101
|
Phosphatase PTEN in neuronal injury and brain disorders. Trends Neurosci 2007; 30:581-6. [PMID: 17959258 DOI: 10.1016/j.tins.2007.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/17/2007] [Accepted: 08/17/2007] [Indexed: 01/16/2023]
Abstract
The phosphatase and tensin homologue PTEN was originally identified as a tumor suppressor. In the CNS, mutation or inactivation of PTEN is best known for playing a tumorigenic role in the molecular pathogenesis of glioblastoma. However, recent studies show that PTEN is associated with several brain diseases other than cancer, suggesting a broader role of PTEN in CNS pathophysiology. Here, we review the evidence for the crucial involvement of PTEN in neuronal injury as well as in neurological and psychiatric disorders, and discuss the potential of PTEN as a molecular target for the development of a novel CNS therapeutic strategy.
Collapse
|
102
|
Muñoz U, Bartolomé F, Bermejo F, Martín-Requero A. Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer's dementia patients. Neurobiol Aging 2007; 29:1474-84. [PMID: 17448572 DOI: 10.1016/j.neurobiolaging.2007.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/25/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022]
Abstract
Cyclin-dependent kinase inhibitor p27(kip1) (p27), a critical determinant for cell cycle progression, is an important regulation target of mitogenic signals. We have recently reported the existence of a molecular link between decreased p27 levels and enhanced phosphorylation of pRb protein and proliferation of immortalized lymphocytes from Alzheimer's disease (AD) patients. These cell cycle disturbances might be considered systemic manifestations, which mirror changes thought to occur in the brain, where post-mitotic neurons have been shown to display various cell cycle markers prior to degeneration. This work was undertaken to delineate the molecular mechanisms underlying the p27 down-regulation associated with AD. To this end, we evaluated the p27 protein stability in control and AD lymphoblasts. Half-life of p27 protein was markedly reduced in lymphoblasts from AD patients compared with that in control cells. The increased phosphorylation of p27 at Thr187, rather than changes in the 26S proteasome activity, is likely responsible for the enhanced degradation of p27 in AD cells. The serum-induced enhanced proliferation of AD lymphoblasts and decreased levels of p27 were abrogated by calmodulin (CaM) antagonists. The findings presented here suggest that Ca(2+)/CaM-dependent overactivation of PI3K/Akt signaling cascade in AD cells, plays an important role in regulating p27 abundance by increasing its degradation in the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ursula Muñoz
- Department of Cellular and Molecular Pathophysiology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
103
|
Nayeem N, Kerr F, Naumann H, Linehan J, Lovestone S, Brandner S. Hyperphosphorylation of tau and neurofilaments and activation of CDK5 and ERK1/2 in PTEN-deficient cerebella. Mol Cell Neurosci 2007; 34:400-8. [PMID: 17208451 DOI: 10.1016/j.mcn.2006.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Accepted: 11/15/2006] [Indexed: 12/19/2022] Open
Abstract
Inherited mutations to the tumor suppressor PTEN sporadically lead to cerebellar gangliocytoma characterized by migration defects. This has been modeled by CNS-specific PTEN ablation in mice, but the underlying mechanism cannot be explained by the known role of PTEN in Akt/PKB inactivation. Here we show that the loss of PTEN in mouse cerebellar neurons causes neurodegeneration by hyperphosphorylation of tau and neurofilaments, and activation of Cdk5 and pERK1/2, suggesting that dysregulation of the PTEN/pAkt pathway can mediate neurodegeneration.
Collapse
Affiliation(s)
- Naushaba Nayeem
- Department of Neurodegenerative Disease and MRC Prion Unit, Institute of Neurology, University College, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
104
|
Schick V, Majores M, Engels G, Spitoni S, Koch A, Elger CE, Simon M, Knobbe C, Blümcke I, Becker AJ. Activation of Akt independent of PTEN and CTMP tumor-suppressor gene mutations in epilepsy-associated Taylor-type focal cortical dysplasias. Acta Neuropathol 2006; 112:715-25. [PMID: 17013611 DOI: 10.1007/s00401-006-0128-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 01/18/2023]
Abstract
Focal cortical dysplasias (FCD) with Taylor-type balloon cells (FCD(IIb)) are frequently observed in biopsy specimens of patients with pharmacoresistant focal epilepsies. The molecular pathogenesis of FCD(IIb), which lack familial inheritance, is only poorly understood. Due to their highly differentiated, malformative nature and glioneuronal phenotype, FCD(IIb) share neuropathological characteristics with lesions observed in familial disorders such as cortical tubers present in patients with autosomal dominant tuberous sclerosis complex (TSC), related to mutations in the TSC1 or TSC2 genes, and dysplastic gangliocytomas of the cerebellum found in Cowden disease. Current data have indicated distinct allelic variants of TSC1 to accumulate in FCD(IIb). TSC1 represents a tumor suppressor operating in the phosphatidylinositol 3-kinase (PI3K)/insulin pathway. The tumor-suppressor gene PTEN is mutated in Cowden disease. Like PTEN, also carboxyl-terminal modulator protein (CTMP) modulates PI3K-pathway signaling, both via inhibition of Akt/PKB, a kinase inactivating the TSC1/TSC2 complex. Here, we have analyzed alterations of Akt, PTEN and CTMP relevant for insulin signaling upstream of TSC1/TSC2 in FCD(IIb). Immunohistochemistry with antibodies against phosphorylated Akt (phospho-Akt; Ser 473) in FCD(IIb) (n=23) showed strong phospho-Akt expression in dysplastic FCD(IIb) components. We have further studied sequence alterations of PTEN (n=34 FCD(IIb)) and CTMP (n=20 FCD(IIb)) by laser microdissection/single-strand conformation polymorphism analysis. We observed a somatic mutation in an FCD(IIb), i.e., amino-acid exchange at nucleotide position 834 (PTEN cDNA, GenBank AH007803.1) in exon 8 with replacement of phenylalanine by leucine (F278L). We also found several silent polymorphisms of PTEN in exon 2 and exon 8 as well as silent and coding polymorphisms but no mutations in CTMP. No loss of heterozygosity in FCD(IIb) (n=6) at 10q23 was observed. To our knowledge, we here report on the first somatic mutation of a tumor-suppressor gene, i.e., PTEN, in FCD(IIb). However, our study also demonstrates that mutational alterations of PTEN and CTMP do not play major pathogenetic roles for activation of Akt in FCD(IIb). Future studies need to determine the origin of insulin pathway activation upstream of TSC1/TSC2 in FCD(IIb).
