranspiration with water flux measurements over a wheat field showed a reasonable agreement concerning the temporal pattern and the magnitude. But it is also concluded that the DO3SE soil moisture module will need further testing and adaptation to improve accuracy of the model in dryer conditions.
Collapse
Affiliation(s)
- Jérôme Schneuwly
- Agroscope, Climate and Agriculture Group, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Christof Ammann
- Agroscope, Climate and Agriculture Group, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland.
| |
Collapse
|
128
|
Dolker T, Mukherjee A, Agrawal SB, Agrawal M. Responses of a semi-natural grassland community of tropical region to elevated ozone: An assessment of soil dynamics and biomass accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137141. [PMID: 32086084 DOI: 10.1016/j.scitotenv.2020.137141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Despite knowing the phytotoxic effects of tropospheric ozone (O3), which is of global concern, there is no study so far reported about its impacts on grassland community of tropical regions. Therefore, we assessed the responses of a semi-natural grassland community of Indo-Gangetic plains to elevated O3 exposure (Ambient + 20 ppb) compared to ambient after three years of exposure using open-top chambers. Percent decreases were found in above (26%; p ≤ 0.002) and belowground (30%; p ≤ 0.003) biomass under elevated compared to ambient O3 exposure. Percent decrements in total organic carbon (TOC; 24%; p ≤ 0.001), total nitrogen (29%; p ≤ 0.001) and available phosphorus (11%; p ≤ 0.002) in the soil were also observed under elevated O3 exposure. Exposure at elevated O3 reduced soil microbial biomass and activities of β-glucosidase, amylase, urease and phosphatase, while polyphenol oxidase and peroxidase showed enhancement in their activities, showing negative effects on belowground soil health. Percent reduction in root shoot ratio (10%; p ≤ 0.05) depicts that less C-allocation towards root system led to a reduction in TOC in the soil, which could affect C-sequestration under elevated O3 condition in the semi-natural grasslands. Elevated O3 also affected enzymes participating in N and P-cycles, causing reductions in total nitrogen and phosphorus. The study concludes that projected O3 concentrations have serious implications for aboveground biomass as well as belowground soil health in tropical areas, identified as hotspots of O3 in the world.
Collapse
Affiliation(s)
- Tsetan Dolker
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
129
|
Kinose Y, Fukamachi Y, Okabe S, Hiroshima H, Watanabe M, Izuta T. Toward an impact assessment of ozone on plant carbon fixation using a process-based plant growth model: A case study of Fagus crenata grown under different soil nutrient levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137008. [PMID: 32059294 DOI: 10.1016/j.scitotenv.2020.137008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Ozone (O3) in the troposphere, an air pollutant with phytotoxicity, is considered as a driver of global warming, because it reduces plant carbon fixation. Recently, a process-based plant growth model has been used in evaluating the O3 impacts on plants (Schauberger et al., 2019). To make the evaluation more rigorous, we developed a plant growth model and clarified the key factors driving O3-induced change in the whole-plant carbon fixation amount (Cfix). Fagus crenata seedlings were exposed to three O3 levels (charcoal-filtered air or 1.0- or 1.5-folds ambient [O3]) with three soil fertilization levels (non-, low-, or high-fertilized), i.e., a total of nine treatments. The Cfix was reduced in non- and low-fertilized treatments but was unaffected in high-fertilized treatment by O3 fumigation. Our plant growth model could simulate Cfix accurately (<10% error) by considering the impacts of O3 on plant leaf area and photosynthetic capacities, including maximum velocities of carboxylation and electron transport (Vcmax and Jmax, respectively), and the initial slope and convexity of the curve of the electron transport velocity response to photosynthetic photon flux density (φ and θ, respectively). Furthermore, the model revealed that changes in Vcmax and Jmax, φ and θ, or leaf area, caused by 1.5-folds the ambient [O3] fumigation resulted in the following Cfix changes: -1.6, -5.8, or -16.4% in non-fertilized seedlings, -4.1, -4.4, or -9.3% in low-fertilized seedlings, and -4.6, -7.6, or +5.8% in high-fertilized seedlings. Therefore, photosynthetic capacities (particularly φ and θ) and leaf area are important factors influencing the impact of O3 on Cfix of F. crenata seedlings grown under various fertilization levels. Further, the impacts of O3 and soil nutrient on these photosynthetic capacities and plant leaf area should be considered to predict O3-induced changes in carbon fixation by forest tree species using the process-based plant growth model.
