101
|
Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 2009; 5:e1000511. [PMID: 19521500 PMCID: PMC2686252 DOI: 10.1371/journal.pgen.1000511] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 05/12/2009] [Indexed: 11/18/2022] Open
Abstract
Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal.
Collapse
Affiliation(s)
- Stephen N. Sansom
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dean S. Griffiths
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Faedo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Dirk-Jan Kleinjan
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Youlin Ruan
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - James Smith
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - John L. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Frederick J. Livesey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
102
|
The radial glia antibody RC2 recognizes a protein encoded by Nestin. Biochem Biophys Res Commun 2009; 382:588-92. [DOI: 10.1016/j.bbrc.2009.03.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/12/2009] [Indexed: 12/20/2022]
|
103
|
Sirko S, Neitz A, Mittmann T, Horvat-Bröcker A, von Holst A, Eysel UT, Faissner A. Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. ACTA ACUST UNITED AC 2009; 132:2252-64. [PMID: 19286696 DOI: 10.1093/brain/awp043] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CNS lesions stimulate adult neurogenic niches. Endogenous neural stem/progenitor cells represent a potential resource for CNS regeneration. Here, we investigate the response to unilateral focal laser-lesions applied to the visual cortex of juvenile rats. Within 3 days post-lesion, an ipsilateral increase of actively cycling cells was observed in cortical layer one and in the callosal white matter within the lesion penumbra. The cells expressed the neural stem/progenitor cell marker Nestin and the 473HD-epitope. Tissue prepared from the lesion area by micro-dissection generated self-renewing, multipotent neurospheres, while cells from the contralateral visual cortex did not. The newly formed neural stem/progenitor cells in the lesion zone might support neurogenesis, as suggested by the expression of Pax6 and Doublecortin, a marker of newborn neurons. We propose that focal laser-lesions may induce the emergence of stem/progenitor cells with neurogenic potential. This could underlie the beneficial effects of laser application in neurosurgery.
Collapse
Affiliation(s)
- Swetlana Sirko
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
104
|
Cave JW, Baker H. Dopamine Systems in the Forebrain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:15-35. [DOI: 10.1007/978-1-4419-0322-8_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Zhuang Y, Gudas LJ. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression. Differentiation 2008; 76:760-71. [DOI: 10.1111/j.1432-0436.2007.00258.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Carney RSE, Cocas LA, Hirata T, Mansfield K, Corbin JG. Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. ACTA ACUST UNITED AC 2008; 19:745-59. [PMID: 18701439 DOI: 10.1093/cercor/bhn123] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the embryonic telencephalon, the pallial-subpallial boundary (PSB) separates the dorsal Pax6+ pallium from the ventral Gsh2+ subpallium. Previous studies have revealed that this region is a source of cells that will populate both the olfactory bulb and basal telencephalic limbic system. However, the level of progenitor cell heterogeneity and developmental genetic regulation of this progenitor region remains to be fully elucidated. In this study we carried out a comprehensive analysis of gene expression patterns at the PSB, in addition to an examination of the combinatorial function of Pax6 and Gsh2 in the specification of the PSB. First, we reveal that the PSB is comprised of a complex mix of molecularly distinct progenitor pools. In addition, by analysis of single Sey, Gsh2, and Sey/Gsh2 double mutant mice, we demonstrate that both Pax6 and Gsh2 are directly required for major aspects of PSB progenitor specification. Our analysis also reveals that the establishment of the epidermal growth factor receptor positive lateral cortical stream migratory route to the basal telencephalon is Pax6 dependent. Thus, in addition to their well-characterized cross-repressive roles in dorsal/ventral patterning our analyses reveal important novel functions of Gsh2 and Pax6 in the regulation of PSB progenitor pool specification and patterning.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
107
|
Relationship of Pax6 activity levels to the extent of eye development in the mouse, Mus musculus. Genetics 2008; 179:1345-55. [PMID: 18562673 DOI: 10.1534/genetics.108.088591] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study we extend the mouse Pax6 mutant allelic series to include a homozygous and hemizygous viable hypomorph allele. The Pax6(132-14Neu) allele is a Phe272Ile missense mutation within the third helix of the homeodomain. The mutant Pax6 homeodomain shows greatly reduced binding activity to the P3 DNA binding target. Glucagon-promoter activation by the entire mutant Pax6 product of a reporter gene driven by the G1 paired and homeodomain DNA binding target was slightly increased. We constructed mutant Pax6 genotypes such that Pax6 activity ranged between 100 and 0% and show that the extent of eye development is progressively reduced as Pax6 activity decreased. Two apparent thresholds identify three groups in which the extent of eye development abruptly shifted from complete eye at the highest levels of Pax6 to a rudimentary eye at intermediate levels of Pax6 to very early termination of eye development at the lowest levels of Pax6. Of the two Pax6-positive regions that participate in eye development, the surface ectoderm, which develops into the lens vesicle and the cornea, is more sensitive to reduced levels of Pax6 activity than the optic vesicle, which develops into the inner and outer retinal layers.
Collapse
|
108
|
Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008; 26:1663-72. [PMID: 18467663 DOI: 10.1634/stemcells.2007-0884] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pax6 is a highly conserved transcription factor among vertebrates and is important in various developmental processes in the central nervous system (CNS), including patterning of the neural tube, migration of neurons, and formation of neural circuits. In this review, we focus on the role of Pax6 in embryonic and postnatal neurogenesis, namely, production of new neurons from neural stem/progenitor cells, because Pax6 is intensely expressed in these cells from the initial stage of CNS development and in neurogenic niches (the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricle) throughout life. Pax6 is a multifunctional player regulating proliferation and differentiation through the control of expression of different downstream molecules in a highly context-dependent manner.
Collapse
Affiliation(s)
- Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
109
|
Yao JG, Weasner BM, Wang LH, Jang CC, Weasner B, Tang CY, Salzer CL, Chen CH, Hay B, Sun YH, Kumar JP. Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila. Dev Biol 2008; 315:535-51. [PMID: 18275947 PMCID: PMC2702218 DOI: 10.1016/j.ydbio.2007.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/29/2007] [Accepted: 12/11/2007] [Indexed: 11/18/2022]
Abstract
In eye development the tasks of tissue specification and cell proliferation are regulated, in part, by the Pax6 and Pax6(5a) proteins respectively. In vertebrates, Pax6(5a) is generated as an alternately spliced isoform of Pax6. This stands in contrast to the fruit fly, Drosophila melanogaster, which has two Pax6(5a) homologs that are encoded by the eyegone and twin of eyegone genes. In this report we set out to determine the respective contributions that each gene makes to the development of the fly retina. Here we demonstrate that both eyg and toe encode transcriptional repressors, are expressed in identical patterns but at significantly different levels. We further show, through a molecular dissection of both proteins, that Eyg makes differential use of several domains when compared to Toe and that the number of repressor domains also differs between the two Pax6(5a) homologs. We predict that these results will have implications for elucidating the functional differences between closely related members of other Pax subclasses.