Collapse
Affiliation(s)
- Volker Schick
- Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Chow LML, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241:184-96. [PMID: 16412571 DOI: 10.1016/j.canlet.2005.11.042] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 01/19/2023]
Abstract
The PTEN tumor suppressor is a central negative regulator of the PI3K/AKT signaling cascade that influences multiple cellular functions including cell growth, survival, proliferation and migration in a context-dependent manner. Dysregulation of this signaling pathway contributes to many cancers in man. PTEN is the most commonly altered component of the PI3K pathway in human malignancies. Mutations occur in both heritable and sporadic settings, with high frequency in sporadic glioblastoma, prostate and endometrial cancer. Data from human tumors and animal models support the concept that the effects of PTEN inactivation are tissue-specific. Elucidation of the mechanisms regulating activation of unique downstream effectors that mediate distinct outcomes of PTEN loss will augment our understanding of tumorigenesis and ultimately lead to novel therapeutic options.
Collapse
Affiliation(s)
- Lionel M L Chow
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | |
Collapse
|
106
|
Murcia CL, Gulden FO, Cherosky NA, Herrup K. A genetic study of the suppressors of the Engrailed-1 cerebellar phenotype. Brain Res 2006; 1140:170-8. [PMID: 16884697 DOI: 10.1016/j.brainres.2006.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 11/23/2022]
Abstract
The mouse Engrailed genes, En1 and En2, play an important role in the development of the cerebellum from its inception at the mid/hindbrain boundary in early embryonic development through cell type specification events and beyond. In the absence of En1, the cerebellum and caudal midbrain fail to develop normally--a phenotype that we have previously reported to be strain dependent. On the 129/S1 strain background, En1 null alleles lead to mid/hindbrain failure, whereas on the C57BL/6 background, En1 deficiency is compatible with near normal cerebellar development. We have pursued this dramatic effect of genetic background by performing a genetic modifier screen through F1 backcross and F1 intercross matings. The backcross has yielded two strong candidate intervals with suggestive linkage to a third region. Moreover, variations in rescue frequency among subgroups within the backcross indicate gender and parent of origin influences on rescue penetrance. The intercross data reveal locus heterogeneity of the En1 modifiers, with more than one compliment of C57BL/6 and 129/S1 alleles capable of mediating the rescue phenotype. These findings highlight the complexity and plasticity of gene networks involved in brain development.
Collapse
Affiliation(s)
- Crystal L Murcia
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
107
|
Teng Y, Sun AN, Pan XC, Yang G, Yang LL, Wang MR, Yang X. Synergistic Function of Smad4 and PTEN in Suppressing Forestomach Squamous Cell Carcinoma in the Mouse. Cancer Res 2006; 66:6972-81. [PMID: 16849541 DOI: 10.1158/0008-5472.can-06-0507] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genetic bases underlying esophageal tumorigenesis are poorly understood. Our previous studies have shown that coordinated deletion of the Smad4 and PTEN genes results in accelerated hair loss and skin tumor formation in mice. Herein, we exemplify that the concomitant inactivation of Smad4 and PTEN accelerates spontaneous forestomach carcinogenesis at complete penetrance during the first 2 months of age. All of the forestomach tumors were invasive squamous cell carcinomas (SCCs), which recapitulated the natural history and pathologic features of human esophageal SCCs. A small population of the SCC lesions was accompanied by adenocarcinomas at the adjacent submucosa region in the double mutant mice. The rapid progression of forestomach tumor formation in the Smad4 and PTEN double knockout mice corresponded to a dramatic increase in esophageal and forestomach epithelial proliferation. The decreased expression of p27, p21, and p16 together with the overexpression of cyclin D1 contributed cooperatively to the accelerated forestomach tumorigenesis in the double mutant mice. Our results point strongly to the crucial relevance of synergy between Smad4 and PTEN to suppress forestomach tumorigenesis through the cooperative induction of cell cycle inhibitors.
Collapse
Affiliation(s)
- Yan Teng
- Genetic Laboratory of Development and Diseases, Institute of Biotechnology and National Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
108
|
Chalhoub N, Kozma SC, Baker SJ. S6k1 is not required for Pten-deficient neuronal hypertrophy. Brain Res 2006; 1100:32-41. [PMID: 16777079 DOI: 10.1016/j.brainres.2006.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
The tumor suppressor PTEN (phosphatase and tensin homolog) plays a critical role in the development and maintenance of the mammalian nervous system. Effects of inherited mutation of PTEN are highly variable and include macrocephaly, Lhermitte-Duclos disease (LDD) caused by a hamartomatous enlargement of the cerebellum, ataxia, seizures and autism, in addition to cancer predisposition. In the mouse, selective inactivation of Pten in post-mitotic granule neurons of the cerebellum and dentate gyrus showed that Pten was required for proper regulation of neuronal nuclear and soma size. Hypertrophy of Pten-deficient neurons required the activity of the serine-threonine kinase mTor. mTor is a master regulator of cell and organ growth which can trigger a cascade of downstream signaling pathways involving, in part, components of the translational machinery, including S6k1 and its substrate the ribosomal protein S6. Deletion of S6k1 in mice results in decreased size. Therefore, to determine the relative contribution of S6k1 to Pten-deficient neuronal hypertrophy in vivo, we crossed Pten brain-conditional knockouts with S6k1 null mice. Double mutant mice show no reversion or improvement in their Pten-related size and neurological defects including enlarged cerebella and dentate gyri with increased size of neuronal nuclei and somata, ataxia, and premature death. The hypertrophic Pten/S6k1-deficient neurons contained high levels of phosphorylated S6, similar to Pten-deficient neurons, suggesting that the mTor/S6k/S6 branch of the pathway was still active. Thus, we conclude that S6k1 is not required to cause hypertrophy of Pten-deficient neurons. This study reveals a cell type-dependent role for S6k1 in PI3K-dependent hypertrophy.
