101
|
Ghasemian M, Layton C, Nampe D, zur Nieden NI, Tsutsui H, Princevac M. Hydrodynamic characterization within a spinner flask and a rotary wall vessel for stem cell culture. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
102
|
Xia M, Chen Y, He Y, Li H, Li W. Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture. Stem Cells 2020; 38:860-874. [PMID: 32159914 PMCID: PMC7383802 DOI: 10.1002/stem.3175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Cellular mechanotransduction plays an essential role in the development and differentiation of many cell types, but if and how mechanical cues from the extracellular matrix (ECM) influence the fate determination of inner ear progenitor cells (IEPCs) remains largely unknown. In the current study, we compared the biological behavior of IEPCs in Matrigel-based suspension and encapsulated culture systems, and we found that the mechanical cues from the ECM promote the survival and expansion of IEPCs. Furthermore, we found that the mechanical cues from the ECM induced the accumulation of Ras homolog family member A (RhoA) and caused the polymerization of actin cytoskeleton in IEPCs. These changes in turn resulted in increased Yes-associated protein (YAP) nuclear localization and enhanced expansion of IEPCs, at least partially through upregulating the canonical Wnt signaling pathway. We therefore provide the first demonstration that the RhoA-YAP-β-catenin signaling axis senses and transduces mechanical cues from the ECM and plays crucial roles in promoting the expansion of IEPCs.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, People's Republic of China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
103
|
Zhu P, Hawkins J, Linthicum WH, Wang M, Li N, Zhou N, Wen Q, Timme-Laragy A, Song X, Sun Y. Heavy Metal Exposure Leads to Rapid Changes in Cellular Biophysical Properties. ACS Biomater Sci Eng 2020; 6:1965-1976. [PMID: 33455329 DOI: 10.1021/acsbiomaterials.9b01640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biophysical properties of cells, such as cell mechanics, cell shape, and cell migration, are emerging hallmarks for characterizing various cell functions. Conversely, disruptions to these biophysical properties may be used as reliable indicators of disruptions to cell homeostasis, such as in the case of chemical-induced toxicity. In this study, we demonstrate that treatment of lead(II) nitrate and cadmium nitrate leads to dosage-dependent changes in a collection of biophysical properties, including cellular traction forces, focal adhesions, mechanical stiffness, cell shape, migration speed, permeability, and wound-healing efficacy in mammalian cells. As those changes appear within a few hours after the treatment with a trace amount of lead/cadmium, our results highlight the promise of using biophysical properties to screen environmental chemicals to identify potential toxicants and establish dose response curves. Our systematic and quantitative characterization of the rapid changes in cytoskeletal structure and cell functions upon heavy metal treatment may inspire new research on the mechanisms of toxicity.
Collapse
Affiliation(s)
- Peiran Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | | | - Will Hamilton Linthicum
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Menglin Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Department of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui Province, China
| | | | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | | | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | | |
Collapse
|
104
|
Effect of substrate topography on the regulation of human corneal stromal cells. Colloids Surf B Biointerfaces 2020; 190:110971. [PMID: 32197207 DOI: 10.1016/j.colsurfb.2020.110971] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Optimal functionality of native corneal stroma depends on a well-ordered arrangement of extracellular matrix (ECM). To develop an in vitro corneal model, replication of the corneal in vivo microenvironment is needed. In this study, the impact of topographic cues on keratocyte phenotype is reported. Photolithography and polymer moulding were used to fabricate microgrooves on polydimethylsiloxane (PDMS) 2-2.5 μm deep and 5 μm, 10 μm, or 20 μm in width. Microgrooves constrained the cells body, compressed nuclei and led to cytoskeletal reorganization. It also influenced the concentration of actin filaments, condensation of chromatin and cell proliferation. Cells became more spread and actin filament concentration decreased as the microgroove width increased. Relationships were also demonstrated between microgroove width and cellular processes such as adhesion, migration and gene expression. Immunocytochemistry and gene expression (RT-PCR) analysis showed that microgroove width upregulated keratocyte specific genes. A microgroove with 5 μm width led to a pronounced alignment of cells along the edges of the microchannels and better supported cell polarization and migration compared with other microgroove widths or planar substrates. These findings provide important fundamental knowledge that could serve as a basis for better-controlled tissue growth and cell-engineering applications for corneal stroma regeneration through topographical patterns.
Collapse
|
105
|
Huang S, Ulloa A, Nauman E, Stanciu L. Collagen Coating Effects on Fe-Mn Bioresorbable Alloys. J Orthop Res 2020; 38:523-535. [PMID: 31608487 DOI: 10.1002/jor.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
Bioresorbable iron-manganese alloys (Fe-30%Mn) are considered as one of the next-generation resorbable materials for orthopedic applications. Previous in vitro study showed that Fe30Mn scaffolds with 10% porosity displayed strong mechanical properties and adequate degradation rate without severe cytotoxicity effect. However, the cellular compatibility of these alloys in terms of cell-to-cell and alloy-to-cell interactions is not ideal. Collagen is the most abundant protein in human bone, providing structural support beneficial to bone healing. We hypothesized that coating collagen on Fe30Mn can improve osteointegration or activities promoting cell adhesion, migration, and proliferation, as the alloy degrades. After preparing collagen coating on Fe-30Mn via spin coating, we conducted a corrosion test and a direct cytotoxicity test on four Fe30Mn groups: non-porous and 10% porosity, with and without collagen coating. Furthermore, we evaluated and compared the morphologies of cells over a period of 7 days. Results showed that there was no significant difference between the collagen-coated and non-coated groups in corrosion rates, yet a significant decrease from the porous non-coated group to the porous collagen-coated group in cytotoxicity level was found. Cell morphology on the porous non-coated group displayed round shape, whereas that on the porous collagen-coated group displayed flattened spreading. The study showed that the collagen coating significantly increased the initial cell viability and adhesion for both the porous and non-porous groups without impeding their degradation rates. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:523-535, 2020.