Collapse
Affiliation(s)
- Jih-Guang Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Institute of Genomic Sciences, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Lan-Hsin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chuen-Chuen Jang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Brandon Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Claire L. Salzer
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Chun-Hong Chen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Bruce Hay
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Y. Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Institute of Genomic Sciences, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
110
|
Tuoc TC, Stoykova A. Er81 is a downstream target of Pax6 in cortical progenitors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:23. [PMID: 18307776 PMCID: PMC2275226 DOI: 10.1186/1471-213x-8-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/28/2008] [Indexed: 11/29/2022]
Abstract
Background Although the transcription factor Pax6 plays an essential role in neurogenesis, layer formation and arealization in the developing mammalian cortex, the mechanisms by which it accomplishes these regulatory functions are largely unknown. Pax6 and the ETS family transcription factor Er81, which is presumed to play a role in the specification of a sublineage of layer 5 projection neurons, are expressed with a prominent rostrolateral-high to caudomedial-low gradient in cortical progenitors. In the absence of functional Pax6, progenitors do not express Er81 and the rostrolateral cortex lacks Er81-positive layer 5 neurons. In this study, we investigated the transcriptional regulation of Er81 and provide evidence that Er81 is a direct target of Pax6. Results We identified and analyzed the regulatory function of an evolutionarily conserved upstream DNA sequence in the putative mouse Er81 promoter. Three potential Pax6 binding sites were identified in this region. We found that the presence of one of these sites is necessary and sufficient for full activation of the Er81 promoter in Pax6-transfected HeLa cells, while other still unknown factors appear to contribute to Er81 promoter activity in cortical progenitors and neuronal cells. The results suggest that endogenous Pax6, which is expressed at the highest level in progenitors of the rostrolateral cortex, exerts region-specific control of Er81 activity, thus specifying a subpopulation of layer 5 projection neurons. Conclusion We conclude that the genetic interplay between the transcription factors, Pax6 and Er81, is responsible, in part, for the regional specification of a distinct sublineage of layer 5 projection neurons.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
111
|
Pinto L, Mader MT, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P, Beckers J, Götz M. Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis. Mol Cell Neurosci 2008; 38:15-42. [PMID: 18372191 DOI: 10.1016/j.mcn.2008.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/07/2008] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of these distinct radial glia subtypes allowed determining interesting differences in their transcriptome. These transcriptomes were also strikingly different from the transcriptome of radial glia isolated at the end of neurogenesis. This analysis therefore identifies, for the first time, the lineage origin of basal progenitors and the molecular differences of this lineage in comparison to directly neurogenic and gliogenic radial glia.
Collapse
Affiliation(s)
- Luisa Pinto
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G, Seawright A, Hever AM, Yeyati PL, van Heyningen V, Coutinho P. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 2008; 4:e29. [PMID: 18282108 PMCID: PMC2242813 DOI: 10.1371/journal.pgen.0040029] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 12/21/2007] [Indexed: 01/22/2023] Open
Abstract
Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3') control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Chromosomes, Artificial, Bacterial/genetics
- Computational Biology
- DNA Primers/genetics
- Enhancer Elements, Genetic
- Evolution, Molecular
- Eye Abnormalities/embryology
- Eye Abnormalities/genetics
- Eye Proteins/genetics
- Gene Duplication
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genes, Reporter
- Genetic Complementation Test
- Genetic Linkage
- Homeodomain Proteins/genetics
- Mice
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutation, Missense
- PAX6 Transcription Factor
- Paired Box Transcription Factors/genetics
- Phenotype
- Repressor Proteins/genetics
- Sequence Homology, Nucleic Acid
- Zebrafish/abnormalities
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Dirk A Kleinjan
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ruth M Bancewicz
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe Gautier
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ralf Dahm
- Department of Genetics, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Helia B Schonthaler
- Department of Genetics, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Giuseppe Damante
- Department of Science and Biomedical Technology, University of Udine, Udine, Italy
| | - Anne Seawright
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ann M Hever
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
113
|
Graziano C, D'Elia AV, Mazzanti L, Moscano F, Guidelli Guidi S, Scarano E, Turchetti D, Franzoni E, Romeo G, Damante G, Seri M. A de novo nonsense mutation of PAX6 gene in a patient with aniridia, ataxia, and mental retardation. Am J Med Genet A 2008; 143A:1802-5. [PMID: 17595013 DOI: 10.1002/ajmg.a.31808] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Claudio Graziano
- O. di Genetica Medica, Dipartimento di Medicina Interna, Cardioangiologia ed Epatologia, Università degli Studi di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Costa MR, Wen G, Lepier A, Schroeder T, Götz M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 2008; 135:11-22. [DOI: 10.1242/dev.009951] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neurons. These differences correlate to the existence of an apico-basal polarity in VZ, but not SVZ, progenitors. Only VZ progenitors possess an apical membrane domain at which proteins of the Par complex are strongly enriched. We describe a prominent decrease in the amount of Par-complex proteins at the apical surface during cortical development and examine the role of these proteins by gain- and loss-of-function experiments. Par3 (Pard3) loss-of-function led to premature cell cycle exit, reflected in reduced clone size in vitro and the restriction of the progeny to the lower cortical layers in vivo. By contrast, Par3 or Par6 (Pard6α)overexpression promoted the generation of Pax6+ self-renewing progenitors in vitro and in vivo and increased the clonal progeny of single progenitors in vitro. Time-lapse video microscopy revealed that a change in the mode of cell division, rather than an alteration of the cell cycle length, causes the Par-complex-mediated increase in progenitors. Taken together, our data demonstrate a key role for the apically located Par-complex proteins in promoting self-renewing progenitor cell divisions at the expense of neurogenic differentiation in the developing cerebral cortex.