Collapse
Affiliation(s)
- Nader Chalhoub
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | |
Collapse
|
109
|
Ueno S, Kono R, Iwao Y. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. Dev Biol 2006; 297:274-83. [PMID: 16919259 DOI: 10.1016/j.ydbio.2006.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 11/16/2022]
Abstract
PTEN phosphatase mediates several developmental cues involving cell proliferation, growth, death, and migration. We investigated the function of the PTEN gene at the transition from the cell proliferation state to morphogenesis around the midblastula transition (MBT) and gastrulation in Xenopus embryos. An immunoblotting analysis indicated that PTEN expresses constantly through embryogenesis. By up- or down-regulating PTEN activity using overexpression of the active form or C terminus of PTEN before MBT, we induced elongation of the cell cycle time just before MBT or maintained its speed even after MBT, respectively. The disruption of the cell cycle time by changing the activity of PTEN delayed gastrulation after MBT. In addition, PTEN began to localize to the plasma membranes and nuclei at MBT. Overexpression of a membrane-localizing mutant of PTEN caused dephosphorylation of Akt, whereas overexpression of the C terminus of PTEN caused phosphorylation of Akt and inhibited the localization of EGFP-PTEN to the plasma membranes and nuclei. These results indicate that an appropriate PTEN activity, probably regulated by its differential localization, is necessary for coordinating cell proliferation and early morphogenesis.
Collapse
Affiliation(s)
- Shuichi Ueno
- Department of Biological Science, Faculty of Science, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | |
Collapse
|
110
|
Kerr F, Rickle A, Nayeem N, Brandner S, Cowburn RF, Lovestone S. PTEN, a negative regulator of PI3 kinase signalling, alters tau phosphorylation in cells by mechanisms independent of GSK-3. FEBS Lett 2006; 580:3121-8. [PMID: 16684527 DOI: 10.1016/j.febslet.2006.04.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 04/11/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Deregulation of PTEN/Akt signalling has been recently implicated in the pathogenesis of Alzheimer's disease (AD), but the effects on the molecular processes underlying AD pathology have not yet been fully described. Here we report that overexpression of PTEN reduces tau phosphorylation in CHO cells. This effect was abrogated by mutant PTEN constructs with either a catalytically inactive point mutation (C124S) or with only inactive lipid phosphatase activity (G129E), suggesting an indirect, lipid phosphatase-dependent process. The predominant effects of PTEN on tau appeared to be mediated by reducing ERK1/2 activity, but were independent of Akt, GSK-3, JNK and the tau phosphatases PP1 and PP2A. Our studies provide evidence for an effect of PTEN on the phosphorylation of tau in AD pathogenesis, and provide some insight into the mechanisms through which deregulation of PTEN may contribute towards the progression of tauopathy.
Collapse
Affiliation(s)
- Fiona Kerr
- King's College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, London SE5 8AF, United Kingdom.
| | | | | | | | | | | |
Collapse
|
111
|
Ma L, Hocking JC, Hehr CL, Schuurmans C, McFarlane S. Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation inXenopus retina. Dev Dyn 2006; 236:192-202. [PMID: 17072860 DOI: 10.1002/dvdy.21002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The timing of cell cycle exit is tightly linked to cell fate specification in the developing retina. Accordingly, several tumor suppressor genes, which are key regulators of cell cycle exit in cancer cells, play critical roles in retinogenesis. Here we investigated the role of Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, in retinal development. Strikingly, in gain-of-function assays in Xenopus, mouse Zac1 promotes proliferation and apoptosis at an intermediate stage of retinogenesis. Zac1 also influences cell fate decisions, preferentially promoting the differentiation of tumor-like clusters of abnormal neuronal cells in the ganglion cell layer, as well as inducing the formation of supernumerary Müller glial cells at the expense of other cell types. Thus Zac1 has the capacity to influence cell cycle exit, and cell fate specification and differentiation decisions by retinal progenitors, suggesting that further functional studies will uncover new insights into how retinogenesis is regulated.
Collapse
Affiliation(s)
- Lin Ma
- Genes and Development Research Group, HBI, IMCH, 2207 HSC, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
112
|
Rickle A, Bogdanovic N, Volkmann I, Zhou X, Pei JJ, Winblad B, Cowburn RF. PTEN levels in Alzheimer's disease medial temporal cortex. Neurochem Int 2006; 48:114-23. [PMID: 16239049 DOI: 10.1016/j.neuint.2005.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) is a dual (protein tyrosine and lipid) phosphatase one of the functions of which is to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate to phosphatidylinositol-3,4-biphosphate thereby inhibiting phosphoinositide-dependent kinase activation of the cell survival kinase Akt. Akt activity is up regulated in Alzheimer's disease (AD) brain in parallel to the progression of neurofibrillary pathology. The present study determined whether altered expression of PTEN occurs in Alzheimer's disease brain. Western immunoblotting revealed no significant changes of PTEN protein levels in nuclear and membrane fractions of medial temporal cortex from a series of Alzheimer's disease and control cases. Similarly, no changes in PTEN protein levels, as determined by dot-blotting, were seen in temporal cortex homogenates from a separate series of Alzheimer's disease and control brains. A small but significant decrease in the levels of Ser(380) p-PTEN was seen in homogenates of Alzheimer's disease temporal cortex. Immunohistochemistry revealed PTEN immunoreactivity in a number of brain structures including neurons, capillaries and structures resembling oligodendrocytes and astrocytes. The majority of temporal cortex pyramidal neurons (93-100%) were PTEN immunopositive. The Alzheimer's disease cases had significantly lower numbers of total ( approximately 12% loss, P<0.02) and PTEN immunopositive ( approximately 15% loss, P<0.01) pyramidal neurons as compared to the control cases.
