101
|
Ramírez M, Santos S, Martínez O, Rodríguez R, Miranda E, Ramos-Perez WD, Otero M. Characterization of the immune response elicited by the vaccinia virus L3 protein delivered as naked DNA. Vaccine 2018. [PMID: 29525282 PMCID: PMC6065253 DOI: 10.1016/j.vaccine.2018.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poxviruses are complex dsDNA viruses with over 200 genes, many of them with unknown role in the stimulation of immune responses. Among these, the vaccinia virus (VACV) L3L ORF encodes an essential protein for the transcription of the VACV early genes. To the best of our knowledge, the immune response elicited by L3 has not been characterized. In this regard, our data describes a DNA L3-coding plasmid (pL3L) that stimulates both, humoral- and cell-mediated immune responses in a mouse model. Cell-mediated immune responses were measured by IFN-γ and IL-4 ELISPOT assays. We performed CD8+ cells depletion and flow cytometry analysis to account for the contribution of cytotoxic T lymphocytes in the IFN-γ production. Moreover, results from ELISPOT were confirmed by measuring the concentration of IL-4 and IFN-γ in supernatant of antigen-stimulated splenocytes by cytokine ELISA. Additionally, dominant antigenic regions of L3 protein were identified by epitope mapping analysis. Humoral immune responses were assessed by ELISA. Specifically, the production of total IgG, IgG1 (TH-2) and IgG2a (TH-1) were determined one week after the final immunization. Our ELISPOT data shows pL3L-immunized animals to produce significantly higher frequencies of IFN-γ Spot-Forming Cells (SFC) versus controls. IL-4 levels remained unchanged in all three groups, demonstrating the increase in antigen-specific IFN-γ releasing cells. Flow cytometry assay results showed that CD8+ T cells are a major contributor to the production of IFN-γ. Moreover, our formulation enhances the production of total IgG, predominantly IgG2a isotype. Immunization with pL3L promotes a robust cytotoxic immune response, crucial against viral pathogens. In addition, our vaccine candidate promotes an increase in IgG levels, especially IgG2a (TH-1 type). Our data encourages further studies of L3 as a novel antigen in vaccine development against poxviruses.
Collapse
Affiliation(s)
- Maite Ramírez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Saritza Santos
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Osmarie Martínez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Ricardo Rodríguez
- University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR, USA.
| | - Eric Miranda
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Willy D Ramos-Perez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Miguel Otero
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| |
Collapse
|
102
|
Gelderblom HR, Madeley D. Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must? Viruses 2018; 10:E142. [PMID: 29565285 PMCID: PMC5923436 DOI: 10.3390/v10040142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen in 1980. Since then, the threat of smallpox re-emerging through laboratory escape, molecular manipulation, synthetic biology or bioterrorism has not totally disappeared and would be a major problem in an unvaccinated population. Other animal poxviruses may also emerge as human pathogens. With its rapid results (only a few minutes after arrival of the specimen), no requirement for specific reagents and its "open view", DEM remains an important component of virus diagnosis, particularly because it can easily and reliably distinguish smallpox virus or any other member of the orthopoxvirus (OPV) genus from parapoxviruses (PPV) and the far more common and less serious herpesviruses (herpes simplex and varicella zoster). Preparation, enrichment, examination, internal standards and suitable organisations are discussed to make clear its continuing value as a diagnostic technique.
Collapse
Affiliation(s)
- Hans R Gelderblom
- (ret) Robert Koch Institute, Centre for Biological Threats and Special Pathogens, ZBS 4: Advanced Light and Electron Microscopy, Seestrasse 10, D-13353 Berlin, Germany.
| | - Dick Madeley
- (ret) University of Newcastle upon Tyne, Burnfoot, Stocksfield, Northumberland, NE43 7TN, UK.
| |
Collapse
|
103
|
Abstract
Bovine vaccinia (BV), caused by Vaccinia virus (VACV), is a zoonosis characterized by exanthematous lesions in the teats of dairy cows and the hands of milkers and is an important public health issue. Severe VACV-induced lesions in the teats and udder of cows and buffaloes could lead to mastitis and other secondary infections, thereby reducing productivity and resulting in economic losses to the dairy industry. In Brazil, BV re-emerged in the late 1990s and is now endemic in most of the Brazilian territory. In the last 15 years, much effort has been made to know more about this disease and its epidemiology, etiologic agents, and interactions with the host and the environment. In this review, we describe the known dynamics of VACV infection in cattle and the viral shedding routes, as well as the relevance of BV for animal and public health.