Collapse
Affiliation(s)
- Marcos R. Costa
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Gaiping Wen
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Alexandra Lepier
- Physiological Genomics, University of Munich, Schillerstr. 46, 80639 Munich,Germany
| | - Timm Schroeder
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Magdalena Götz
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
- Physiological Genomics, University of Munich, Schillerstr. 46, 80639 Munich,Germany
| |
Collapse
|
115
|
Kim J, Lauderdale JD. Overexpression of pairedless Pax6 in the retina disrupts corneal development and affects lens cell survival. Dev Biol 2008; 313:434-54. [DOI: 10.1016/j.ydbio.2007.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 12/12/2022]
|
116
|
Costa MR, Kessaris N, Richardson WD, Götz M, Hedin-Pereira C. The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci 2007; 27:11376-88. [PMID: 17942732 PMCID: PMC6673031 DOI: 10.1523/jneurosci.2418-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 12/27/2022] Open
Abstract
The cellular diversity of the cerebral cortex is thought to arise from progenitors located in the ventricular zone and subventricular zone in the telencephalon. Here we describe a novel source of progenitors located outside these two major germinative zones of the mouse cerebral cortex that contributes to neurogenesis and gliogenesis. Proliferating cells first appear in the preplate of the embryonic cerebral cortex and further increase in the marginal zone during mid and late neurogenesis. The embryonic marginal zone progenitors differ in their molecular characteristics as well as the size and identity of their clonal progeny from progenitors isolated from the ventricular zone and subventricular zone. Time-lapse video microscopy and clonal analysis in vitro revealed that the marginal zone progenitor pool contains a large fraction of oligodendrocyte or astrocyte progenitors, as well as neuronal and bipotent progenitors. Thus, marginal zone progenitors are heterogenous in regard to their fate specification, as well as in regard to their region of origin (pallial and subpallial) as revealed by in vivo fate mapping. The local environment in the marginal zone tightly regulates the size of this novel progenitor pool, because both basement membrane defects in laminin gamma1-/- mice or alterations in the cellular composition of the marginal zone in Pax6 Small Eye mutant mice lead to an increase in the marginal zone progenitor pool. In conclusion, we have identified a novel source of neuronal and glial progenitors in the marginal zone of the developing cerebral cortex with properties notably distinct from those of ventricular zone and subventricular zone progenitors.
Collapse
Affiliation(s)
- Marcos R. Costa
- National Research Center for Environment and Health, Institute for Stem Cell Research, 85764 Neuherberg/Munich, Germany
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21941-902
- Laboratório de Neuroanatomia Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 21941-590
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, London WC1E 6BT, United Kingdom, and
| | - William D. Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, London WC1E 6BT, United Kingdom, and
| | - Magdalena Götz
- National Research Center for Environment and Health, Institute for Stem Cell Research, 85764 Neuherberg/Munich, Germany
- Physiological Genomics, Institute of Physiology, University of Munich, 80336 Munich, Germany
| | - Cecilia Hedin-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21941-902
- Laboratório de Neuroanatomia Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 21941-590
| |
Collapse
|
117
|
Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007; 23:645-73. [PMID: 17506689 DOI: 10.1146/annurev.cellbio.23.090506.123438] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pax genes play key roles in the formation of tissues and organs during embryogenesis. Pax3 and Pax7 mark myogenic progenitor cells and regulate their behavior and their entry into the program of skeletal muscle differentiation. Recent results have underlined the importance of the Pax3/7 population of cells for skeletal muscle development and regeneration. We present our current understanding of different aspects of Pax3/7 function in myogenesis, focusing on the mouse model. This is compared with that of other Pax proteins in the emergence of tissue specific lineages and their differentiation as well as in cell survival, proliferation, and migration. Finally, we consider the molecular mechanisms that underlie the function of Pax transcription factors, including the cofactors and regulatory networks with which they interact.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, 75015 Paris, France.
| | | |
Collapse
|
118
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 2007; 6:1882-98. [PMID: 17391014 PMCID: PMC2543138 DOI: 10.1021/pr060392u] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
119
|
Lakowski J, Majumder A, Lauderdale JD. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol 2007; 307:498-520. [PMID: 17509554 DOI: 10.1016/j.ydbio.2007.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/16/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.
Collapse
Affiliation(s)
- Jörn Lakowski
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
120
|
Xu S, Sunderland ME, Coles BL, Kam A, Holowacz T, Ashery-Padan R, Marquardt T, McInnes RR, van der Kooy D. The proliferation and expansion of retinal stem cells require functional Pax6. Dev Biol 2007; 304:713-21. [PMID: 17316600 PMCID: PMC1950846 DOI: 10.1016/j.ydbio.2007.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Retinal stem cells (RSCs) exist as rare pigmented ciliary epithelial cells in adult mammalian eyes. We hypothesized that RSCs are at the top of the retinal cell lineage. Thus, genes expressed early in embryonic development to establish the retinal field in forebrain neuroectoderm may play important roles in RSCs. Pax6, a paired domain and homeodomain-containing transcription factor, is one of the earliest genes expressed in the eye field and is considered a master control gene for retinal and eye development. Here, we demonstrate that Pax6 is enriched in RSCs. Inactivation of Pax6 in vivo results in loss of competent RSCs as assayed by the failure to form clonal RSC spheres from the optic vesicles of conventional Pax6 knockout embryos and from the ciliary epithelial cells of adult Pax6 conditional knockout mice. In vitro clonal inactivation of Pax6 in adult RSCs results in a serious proliferation defect, suggesting that Pax6 is required for the proliferation and expansion of RSCs.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Medical Genetics and Microbiology, University of Toronto, ON M5S 1A8, Canada
| | | | - Brenda L.K. Coles
- Department of Medical Genetics and Microbiology, University of Toronto, ON M5S 1A8, Canada
| | - Angela Kam
- Department of Surgery, University of Toronto, ON M5S 1A8, Canada
| | - Tamara Holowacz
- Department of Medical Genetics and Microbiology, University of Toronto, ON M5S 1A8, Canada
| | | | - Till Marquardt
- Tel Aviv University, Tel Aviv, Israel
- The Salk Institute, La Jolla, USA
| | - Roderick R. McInnes
- Department of Medical Genetics and Microbiology, University of Toronto, ON M5S 1A8, Canada
- Max-Planck Institute, 37077 Gottingen, Germany
- Programs in Developmental Biology and Genetics, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Derek van der Kooy
- Department of Medical Genetics and Microbiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
121
|
Berger J, Berger S, Tuoc TC, D'Amelio M, Cecconi F, Gorski JA, Jones KR, Gruss P, Stoykova A. Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis. Development 2007; 134:1311-22. [PMID: 17329367 DOI: 10.1242/dev.02809] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During development, Pax6 is expressed in a rostrolateral-high to caudomedial-low gradient in the majority of the cortical radial glial progenitors and endows them with neurogenic properties. Using a Cre/loxP-based approach, we studied the effect of conditional activation of two Pax6 isoforms, Pax6 and Pax6-5a, on the corticogenesis of transgenic mice. We found that activation of either Pax6 or Pax6-5a inhibits progenitor proliferation in the developing cortex. Upon activation of transgenic Pax6, specific progenitor pools with distinct endogenous Pax6 expression levels at different developmental stages show defects in cell cycle progression and in the acquisition of apoptotic or neuronal cell fate. The results provide new evidence for the complex role of Pax6 in mammalian corticogenesis.