Collapse
Affiliation(s)
- Sabrina Huang
- School of Materials Science and Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, Indiana, 47907-2045
| | - Ana Ulloa
- School of Materials Science and Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, Indiana, 47907-2045
| | - Eric Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Lia Stanciu
- School of Materials Science and Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, Indiana, 47907-2045
| |
Collapse
|
106
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
107
|
Modaresifar K, Kunkels LB, Ganjian M, Tümer N, Hagen CW, Otten LG, Hagedoorn PL, Angeloni L, Ghatkesar MK, Fratila-Apachitei LE, Zadpoor AA. Deciphering the Roles of Interspace and Controlled Disorder in the Bactericidal Properties of Nanopatterns against Staphylococcus aureus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E347. [PMID: 32085452 PMCID: PMC7075137 DOI: 10.3390/nano10020347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of nanopatterns. Evaluating the effects of each parameter, isolated from the others, requires systematic studies. Here, we systematically assessed the effects of the interspacing and disordered arrangement of nanopillars on the bactericidal properties of nanopatterned surfaces. Electron beam induced deposition (EBID) was used to additively manufacture nanopatterns with precisely controlled dimensions (i.e., a height of 190 nm, a diameter of 80 nm, and interspaces of 100, 170, 300, and 500 nm) as well as disordered versions of them. The killing efficiency of the nanopatterns against Gram-positive Staphylococcus aureus bacteria increased by decreasing the interspace, achieving the highest efficiency of 62 ± 23% on the nanopatterns with 100 nm interspacing. By comparison, the disordered nanopatterns did not influence the killing efficiency significantly, as compared to their ordered correspondents. Direct penetration of nanopatterns into the bacterial cell wall was identified as the killing mechanism according to cross-sectional views, which is consistent with previous studies. The findings indicate that future studies aimed at optimizing the design of nanopatterns should focus on the interspacing as an important parameter affecting the bactericidal properties. In combination with controlled disorder, nanopatterns with contrary effects on bacterial and mammalian cells may be developed.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Lorenzo B. Kunkels
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Nazli Tümer
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Cornelis W. Hagen
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Linda G. Otten
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2626HZ Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2626HZ Delft, The Netherlands
| | - Livia Angeloni
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands;
| | - Murali K. Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands;
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| |
Collapse
|
108
|
Bai M, Cai L, Li X, Ye L, Xie J. Stiffness and topography of biomaterials dictate cell-matrix interaction in musculoskeletal cells at the bio-interface: A concise progress review. J Biomed Mater Res B Appl Biomater 2020; 108:2426-2440. [PMID: 32027091 DOI: 10.1002/jbm.b.34575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 02/05/2023]
Abstract
Mutually interacted musculoskeletal tissues work together within the physiological environment full of varieties of external stimulus. Consistent with the locomotive function of the tissues, musculoskeletal cells are remarkably mechanosensitive to the physical cues. Signals like extracellular matrix (ECM) stiffness, topography, and geometry can be sensed and transduced into intracellular signaling cascades to trigger a series of cell responses, including cell adhesion, cell phenotype maintenance, cytoskeletal reconstruction, and stem cell differentiation (Du et al., 2011; Murphy et al., 2014; Lv et al., 2015; Kim et al., 2016; Kumar et al., 2017). With the development of tissue engineering and regenerative medicine, the potent effects of ECM physical properties on cell behaviors at the cell-matrix interface are drawing much attention. To mimic the interaction between cell and its ECM physical properties, developing advanced biomaterials with desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot. In this review, based on the current publications in the field of biointerfaces, we systematically summarized the significant roles of stiffness and topography on musculoskeletal cell behaviors. We hope to shed light on the importance of physical cues in musculoskeletal tissue engineering and provide up to date strategies towards the natural or artificial replication of physiological microenvironment.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
109
|
Gu Z, Guo J, Wang H, Wen Y, Gu Q. Bioengineered microenvironment to culture early embryos. Cell Prolif 2020; 53:e12754. [PMID: 31916359 PMCID: PMC7046478 DOI: 10.1111/cpr.12754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
The abnormalities of early post-implantation embryos can lead to early pregnancy loss and many other syndromes. However, it is hard to study embryos after implantation due to the limited accessibility. The success of embryo culture in vitro can avoid the challenges of embryonic development in vivo and provide a powerful research platform for research in developmental biology. The biophysical and chemical cues of the microenvironments impart significant spatiotemporal effects on embryonic development. Here, we summarize the main strategies which enable researchers to grow embryos outside of the body while overcoming the implantation barrier, highlight the roles of engineered microenvironments in regulating early embryonic development, and finally discuss the future challenges and new insights of early embryo culture.
Collapse
Affiliation(s)
- Zhen Gu
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
| | - Jia Guo
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yongqiang Wen
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Qi Gu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
110
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
111
|
Suresh H, Shishvan SS, Vigliotti A, Deshpande VS. Free-energy-based framework for early forecasting of stem cell differentiation. J R Soc Interface 2019; 16:20190571. [PMID: 31847759 PMCID: PMC6936038 DOI: 10.1098/rsif.2019.0571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Commitment of stem cells to different lineages is inherently stochastic but regulated by a range of environmental bio/chemo/mechanical cues. Here, we develop an integrated stochastic modelling framework for predicting the differentiation of hMSCs in response to a range of environmental cues, including sizes of adhesive islands, stiffness of substrates and treatment with ROCK inhibitors in both growth and mixed media. The statistical framework analyses the fluctuations of cell morphologies over approximately a 24 h period after seeding the cells in the specific environment and uses the cytoskeletal free-energy distribution to forecast the lineage the hMSCs will commit to. The cytoskeletal free energy which succinctly parametrizes the biochemical state of the cell is shown to capture hMSC commitment over a range of environments while simple morphological factors such as cell shape, tractions on their own are unable to correlate with lineages hMSCs adopt.