Collapse
|
104
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
105
|
Springer YP, Hsu CH, Werle ZR, Olson LE, Cooper MP, Castrodale LJ, Fowler N, McCollum AM, Goldsmith CS, Emerson GL, Wilkins K, Doty JB, Burgado J, Gao J, Patel N, Mauldin MR, Reynolds MG, Satheshkumar PS, Davidson W, Li Y, McLaughlin JB. Novel Orthopoxvirus Infection in an Alaska Resident. Clin Infect Dis 2018; 64:1737-1741. [PMID: 28329402 PMCID: PMC5447873 DOI: 10.1093/cid/cix219] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Abstract
Background. Human infection by orthopoxviruses is being reported with increasing frequency, attributed in part to the cessation of smallpox vaccination and concomitant waning of population-level immunity. In July 2015, a female resident of interior Alaska presented to an urgent care clinic with a dermal lesion consistent with poxvirus infection. Laboratory testing of a virus isolated from the lesion confirmed infection by an Orthopoxvirus. Methods. The virus isolate was characterized by using electron microscopy and nucleic acid sequencing. An epidemiologic investigation that included patient interviews, contact tracing, and serum testing, as well as environmental and small-mammal sampling, was conducted to identify the infection source and possible additional cases. Results. Neither signs of active infection nor evidence of recent prior infection were observed in any of the 4 patient contacts identified. The patient's infection source was not definitively identified. Potential routes of exposure included imported fomites from Azerbaijan via the patient's cohabiting partner or wild small mammals in or around the patient's residence. Phylogenetic analyses demonstrated that the virus represents a distinct and previously undescribed genetic lineage of Orthopoxvirus, which is most closely related to the Old World orthopoxviruses. Conclusions. Investigation findings point to infection of the patient after exposure in or near Fairbanks. This conclusion raises questions about the geographic origins (Old World vs North American) of the genus Orthopoxvirus. Clinicians should remain vigilant for signs of poxvirus infection and alert public health officials when cases are suspected.
Collapse
Affiliation(s)
- Yuri P Springer
- Alaska Division of Public Health, Section of Epidemiology, Anchorage.,Epidemic Intelligence Service, Division of Scientific Education and Professional Development
| | - Christopher H Hsu
- Epidemic Intelligence Service, Division of Scientific Education and Professional Development.,Poxvirus and Rabies Branch, and
| | | | | | - Michael P Cooper
- Alaska Division of Public Health, Section of Epidemiology, Anchorage
| | | | - Nisha Fowler
- Alaska Division of Public Health, Section of Laboratories, Fairbanks
| | | | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | | | - Matthew R Mauldin
- Poxvirus and Rabies Branch, and.,Oak Ridge Institute for Science and Education, Tennessee
| | | | | | | | - Yu Li
- Poxvirus and Rabies Branch, and
| | | |
Collapse
|
106
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
107
|
Li C, Du S, Tian M, Wang Y, Bai J, Tan P, Liu W, Yin R, Wang M, Jiang Y, Li Y, Zhu N, Zhu Y, Li T, Wu S, Jin N, He F. The Host Restriction Factor Interferon-Inducible Transmembrane Protein 3 Inhibits Vaccinia Virus Infection. Front Immunol 2018; 9:228. [PMID: 29503647 PMCID: PMC5820317 DOI: 10.3389/fimmu.2018.00228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
Interferons (IFNs) establish dynamic host defense mechanisms by inducing various IFN-stimulated genes that encodes many antiviral innate immune effectors. IFN-inducible transmembrane (IFITM) proteins have been identified as intrinsic antiviral effectors, which block the entry of a broad spectrum of enveloped RNA viruses by interrupting virus-endosomal fusion. However, antiviral activity of IFITM proteins against mammalian DNA virus has not been demonstrated till date. Here, we sought to investigate the antiviral activities and mechanisms of interferon-inducible transmembrane protein 3 (IFITM3) protein against poxvirus infection. Analysis of expression kinetics of cell endogenous IFITM3 protein indicated that vaccinia virus (VACV) infection suppressed its translation, which was independent of IRF3 phosphorylation triggered by VACV. Although silencing of endogenous IFITM proteins did not affect their baseline antiviral effects in the cell, it has reduced the IFN-α-mediated inhibition of VACV infection, and also