Collapse
Affiliation(s)
- Annika Rickle
- Karolinska Institutet Sumitomo Pharmaceuticals Alzheimer Center (KASPAC), Department of Neurotec, Division of Experimental Geriatrics, Neurotec, Novum Plan 5, S141 57 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
113
|
Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P, Cleutjens KB, de Krijger R, Krimpenfort P, Berns A, van der Kwast TH, Trapman J. Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res 2005; 65:5730-9. [PMID: 15994948 DOI: 10.1158/0008-5472.can-04-4519] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The PTEN tumor suppressor gene is frequently inactivated in human tumors, including prostate cancer. Based on the Cre/loxP system, we generated a novel mouse prostate cancer model by targeted inactivation of the Pten gene. In this model, Cre recombinase was expressed under the control of the prostate-specific antigen (PSA) promoter. Conditional biallelic and monoallelic Pten knock-out mice were viable and Pten recombination was prostate-specific. Mouse cohorts were systematically characterized at 4 to 5, 7 to 9, and 10 to 14 months. A slightly increased proliferation rate of epithelial cells was observed in all prostate lobes of monoallelic Pten knock-out mice (PSA-Cre;Pten-loxP/+), but minimal pathologic changes were detected. All homozygous knock-out mice (PSA-Cre;Pten-loxP/loxP) showed an increased size of the luminal epithelial cells, large areas of hyperplasia, focal prostate intraepithelial neoplasia lesions and an increased prostate weight at 4 to 5 months. More extensive prostate intraepithelial neoplasia and focal microinvasion occurred at 7 to 9 months; invasive prostate carcinoma was detected in all male PSA-Cre;Pten-loxP/loxP mice at 10 to 14 months. At 15 to 16 months, a rare lymph node metastasis was found. In hyperplastic cells and in tumor cells, the expression of phospho-AKT was up-regulated. In hyperplastic and tumor cells, expression of luminal epithelial cell cytokeratins was up-regulated; tumor cells were negative for basal epithelial cell cytokeratins. Androgen receptor expression remained detectable at all stages of tumor development. The up-regulation of phospho-AKT correlated with an increased proliferation rate of the epithelial cells, but not with a reduced apoptosis.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005; 94:29-86. [PMID: 16095999 DOI: 10.1016/s0065-230x(05)94002-5] [Citation(s) in RCA: 629] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The AKT1, AKT2, and AKT3 kinases have emerged as critical mediators of signal transduction pathways downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase. An ever-increasing list of AKT substrates has precisely defined the multiple functions of this kinase family in normal physiology and disease states. Cellular processes regulated by AKT include cell proliferation and survival, cell size and response to nutrient availability, intermediary metabolism, angiogenesis, and tissue invasion. All these processes represent hallmarks of cancer, and a burgeoning literature has defined the importance of AKT alterations in human cancer and experimental models of tumorigenesis, continuing the legacy represented by the original identification of v-Akt as the transforming oncogene of a murine retrovirus. Many oncoproteins and tumor suppressors intersect in the AKT pathway, finely regulating cellular functions at the interface of signal transduction and classical metabolic regulation. This careful balance is altered in human cancer by a variety of activating and inactivating mechanisms that target both AKT and interrelated proteins. Reprogramming of this altered circuitry by pharmacologic modulation of the AKT pathway represents a powerful strategy for rational cancer therapy. In this review, we summarize a large body of data, from many types of cancer, indicating that AKT activation is one of the most common molecular alterations in human malignancy. We also review mechanisms of activation of AKT kinases, examples of therapeutic modulation of the AKT pathway in animal models, and the current status of efforts to target molecular components of the AKT pathway for cancer therapy and, possibly, cancer prevention.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
115
|
Abstract
Glioma, and in particular high-grade astrocytoma termed glioblastoma multiforme (GBM), is the most common primary tumor of the brain. Primarily because of its diffuse nature, there is no effective treatment for GBM, and relatively little is known about the processes by which it develops. Therefore, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways. The expression of several of the components of these signaling cascades has been found altered in GBM, and recent data indicate that combinations of mutations in these pathways may contribute to GBM formation, although the exact mechanisms are still to be uncovered. Use of novel techniques including large-scale genomics and proteomics in combination with relevant mouse models will most likely provide novel insights into the molecular mechanisms underlying glioma formation and will hopefully lead to development of treatment modalities for GBM.
Collapse
Affiliation(s)
- Esther Hulleman
- European Institute of Oncology, Department of Experimental Oncology, 20141 Milan, Italy
| | | |
Collapse
|
116
|
Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 2005; 65:5172-80. [PMID: 15958561 DOI: 10.1158/0008-5472.can-04-3902] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade astrocytomas are invariably deadly and minimally responsive to therapy. Pten is frequently mutated in aggressive astrocytoma but not in low-grade astrocytoma. However, the Pten astrocytoma suppression mechanisms are unknown. Here we introduced conditional null alleles of Pten (Pten(loxp/loxp)) into a genetically engineered mouse astrocytoma model [TgG(deltaZ)T121] in which the pRb family proteins are inactivated specifically in astrocytes. Pten inactivation was induced by localized somatic retroviral (MSCV)-Cre delivery. Depletion of Pten function in adult astrocytoma cells alleviated the apoptosis evoked by pRb family protein inactivation and also induced tumor cell invasion. In primary astrocytes derived from TgG(deltaZ)T121; Pten(loxp/loxp) mice, Pten deficiency resulted in a marked increase in cell invasiveness that was suppressed by inhibitors of protein kinase C (PKC) or of PKC-zeta, specifically. Finally, focal induction of Pten deficiency in vivo promoted angiogenesis in affected brains. Thus, we show that Pten deficiency in pRb-deficient astrocytoma cells contributes to tumor progression via multiple mechanisms, including suppression of apoptosis, increased cell invasion, and angiogenesis, all of which are hallmarks of high-grade astrocytoma. These studies not only provide mechanistic insight into the role of Pten in astrocytoma suppression but also describe a valuable animal model for preclinical testing that is coupled with a primary cell-based system for target discovery and drug screening.