Collapse
Affiliation(s)
- H Suresh
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - S S Shishvan
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.,Department of Structural Engineering, University of Tabriz, Tabriz, Iran
| | - A Vigliotti
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.,Innovative Materials Laboratory, Italian Aerospace Research Centre, Capua 81043, Italy
| | - V S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| |
Collapse
|
112
|
McKee C, Brown C, Chaudhry GR. Self-Assembling Scaffolds Supported Long-Term Growth of Human Primed Embryonic Stem Cells and Upregulated Core and Naïve Pluripotent Markers. Cells 2019; 8:cells8121650. [PMID: 31888235 PMCID: PMC6952907 DOI: 10.3390/cells8121650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
The maintenance and expansion of human embryonic stem cells (ESCs) in two-dimensional (2-D) culture is technically challenging, requiring routine manipulation and passaging. We developed three-dimensional (3-D) scaffolds to mimic the in vivo microenvironment for stem cell proliferation. The scaffolds were made of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups, which self-assembled via a Michael addition reaction. When primed ESCs (H9 cells) were mixed with PEG polymers, they were encapsulated and grew for an extended period, while maintaining their viability, self-renewal, and differentiation potential both in vitro and in vivo. Three-dimensional (3-D) self-assembling scaffold-grown cells displayed an upregulation of core pluripotency genes, OCT4, NANOG, and SOX2. In addition, the expression of primed markers decreased, while the expression of naïve markers substantially increased. Interestingly, the expression of mechanosensitive genes, YAP and TAZ, was also upregulated. YAP inhibition by Verteporfin abrogated the increased expression of YAP/TAZ as well as core and naïve pluripotent markers. Evidently, the 3-D culture conditions induced the upregulation of makers associated with a naïve state of pluripotency in the primed cells. Overall, our 3-D culture system supported the expansion of a homogenous population of ESCs and should be helpful in advancing their use for cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3350
| |
Collapse
|
113
|
Integrin α6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene 2019; 39:2156-2169. [PMID: 31819166 PMCID: PMC7060098 DOI: 10.1038/s41388-019-1134-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
Both the extracellular matrix (ECM) and DNA epigenetic regulation are critical for maintaining stem cell phenotype and cancer progression. Whether and how ECM regulates epigenetic alterations to influence cancer stem cells (CSCs) remain to be explored. Here we report that ECM through laminin-integrin α6 upregulates ten-eleven translocation enzyme 3 (TET3) dioxygenase. TET3 in turn mediates DNA cytosine 5’-hydroxymethylation (5hmC) and upregulates genes critical for maintenance of glioma stem cells (GSCs). Activating integrin α6-FAK pathway increases STAT3 activity, TET3 expression and 5hmC levels in GSCs. Moreover, targeting STAT3 disrupts integrin α6-FAK signaling and inhibits TET3+ GSC maturation in vivo. STAT3 directly regulates TET3 expression and the two proteins are co-localized with 5hmC in GSC clusters. 5hmC is upregulated by STAT3 at the promoters of several tumorigenic genes, including c-Myc, known to be critical for GSCs. In vivo silencing of TET3 in GSC-enriched tumors reduces 5hmC accumulation and expression of the GSC critical genes, leading to tumor growth inhibition. TET3 expression and 5hmC accumulation also co-segregate with integrin α6 in patient malignant glioma. Thus, ECM- integrin α6-STAT3-TET3 axis regulates hydroxymethylation of genes important for GSCs, thereby increasing GSC tumorigenicity and resistance to therapies.
Collapse
|
114
|
Fearing BV, Jing L, Barcellona MN, Witte SE, Buchowski JM, Zebala LP, Kelly MP, Luhmann S, Gupta MC, Pathak A, Setton LA. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. FASEB J 2019; 33:14022-14035. [PMID: 31638828 PMCID: PMC6894097 DOI: 10.1096/fj.201802725rrr] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/17/2019] [Indexed: 01/05/2023]
Abstract
Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Savannah Est Witte
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jacob M. Buchowski
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lukas P. Zebala
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael P. Kelly
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Scott Luhmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Munish C. Gupta
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amit Pathak
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
115
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
116
|
Naduthottathil MR, Avolio E, Carrabba M, Davis S, Caputo M, Madeddu P, Su B. The Effect of Matrix Stiffness of Biomimetic Gelatin Nanofibrous Scaffolds on Human Cardiac Pericyte Behavior. ACS APPLIED BIO MATERIALS 2019; 2:4385-4396. [PMID: 35021398 DOI: 10.1021/acsabm.9b00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital heart disease (CHD) is the most common and deadly congenital anomaly, accounting for up to 7.5% of all infant deaths. Survival in children born with CHD has improved dramatically over the past several decades (this positive trend being counterbalanced by the fact that more patients develop heart failure). Seminal data indicate an alteration of the extracellular matrix occurs with time in these hearts due to diffuse and abundant interstitial fibrosis. This results in an escalation in the stiffness of the local myocardial microenvironment. However, the influence of matrix stiffness in regulating the function of resident human stromal cells has not been reported. The objective of this study was to determine the impact of scaffold stiffness on the antigenic and functional profile of cardiac pericytes (CPs) isolated from patients with CHD. To this end, we have first manufactured gelatin nanofibrous scaffolds with varying degrees of stiffness using an in situ cross-linking electrospinning technique in a pure water solvent system. We assessed Young's modulus and performed a comprehensive physicochemical characterization of the scaffolds employing scanning electron microscopy and Fourier transform infrared spectroscopy. We next evaluated the changes induced by a different scaffold stiffness on CP morphology, antigenic profile, viability, proliferation, angiocrine activity, and induced differentiation. Results indicate that soft matrixes with a fiber diameter of ∼400 nm increase CP proliferation, secretion of angiopoietin 2, and F-actin stress fiber formation, without affecting the antigenic profile, viability, or differentiation. These data indicate for the first time that human CPs can be functionally influenced by slight changes in matrix stiffness. The study elucidates the importance of mechanical/morphological cues in modulating the behavior of stromal cells isolated from patients with CHD.