Collapse
Affiliation(s)
- Yoshiyuki Kinose
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yoshinobu Fukamachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shigeaki Okabe
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroka Hiroshima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
130
|
Wang Z, Wang C, Wang B, Wang X, Li J, Wu J, Liu L. Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114076. [PMID: 32041012 DOI: 10.1016/j.envpol.2020.114076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Atmospheric pollution could significantly alter tree growth independently and synergistically with meteorological conditions. North China offers a natural experiment for studying how plant growth responds to air pollution under different meteorological conditions, where rapid economic growth has led to severe air pollution and climate changes increase drought stress. Using a single aspen clone (Populus euramericana Neva.) as a 'phytometer', we conducted three experiments to monitor aspen leaf photosynthesis and stem growth during in situ exposure to atmospheric pollutants along the urban-rural gradient around Beijing. We used stepwise model selection to select the best multiple linear model, and we used binned regression to estimate the effects of air pollutants, atmospheric moisture stress and their interactions on aspen leaf photosynthesis and growth. Our results indicated that ozone (O3) and vapor pressure deficit (VPD) inhibited leaf photosynthesis and stem growth. The interactive effect of O3 and VPD resulted in a synergistic response: as the concentration of O3 increased, the negative impact of VPD on leaf photosynthesis and stem growth became more severe. We also found that nitrogen (N) deposition had a positive effect on stem growth, which may have been caused by an increase in canopy N uptake, although this hypothesis needs to be confirmed by further studies. The positive impact of aerosol loading may be due to diffuse radiation fertilization effects. Given the decline in aerosols and N deposition amidst increases in O3 concentration and drought risk, the negative effects of atmospheric pollution on tree growth may be aggravated in North China. In addition, the interaction between O3 and VPD may lead to a further reduction in ecosystem productivity.
Collapse
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
131
|
Ghosh A, Pandey AK, Agrawal M, Agrawal SB. Assessment of growth, physiological, and yield attributes of wheat cultivar HD 2967 under elevated ozone exposure adopting timely and delayed sowing conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17205-17220. [PMID: 32152862 DOI: 10.1007/s11356-020-08325-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The present study was conducted to assess the impact of elevated levels of O3 and shifting of crop calendar practice, singly, and in combination on Triticum aestivum cv. HD 2967 on its growth, gas exchange parameters, and yield attributes in open-top chambers (OTCs). Two sowing dates were considered: timely sown and late sown. Late sowing was delayed by 20 days from the timely sowing date. The result revealed that wheat plants under elevated O3 and timely sown conditions (ET) showed reductions in growth parameters, while such effects were synergistic when plants were exposed to elevated O3 under late sown conditions (EL). Photosynthetic rate, stomatal conductance, and water use efficiency reduced significantly under EL followed by ET and AL as compared with AT (ambient O3 + timely sown) whereas transpiration rate showed maximum increment under EL. Grain yield reduced by 45.3% in EL as compared with AT and 16.2% in ET as compared with AT. The growth parameters and yield attributes obtained from the present experiment revealed that (i) O3 is affecting the growth and productivity of the wheat and (ii) late sowing practice has not proved to be a feasible adaptation strategy for the wheat cultivation against O3-induced production losses under the prevailing conditions of Indo-Gangetic Plain. This is the first report documenting the shifting of crop calendar practice at the present and future scenario of O3 concentration under agro-ecological conditions in the tropical region of India.