Collapse
Affiliation(s)
- Joachim Berger
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
von Holst A, Egbers U, Prochiantz A, Faissner A. Neural Stem/Progenitor Cells Express 20 Tenascin C Isoforms That Are Differentially Regulated by Pax6. J Biol Chem 2007; 282:9172-81. [PMID: 17264084 DOI: 10.1074/jbc.m608067200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tenascin C (Tnc) is an alternatively spliced, multimodular extracellular matrix glycoprotein present in the ventricular zone of the developing brain. Pax6-deficient small eye (sey) mouse mutants show an altered Tnc expression pattern. Here, we investigated the expression of Tnc isoforms in neural stem/progenitor cells and their regulation by the paired-box transcription factor Pax6. Neural stem/progenitor cells cultured as neurospheres strongly expressed Tnc on the protein level. The Tnc isoform expression in neural stem/progenitor cells was analyzed by reverse transcriptase-PCR and dot blot Southern hybridization. In total, 20 different Tnc isoforms were detected in neurospheres derived from embryonic fore-brain cell suspensions. The Tnc isoform containing the fibronectin type III domains A1A4BD is novel and might be neural stem/progenitor cell-specific. Transient overexpression of Pax6 in neurospheres of the medial ganglionic eminence did not alter the total Tnc mRNA expression level but showed a pronounced regulative effect on different Tnc isoforms. The larger Tnc isoforms containing four, five, and six additional alternatively spliced fibronectin type III domains were up-regulated, whereas the small Tnc isoforms without any or with one additional domain were down-regulated. Thus, Pax6 is a homeodomain protein that also modulates the splicing machinery. We conclude that the combinatorial code of Tnc isoform expression in the neural stem/progenitor cell is complex and regulated by Pax6. These findings suggest a functional significance for individual Tnc isoforms in neural stem/progenitor cells.
Collapse
Affiliation(s)
- Alexander von Holst
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | |
Collapse
|
123
|
Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ. Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 2007; 302:50-65. [PMID: 16979618 PMCID: PMC2384163 DOI: 10.1016/j.ydbio.2006.08.035] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022]
Abstract
Many cerebral cortical neurons and glia are produced by apical progenitors dividing at the ventricular surface of the embryonic dorsal telencephalon. Other neurons are produced by basal progenitor cells, which are derived from apical progenitors, dividing away from the ventricular surface. The transcription factor Pax6 is expressed in apical progenitors and is downregulated in basal progenitors, which upregulate the transcription factor Tbr2. Here we show that Pax6(-/-) cells are under-represented in the cortex of Pax6(+/+)<-->Pax6(-/-) chimeras early in corticogenesis, indicating that Pax6 is required for the production of normal numbers of cortical cells. We provide evidence that this underproduction is attributable to an early depletion of the progenitor pool caused by greater than normal proportions of newly divided cells exiting the cell cycle. We show that most progenitor cells dividing away from the ventricular surface in Pax6(-/-) embryos fail to express the transcription factor Tbr2 and that Pax6 is required cell autonomously for Tbr2 expression in the developing cortex of Pax6(+/+)<-->Pax6(-/-) chimeras. Transcription factors normally expressed ventrally in the telencephalic ganglionic eminences (Mash1, Dlx2 and Gsh2) are upregulated cell autonomously in mutant cells in the developing cortex of Pax6(+/+)<-->Pax6(-/-) chimeras; Nkx2.1, which is expressed only in the medial ganglionic eminence, is not. These data indicate that early functions of Pax6 in developing cortical cells are to repress expression of transcription factors normally found in the lateral ganglionic eminence, to prevent precocious differentiation and depletion of the progenitor pool, and to induce normal development of cortical basal progenitor cells.
Collapse
Affiliation(s)
- Jane C. Quinn
- Genes and Development Group, Department of Biomedical Sciences, Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Michael Molinek
- Genes and Development Group, Department of Biomedical Sciences, Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Ben S. Martynoga
- Genes and Development Group, Department of Biomedical Sciences, Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Paulette A. Zaki
- Genes and Development Group, Department of Biomedical Sciences, Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Andrea Faedo
- Stem Cell Research Institute, Dibit, H. S. Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandro Bulfone
- Stem Cell Research Institute, Dibit, H. S. Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Robert F. Hevner
- Department of Pathology, University of Washington, Seattle, Washington, WA 98104, USA
| | - John D. West
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J. Price
- Genes and Development Group, Department of Biomedical Sciences, Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
124
|
Manuel M, Georgala PA, Carr CB, Chanas S, Kleinjan DA, Martynoga B, Mason JO, Molinek M, Pinson J, Pratt T, Quinn JC, Simpson TI, Tyas DA, van Heyningen V, West JD, Price DJ. Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization. Development 2007; 134:545-55. [PMID: 17202185 PMCID: PMC2386558 DOI: 10.1242/dev.02764] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Levels of expression of the transcription factor Pax6 vary throughout corticogenesis in a rostro-lateral(high) to caudo-medial(low) gradient across the cortical proliferative zone. Previous loss-of-function studies have indicated that Pax6 is required for normal cortical progenitor proliferation, neuronal differentiation, cortical lamination and cortical arealization, but whether and how its level of expression affects its function is unclear. We studied the developing cortex of PAX77 YAC transgenic mice carrying several copies of the human PAX6 locus with its full complement of regulatory regions. We found that PAX77 embryos express Pax6 in a normal spatial pattern, with levels up to three times higher than wild type. By crossing PAX77 mice with a new YAC transgenic line that reports Pax6 expression (DTy54), we showed that increased expression is limited by negative autoregulation. Increased expression reduces proliferation of late cortical progenitors specifically, and analysis of PAX77<---->wild-type chimeras indicates that the defect is cell autonomous. We analyzed cortical arealization in PAX77 mice and found that, whereas the loss of Pax6 shifts caudal cortical areas rostrally, Pax6 overexpression at levels predicted to shift rostral areas caudally has very little effect. These findings indicate that Pax6 levels are stabilized by autoregulation, that the proliferation of cortical progenitors is sensitive to altered Pax6 levels and that cortical arealization is not.