Collapse
Affiliation(s)
- Mincy Raj Naduthottathil
- Bristol Centre for Functional Nanomaterials (BCFN), University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Michele Carrabba
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Sean Davis
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Bo Su
- Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| |
Collapse
|
117
|
|
118
|
Koh J, Griffin DR, Archang MM, Feng AC, Horn T, Margolis M, Zalazar D, Segura T, Scumpia PO, Di Carlo D. Enhanced In Vivo Delivery of Stem Cells using Microporous Annealed Particle Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903147. [PMID: 31410986 PMCID: PMC6761037 DOI: 10.1002/smll.201903147] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Indexed: 05/14/2023]
Abstract
Delivery to the proper tissue compartment is a major obstacle hampering the potential of cellular therapeutics for medical conditions. Delivery of cells within biomaterials may improve localization, but traditional and newer void-forming hydrogels must be made in advance with cells being added into the scaffold during the manufacturing process. Injectable, in situ cross-linking microporous scaffolds are recently developed that demonstrate a remarkable ability to provide a matrix for cellular proliferation and growth in vitro in three dimensions. The ability of these scaffolds to deliver cells in vivo is currently unknown. Herein, it is shown that mesenchymal stem cells (MSCs) can be co-injected locally with microparticle scaffolds assembled in situ immediately following injection. MSC delivery within a microporous scaffold enhances MSC retention subcutaneously when compared to cell delivery alone or delivery within traditional in situ cross-linked nanoporous hydrogels. After two weeks, endothelial cells forming blood vessels are recruited to the scaffold and cells retaining the MSC marker CD29 remain viable within the scaffold. These findings highlight the utility of this approach in achieving localized delivery of stem cells through an injectable porous matrix while limiting obstacles of introducing cells within the scaffold manufacturing process.
Collapse
Affiliation(s)
- Jaekyung Koh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Donald R Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Maani M Archang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas Horn
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael Margolis
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David Zalazar
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, 27708, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
119
|
Li M, Xi N, Wang Y, Liu L. Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomater Sci Eng 2019; 5:5036-5050. [DOI: 10.1021/acsbiomaterials.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Kowloon 999077, Hong Kong, China
| | | | | |
Collapse
|
120
|
Zhu P, Tseng NH, Xie T, Li N, Fitts-Sprague I, Peyton SR, Sun Y. Biomechanical Microenvironment Regulates Fusogenicity of Breast Cancer Cells. ACS Biomater Sci Eng 2019; 5:3817-3827. [PMID: 33438422 PMCID: PMC9800072 DOI: 10.1021/acsbiomaterials.8b00861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have demonstrated that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning the adhesive area of the patterned substrates, reducing cytoskeletal tensions pharmacologically, altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion and stability of these multinucleated giant cells. These observations highlight that the biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial curvature, can directly modulate their fusogenicity, an unexplored mechanism through which biophysical cues regulate tumor progression.
Collapse
Affiliation(s)
- Peiran Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ning-Hsuan Tseng
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Isaac Fitts-Sprague
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Shelly R. Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Institue for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Institue for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Corresponding Author: Correspondence should be addressed to Y. Sun ()
| |
Collapse
|
121
|
Li N, Xie T, Sun Y. Towards organogenesis and morphogenesis in vitro: harnessing engineered microenvironment and autonomous behaviors of pluripotent stem cells. Integr Biol (Camb) 2019; 10:574-586. [PMID: 30225509 DOI: 10.1039/c8ib00116b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, researchers have been attempting to control pluripotent stem cell fate or generate self-organized tissues from stem cells. Advances in bioengineering enable generation of organotypic structures, which capture the cellular components, spatial cell organization and even some functions of tissues or organs in development. However, only a few engineering tools have been utilized to regulate the formation and organization of spatially complex tissues derived from stem cells. Here, we provide a review of recent progress in the culture of organotypic structures in vitro, focusing on how microengineering approaches including geometric confinement, extracellular matrix (ECM) property modulation, spatially controlled biochemical factors, and external forces, can be utilized to generate organotypic structures. Moreover, we will discuss potential technologies that can be applied to further control both soluble and insoluble factors spatiotemporally in vitro. In summary, advanced engineered approaches have a great promise in generating miniaturized tissues and organs in a reproducible fashion, facilitating the cellular and molecular understanding of embryogenesis and morphogenesis processes.
Collapse
Affiliation(s)
- Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
122
|
Wang B, Shi J, Wei J, Tu X, Chen Y. Fabrication of elastomer pillar arrays with elasticity gradient for cell migration, elongation and patterning. Biofabrication 2019; 11:045003. [PMID: 31091518 DOI: 10.1088/1758-5090/ab21b3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The elasticity of the cell and that of the supporting extracellular matrices (ECMs) in tissue are correlated. In some cases, the modulus of the ECM varies with a high spatial gradient. To study the effect of such a modulus gradient on the cell culture behavior, we proposed a novel yet straightforward method to fabricate elastomeric micropillar substrates with different height gradients, which could provide a large range of elasticity gradient from 2.4 kPa to 60 kPa. The micropillars were integrated into a microfluidic chip to demonstrate the elasticity variation, with the theoretical results proving that the elasticity of the two micropillar substrates was in the same range but with distinguished gradient strengths. Fibroblast seeded on the micropillar substrates showed migration toward the stiffer area but their elongation highly depended on the strength of the elasticity gradient. In the case of high gradient strength, cells could easily migrate to the stiffer area and then elongated perpendicularly to their migration direction. Otherwise, cells were mostly elongated in the direction of the gradient. Our results also showed that when the cell density was sufficiently high, cells tended to be oriented in the same direction locally, which was affected by both underneath pillars and cell-cell contact. The elasticity gradients could also be generated in a ripple shape, and the cell behavior showed the feasibility of using the micropillars for cell patterning applications. Moreover, the gradient pillar substrates were further used for the aggregate formation of induced pluripotent stem cells, thus providing an alternative substrate to study the effect of substrate elasticity on stem cell behavior and differentiation.