Collapse
Affiliation(s)
- Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashutosh Kumar Pandey
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
132
|
Cerrato-Alvarez M, Frutos-Puerto S, Miró-Rodríguez C, Pinilla-Gil E. Measurement of tropospheric ozone by digital image analysis of indigotrisulfonate-impregnated passive sampling pads using a smartphone camera. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
133
|
Xu Y, Shang B, Feng Z, Tarvainen L. Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. TREE PHYSIOLOGY 2020; 40:484-497. [PMID: 32031641 DOI: 10.1093/treephys/tpaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Although ozone (O3) concentration and nitrogen (N) availability are well known to affect plant physiology, their impacts on the photosynthetic temperature response are poorly understood. We addressed this knowledge gap by exposing seedlings of hybrid poplar clone '107' (Populous euramericana cv. '74/76') to elevated O3 (E-O3) and N availability variation in a factorial experiment. E-O3 decreased light-saturated net photosynthesis (Asat), mesophyll conductance (gm) and apparent maximum rate of carboxylation (Vcmax, based on intercellular CO2 concentration) but not actual Vcmax (based on chloroplast CO2 concentration) and increased respiration in light (Rd) at 25 °C. Nitrogen fertilization increased Asat, gm, Vcmax and the maximum rate of electron transport (Jmax) and reduced Rd at 25 °C and the activation energy of actual Vcmax. No E-O3 or E-O3 x N interaction effects on the temperature response parameters were detected, simplifying the inclusion of O3 impacts on photosynthesis in vegetation models. gm peaked at 30 °C, apparent Vcmax and Jmax at 32-33 °C, while the optimum temperatures of actual Vcmax and Jmax exceeded the measured temperature range (15-35 °C). Ignoring gm would, thus, have resulted in mistakenly attributing the decrease in Asat at high temperatures to reduced biochemical capacity rather than to greater diffusion limitation.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
134
|
Peng B, Guan K, Tang J, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliott JW, Ewert F, Grant RF, Gustafson DI, Hammer GL, Jin Z, Jones JW, Kimm H, Lawrence DM, Li Y, Lombardozzi DL, Marshall-Colon A, Messina CD, Ort DR, Schnable JC, Vallejos CE, Wu A, Yin X, Zhou W. Towards a multiscale crop modelling framework for climate change adaptation assessment. NATURE PLANTS 2020; 6:338-348. [PMID: 32296143 DOI: 10.1038/s41477-020-0625-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem performances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to provide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling framework include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale prediction is the balance between process details required to assess the intervention and predictability of the system at the scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of resilient and sustainable crop production systems under a changing climate at regional-to-global scales.
Collapse
Affiliation(s)
- Bin Peng
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jinyun Tang
- Climate Sciences Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth A Ainsworth
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Senthold Asseng
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Carl J Bernacchi
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark Cooper
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Evan H Delucia
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua W Elliott
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | - Frank Ewert
- Crop Science Group, INRES, University of Bonn, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | - Graeme L Hammer
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - James W Jones
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | | | - Amy Marshall-Colon
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Donald R Ort
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James C Schnable
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - C Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Wang Zhou
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
135
|
Li P, Yin R, Shang B, Agathokleous E, Zhou H, Feng Z. Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: An experimental case study and a literature meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136379. [PMID: 31926420 DOI: 10.1016/j.scitotenv.2019.136379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) pollution often co-occurs with anthropogenic nitrogen (N) deposition. Many studies have explored how O3 and soil N affect aboveground structure and function of trees, but it remains unclear how belowground processes change over a spectrum of N addition and O3 concentrations levels. Here, we explored the interactive impact of O3 (five levels) and soil N (four levels) on fine and coarse root biomass and biomass allocation pattern in poplar clone 107 (Populus euramericana cv. '74/76'). We then evaluated the modifying effects of N on the responses of tree root biomass to O3 via a synthesis of published literature. Elevated O3 inhibited while N addition stimulated root biomass, with more pronounced effects on fine roots than on coarse root. The root:shoot (R:S) ratio was markedly decreased by N addition but remained unaffected by O3. No interactive effects between O3 and N were observed on root biomass and R:S ratio. The slope of log-log linear relationship between shoot and root biomass (i.e. scaling exponent) was increased by N, but not significantly affected by O3. The analysis of published literature further revealed that the O3-induced reduction in tree root biomass was not modified by soil N. The results suggest that higher N addition levels enhance faster allocation of shoot biomass while shoot biomass scales isometrically with root biomass across multiple O3 levels. N addition does not markedly alter the sensitivity of root biomass of trees to O3. These findings highlight that the biomass allocation exhibits a differential response to environmentally realistic levels of O3 and N, and provide an important perspective for understanding and predicting net primary productivity and carbon dynamics in O3-polluted and N-enriched environments.