Collapse
Affiliation(s)
- Andrew Xiao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
117
|
Abel TW, Baker SJ, Fraser MM, Tihan T, Nelson JS, Yachnis AT, Bouffard JP, Mena H, Burger PC, Eberhart CG. Lhermitte-Duclos disease: a report of 31 cases with immunohistochemical analysis of the PTEN/AKT/mTOR pathway. J Neuropathol Exp Neurol 2005; 64:341-9. [PMID: 15835270 DOI: 10.1093/jnen/64.4.341] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lhermitte-Duclos disease (LDD) is a rare cerebellar tumor associated with Cowden disease (CD) and germline mutations in the PTEN gene. To further define these relationships, we reviewed clinical and pathologic findings in 31 LDD cases and analyzed the status of the PTEN pathway in 11 of them. We hypothesized that the granule cell hypertrophy in LDD is secondary to activation of mammalian target of rapamycin (mTOR), a downstream effector in the PTEN/AKT pathway and a major regulator of cell growth. Histopathologically, in addition to the classical findings of LDD, we observed prominent vascular proliferation and vacuolization of the white matter in many of the lesions. Four patients met diagnostic criteria for CD, and many of the remaining patients had some clinical features of CD. Immunohistochemical analysis showed high levels of phospho-AKT and phospho-S6 in the large ganglionic cells forming the lesions, indicating activation of the PTEN/AKT/mTOR pathway and suggesting a central role for mTOR in the pathogenesis of LDD. These data support recommendations for genetic testing and screening for CD in patients with LDD and suggest a novel therapy for LDD through pharmacologic inhibition of mTOR.
Collapse
Affiliation(s)
- Ty W Abel
- Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005; 93:105-17. [PMID: 15773910 DOI: 10.1111/j.1471-4159.2004.02949.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3beta(Ser9), tau(Ser214), mTOR(Ser2448), and decreased levels of the Akt target, p27(kip1), were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.
Collapse
Affiliation(s)
- Rebecca J Griffin
- Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Tanriover G, Demir N, Pestereli E, Demir R, Kayisli UA. PTEN-mediated Akt activation in human neocortex during prenatal development. Histochem Cell Biol 2005; 123:393-406. [PMID: 15889265 DOI: 10.1007/s00418-005-0783-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2005] [Indexed: 12/19/2022]
Abstract
Akt is a crucial factor for cell survival and migration. Phosphatase and tensin (PTEN) negatively regulates cell growth and survival by inhibiting PI3K-dependent signaling. PTEN also blocks Akt phosphorylation, a main downstream molecule of PI3K cascade. So far, no studies have shown PTEN expression and Akt phosphorylation levels in the developing human neocortex. Our hypothesis is that spatial and temporal expression of PTEN is likely to modulate developing human brain cortical modeling by regulating Akt activation. Therefore, our aim is to analyze the expression pattern of PTEN and phospho-Akt levels using immunohistochemistry, Western blot, and semiquantitative analysis in the developing human neocortex (n=13 fetuses from first, second, and third trimesters). PTEN expression was decreased parallel to development, but some cells revealed strong nuclear immunoreactivity in the developing neocortex while the active Akt level was increased. Double immunohistochemistry was performed for proliferating cell nuclear antigen (PCNA)-Tuj1 (as neuronal marker) and PCNA-GFAP (Glial marker) to the subsequent sections of PTEN and Akt-stained slides. PCNA (+) cells were mostly positive for glial fibrillary acidic protein (GFAP) and correlated with active-Akt immunoreactivity. Our results suggest that Akt-mediated signaling plays an active role in cell migration, survival, and cerebral cortical modeling throughout prenatal life and that PTEN is the most likely protein to regulate this signaling.
Collapse
Affiliation(s)
- Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University, Antalya, 07070, Turkey
| | | | | | | | | |
Collapse
|
120
|
Mise-Omata S, Obata Y, Iwase S, Mise N, Doi TS. Transient strong reduction of PTEN expression by specific RNAi induces loss of adhesion of the cells. Biochem Biophys Res Commun 2005; 328:1034-42. [PMID: 15707982 DOI: 10.1016/j.bbrc.2005.01.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 11/29/2022]
Abstract
The tumor suppressor gene pten encodes a lipid phosphatase that dephosphorylates D3 of phosphatidylinositol(3,4,5)trisphosphate, producing phosphatidylinositol(4,5)bisphosphate. Although PTEN has been implicated in cell adhesion and migration, the underlying molecular mechanism is unknown. To investigate the role of PTEN in cell adhesion, we designed three different siRNAs (siRNA PTEN-a, siRNA PTEN-b, and siRNA PTEN-c) and transfected into 293T cells. Two days later, only the cells transfected with siRNA PTEN-b became round and detached from the culture dishes, whereas cells transfected with a control siRNA against GFP or the two other siRNAs against PTEN did not. Evaluation of the RNAi effect revealed that siRNA PTEN-b inhibited >95% of PTEN expression, the most effective among the three siRNAs. To check for non-specific effects such as interferon response and inhibition of off-target genes, we then used quantitative PCR analysis and DNA microarray analysis. None was detected, indicating that the RNAi system was highly specific. Immunofluorescence studies using PTEN-knockdown HeLa cells revealed that the loss of adhesion was accompanied by a reduction in the number of focal adhesion plaques and disorganization of the actin cytoskeleton. Transient and near-complete loss of PTEN expression induces loss of adhesion of the cells.
Collapse
Affiliation(s)
- Setsuko Mise-Omata
- Technology and Development Team for BioSignal Program, Subteam for BioSignal Integration, RIKEN Bioresource Center, RIKEN Tsukuba Institute, 3-1-1 Koyadai Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
121
|
Perandones C, Costanzo RV, Kowaljow V, Pivetta OH, Carminatti H, Radrizzani M. Correlation between synaptogenesis and the PTEN phosphatase expression in dendrites during postnatal brain development. ACTA ACUST UNITED AC 2005; 128:8-19. [PMID: 15337313 DOI: 10.1016/j.molbrainres.2004.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2004] [Indexed: 01/30/2023]
Abstract
The PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor gene codifies a lipid inositol 3'-phosphatase that negatively regulates cell survival mediated by the phosphatidyl inositol 3' kinase (PIP3-kinase)--protein kinase B/Akt signaling pathway. Recently, PIP3-kinase was involved in axon polarization, but PTEN functions in dendrites are uncertain. Using amino-terminal antibodies against the catalytic domain, we found a 34 kDa fragment of PTEN protein detected only in mouse brain tissue, present in neuron dendrites and spines of cerebral cortex, cerebellum, hippocampus and olfactory bulb. The PTEN-fragment reaches the synaptic fraction with a positive temporal correlation with synaptic stabilization in postnatal cerebellum and brain. In the weaver mutant mice, PTEN was absent only in the Purkinje cells dendrites that cannot receive the granule cells synaptic input. Furthermore, the activated p-Akt/PKB was present in axons but not in dendrites of mature neuron cells. P-Akt was also altered by the weaver mutation maintaining the inverse correlation with the PTEN-fragment in Purkinje cell dendrites. In contrast, the expression of this fragment was not affected by the staggerer mutation. Together, these results suggest that synaptogenesis is a necessary process for polarization in PIP3 pathway mediated by the PTEN catalytic-fragment into dendrites of CNS neurons.