Collapse
Affiliation(s)
- Martine Manuel
- Genes and Development Group, Centres for Integrative Physiology and Neuroscience Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Gossrau G, Thiele J, Konang R, Schmandt T, Brüstle O. Bone morphogenetic protein-mediated modulation of lineage diversification during neural differentiation of embryonic stem cells. Stem Cells 2007; 25:939-49. [PMID: 17218404 DOI: 10.1634/stemcells.2006-0299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ES cells) can give rise to a broad spectrum of neural cell types. The biomedical application of ES cells will require detailed knowledge on the role of individual factors modulating fate specification during in vitro differentiation. Bone morphogenetic proteins (BMPs) are known to exert a multitude of diverse differentiation effects during embryonic development. Here, we show that exposure to BMP2 at distinct stages of neural ES cell differentiation can be used to promote specific cell lineages. During early ES cell differentiation, BMP2-mediated inhibition of neuroectodermal differentiation is associated with an increase in mesoderm and smooth muscle differentiation. In fibroblast growth factor 2-expanded ES cell-derived neural precursors, BMP2 supports the generation of neural crest phenotypes, and, within the neuronal lineage, promotes distinct subtypes of peripheral neurons, including cholinergic and autonomic phenotypes. BMP2 also exerts a density-dependent promotion of astrocyte differentiation at the expense of oligodendrocyte formation. Experiments involving inhibition of the serine threonine kinase FRAP support the notion that these effects are mediated via the JAK/STAT pathway. The preservation of diverse developmental BMP2 effects in differentiating ES cell cultures provides interesting prospects for the enrichment of distinct neural phenotypes in vitro.
Collapse
Affiliation(s)
- Gudrun Gossrau
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | | | | | | | | |
Collapse
|
126
|
Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M. Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 2007; 34:99-119. [PMID: 17158062 DOI: 10.1016/j.mcn.2006.10.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 01/22/2023] Open
Abstract
Appropriate neurogenesis and patterning of the forebrain requires the transcription factor Pax6, yet it is largely unknown how Pax6 exerts its effects at the molecular level. To characterize Pax6-mediated regulation of gene expression during murine forebrain neurogenesis, we performed microarray analysis with tissue from the dorsal Pax6-dependent telencephalon and the ventral Pax6-negative telencephalon at the onset of neurogenesis (E12) and at mid-neurogenesis (E15) in wild-type and Pax6-deficient mutant littermates. In the Pax6-deficient cortex the expression levels of various transcription factors involved in neurogenesis (like Satb2, Nfia, AP-2gamma, NeuroD6, Ngn2, Tbr2, Bhlhb5) and the retinoic acid signalling molecule Rlbp1 were reduced. Regulation by Pax6 could be confirmed upon electroporation of a Pax6- and a dominant-negative Pax6-containing vector into embryonic cortex. Taken together, our data reveal novel insights into the molecular pathways regulated by Pax6 during cortical neurogenesis. Most intriguingly, this analysis revealed time- and region-specific differences in Pax6-mediated transcription, explaining the specific function of Pax6 at early and later stages of neurogenesis.
Collapse
Affiliation(s)
- Pontus C Holm
- Institute for Stem Cell Research, National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg/Munich, Germany.
| | | | | | | | | | | |
Collapse
|
127
|
Duparc RH, Abdouh M, David J, Lépine M, Tétreault N, Bernier G. Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Dev Biol 2007; 301:374-87. [PMID: 17157287 DOI: 10.1016/j.ydbio.2006.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/07/2006] [Accepted: 11/04/2006] [Indexed: 11/25/2022]
Abstract
In vertebrates, a limited number of homeobox-containing transcription factors are expressed in the optic vesicle primordium and are required and sufficient for eye formation. At present, little is known about the distinct functions of these factors in optic vesicle growth and on the nature of the main neuroepithelial (NE) progenitor population present in this organ. We have characterized a multipotent cell population present in the mouse optic vesicle that shows extensive proliferation potential and which expresses NE progenitor and retinal markers in vitro. In Pax6 mutant embryos, which form an optic vesicle, we found that the number of resident NE progenitors was greater than normal. In vitro, Pax6-null NE progenitors overproliferate and display reduced p16(Ink4a), p19(Arf), p27(kip1), p57(kip2), and p21(cip1) expression. Pax6 overexpression repressed cellular proliferation and secondary colonies formation, supporting the hypothesis that Pax6 acts cell-autonomously on NE progenitors cell cycle. Notably, these in vitro data correlated with aberrant numbers of mitosis observed in the optic vesicle of early stage Pax6 mutants, with Pax6 association with the chromatin upstream of p27(kip1) promoter region, and with reduced expression levels of p27(kip1), p57(kip2), and p21(cip1) in the primitive forebrain of Pax6 mutants. Taken together, our results suggest that, prior to retinal progenitor cell identity and neurogenesis, Pax6 is required to regulate the proliferation rate of NE progenitors present in the mouse optic vesicle.
Collapse
Affiliation(s)
- Robert-Hugues Duparc
- Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montreal, Canada H1T 2M4
| | | | | | | | | | | |
Collapse
|
128
|
Kleinjan DA, Seawright A, Mella S, Carr CB, Tyas DA, Simpson TI, Mason JO, Price DJ, van Heyningen V. Long-range downstream enhancers are essential for Pax6 expression. Dev Biol 2006; 299:563-81. [PMID: 17014839 PMCID: PMC2386664 DOI: 10.1016/j.ydbio.2006.08.060] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/21/2006] [Accepted: 08/25/2006] [Indexed: 01/29/2023]
Abstract
Pax6 is a developmental control gene with an essential role in development of the eye, brain and pancreas. Pax6, as many other developmental regulators, depends on a substantial number of cis-regulatory elements in addition to its promoters for correct spatiotemporal and quantitative expression. Here we report on our analysis of a set of mice transgenic for a modified yeast artificial chromosome carrying the human PAX6 locus. In this 420 kb YAC a tauGFP-IRES-Neomycin reporter cassette has been inserted into the PAX6 translational start site in exon 4. The YAC has been further engineered to insert LoxP sites flanking a 35 kb long, distant downstream regulatory region (DRR) containing previously described DNaseI hypersensitive sites, to allow direct comparison between the presence or absence of this region in the same genomic context. Five independent transgenic lines were obtained that vary in the extent of downstream PAX6 locus that has integrated. Analysis of transgenic embryos carrying full-length and truncated versions of the YAC indicates the location and putative function of several novel tissue-specific enhancers. Absence of these distal regulatory elements abolishes expression in specific tissues despite the presence of more proximal enhancers with overlapping specificity, strongly suggesting interaction between these control elements. Using plasmid-based reporter transgenic analysis we provide detailed characterization of one of these enhancers in isolation. Furthermore, we show that overexpression of a short PAX6 isoform derived from an internal promoter in a multicopy YAC transgenic line results in a microphthalmia phenotype. Finally, direct comparison of a single-copy line with the floxed DRR before and after Cre-mediated deletion demonstrates unequivocally the essential role of these long-range control elements for PAX6 expression.