modulated VACV-induced cell death. Moreover, we discovered that overexpression of IFITM3 significantly restricted VACV infection, replication and proliferation mainly by interfering with virus entry processes prior to the virus nucleocapsid entry into the cytoplasm. Interestingly, IFITM3 overexpression showed an impact on virus binding. Furthermore, IFITM3 interfered with the cytosolic entry of virus through low pH-dependent fashion. Taken together, our findings provide the first evidence of exogenously expressed IFITM3 protein restricting infection of an enveloped DNA virus, thus expanding their antiviral spectrum. This study further explores the complex mechanism and provides novel insights into the interaction between virus infection and host defense.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- 2nd Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Shouwen Du
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
- 2nd Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Yuhang Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Jieying Bai
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Peng Tan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun, China
| | - Maopeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing, China
| | - Yi Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Na Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Yilong Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Tiyuan Li
- 2nd Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Shipin Wu
- 2nd Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- 2nd Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
108
|
Usme-Ciro JA, Paredes A, Walteros DM, Tolosa-Pérez EN, Laiton-Donato K, Pinzón MDC, Petersen BW, Gallardo-Romero NF, Li Y, Wilkins K, Davidson W, Gao J, Patel N, Nakazawa Y, Reynolds MG, Satheshkumar PS, Emerson GL, Páez-Martínez A. Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014. Emerg Infect Dis 2018; 23:649-653. [PMID: 28322708 PMCID: PMC5367405 DOI: 10.3201/eid2304.161041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During 2014, cutaneous lesions were reported in dairy cattle and farmworkers in the Amazon Region of western Colombia. Samples from 6 patients were analyzed by serologic and PCR testing, and results demonstrated the presence of vaccinia virus and pseudocowpox virus. These findings highlight the need for increased poxvirus surveillance in Colombia.
Collapse
|
109
|
Grossegesse M, Doellinger J, Fritsch A, Laue M, Piesker J, Schaade L, Nitsche A. Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores. Sci Rep 2018; 8:1807. [PMID: 29379051 PMCID: PMC5788924 DOI: 10.1038/s41598-018-20130-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/15/2018] [Indexed: 11/09/2022] Open
Abstract
The emergence of Variola virus-like viruses by natural evolution of zoonotic Orthopoxviruses, like Cowpox virus (CPXV), is a global health threat. The proteasome is essential for poxvirus replication, making the viral components interacting with the ubiquitin-proteasome system attractive antiviral targets. We show that proteasome inhibition impairs CPXV replication by prevention of uncoating, suggesting that uncoating is mediated by proteasomal degradation of viral core proteins. Although Orthopoxvirus particles contain considerable amounts of ubiquitin, distinct modification sites are largely unknown. Therefore, for the first time, we analyzed globally ubiquitination sites in CPXV mature virion proteins using LC-MS/MS. Identification of 137 conserved sites in 54 viral proteins among five CPXV strains revealed extensive ubiquitination of structural core proteins. Moreover, since virions contained primarily K48-linked polyubiquitin, we hypothesized that core proteins are modified accordingly. However, quantitative analysis of ubiquitinated CPXV proteins early in infection showed no proteasomal degradation of core proteins. Instead, our data indicate that the recently suggested proteasomal regulation of the uncoating factor E5 is a prerequisite for uncoating. Expanding our understanding of poxvirus uncoating and elucidating a multitude of novel ubiquitination sites in poxvirus proteins, the present study verifies the major biological significance of ubiquitin in poxvirus infection.
Collapse
Affiliation(s)
- Marica Grossegesse
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany. .,Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Proteomics and Spectroscopy (ZBS 6), Berlin, 13353, Germany.