Collapse
Affiliation(s)
- Claudia Perandones
- Fundación Instituto Leloir, (IIBBA-CONICET, IIB-FCEN-UBA), Avenue Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | | | | | |
Collapse
|
122
|
Lutucuta S, Tsybouleva N, Ishiyama M, Defreitas G, Wei L, Carabello B, Marian AJ. Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponin T-Q92 in switch on-switch off bigenic mice. J Am Coll Cardiol 2004; 44:2221-30. [PMID: 15582321 PMCID: PMC2774751 DOI: 10.1016/j.jacc.2004.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/09/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to establish reversibility of cardiac phenotypes in hypertrophic cardiomyopathy (HCM) by generating bigenic mice in which expression of the mutant transgene could be turned on and off as needed. BACKGROUND Advances in molecular therapeutics could ultimately lead to therapies aimed at correcting the causal mutations. However, whether cardiac phenotypes, once established, are permanent, or could be reversed, if expression of the mutant protein is turned off, is unknown. METHODS We generated ligand-inducible bigenic mice, turned on and off expression of cardiac troponin T-Q92 (cTnT-Q92), responsible for human HCM, and characterized molecular, histologic, and functional phenotypes. RESULTS We established six lines and in dose-titration studies showed that treatment with 1,000 mug/kg of mifepristone consistently switched on cTnT-Q92 expression in the heart. Short-term (16 days) induced expression enhanced myocardial systolic function without changing myocardial cyclic adenosine monophosphate levels. Levels of PTEN, a regulator of cardiac function, phospho-protein kinase C-Zetalambda-Thr538 and phosphor-protein kinase D-Ser744-748 were reduced, whereas messenger ribonucleic acid (mRNA) levels of NPPA, NPPB, and sarcoplasmic reticulum calcium adenine triphosphatase 2 (ATP2A2) (hypertrophic markers) and procollagen COL1A1, COL1A2, and COL3A1 were unchanged. Long-term (70 days) induced expression increased COL1A1 and COL1A3 mRNAs levels and collagen volume fraction and reduced levels of NPPA and NPPB. Switching off expression of the cTnT-Q92 reversed functional, molecular, and histologic phenotypes completely. CONCLUSIONS The initial phenotype induced by cTnT-Q92 is enhanced myocardial systolic function followed by changes in signaling kinases and interstitial fibrosis. Established phenotypes in HCM reverse upon turning off expression of the mutant protein. These findings provoke pursuing specific therapies directed at correcting the underlying the genetic defect in HCM.
Collapse
Affiliation(s)
- Silvia Lutucuta
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 2004; 64:7773-9. [PMID: 15520182 DOI: 10.1158/0008-5472.can-04-2487] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatic mutations of PTEN are found in many types of cancers including glioblastoma, the most malignant astrocytic tumor. PTEN mutation occurs in 25 to 40% of glioblastomas but is rarely observed in low-grade glial neoplasms. To determine the role of Pten in astrocytes and glial tumor formation, we inactivated Pten by a Cre-loxP approach with a GFAP-cre transgenic mouse that induced Cre-mediated recombination in astrocytes. Pten conditional knockout mice showed a striking progressive enlargement of the entire brain. Increased nuclear and soma size was observed in both astrocytes and neurons, which contributed in part to the increase in brain size. Pten-deficient astrocytes showed accelerated proliferation in vitro and aberrant ongoing proliferation in adult brains in vivo. In contrast, neurons lacking Pten did not show alterations in proliferation. This study shows cell-type dependent effects of Pten loss in the adult brain, including increased astrocyte proliferation that may render astroglial cells susceptible to neoplastic transformation or malignant progression.
Collapse
Affiliation(s)
- Melissa M Fraser
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
124
|
Stiles B, Groszer M, Wang S, Jiao J, Wu H. PTENless means more. Dev Biol 2004; 273:175-84. [PMID: 15328005 DOI: 10.1016/j.ydbio.2004.06.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 06/11/2004] [Accepted: 06/11/2004] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that certain key molecules that are vital for various developmental processes, such as Wnt, Shh, and Notch, cause cancer when dysregulated. PTEN, a tumor suppressor that antagonizes the PI3 kinase pathway, is the newest one on the list. The biological function of PTEN is evolutionarily conserved from C. elegans to humans, and the PTEN-controlled signaling pathway regulates cellular processes crucial for normal development, including cell proliferation, soma growth, cell death, and cell migration. In this review, we will focus on the function of PTEN in murine development and its role in regulating stem cell self-renewal and proliferation. We will summarize the organomegaly phenotypes associated with Pten tissue-specific deletion and discuss how PTEN controls organ size, a fundamental aspect of development. Last, we will review the role of PTEN in hormone-dependent, adult-onset mammary and prostate gland development.
Collapse
Affiliation(s)
- Bangyan Stiles
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, CHS23-234, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
125
|
Hagenbeek TJ, Naspetti M, Malergue F, Garçon F, Nunès JA, Cleutjens KBJM, Trapman J, Krimpenfort P, Spits H. The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. ACTA ACUST UNITED AC 2004; 200:883-94. [PMID: 15452180 PMCID: PMC2213281 DOI: 10.1084/jem.20040495] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates cell survival and proliferation mediated by phosphoinositol 3 kinases. We have explored the role of the phosphoinositol(3,4,5)P3-phosphatase PTEN in T cell development by analyzing mice with a T cell-specific deletion of PTEN. Pten(flox/flox)Lck-Cre mice developed thymic lymphomas, but before the onset of tumors, they showed normal thymic cellularity. To reveal a regulatory role of PTEN in proliferation of developing T cells we have crossed PTEN-deficient mice with mice deficient for interleukin (IL)-7 receptor and pre-T cell receptor (TCR) signaling. Analysis of mice deficient for Pten and CD3gamma; Pten and gammac; or Pten, gammac, and Rag2 revealed that deletion of PTEN can substitute for both IL-7 and pre-TCR signals. These double- and triple-deficient mice all develop normal levels of CD4CD8 double negative and double positive thymocytes. These data indicate that PTEN is an important regulator of proliferation of developing T cells in the thymus.