Collapse
Affiliation(s)
- Dirk A Kleinjan
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Götz M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 2006; 133:3245-54. [PMID: 16873583 DOI: 10.1242/dev.02486] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radial glial cells have been shown to act as neuronal precursors in the developing cortex and to maintain their radial processes attached to the basement membrane (BM) during cell division. Here, we examined a potential role of direct signalling from the BM to radial glial cells in three mouse mutants where radial glia attachment to the BM is disrupted. This is the case if the nidogen-binding site of the laminin gamma1 chain is mutated, in the absence of alpha6 integrin or of perlecan, an essential BM component. Surprisingly, cortical radial glial cells lacking contact to the BM were not affected in their proliferation, interkinetic nuclear migration, orientation of cell division and neurogenesis. Only a small subset of precursors was located ectopically within the cortical parenchyma. Notably, however, neuronal subtype composition was severely disturbed at late developmental stages (E18) in the cortex of the laminin gamma1III4-/- mice. Thus, although BM attachment seems dispensable for precursor cells, an intact BM is required for adequate neuronal composition of the cerebral cortex.
Collapse
Affiliation(s)
- Nicole Haubst
- Institute for Stem Cell Research, GSF, National Research Center for Environment and Health, Ingolstädter Landstr.1, D-85764 Neuherberg/Munich, Germany
| | | | | | | | | |
Collapse
|
130
|
Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 2006; 133:3671-81. [PMID: 16914491 DOI: 10.1242/dev.02541] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isolation and expansion of human neural cell types has become increasingly relevant in restorative neurobiology. Although embryonic and fetal tissue are frequently envisaged as providing sufficiently primordial cells for such applications, the developmental plasticity of endogenous adult neural cells remains largely unclear. To examine the developmental potential of adult human brain cells, we applied conditions favoring the growth of neural stem cells to multiple cortical regions, resulting in the identification and selection of a population of adult human neural progenitors (AHNPs). These nestin(+) progenitors may be derived from multiple forebrain regions, are maintainable in adherent conditions, co-express multiple glial and immature markers, and are highly expandable, allowing a single progenitor to theoretically form sufficient cells for approximately 4x10(7) adult brains. AHNPs longitudinally maintain the ability to generate both glial and neuronal cell types in vivo and in vitro, and are amenable to genetic modification and transplantation. These findings suggest an unprecedented degree of inducible plasticity is retained by cells of the adult central nervous system.
Collapse
Affiliation(s)
- Noah M Walton
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Bräuninger M, Eilken HM, Rieger MA, Schroeder TT, Huttner WB, Brakebusch C, Götz M. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 2006; 9:1099-107. [PMID: 16892058 DOI: 10.1038/nn1744] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 07/10/2006] [Indexed: 11/09/2022]
Abstract
Stem cell persistence into adulthood requires self-renewal from early developmental stages. In the developing mouse brain, only apical progenitors located at the ventricle are self-renewing, whereas basal progenitors gradually deplete. However, nothing is known about the mechanisms regulating the fundamental difference between these progenitors. Here we show that the conditional deletion of the small Rho-GTPase cdc42 at different stages of neurogenesis in mouse telencephalon results in an immediate increase in basal mitoses. Whereas cdc42-deficient progenitors have normal cell cycle length, orientation of cell division and basement membrane contact, the apical location of the Par complex and adherens junctions are gradually lost, leading to an increasing failure of apically directed interkinetic nuclear migration. These cells then undergo mitoses at basal positions and acquire the fate of basal progenitors. Thus, cdc42 has a crucial role at the apical pole of progenitors, thereby regulating the position of mitoses and cell fate.
Collapse
Affiliation(s)
- Silvia Cappello
- GSF, National Research Center for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Pinson J, Simpson TI, Mason JO, Price DJ. Positive autoregulation of the transcription factor Pax6 in response to increased levels of either of its major isoforms, Pax6 or Pax6(5a), in cultured cells. BMC DEVELOPMENTAL BIOLOGY 2006; 6:25. [PMID: 16725027 PMCID: PMC1489926 DOI: 10.1186/1471-213x-6-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/25/2006] [Indexed: 11/18/2022]
Abstract
Background Pax6 is a transcription factor essential for normal development of the eyes and nervous system. It has two major isoforms, Pax6 and Pax6(5a), and the ratios between their expression levels vary within narrow limits. We tested the effects of overexpressing either one or other isoform on endogenous Pax6 expression levels in Neuro2A and NIH3T3 cells. Results We found that both isoforms caused an up-regulation of endogenous Pax6 expression in cells with (Neuro2A) or without (NIH3T3) constitutive Pax6 expression. Western blots showed that cells stably transfected with constructs expressing either Pax6 or Pax6(5a) contained raised levels of both Pax6 and Pax6(5a). Quantitative RT-PCR confirmed an increase in levels of Pax6(5a) mRNA in cells containing Pax6-expressing constructs and an increase in levels of Pax6 mRNA in cells containing Pax6(5a)-expressing constructs. The fact that the introduction of constructs expressing only one isoform increased the cellular levels of not only that isoform but also the other indicates that activation of the endogenous Pax6 locus occurred. The ratio between the levels of the two isoforms was maintained close to physiological values. The overexpression of either isoform in neuroblastoma (Neuro2A) cell lines also promoted morphological change and an increase in β-III-tubulin expression, indicating an increase in neurogenesis. Conclusion Our results demonstrate that Pax6 can up-regulate production of Pax6 protein from an entire intact endogenous Pax6 locus in its genomic environment. This adds to previous studies showing that Pax6 can up-regulate reporter expression driven by isolated Pax6 regulatory elements. Furthermore, our results suggest that an important function of positive feedback might be to stabilise the relative levels of Pax6 and Pax6(5a).
Collapse
Affiliation(s)
- Jeni Pinson
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - T Ian Simpson
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Genes and Development Group, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
133
|
von Frowein J, Wizenmann A, Götz M. The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate. Dev Biol 2006; 296:239-52. [PMID: 16793035 DOI: 10.1016/j.ydbio.2006.04.461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 04/01/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The transcription factors Emx1 and Emx2 exert important functions during development of the cerebral cortex, including its arealization. Here, we addressed their role in development of the derivatives of the midline region in the telencephalon. The center of the midline region differentiates into the choroid plexus, but little is known about its molecular specification. As we noted a lack of Emx1 or 2 expression in the midline region early in development, we interfered by misexpressing Emx1 and/or Emx2 in this region of the chick telencephalon. Ectopic expression of either Emx1 or Emx2 prior to HH 13 instructed a neuroepithelial identity in the previous midline region instead of a choroidal fate. Thus, Gli3 and Lhx2 normally restricted to the neuroepithelium expanded into the Emx misexpressing region. This was accompanied by down-regulation of Otx2 and BMP7, which implicates that these factors are essential for choroid plexus specification and differentiation. Interestingly, the region next to the ectopic Emx-misexpression then acquired a hybrid identity with some choroidal features such as Bmp7, Otx2 and Ttr gene expression, as well as some neuroepithelial features. These observations indicate that the expression levels of Emx1 and/or Emx2 restrict the prospective choroid plexus territory, a novel role of these transcription factors.