Collapse
Affiliation(s)
- Bin Wang
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | | | | | | |
Collapse
|
123
|
Ansaryan S, Khayamian MA, Saghafi M, Shalileh S, Nikshoar MS, Abbasvandi F, Mahmoudi M, Bahrami F, Abdolahad M. Stretch Induces Invasive Phenotypes in Breast Cells Due to Activation of Aerobic-Glycolysis-Related Pathways. ACTA ACUST UNITED AC 2019; 3:e1800294. [PMID: 32648669 DOI: 10.1002/adbi.201800294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/22/2019] [Indexed: 12/19/2022]
Abstract
It is increasingly being accepted that cells' physiological functions are substantially dependent on the mechanical characteristics of their surrounding tissue. This is mainly due to the key role of biomechanical forces on cells and their nucleus' shapes, which have the capacity to regulate chromatin conformation and thus gene regulations. Therefore, it is reasonable to postulate that altering the biomechanical properties of tissue may have the capacity to change cell functions. Here, the role of cell stretching (as a model of biomechanical variations) is probed in cell migration and invasion capacity using human normal and cancerous breast cells. By several analyses (i.e., scratch assay, invasion to endothelial barrier, real-time RNA sequencing, confocal imaging, patch clamp, etc.), it is revealed that the cell-stretching process could increase the migration and invasion capabilities of normal and cancerous cells, respectively. More specifically, it is found that poststretched breast cancer cells are found in low grades of invasion; they substantially upregulate the expression of manganese-dependent superoxide dismutase (MnSOD) through activation of H-Ras proteins, which subsequently induce aerobic glycolysis followed by an overproduction of matrix metalloproteinases (MMP)-reinforced filopodias. Presence of such invadopodias facilitates targeting of the endothelial layer, and increased invasive behaviors in breast cells are observed.
Collapse
Affiliation(s)
- Saeid Ansaryan
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Ali Khayamian
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,School of Mechanical Engineering, College of Engineering, University of Tehran, 11155-4563, Tehran, Iran
| | - Mohammad Saghafi
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Shahriar Shalileh
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Saied Nikshoar
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 13169-43551, Tehran, Iran
| | - Farideh Bahrami
- Neuroscience Research Center and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19839-63113, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| |
Collapse
|
124
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
125
|
Moghaddam MM, Bonakdar S, Shariatpanahi MR, Shokrgozar MA, Faghihi S. The Effect of Physical Cues on the Stem Cell Differentiation. Curr Stem Cell Res Ther 2019; 14:268-277. [DOI: 10.2174/1574888x14666181227120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Development of multicellular organisms is a very complex and organized process during which cells respond to various factors and features in extracellular environments. It has been demonstrated that during embryonic evolvement, under certain physiological or experimental conditions, unspecialized cells or stem cells can be induced to become tissue or organ-specific cells with special functions. Considering the importance of physical cues in stem cell fate, the present study reviews the role of physical factors in stem cells differentiation and discusses the molecular mechanisms associated with these factors.
Collapse
Affiliation(s)
- Mehrdad M. Moghaddam
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, Tehran 3159915111, Iran
| | | | | | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| |
Collapse
|
126
|
Efraim Y, Schoen B, Zahran S, Davidov T, Vasilyev G, Baruch L, Zussman E, Machluf M. 3D Structure and Processing Methods Direct the Biological Attributes of ECM-Based Cardiac Scaffolds. Sci Rep 2019; 9:5578. [PMID: 30944384 PMCID: PMC6447624 DOI: 10.1038/s41598-019-41831-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
High hopes are held for cardiac regenerative therapy, driving a vast research effort towards the development of various cardiac scaffolds using diverse technologies and materials. Nevertheless, the role of factors such as fabrication process and structure in determining scaffold's characteristics is yet to be discovered. In the present study, the effects of 3D structure and processing method on cardiac scaffolds are addressed using three distinct scaffolds made through different production technologies from the same biomaterial: decellularized porcine cardiac extracellular matrix (pcECM). pcECM patch, injectable pcECM hydrogel, and electrospun pcECM scaffolds were all proven as viable prospective therapies for MI, thus generally preserving pcECM beneficial properties. Yet, as we demonstrate, minor differences in scaffolds composition and micro-morphology as well as substantial differences in their mechanical properties, which arise from their production process, highly affect the interactions of the scaffold with both proliferating cells and functional cells. Hence, the rates of cell attachment, survival, and proliferation significantly vary between the different scaffolds. Moreover, major differences in cell morphology and alignment as well as in matrix remodeling are obtained. Overall, the effects revealed herein can guide a more rational scaffold design for the improved cellular or acellular treatment of different cardiac disease scenarios.
Collapse
Affiliation(s)
- Yael Efraim
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Beth Schoen
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sharbel Zahran
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gleb Vasilyev
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eyal Zussman
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
127
|
Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int 2019; 43:506-515. [PMID: 30761669 DOI: 10.1002/cbin.11116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
Mechanical stimuli have been shown to play an important role in directing stem cell fate and maintenance of tissue homeostasis. One of the functions of the mechanoresponsive tissue periodontal ligament (PDL) is to withstand the functional forces within the oral cavity. Periodontal ligament stem cells (PDLSCs) derived from periodontal tissue have been demonstrated to be able to respond directly to mechanical forces. However, the mechanisms of action of mechanical force on PDLSCs are not totally understood. The aim of this study was to investigate the mechanisms by which compressive force affects PDLSCs, especially their stemness properties. PDLSCs were established from extracted human third molars; their stem cell characteristics were validated by detecting the expression of stem cell markers and confirming their ability to differentiate into osteogenic and adipogenic lineages. PDLSCs were subjected to various magnitudes of static compressive force (0 [control], 0.5, 1.0, 1.5, or 2 g/cm2 ). Application of 1.0 g/cm2 compressive force significantly upregulated a panel of stem cell marker genes, including NANOG and OCT4. Conversely, higher force magnitudes downregulated these genes. Mechanical loading also upregulated periostin, a matrix protein that plays important roles in tissue morphogenesis. Interestingly, knockdown of periostin using siRNA abolished force-induced stem cell marker expression in PDLSCs. This study suggests a proper magnitude of compressive force could be one important factor involved in the modulation of the pluripotency of PDLSCs through the action of periostin. The precise mechanism by which periostin regulates stemness requires further detailed investigation.