Collapse
Affiliation(s)
- Thijs J Hagenbeek
- Department of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Affiliation(s)
- Suzanne J Baker
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
127
|
Li L, He F, Litofsky NS, Recht LD, Ross AH. Profiling of genes expressed by PTEN haploinsufficient neural precursor cells. Mol Cell Neurosci 2004; 24:1051-61. [PMID: 14697668 DOI: 10.1016/j.mcn.2003.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PTEN is a lipid phosphatase, and PTEN mutations are associated with gliomas, macrocephaly, and mental deficiencies. We have used PTEN +/- and PTEN +/+ mice to prepare subventricular zone (SVZ) precursor cells. Using DNA microarrays, we compared the expression profiles of PTEN +/+ and PTEN +/- cells and identified 91 differentially expressed genes in PTEN +/- precursor cells. Many of the PTEN-regulated genes are involved with signaling, cytoskeleton, extracellular matrix, metabolism, and transcription factors. Some of these changes are likely mediated by the transcription factor, HIF-1. We confirmed a subset of these changes by real-time PCR. In addition, we examined protein levels for two of the PTEN-up-regulated genes, vascular endothelial growth factor (VEGF) and doublecortin (DCX). PTEN haploinsufficiency increases immunostaining for VEGF for both cultured precursor cells and sections of the SVZ. PTEN haploinsufficiency shifted most of the DCX-positive cells from the SVZ to the olfactory bulb. These observations indicate that even a small decrease in PTEN levels results in substantial changes in gene expression and precursor cell function.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
128
|
Ballif BA, Arnaud L, Cooper JA. Tyrosine phosphorylation of Disabled-1 is essential for Reelin-stimulated activation of Akt and Src family kinases. ACTA ACUST UNITED AC 2004; 117:152-9. [PMID: 14559149 DOI: 10.1016/s0169-328x(03)00295-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reelin is a large secreted signaling protein that is essential for proper positioning of migratory neurons during mammalian brain development. The Reelin signal is transduced into the cell by the lipoprotein receptors VLDLR and ApoER2, leading to tyrosine phosphorylation of the associated intracellular adaptor protein Disabled-1 (Dab1). Tyrosine phosphorylation of Dab1 is essential for responding to Reelin, as knock-in mice expressing a form of Dab1 that cannot be phosphorylated on tyrosine are indistinguishable from mice lacking Reelin, Reelin-receptors or Dab1. Molecular events dependent on Dab1 tyrosine phosphorylation are unknown. However, Reelin has recently been shown to activate the phosphoinositide-3-kinase (PI 3-K)-dependent kinase, Akt, as well as Src family kinases in wild type but not Dab1-/- primary embryonic neuronal cultures. Using pharmacological inhibitors and mice harboring mutant alleles of Dab1, we show here that tyrosine phosphorylation, but not the carboxyl-terminal region, of Dab1 is required for Reelin-induced activation of Akt and Src family kinases. Additionally, although Fyn is an important regulator of Dab1, Fyn deficiency does not prevent acute Reelin-induced Akt activation. Finally, whereas a number of growth factors propagate signals simultaneously through PI 3-K and mitogen-activated protein kinase (MAPK) cascades, we find Reelin does not engage the canonical MAPK cascade. These results define the first molecular events strictly dependent on Reelin-induced Dab1 tyrosine phosphorylation, and suggest that propagation of the Reelin signal is mediated by Akt, substrates of Src family kinases and/or unidentified molecules that share with these a common molecular link to phosphorylated Dab1.
Collapse
Affiliation(s)
- Bryan A Ballif
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
129
|
Goberdhan DCI, Wilson C. PTEN: tumour suppressor, multifunctional growth regulator and more. Hum Mol Genet 2003; 12 Spec No 2:R239-48. [PMID: 12928488 DOI: 10.1093/hmg/ddg288] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tumour suppressor gene PTEN is mutated in a wide range of human cancers at a frequency roughly comparable with p53. In addition, germline PTEN mutations are associated with several dominant growth disorders. The molecular and cellular basis of these disorders has been elucidated by detailed in vivo genetic analysis in model organisms, in particular the fruit fly and mouse. Studies in the fly have shown that PTEN's growth regulatory functions are primarily mediated via its lipid phosphatase activity, which specifically reduces the cellular levels of phosphatidylinositol 3,4,5-trisphosphate. This activity antagonizes the effects of activated PI3-kinase in the nutritionally controlled insulin receptor pathway, thereby reducing protein synthesis and restraining cell and organismal growth, while also regulating other biological processes, such as fertility and ageing. Remarkably, this range of functions appears to be conserved in all higher organisms. PTEN also plays a role as a specialized cytoskeletal regulator, which, for example, is involved in directional movement of some migratory cells and may be important in metastasis. Furthermore, conditional knockouts in the mouse have recently revealed functions for PTEN in other processes, such as cell type specification and cardiac muscle contractility. Genetic approaches have therefore revealed a surprising diversity of global and cell type-specific PTEN-regulated functions that appear to be primarily controlled by modulation of a single phosphoinositide. Together with evidence from studies in cell culture that suggests links between PTEN and other growth regulatory genes such as p53, these studies provide new insights into PTEN-linked disorders and are beginning to suggest potential clinical strategies to combat these and other diseases.