Collapse
Affiliation(s)
- Julia von Frowein
- GSF-National Research Center for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany
| | | | | |
Collapse
|
134
|
Hevner RF, Hodge RD, Daza RAM, Englund C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 2006; 55:223-33. [PMID: 16621079 DOI: 10.1016/j.neures.2006.03.004] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Glutamatergic, pyramidal-projection neurons are produced in the embryonic cerebral cortex by a series of genetically programmed fate choices, implemented in large part by developmental transcription factors. Our work has focused on Pax6, Tbr2/Eomes, NeuroD, and Tbr1, which are expressed sequentially during the neurogenesis of pyramidal-projection neurons. Recently, we have found that the same transcription factors are expressed, in the same order, during glutamatergic neurogenesis in the adult dentate gyrus, and (with modifications) in the developing cerebellum. While the precise functional significance of this transcription factor expression sequence is unknown, its common appearance in embryonic and adult neurogenesis, and in different brain regions, suggests it is part of a conserved genetic program that specifies general properties of glutamatergic neurons in these regions. Subtypes of glutamatergic neurons (e.g., layer-specific fates in the cortex) are further determined by combinations of transcription factors, superimposed on general sequential programs. These new perspectives on neurogenesis add to the conceptual framework for strategies to engineer neural stem cells for the repair of specific brain circuits.
Collapse
Affiliation(s)
- Robert F Hevner
- Department of Pathology, University of Washington, Harborview Medical Center, Harborview Pathology, Box 359791, 325 Ninth Ave., Seattle, WA 98104, USA.
| | | | | | | |
Collapse
|
135
|
Kim J, Lauderdale JD. Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev Biol 2006; 292:486-505. [PMID: 16464444 DOI: 10.1016/j.ydbio.2005.12.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/08/2005] [Accepted: 12/21/2005] [Indexed: 11/19/2022]
Abstract
Pax6, a member of the paired-family of transcription factors, exhibits restricted expression and essential functions in the developing eye, olfactory system, central nervous system, and pancreas. To understand Pax6 function, which critically depends on induction of proper expression levels during development, it is necessary to elucidate the molecular mechanisms governing Pax6 transcription. Although previous studies using classic transgenic approaches have provided a wealth of information about the distribution and types of regulatory elements involved in Pax6 regulation, genetic studies in both humans and mice indicate that these enhancers alone are not sufficient for fully regulated Pax6 expression. We report here our analysis of mice transgenic for a 160 kb mouse Pax6 BAC transgene, which was generated as a necessary first step towards testing the long-range control of Pax6 expression in vivo. We show that this BAC transgene replicates Pax6 expression in the eye. This is the first time that a reporter transgene has been expressed in a normal Pax6-like pattern in all of the tissues of the eye and defines an eye regulatory region within the Pax6 downstream regulatory region (DRR). Second, we show that this BAC transgene contains all of the cis regulatory elements required for normal Pax6 expression within the developing embryo, except for within the diencephalon and olfactory bulb. Third, we show that this transgene is subject to Pax6 autoregulation. Lastly, we identify, for the first time in mammals, an isoform of the Pax6 protein lacking the paired domain. This isoform is expressed in the developing olfactory bulb and eye. Over-expression of Pax6DeltaPD causes a microphthalmic phenotype in both Pax6(+/+) mice and Pax6(+/-) mice. These results demonstrate a role for Pax6DeltaPD in eye development, which appears to be different than that ascribed to either canonical Pax6 or Pax6(5a).
Collapse
Affiliation(s)
- Jiha Kim
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
136
|
Abstract
Early thalamus-independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [Rakic, P. (1988)Science, 241, 170-176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area-specific morphogenetic programs.
Collapse
Affiliation(s)
- Antonello Mallamaci
- DIBIT, Unit of Cerebral Cortex Development, Department of Molecular Biology and Functional Genomics, San Raffaele Scientific Intitute, via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
137
|
Abstract
During development, several populations of progenitor cells in the dorsal telencephalon generate a large variety of neurons which acquire distinct morphologies and physiological properties and serve distinct functions in the mammalian cortex. This paper reviews recent work that has identified (i) key molecules involved in the specification and differentiation of cortical neurons, (ii) novel genes which distinguish distinct subsets of cortical progenitors and may be involved in the diversification of cortical neurons present in different cortical layers, and (iii) mechanisms involved in the generation of different projection neuronal subtypes in the well-studied model of layer 5 of the rodent cortex.
Collapse
Affiliation(s)
- Francois Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA London, UK
| | | | | | | |
Collapse
|
138
|
Swanson DJ, Tong Y, Goldowitz D. Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:176-93. [PMID: 16289327 DOI: 10.1016/j.devbrainres.2005.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 09/01/2005] [Accepted: 09/04/2005] [Indexed: 10/25/2022]
Abstract
The transcriptional regulator Pax6 is expressed in cerebellar granule cells and a mutation in that gene (Sey) has been shown to affect cerebellar development. We have defined novel phenotypes in the Sey/Sey cerebellum, indicating that the mutation of Pax6 alters granule cell behavior in vitro and also the interaction between granule cells and Purkinje cells in vivo. In culture, Sey/Sey granule cell precursors show the following abnormal phenotypes: enhanced proliferation, increased apoptotic cell death, and decreased number of morphologically differentiating beta-III tubulin-positive cells. There is an overlap in the populations of Sey/Sey cells that express markers for proliferation and neuronal differentiation indicating an abnormality in the transition between these states in granule cells. In vivo, Purkinje cell ectopias were found deep in the cerebellum and extending into the inferior colliculus. Coincident with this, Purkinje cell phenotype was the alteration in the pattern and levels of Reelin expression in granule cells of the external germinal layer (EGL). The finding of increased staining for Disabled-1, a signaling pathway intermediary that is normally downregulated by a Reelin signal, throughout the Purkinje cell population suggests that in the Sey/Sey cerebellum there is a disruption in Reelin signaling from the EGL to Purkinje cells. These findings suggest that Pax6 is critical for the proper differentiation of granule cells and their communication with developing Purkinje cells. Thus, through its guidance of granule cell development, Pax6 also has a strong influence on many of the cellular programs that guide the morphogenesis of the entire cerebellum.