Collapse
Affiliation(s)
- Panita Panchamanon
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henry-Dunant Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
128
|
Taale M, Schütt F, Carey T, Marx J, Mishra YK, Stock N, Fiedler B, Torrisi F, Adelung R, Selhuber-Unkel C. Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5325-5335. [PMID: 30600988 PMCID: PMC6369718 DOI: 10.1021/acsami.8b17627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 05/21/2023]
Abstract
Carbon-based fibrous scaffolds are highly attractive for all biomaterial applications that require electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here, we show a novel modular design strategy to engineer biomimetic carbon fiber-based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as three-dimensional (3D) sacrificial templates and are infiltrated with carbon nanotubes (CNTs) or graphene dispersions. Once the CNTs and graphene coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition. The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the microfibrous scaffolds were tailored with a high porosity (up to 93%), a high Young's modulus (ca. 0.027-22 MPa), and an electrical conductivity of ca. 0.1-330 S/m, as well as different surface compositions. Cell viability, fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ± 6.95 mg/cm3) so that they are able to resemble the extracellular matrix not only structurally but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells, showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon fiber systems that mimic the extracellular matrix with the additional feature of conductivity.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Tian Carey
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Janik Marx
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Norbert Stock
- Institute
of Inorganic Chemistry, Kiel University, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Bodo Fiedler
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Felice Torrisi
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| |
Collapse
|
129
|
Kleine-Brüggeney H, van Vliet LD, Mulas C, Gielen F, Agley CC, Silva JCR, Smith A, Chalut K, Hollfelder F. Long-Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804576. [PMID: 30570812 DOI: 10.1002/smll.201804576] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Developmental cell biology requires technologies in which the fate of single cells is followed over extended time periods, to monitor and understand the processes of self-renewal, differentiation, and reprogramming. A workflow is presented, in which single cells are encapsulated into droplets (Ø: 80 µm, volume: ≈270 pL) and the droplet compartment is later converted to a hydrogel bead. After on-chip de-emulsification by electrocoalescence, these 3D scaffolds are subsequently arrayed on a chip for long-term perfusion culture to facilitate continuous cell imaging over 68 h. Here, the response of murine embryonic stem cells to different growth media, 2i and N2B27, is studied, showing that the exit from pluripotency can be monitored by fluorescence time-lapse microscopy, by immunostaining and by reverse-transcription and quantitative PCR (RT-qPCR). The defined 3D environment emulates the natural context of cell growth (e.g., in tissue) and enables the study of cell development in various matrices. The large scale of cell cultivation (in 2000 beads in parallel) may reveal infrequent events that remain undetected in lower throughput or ensemble studies. This platform will help to gain qualitative and quantitative mechanistic insight into the role of external factors on cell behavior.
Collapse
Affiliation(s)
- Hans Kleine-Brüggeney
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Liisa D van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carla Mulas
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Chibeza C Agley
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Austin Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Chalut
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Physics, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
130
|
Raasch M, Fritsche E, Kurtz A, Bauer M, Mosig AS. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 2019; 140:51-67. [PMID: 29908880 DOI: 10.1016/j.addr.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
Complex cell culture models such as microphysiological models (MPS) mimicking human liver functionality in vitro are in the spotlight as alternative to conventional cell culture and animal models. Promising techniques like microfluidic cell culture or micropatterning by 3D bioprinting are gaining increasing importance for the development of MPS to address the needs for more predictivity and cost efficiency. In this context, human induced pluripotent stem cells (hiPSCs) offer new perspectives for the development of advanced liver-on-chip systems by recreating an in vivo like microenvironment that supports the reliable differentiation of hiPSCs to hepatocyte-like cells (HLC). In this review we will summarize current protocols of HLC generation and highlight recently established MPS suitable to resemble physiological hepatocyte function in vitro. In addition, we are discussing potential applications of liver MPS for disease modeling related to systemic or direct liver infections and the use of MPS in testing of new drug candidates.
Collapse
|
131
|
Kim EM, Lee YB, Byun H, Chang HK, Park J, Shin H. Fabrication of Spheroids with Uniform Size by Self-Assembly of a Micro-Scaled Cell Sheet (μCS): The Effect of Cell Contraction on Spheroid Formation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2802-2813. [PMID: 30586277 DOI: 10.1021/acsami.8b18048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell spheroid culture can be an effective approach for providing an engineered microenvironment similar to an in vivo environment. Our group had recently developed a method for harvesting uniformly sized multicellular spheroids via self-assembly of micro-scaled cell sheets (μCSs) induced by the expansion of temperature-sensitive hydrogels. However, the μCS assembly process was not fully understood. In this study, we investigated the effects of cell number, pattern shape, and contractile force of cells on spheroid formation from micropatterned (width of square pattern from 100-300 μm) hydrogels. We used human dermal fibroblasts (HDFBs) as a model cell type and cultured them for 24 and 72 h. The self-assembly of μCSs cultured on square micropatterns for 72 h rapidly occurred within 4 min after reducing the temperature from 37 to 4 °C. In addition, the size distribution of spheroids was narrower with μCSs from a 72 h culture. Treatment with a ROCK1 inhibitor disrupted cytoskeletal actin fibers and the corresponding μCSs were not detached from the hydrogel. The assembly of the μCS was also affected by the micropattern shape, and the spheroid harvest efficiency was decreased to 60% when using a circular micropattern, which was explained by the stress direction on the circular versus square micropattern upon hydrogel expansion. Therefore, we confirmed that the factors controlling cell-cell interactions are important for spheroid formation using micropatterned hydrogel systems. Finally, the μCSs with dual layers of HDFBs labeled with DiD and DiO dyes resulted in the formation of spheroids with discretely localized colors within the core and shell, respectively, which suggests an outside-in assembly of detached μCSs. In consideration of these complex environmental factors, our system could be utilized in various applications as a three-dimensional culture system to fabricate cell spheroids.