Collapse
|
130
|
Abstract
Mammalian insulin and insulin-like growth factors (IGFs) signal through several receptors with different ligand specificities to regulate metabolism and growth. This regulation is defective in diabetes and in a wide variety of human tumors. Recent analysis in Drosophila melanogaster has revealed that insulin-like molecules (known as DILPs in flies) also control growth and metabolism, but probably do so by signaling through a single insulin receptor (InR). The intracellular signaling molecules regulated by this receptor are highly evolutionarily conserved. Work in flies has helped to dissect the network of InR-regulated intracellular signaling pathways and identify some of the critical players in these pathways and in interacting signaling cascades. Surprisingly, these studies have shown that DILPs control tissue and body growth primarily by regulating cell growth and cell size. Changes in cell growth produced by these molecules may subsequently modulate the rate of cell proliferation in a cell type-specific fashion. At least part of this growth effect is mediated by two small groups of neurons in the Drosophila brain, which secrete DILPs into the circulatory system at levels that are modulated by nutrition. This signaling center is also involved in DILP-dependent control of the fly's rate of development, fertility, and life span. These surprisingly diverse functions of InR signaling, which appear to be conserved in all higher animals, reflect a central role for this pathway in coordinating development, physiology, and properly proportioned growth of the organism in response to its nutritional state. Studies in flies are providing important new insights into the biology of this system, and the identification of novel components in the InR-regulated signaling cascade is already beginning to inform the development of new therapeutic strategies for insulin-linked diseases in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | |
Collapse
|
131
|
Dyson JM, Munday AD, Kong AM, Huysmans RD, Matzaris M, Layton MJ, Nandurkar HH, Berndt MC, Mitchell CA. SHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V: localization of SHIP-2 to the activated platelet actin cytoskeleton. Blood 2003; 102:940-8. [PMID: 12676785 DOI: 10.1182/blood-2002-09-2897] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The platelet receptor for the von Willebrand factor (VWF) glycoprotein Ib-IX-V (GPIb-IX-V) complex mediates platelet adhesion at sites of vascular injury. The cytoplasmic tail of the GPIbalpha subunit interacts with the actin-binding protein, filamin, anchoring the receptor in the cytoskeleton. In motile cells, the second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3) induces submembraneous actin remodeling. The inositol polyphosphate 5-phosphatase, Src homology 2 domain-containing inositol polyphosphate 5-phosphatase-2 (SHIP-2), hydrolyzes PtdIns(3,4,5)P3 forming phosphatidylinositol 3,4 bisphosphate (PtdIns(3,4)P2) and regulates membrane ruffling via complex formation with filamin. In this study we investigate the intracellular location and association of SHIP-2 with filamin, actin, and the GPIb-IX-V complex in platelets. Immunoprecipitation of SHIP-2 from the Triton-soluble fraction of unstimulated platelets demonstrated association between SHIP-2, filamin, actin, and GPIb-IX-V. SHIP-2 associated with filamin or GPIb-IX-V was active and demonstrated PtdIns(3,4,5)P3 5-phosphatase activity. Following thrombin or VWF-induced platelet activation, detection of the SHIP-2, filamin, and receptor complex decreased in the Triton-soluble fraction, although in control studies the level of SHIP-2, filamin, or GPIb-IX-V immunoprecipitated by their respective antibodies did not change following platelet activation. In activated platelets spreading on a VWF matrix, SHIP-2 localized intensely with actin at the central actin ring and colocalized with actin and filamin at filopodia and lamellipodia. In spread platelets, GPIb-IX-V localized to the center of the platelet and showed little colocalization with filamin at the plasma membrane. These studies demonstrate a functionally active complex between SHIP-2, filamin, actin, and GPIb-IX-V that may orchestrate the localized hydrolysis of PtdIns(3,4,5)P3 and thereby regulate cortical and submembraneous actin.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Kishimoto H, Hamada K, Saunders M, Backman S, Sasaki T, Nakano T, Mak TW, Suzuki A. Physiological functions of Pten in mouse tissues. Cell Struct Funct 2003; 28:11-21. [PMID: 12655146 DOI: 10.1247/csf.28.11] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in many human sporadic cancers and in hereditary cancer syndromes such as Cowden disease, Bannayan-Zonana syndrome and Lhermitte-Duclos disease. The major substrate of PTEN is PIP3, a second messenger molecule produced following PI3K activation induced by variety of stimuli. PIP3 activates the serine-threonine kinase PKB/Akt which is involved in anti-apoptosis, proliferation and oncogenesis. In mice, heterozygosity for a null mutation of Pten (Pten(+/-) mice) frequently leads to the development of a variety of cancers and autoimmune disease. Homozygosity for the null mutation (Pten (-/-) mice) results in early embryonic lethality, precluding the functional analysis of Pten in various organs. To investigate the physiological functions of Pten in viable mice, various tissue-specific Pten mutations have been generated using the Cre-loxP system. This review will summarize the phenotypes of conditional mutant mice lacking Pten function in specific tissues, and discuss how these phenotypes relate to the physiological roles of Pten in various organ systems.
Collapse
Affiliation(s)
- Hiroyuki Kishimoto
- Department of Biochemistry, Akita University School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Even though phosphorylation of phosphatidylinositols by phosphoinositide 3-kinase (PI3K) has an important and pervasive role in the nervous system, there is little known about the phosphatases that reverse this reaction. Such a phosphatase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), was cloned as a tumor suppressor for gliomas. PTEN is expressed in most, if not all, neurons and is localized in the nucleus and cytoplasm. Recently, a series of papers using PTEN conditional knockouts has greatly extended our knowledge of PTEN's role during development. Loss of PTEN results in disorganization of the brain, probably due to a flaw in cell migration. In addition, there is a gradual increase in the size of neuronal soma, mimicking Lhermitte-Duclos disease. Recent experiments in our laboratory with adult PTEN +/- mice demonstrate that PTEN regulates migration of precursor cells in the subventricular zone to the olfactory bulb. We also found that PTEN haploinsufficiency can protect precursor cells from apoptosis in response to oxidative stress. Collectively, these studies demonstrate that PTEN does much more than suppressing tumors. It is a master regulator in developing and adult brain.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
134
|
Wishart MJ, Dixon JE. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol 2002; 12:579-85. [PMID: 12495846 DOI: 10.1016/s0962-8924(02)02412-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phosphatase and tensin homolog deleted on chromosome ten (PTEN) and myotubularin (MTM1) represent subfamilies of protein tyrosine phosphatases whose principal physiological substrates are D3-phosphorylated inositol phospholipids. As lipid phosphatases, PTEN- and MTM1-related (MTMR) proteins dephosphorylate the products of phosphoinositide 3-kinases and antagonize downstream effectors that utilize 3-phosphoinositides as ligands for protein targeting domains or allosteric activation. Here, we describe the cellular mechanisms of PTEN and MTMR function and their role in the etiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Matthew J Wishart
- Dept of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|