Collapse
Affiliation(s)
- Douglas James Swanson
- Department of Anatomy and Neurobiology, Center of Excellence in Genomics and Bioinformatics, University of Tennessee Health Sciences Center, 515 LINK Building, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
139
|
Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Götz M. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 2005; 8:865-72. [PMID: 15951811 DOI: 10.1038/nn1479] [Citation(s) in RCA: 463] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/13/2005] [Indexed: 11/08/2022]
Abstract
Adult neurogenesis in mammals is restricted to two small regions, including the olfactory bulb, where GABAergic and dopaminergic interneurons are newly generated throughout the entire lifespan. However, the mechanisms directing them towards a specific neuronal phenotype are not yet understood. Here, we demonstrate the dual role of the transcription factor Pax6 in generating neuronal progenitors and also in directing them towards a dopaminergic periglomerular phenotype in adult mice. We present further evidence that dopaminergic periglomerular neurons originate in a distinct niche, the rostral migratory stream, and are fewer derived from precursors in the zone lining the ventricle. This regionalization of the adult precursor cells is further supported by the restricted expression of the transcription factor Olig2, which specifies transit-amplifying precursor fate and opposes the neurogenic role of Pax6. Together, these data explain both extrinsic and intrinsic mechanisms controlling neuronal identity in adult neurogenesis.
Collapse
Affiliation(s)
- Michael A Hack
- GSF-National Research Center for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
140
|
Götz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005; 46:369-72. [PMID: 15882633 DOI: 10.1016/j.neuron.2005.04.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Radial glial cells have been identified as a major source of neurons during development. Here, we review the evidence for the distinct "glial" nature of radial glial cells and contrast these cells with their progenitors, the neuroepithelial cells. Recent results also suggest that not only during neurogenesis in vivo, but also during the differentiation of cultured embryonic stem cells toward neurons, progenitors with clear glial antigenic characteristics act as cellular intermediates.
Collapse
Affiliation(s)
- Magdalena Götz
- Institute of Stem Cell Research, GSF-National Research Center for Environment and Health, Ingolstädter Landstr. 1, D-85764 Neuherberg/Munich, Germany.
| | | |
Collapse
|
141
|
Pinson J, Mason JO, Simpson TI, Price DJ. Regulation of the Pax6 : Pax6(5a) mRNA ratio in the developing mammalian brain. BMC DEVELOPMENTAL BIOLOGY 2005; 5:13. [PMID: 16029501 PMCID: PMC1182360 DOI: 10.1186/1471-213x-5-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/19/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Early in mammalian brain development cell proliferation generates a population of progenitor cells whose subsequent divisions produce increasing numbers of postmitotic neurons. Pax6 affects both processes and it has been suggested that this changing role is due at least in part to changes in the relative concentrations of its two main isoforms, (i) Pax6 and (ii) Pax6(5a), created by insertion of a 42 bp exon (exon 5a) into one of the two DNA-binding domains. Crucially, however, no previous study has determined whether the ratio between Pax6 and Pax6(5a) transcripts alters during mammalian neurogenesis in vivo. RESULTS Using RNase protection assays, we show that Pax6 transcripts are 6-10 times more prevalent than Pax6(5a) transcripts early in neurogenesis in the murine telencephalon, diencephalon and hindbrain and that the ratio later falls significantly to about 3:1 in these regions. CONCLUSION These changes in vivo are similar in magnitude to those shown previously to alter target gene activity in vitro and might, therefore, allow the single mammalian Pax6 gene to carry out different functions at different times in mammalian brain development.
Collapse
Affiliation(s)
- Jeni Pinson
- Biomedical Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Biomedical Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - T Ian Simpson
- Biomedical Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Biomedical Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
142
|
Yao JG, Sun YH. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J 2005; 24:2602-12. [PMID: 15973436 PMCID: PMC1176454 DOI: 10.1038/sj.emboj.7600725] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Drosophila has two pairs of Pax genes, ey/toy and eyg/toe, that play different functions during eye development. ey specifies eye fate, while eyg promotes cell proliferation. We have determined the molecular basis for the functional diversity of Eyg and Ey. Eyg and Ey act by distinct transcriptional mechanisms. They use different DNA-binding domains for target recognition. Most interestingly, Eyg acts exclusively as a repressor, whereas Ey is an activator. Several vertebrate Pax proteins are known to switch between activator and repressor activities, but none as repressors only. Eyg may be the first Pax protein as a dedicated repressor. Vertebrates produce a Pax6 isoform, Pax6-5a, differing from Pax6 in DNA-binding properties and functions and structurally similar to Eyg/Toe. We found that Pax6-5a acts as an activator like Ey, but has DNA-binding specificity like Eyg.
Collapse
Affiliation(s)
- Jih-Guang Yao
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Y Henry Sun
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China. Tel.: +886 2 2789 9211; Fax: +886 2 2782 6085; E-mail:
| |
Collapse
|
143
|
Mori T, Buffo A, Götz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol 2005; 69:67-99. [PMID: 16243597 DOI: 10.1016/s0070-2153(05)69004-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most frequent cell type in the adult mammalian brain, and the number and range of their diverse functions are still increasing. One of their most striking roles is their function as adult neural stem cells and contribution to neurogenesis. This chapter discusses first the role of the ubiquitous glial cell type in the developing nervous system, the radial glial cells. Radial glial cells share several features with neuroepithelial cells, but also with astrocytes in the mature brain, which led to the name "radial glia." At the end of neurogenesis in the mammalian brain, radial glial cells disappear, and a subset of them transforms into astroglial cells. Interestingly, only some astrocytes maintain their neurogenic potential and continue to generate neurons throughout life. We discuss the current knowledge about the differences between the adult astroglial cells that remain neurogenic and act as neural stem cells and the majority of other astroglial cells that have apparently lost the capacity to generate neurons. Additionally, we review the changes in glial cells upon brain lesion, their dedifferentiation and recapitulation of radial glial properties, and the conditions under which reactive glia may reinitiate some neurogenic potential. Given that the astroglial cells are not only the most frequent cell type in an adult mammalian brain, but also the key cell type in the wound reaction of the brain to injury, it is essential to further understand their heterogeneity and molecular specification, with the final aim of using this unique source for neuronal replacement. Therefore, one of the key advances in the field of neurobiology is the discovery that astroglial cells can generate neurons not only during development, but also throughout adult life and potentially even after brain lesion.
Collapse
Affiliation(s)
- Tetsuji Mori
- Institute for Stem Cell Research, GSF-National Research Center for Environment and Health, D-85764 Neuherberg/Munich, Germany
| | | | | |
Collapse
|