Collapse
Affiliation(s)
| | | | | | - Hyung-Kwan Chang
- Department of Mechanical Engineering , Sogang University , 35 Baekbeom-ro , Mapo-gu, Seoul 04107 , Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering , Sogang University , 35 Baekbeom-ro , Mapo-gu, Seoul 04107 , Republic of Korea
| | | |
Collapse
|
132
|
Choi A, Seo KD, Yoon H, Han SJ, Kim DS. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering. Biomater Sci 2019; 7:2277-2287. [DOI: 10.1039/c8bm01664j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to the conventional ‘grafting’-based thermoresponsive cell culture platform, we first developed a bulk form of thermoresponsive cell culture platform for attaching/detaching diverse types and origins of the cell sheets in different shape.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Kyoung Duck Seo
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Hyungjun Yoon
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Seon Jin Han
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| |
Collapse
|
133
|
Bactericidal effects of nanopatterns: A systematic review. Acta Biomater 2019; 83:29-36. [PMID: 30273746 DOI: 10.1016/j.actbio.2018.09.059] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/01/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
Abstract
We systematically reviewed the currently available evidence on how the design parameters of surface nanopatterns (e.g. height, diameter, and interspacing) relate to their bactericidal behavior. The systematic search of the literature resulted in 46 studies that satisfied the inclusion criteria of examining the bactericidal behavior of nanopatterns with known design parameters in absence of antibacterial agents. Twelve of the included studies also assessed the cytocompatibility of the nanopatterns. Natural and synthetic nanopatterns with a wide range of design parameters were reported in the included studies to exhibit bactericidal behavior. However, most design parameters were in the following ranges: heights of 100-1000 nm, diameters of 10-300 nm, and interspacings of <500 nm. The most commonly used type of nanopatterns were nanopillars, which could kill bacteria in the following range of design parameters: heights of 100-900 nm, diameters of 20-207 nm, and interspacings of 9-380 nm. The vast majority of the cytocompatibility studies (11 out of 12) showed no adverse effects of bactericidal nanopatterns with the only exception being nanopatterns with extremely high aspect ratios. The paper concludes with a discussion on the evidence available in the literature regarding the killing mechanisms of nanopatterns and the effects of other parameters including surface affinity of bacteria, cell size, and extracellular polymeric substance (EPS) on the killing efficiency. STATEMENT OF SIGNIFICANCE: The use of nanopatterns to kill bacteria without the need for antibiotics represents a rapidly growing area of research. However, the optimum design parameters to maximize the bactericidal behavior of such physical features need to be fully identified. The present manuscript provides a systematic review of the bactericidal nanopatterned surfaces. Identifying the effective range of dimensions in terms of height, diameter, and interspacings, as well as covering their impact on mammalian cells, has enabled a comprehensive discussion including the bactericidal mechanisms and the factors controlling the bactericidal efficiency. Overall, this review helps the readers have a better understanding of the state-of-the-art in the design of bactericidal nanopatterns, serving as a design guideline and contributing to the design of future experimental studies.
Collapse
|
134
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
135
|
Ji W, Álvarez Z, Edelbrock AN, Sato K, Stupp SI. Bioactive Nanofibers Induce Neural Transdifferentiation of Human Bone Marrow Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41046-41055. [PMID: 30475573 DOI: 10.1021/acsami.8b13653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The combination of biomaterials with stem cells is a promising therapeutic strategy to repair traumatic injuries in the central nervous system, and human bone marrow mesenchymal stem cells (BMSCs) offer a clinically translatable option among other possible sources of stem cells. We report here on the use of a supramolecular bioactive material based on a peptide amphiphile (PA), displaying a laminin-mimetic IKVAV sequence to drive neural transdifferentiation of human BMSCs. The IKVAV-PA self-assembles into supramolecular nanofibers that induce neuroectodermal lineage commitment after 1 week, as evidenced by the upregulation of the neural progenitor gene nestin ( NES) and glial fibrillary acidic protein ( GFAP). After 2 weeks, the bioactive IKVAV-PA nanofibers induce significantly higher expression of neuronal markers β-III tubulin (TUJ-1), microtubule-associated protein-2 (MAP-2), and neuronal nuclei (NEUN), as well as the extracellular matrix laminin (LMN). Furthermore, the human BMSCs exposed to the biomaterial reveal a polarized cytoskeletal architecture and a decrease in cellular size, resembling neuron-like cells. We conclude that the investigated supramolecular biomaterial opens the opportunity to transdifferentiate adult human BMSCs into neuronal lineage.
Collapse
Affiliation(s)
- Wei Ji
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration , KU Leuven , Leuven 3000 , Belgium
| | | | | | | | | |
Collapse
|
136
|
Ma Y, Lin M, Huang G, Li Y, Wang S, Bai G, Lu TJ, Xu F. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705911. [PMID: 30063260 DOI: 10.1002/adma.201705911] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/05/2018] [Indexed: 05/06/2023]
Abstract
Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, P. R. China
- Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, P. R. China
| | - Guiqin Bai
- Department of Gynaecology and Obstetrics, First Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
137
|
Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 2018; 11:015005. [DOI: 10.1088/1758-5090/aae0a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
138
|
Guneta V, Zhou Z, Tan NS, Sugii S, Wong MTC, Choong C. Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 2018; 6:168-178. [PMID: 29167844 DOI: 10.1039/c7bm00695k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose-derived stem cells (ASCs) are found in a location within the adipose tissue known as the stem cell niche. The ASCs in the niche are maintained in the quiescent state, and upon exposure to various microenvironmental triggers are prompted to undergo proliferation or differentiation. These microenvironmental triggers also modulate the extracellular matrix (ECM), which interacts with the cells through the cytoskeleton and induces downstream events inside the cells that bring about a change in cell behaviour. In response to these changes, the cells remodel the ECM, which will differ according to the type of tissue being formed by the cells. As the ECM itself plays an important role in the regulation of cellular differentiation, this study aims to explore the role of the cell-secreted ECM at various stages of differentiation of stem cells in triggering the differentiation of ASCs. To this end, the ASCs cultured in proliferation, osteogenic and adipogenic media were decellularized and the secreted ECM was characterized. Overall, it was found that osteo-differentiated ASCs produced higher amounts of collagen and glycosaminoglycans (GAG) compared to the undifferentiated and adipo-differentiated ASCs. The two types of differentiated ECMs were subsequently shown to trigger initial but not terminal differentiation of ASCs into osteo- and adipo-lineages respectively, as indicated by the upregulation of lineage specific markers. In addition, integrin subunits alpha (α) 6 and integrin beta (β) 1 were found to be produced by ASCs cultured on cell-secreted ECM-coated substrates, suggesting that the integrins α6 and β1 play an instrumental role in cell-ECM interactions. Taken together, this study demonstrates the importance of the ECM in cellular fate decisions and how ECM-coated substrates can potentially be used for various tissue engineering applications.