Collapse
Affiliation(s)
- Pin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Rongbin Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huimin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
136
|
Evidence of Ozone-Induced Visible Foliar Injury in Hong Kong Using Phaseolus Vulgaris as a Bioindicator. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: Hong Kong is one of the most densely populated cities in the world, with millions of people exposed to severe air pollution. Surface ozone, mostly produced photochemically from anthropogenic precursor gases, is harmful to both humans and vegetation. The phytotoxicity of ozone has been shown to damage plant photosynthesis, induce early leaf death, and retard growth. (2) Methods: We use genotypes of bush bean Phaseolus vulgaris with various degrees of sensitivity to ozone to investigate the impacts of ambient ozone on the morphology and development of the beans. We use ozone-induced foliar injury index and measure the flowering and fruit production to quantify the ozone stress on the plants. (3) Results: We expected that the ozone-sensitive genotype would suffer from a reduction of yield. Results, however, show that the ozone-sensitive genotype suffers higher ozone-induced foliar damage as expected but produces more pods and beans and heavier beans than the ozone-resistant genotype. (4) Conclusions: It is postulated that the high ozone sensitivity of the sensitive genotype causes stress-induced flowering, and therefore results in higher bean yield. A higher than ambient concentration of ozone is needed to negatively impact the yield production of the ozone-sensitive genotype. Meanwhile, ozone-induced foliar damage shows a graduated scale of damage pattern that can be useful for indicating ozone levels. This study demonstrates the usefulness of bioindicators to monitor the phytotoxic effects of ozone pollution in a subtropical city such as Hong Kong.
Collapse
|
137
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
138
|
Hu T, Liu S, Xu Y, Feng Z, Calatayud V. Assessment of O 3-induced yield and economic losses for wheat in the North China Plain from 2014 to 2017, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113828. [PMID: 31874438 DOI: 10.1016/j.envpol.2019.113828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 12/15/2019] [Indexed: 05/15/2023]
Abstract
Tropospheric ozone (O3) is a pollutant of widespread concern in the world and especially in China for its negative effects on agricultural crops. For the first time, yield and economic losses of wheat between 2014 and 2017 were estimated for the North China Plain (NCP) using observational hourly O3 data from 312 monitoring stations and exposure-response functions based on AOT40 index (accumulated hourly O3 concentration above 40 ppb) from a Chinese study. AOT40 values from 2014 to 2017 during the wheat growing seasons (75-days, 44 before and 30 after mid-anthesis) ranged from 3.1 to 14.9 ppm h, 4.9-17.5 ppm h, 7.3-17.6 ppm h, and 0.5-18.6 ppm h, respectively. The highest AOT40 values were observed in the Beijing-Tianjin-Hebei region. The values of relative yield losses from 2014 to 2017 were in the ranges of 6.4-30.5%, 10.0-35.8%, 14.9-34.1%, and 21.6-38.2%, respectively. The total wheat production losses in NCP for 2014-2017 accounted for 18.5%, 22.7%, 26.2% and 30.8% in the whole production, while the economic losses amounted to 6,292 million USD, 8,524 million USD, 10,068 million USD, and 12,404 million USD, respectively. The important impact of O3 in this area, which is of global importance, should be considered when assessing wheat yield production. Our results also show an increasing trend in AOT40, relative yield loss, total crop production loss and economic loss in the four consecutive years.
Collapse
Affiliation(s)
- Tingjian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vicent Calatayud
- Fundación CEAM, C/Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| |
Collapse
|
139
|
Guo H, Sun Y, Yan H, Li C, Ge F. O 3-Induced Priming Defense Associated With the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. FRONTIERS IN PLANT SCIENCE 2020; 11:93. [PMID: 32210979 PMCID: PMC7069499 DOI: 10.3389/fpls.2020.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Elevated ozone (O3) modulates phytohormone signals, which subsequently alters the interaction between plants and herbivorous insects. It has been reported that elevated O3 activates the plant abscisic acid (ABA) signaling pathway, but its cascading effect on the performance of herbivorous insects remains unclear. Here, we used the ABA-deficient tomato mutant notabilis (not) and its wild type, Ailsa Craig (AC), to determine the role of ABA signaling in mediating the effects of elevated O3 on Bemisia tabaci in field open-top chambers (OTCs). Our results showed that the population abundance and the total phloem-feeding duration of B. tabaci were decreased by O3 exposure in AC plants compared with not plants. Moreover, elevated O3 and B. tabaci infestation activated the ABA signaling pathway and enhanced callose deposition in AC plants but had little effect on those in not plants. The exogenous application of a callose synthesis inhibitor (2-DDG) neutralized O3-induced resistance to B. tabaci, and the application of ABA enhanced callose deposition and exacerbated the negative effects of elevated O3 on B. tabaci. However, the application of 2-DDG counteracted the negative effects of O3 exposure on B. tabaci in ABA-treated AC plants. Collectively, this study revealed that callose deposition, which relied on the ABA signaling pathway, was an effective O3-induced priming defense of tomato plants against B. tabaci infestation.
Collapse
Affiliation(s)
- Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
140
|
Xu S, He XY, Du Z, Chen W, Li B, Li Y, Li MH, Schaub M. Tropospheric ozone and cadmium do not have interactive effects on growth, photosynthesis and mineral nutrients of Catalpa ovata seedlings in the urban areas of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135307. [PMID: 31812382 DOI: 10.1016/j.scitotenv.2019.135307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination and tropospheric ozone (O3) pollution often co-occur in heavy industrial urban areas, adversely affecting urban plant health. Little is known about the characteristics of growth, physiological metabolism, bioaccumulation of cadmium (Cd) and mineral nutrients in urban trees under the combination of soil Cd contamination and elevated O3 exposure. In this study, one-year-old street tree Catalpa ovata G. Don seedlings were exposed to Cd contaminated soil (0, 100, 500 mg/kg soil) with 40 µg/m3 O3 (ambient air) and 120 µg/m3 O3 (elevated O3 exposure) for 4 weeks. The results revealed that 500 mg/kg soil Cd addition alone decreased net photosynthetic rate, stomatal conductance, peroxidase activity and increased abscisic acid content and oxidative injury in the leaves of C. ovata. Furthermore, Cd soil contamination decreased leaf, stem, root and total biomass and affected Cd, Mg, Fe, and Zn contents in leaves (P < 0.01), but it did not affect Mg, Fe and Zn contents in roots. O3 exposure did not affect growth, net photosynthetic rate, Cd accumulation and mineral nutrient contents of C. ovata. No interactive effect between Cd and O3 was found on growth, oxidative injury, photosynthetic rate, and the contents of Cd, Mg, Fe and Zn in plant tissues (P > 0.05). Our findings suggest that C. ovata is an appropriate tree species for urban greening and afforestation in heavy industrial urban areas with high O3 pollution in Northeast China. To ensure successful afforestation in heavy industrial areas, the long-term and large scale studies are needed to advance our understanding of the combined effects from extreme climate conditions and multi-pollutant exposure on the metabolism of mature urban trees.
Collapse
Affiliation(s)
- Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Yuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Zhong Du
- College of Land and Resources, China West Normal University, Nanchong 637009, People's Republic of China.