Collapse
Affiliation(s)
- V Guneta
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
139
|
Schmidt S, Lilienkampf A, Bradley M. New substrates for stem cell control. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170223. [PMID: 29786558 PMCID: PMC5974446 DOI: 10.1098/rstb.2017.0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The capacity to culture stem cells in a controllable, robust and scalable manner is necessary in order to develop successful strategies for the generation of cellular and tissue platforms for drug screening, toxicity testing, tissue engineering and regenerative medicine. Creating substrates that support the expansion, maintenance or directional differentiation of stem cells would greatly aid these efforts. Optimally, the substrates used should be chemically defined and synthetically scalable, allowing growth under defined, serum-free culture conditions. To achieve this, the chemical and physical attributes of the substrates should mimic the natural tissue environment and allow control of their biological properties. Herein, recent advances in the development of materials to study/manipulate stem cells, both in vitro and in vivo, are described with a focus on the novelty of the substrates' properties, and on application of substrates to direct stem cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Sara Schmidt
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| |
Collapse
|
140
|
Facchin F, Bianconi E, Canaider S, Basoli V, Biava PM, Ventura C. Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells Int 2018; 2018:7412035. [PMID: 30057626 PMCID: PMC6051063 DOI: 10.1155/2018/7412035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
141
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
142
|
Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS One 2018; 13:e0195588. [PMID: 29664925 PMCID: PMC5903644 DOI: 10.1371/journal.pone.0195588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/25/2018] [Indexed: 12/20/2022] Open
Abstract
Use of stem cell-based therapies in tissue engineering and regenerative medicine is hindered by efficient means of directed differentiation. For pluripotent stem cells, an initial critical differentiation event is specification to one of three germ lineages: endoderm, mesoderm, and ectoderm. Differentiation is known to be regulated by numerous extracellular and intracellular factors, but the role of the cytoskeleton during specification, or early differentiation, is still unknown. In these studies, we used agonists and antagonists to modulate actin polymerization and the actin-myosin molecular motor during spontaneous differentiation of embryonic stem cells in embryoid bodies. We found that inhibiting either actin polymerization or actin-myosin interactions led to a decrease in differentiation to the mesodermal lineage and an increase in differentiation to the endodermal lineage. Thus, targeting processes that regulate cytoskeletal tension may be effective in enhancing or inhibiting differentiation towards cells of the endodermal or mesodermal lineages, which include hepatocytes, islets, cardiomyocytes, endothelial cells, and osteocytes. Therefore, these fundamental findings demonstrate that modulation of the cytoskeleton may be useful in production for a range of cell-based therapies, including for liver, pancreatic, cardiac, vascular, and orthopedic applications.
Collapse
|
143
|
Mijailovic AS, Qing B, Fortunato D, Van Vliet KJ. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation. Acta Biomater 2018; 71:388-397. [PMID: 29477455 DOI: 10.1016/j.actbio.2018.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 01/24/2023]
Abstract
Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli <1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints. STATEMENT OF SIGNIFICANCE Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli <1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.
Collapse
Affiliation(s)
- Aleksandar S Mijailovic
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo Qing
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Fortunato
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Krystyn J Van Vliet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
145
|
Somers SM, Spector AA, DiGirolamo DJ, Grayson WL. Biophysical Stimulation for Engineering Functional Skeletal Muscle. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:362-372. [PMID: 28401807 DOI: 10.1089/ten.teb.2016.0444] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells and satellite cells) and transformed murine myoblasts, C2C12s. Strain regimens are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains, possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is nontrivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system including cells, biomaterials, and bioreactor, to be considered in tandem.
Collapse
Affiliation(s)
- Sarah M Somers
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alexander A Spector
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland
| | - Douglas J DiGirolamo
- 4 Department of Orthopedics, Johns Hopkins University School of Medicine , Baltimore Maryland
| | - Warren L Grayson
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland.,5 Department of Material Sciences and Engineering, Johns Hopkins University , Whiting School of Engineering, Baltimore, Maryland
| |
Collapse
|
146
|
López-Lázaro M. The stem cell division theory of cancer. Crit Rev Oncol Hematol 2018; 123:95-113. [DOI: 10.1016/j.critrevonc.2018.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
|
147
|
Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030669. [PMID: 29495519 PMCID: PMC5877530 DOI: 10.3390/ijms19030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.
Collapse
|
148
|
Amer MH, Rose FRAJ, Shakesheff KM, White LJ. A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Res Ther 2018; 9:39. [PMID: 29467014 PMCID: PMC5822649 DOI: 10.1186/s13287-018-0789-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation. Electronic supplementary material The online version of this article (10.1186/s13287-018-0789-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahetab H Amer
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Felicity R A J Rose
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kevin M Shakesheff
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lisa J White
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
149
|
López-Lázaro M. Cancer etiology: Variation in cancer risk among tissues is poorly explained by the number of gene mutations. Genes Chromosomes Cancer 2018; 57:281-293. [PMID: 29377495 DOI: 10.1002/gcc.22530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that the risk of being diagnosed with cancer in a tissue is strongly correlated (0.80) with the number of stem cell divisions accumulated by the tissue. Since cell division can generate random mutations during DNA replication, this correlation has been used to propose that cancer is largely caused by the accumulation of unavoidable mutations in driver genes. However, no correlation between the number of gene mutations and cancer risk across tissues has been reported. Because many somatic mutations in cancers originate prior to tumor initiation and the number of cell divisions occurring during tumor growth is similar among tissues, I use whole genome sequencing information from 22 086 cancer samples and incidence data from the largest cancer registry in each continent to study the relationship between the number of gene mutations and the risk of cancer across 33 tissue types. Results show a weak positive correlation (mean = 0.14) between these 2 parameters in each of the 5 cancer registries. The correlation became stronger (mean = 0.50) when gender-related cancers were excluded. Results also show that 1003 samples from 29 cancer types have zero mutations in genes. These data suggest that cancer etiology can be better explained by the accumulation of stem cell divisions than by the accumulation of gene mutations. Possible mechanisms by which the accumulation of cell divisions in stem cells increases the risk of cancer are discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Spain
| |
Collapse
|
150
|
|