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, People's Republic of China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland; SwissForestLab, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland; SwissForestLab, Birmensdorf 8903, Switzerland
| |
Collapse
|
141
|
Effects of Elevated Temperature and Ozone in Brassica juncea L.: Growth, Physiology, and ROS Accumulation. FORESTS 2020. [DOI: 10.3390/f11010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Global warming and ozone (O3) pose serious threats to crop yield and ecosystem health. Although neither of these factors will act individually in reality, most studies have focused on the responses of plants to air pollution or climate change. Interactive effects of these remain poorly studied. Therefore, this study was conducted to assess the effects of optimal (22/20 °C day/night) and elevated temperature (27/25 °C) and/or ambient (10 ± 10 nL L−1) and elevated O3 concentrations (100 ± 10 nL L−1) on the growth, physiology, and reactive oxygen species (ROS) accumulation of leaf mustard (Brassica juncea L.). The aim was to examine whether elevated temperature increase the O3 damage due to increasing stomatal conductance, and thus, O3 flux into the leaf. Significant reductions in photosynthetic rates occurred under O (elevated O3 with optimal temperatures) and OT (elevated O3 and temperature) conditions compared to C (controls). Stomatal conductance was significantly higher under T than in the C at 7 DAE. Under OT conditions, O3 flux significantly increased compared to that in O conditions at 7 days after exposure (DAE). Significant reductions in total fresh and dry weight were observed under OT conditions compared to those under O. Furthermore, significant reductions in levels of carotenoids and ascorbic acid were observed under OT conditions compared to O. Lipid peroxidation and accumulation of ROS such as hydroxyl radical, hydrogen peroxide, and superoxide radical were higher under O and OT conditions than in C conditions at 7 and 14 DAE. As a result of O3 stress, the results of the present study indicated that the plant injury index significantly increased under OT compared to O conditions. This result suggested that elevated temperature (+5 °C) may enhance O3 damage to B. juncea by increasing stomatal conductance and O3 flux into leaves.
Collapse
|
142
|
Sage RF. Global change biology: A primer. GLOBAL CHANGE BIOLOGY 2020; 26:3-30. [PMID: 31663217 DOI: 10.1111/gcb.14893] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/09/2019] [Indexed: 05/17/2023]
Abstract
Because of human action, the Earth has entered an era where profound changes in the global environment are creating novel conditions that will be discernable far into the future. One consequence may be a large reduction of the Earth's biodiversity, potentially representing a sixth mass extinction. With effective stewardship, the global change drivers that threaten the Earth's biota could be alleviated, but this requires clear understanding of the drivers, their interactions, and how they impact ecological communities. This review identifies 10 anthropogenic global change drivers and discusses how six of the drivers (atmospheric CO2 enrichment, climate change, land transformation, species exploitation, exotic species invasions, eutrophication) impact Earth's biodiversity. Driver impacts on a particular species could be positive or negative. In either case, they initiate secondary responses that cascade along ecological lines of connection and in doing so magnify the initial impact. The unique nature of the threat to the Earth's biodiversity is not simply due to the magnitude of each driver, but due to the speed of change, the novelty of the drivers, and their interactions. Emphasizing one driver, notably climate change, is problematic because the other global change drivers also degrade biodiversity and together threaten the stability of the biosphere. As the main academic journal addressing global change effects on living systems, GCB is well positioned to provide leadership in solving the global change challenge. If humanity cannot meet the challenge, then GCB is positioned to serve as a leading chronicle of the sixth mass extinction to occur on planet Earth.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
143
|
Hanson PJ, Walker AP. Advancing global change biology through experimental manipulations: Where have we been and where might we go? GLOBAL CHANGE BIOLOGY 2020; 26:287-299. [PMID: 31697014 PMCID: PMC6973100 DOI: 10.1111/gcb.14894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 05/24/2023]
Abstract
This commentary summarizes the publication history of Global Change Biology for works on experimental manipulations over the past 25 years and highlights a number of key publications. The retrospective summary is then followed by some thoughts on the future of experimental work as it relates to mechanistic understanding and methodological needs. Experiments for elevated CO2 atmospheres and anticipated warming scenarios which take us beyond historical analogs are suggested as future priorities. Disturbance is also highlighted as a key agent of global change. Because experiments are demanding of both personnel effort and limited fiscal resources, the allocation of experimental investments across Earth's biomes should be done in ecosystems of key importance. Uncertainty analysis and broad community consultation should be used to identify research questions and target biomes that will yield substantial gains in predictive confidence and societal relevance. A full range of methodological approaches covering small to large spatial scales will continue to be justified as a source of mechanistic understanding. Nevertheless, experiments operating at larger spatial scales encompassing organismal, edaphic, and environmental diversity of target ecosystems are favored, as they allow for the assessment of long-term biogeochemical feedbacks enabling a full range of questions to be addressed. Such studies must also include adequate investment in measurements of key interacting variables (e.g., water and nutrient availability and budgets) to enable mechanistic understanding of responses and to interpret context dependency. Integration of ecosystem-scale manipulations with focused process-based manipulations, networks, and large-scale observations will aid more complete understanding of ecosystem responses, context dependence, and the extrapolation of results. From the outset, these studies must be informed by and integrated with ecosystem models that provide quantitative predictions from their embedded mechanistic hypotheses. A true two-way interaction between experiments and models will simultaneously increase the rate and robustness of Global Change research.
Collapse
Affiliation(s)
- Paul J. Hanson
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Anthony P. Walker
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
144
|
Papazian S, Blande JD. Dynamics of plant responses to combinations of air pollutants. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:68-83. [PMID: 30584692 DOI: 10.1111/plb.12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The focus of this review is on how plants respond to combinations of multiple air pollutants. Global pollution trends, plant physiological responses and ecological perspectives in natural and agricultural systems are all discussed. In particular, we highlight the importance of studying sequential or simultaneous exposure of plants to pollutants, rather than exposure to individual pollutants in isolation, and explore how these responses may interfere with the way plants interact with their biotic community. Air pollutants can alter the normal physiology and metabolic functioning of plants. Here we describe how the phenotypic and molecular changes in response to multiple pollutants can differ compared to those elicited by single pollutants, and how different responses have been observed between plants in the field and in controlled laboratory conditions and between trees and crop plants. From an ecological perspective, we discuss how air pollution can result in greater susceptibility to biotic stressors and in direct or indirect effects on interactions with organisms that occupy higher trophic levels. Finally, we provide an overview of the potential uses of plants to mitigate air pollution, exploring the feasibility for pollution removal via the processes of bio-accumulation and phytoremediation. We conclude by proposing some new directions for future research in the field.
Collapse
Affiliation(s)
- S Papazian
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre, Umeå, Sweden
| | - J D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
145
|
Cui H, Sun Y, Zhao Z, Zhang Y. The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1425-1433. [PMID: 31586399 PMCID: PMC6885742 DOI: 10.1093/ee/nvz113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 05/12/2023]
Abstract
Global change and biotic stress, such as tropospheric contamination and virus infection, can individually modify the quality of host plants, thereby altering the palatability of the plant for herbivorous insects. The bottom-up effects of elevated O3 and tomato yellow leaf curl virus (TYLCV) infection on tomato plants and the associated performance of Bemisia tabaci Mediterranean (MED) were determined in open-top chambers. Elevated O3 decreased eight amino acid levels and increased the salicylic acid (SA) and jasmonic acid (JA) content and the gene expression of pathogenesis-related protein (PR1) and proteinase inhibitor (PI1) in both wild-type (CM) and JA defense-deficient tomato genotype (spr2). TYLCV infection and the combination of elevated O3 and TYLCV infection increased eight amino acids levels, SA content and PR1 expression, and decreased JA content and PI1 expression in both tomato genotypes. In uninfected tomato, elevated O3 increased developmental time and decreased fecundity by 6.1 and 18.8% in the CM, respectively, and by 6.8 and 18.9% in the spr2, respectively. In TYLCV-infected tomato, elevated O3 decreased developmental time and increased fecundity by 4.6 and 14.2%, respectively, in the CM and by 4.3 and 16.8%, respectively, in the spr2. These results showed that the interactive effects of elevated O3 and TYLCV infection partially increased the amino acid content and weakened the JA-dependent defense, resulting in increased population fitness of MED on tomato plants. This study suggests that whiteflies would be more successful at TYLCV-infected plants than at uninfected plants in elevated O3 levels.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
146
|
Choquette NE, Ogut F, Wertin TM, Montes CM, Sorgini CA, Morse AM, Brown PJ, Leakey ADB, McIntyre LM, Ainsworth EA. Uncovering hidden genetic variation in photosynthesis of field-grown maize under ozone pollution. GLOBAL CHANGE BIOLOGY 2019; 25:4327-4338. [PMID: 31571358 PMCID: PMC6899704 DOI: 10.1111/gcb.14794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Funda Ogut
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
- Present address:
Department of Forest EngineeringArtvin Coruh UniversityArtvinTurkey
| | - Timothy M. Wertin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Crystal A. Sorgini
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Alison M. Morse
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Patrick J. Brown
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Lauren M. McIntyre
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaIllinois
| |
Collapse
|
147
|
Agathokleous E, Araminiene V, Belz RG, Calatayud V, De Marco A, Domingos M, Feng Z, Hoshika Y, Kitao M, Koike T, Paoletti E, Saitanis CJ, Sicard P, Calabrese EJ. A quantitative assessment of hormetic responses of plants to ozone. ENVIRONMENTAL RESEARCH 2019; 176:108527. [PMID: 31203049 DOI: 10.1016/j.envres.2019.108527] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Girionys, Lithuania
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593, Stuttgart, Germany
| | - Vicent Calatayud
- Fundación CEAM, Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Spain
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, SSPT-PVS, Via Anguillarese 301, S. Maria di Galeria, Rome, 00123, Italy
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972, SP, Brazil
| | - ZhaoZhong Feng
- Institute of Ecology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410, Biot, France
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
148
|
Leaf Traits That Contribute to Differential Ozone Response in Ozone-Tolerant and Sensitive Soybean Genotypes. PLANTS 2019; 8:plants8070235. [PMID: 31330762 PMCID: PMC6681220 DOI: 10.3390/plants8070235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
Ozone (O3) is a phytotoxic air pollutant that limits crop productivity. Breeding efforts to improve yield under elevated O3 conditions will benefit from understanding the mechanisms that contribute to O3 tolerance. In this study, leaf gas exchange and antioxidant metabolites were compared in soybean genotypes (Glycine max (L.) Merr) differing in ozone sensitivity. Mandarin (Ottawa) (O3-sensitive) and Fiskeby III (O3-tolerant) plants grown under charcoal-filtered (CF) air conditions for three weeks were exposed for five days to either CF conditions or 70 ppb O3 in continuously stirred tank reactors (CSTRs) in a greenhouse. In the CF controls, stomatal conductance was approximately 36% lower for Fiskeby III relative to Mandarin (Ottawa) while the two genotypes exhibited similar levels of photosynthesis. Ozone exposure induced significant foliar injury on leaves of Mandarin (Ottawa) associated with declines in both stomatal conductance (by 77%) and photosynthesis (by 38%). In contrast, O3 exposure resulted in minimal foliar injury on leaves of Fiskeby III with only a small decline in photosynthesis (by 5%), and a further decline in stomatal conductance (by 30%). There was a general trend towards higher ascorbic acid content in leaves of Fiskeby III than in Mandarin (Ottawa) regardless of treatment. The results confirm Fiskeby III to be an O3-tolerant genotype and suggest that reduced stomatal conductance contributes to the observed O3 tolerance through limiting O3 uptake by the plant. Reduced stomatal conductance was associated with enhanced water-use efficiency, providing a potential link between O3 tolerance and drought tolerance.
Collapse
|
149
|
Sorgini CA, Barrios-Perez I, Brown PJ, Ainsworth EA. Examining Genetic Variation in Maize Inbreds and Mapping Oxidative Stress Response QTL in B73-Mo17 Nearly Isogenic Lines. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
150
|
Evaluation of O3 Effects on Cumulative Photosynthetic CO2 Uptake in Seedlings of Four Japanese Deciduous Broad-Leaved Forest Tree Species Based on Stomatal O3 Uptake. FORESTS 2019. [DOI: 10.3390/f10070556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.
Collapse
|