| | - Annemarie Fritsch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| | - Michael Laue
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Advanced Light and Electron Microscopy (ZBS 4), Berlin, 13353, Germany
| | - Janett Piesker
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Advanced Light and Electron Microscopy (ZBS 4), Berlin, 13353, Germany
| | - Lars Schaade
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, 13353, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| |
Collapse
|
110
|
Marinaik CB, Venkatesha MD, Gomes AR, Reddy P, Nandini P, Byregowda SM. Isolation and molecular characterization of zoonotic Buffalopox virus from skin lesions of humans in India. Int J Dermatol 2018; 57:590-592. [PMID: 29318603 DOI: 10.1111/ijd.13890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/16/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Amitha Reena Gomes
- Institute of animal Health and Veterinary Biologicals, Hebbal, Bangalore, India
| | - Poorvi Reddy
- Institute of animal Health and Veterinary Biologicals, Hebbal, Bangalore, India
| | - Poojappa Nandini
- Institute of animal Health and Veterinary Biologicals, Hebbal, Bangalore, India
| | | |
Collapse
|
111
|
Reynolds MG, Guagliardo SAJ, Nakazawa YJ, Doty JB, Mauldin MR. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects. Curr Opin Virol 2018; 28:108-115. [PMID: 29288901 DOI: 10.1016/j.coviro.2017.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
In general, orthopoxviruses can be considered as falling into one of three host-utilization categories: highly specialized, single-host; broad host range; or 'cryptic', the last encompassing those viruses about which very little is known. Single-host viruses tend to exploit abundant hosts that have consistent patterns of interaction. For these viruses, observed genome reduction and loss of presumptive host-range genes is thought to be a consequence of relaxed selection. In contrast, the large genome size retained among broad host range orthopoxviruses suggests these viruses may depend on multiple host species for persistence in nature. Our understanding of the ecologic requirements of orthopoxviruses is strongly influenced by geographic biases in data collection. This hinders our ability to predict potential sources for emergence of orthopoxvirus-associated infections.
Collapse
Affiliation(s)
- Mary G Reynolds
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA.
| | - Sarah Anne J Guagliardo
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA; United States Centers for Disease Control and Prevention, Epidemic Intelligence Service, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Yoshinori J Nakazawa
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Jeffrey B Doty
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Matthew R Mauldin
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| |
Collapse
|
112
|
Dynamics of Pathological and Virological Findings During Experimental Calpox Virus Infection of Common Marmosets (Callithrix jacchus). Viruses 2017; 9:v9120363. [PMID: 29182537 PMCID: PMC5744138 DOI: 10.3390/v9120363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental intranasal infection of marmosets (Callithrix jacchus) with calpox virus results in fatal disease. Route and dose used for viral inoculation of the test animals mimics the natural transmission of smallpox, thus representing a suitable model to study pathogenesis and to evaluate new vaccines against orthopoxvirus infection. However, the pathogenic mechanisms leading to death are still unclear. Therefore, our study aimed at investigating the kinetics of pathological alterations to clarify the pathogenesis in calpox virus infection. Following intranasal inoculation with two different viral doses, common marmosets were sacrificed on days 3, 5, 7, 10 and 12 post inoculation. Collected tissue was screened using histopathology, immunohistochemistry, transmission electron microscopy, and virological assays. Our data suggest that primary replication took place in nasal and bronchial epithelia followed by secondary replication in submandibular lymph nodes and spleen. Parallel to viremia at day 7, virus was detectable in many organs, mainly located in epithelial cells and macrophages, as well as in endothelial cells. Based on the onset of clinical signs, the histological and ultrastructural lesions and the immunohistochemical distribution pattern of the virus, the incubation period was defined to last 11 days, which resembles human smallpox. In conclusion, the data indicate that the calpox model is highly suitable for studying orthopoxvirus-induced disease.
Collapse
|
113
|
Oliveira JSD, Figueiredo PDO, Costa GB, Assis FLD, Drumond BP, da Fonseca FG, Nogueira ML, Kroon EG, Trindade GDS. Vaccinia Virus Natural Infections in Brazil: The Good, the Bad, and the Ugly. Viruses 2017; 9:E340. [PMID: 29140260 PMCID: PMC5707547 DOI: 10.3390/v9110340] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 01/19/2023] Open
Abstract
The orthopoxviruses (OPV) comprise several emerging viruses with great importance to human and veterinary medicine, including vaccinia virus (VACV), which causes outbreaks of bovine vaccinia (BV) in South America. Historically, VACV is the most comprehensively studied virus, however, its origin and natural hosts remain unknown. VACV was the primary component of the smallpox vaccine, largely used during the smallpox eradication campaign. After smallpox was declared eradicated, the vaccination that conferred immunity to OPV was discontinued, favoring a new contingent of susceptible individuals to OPV. VACV infections occur naturally after direct contact with infected dairy cattle, in recently vaccinated individuals, or through alternative routes of exposure. In Brazil, VACV outbreaks are frequently reported in rural areas, affecting mainly farm animals and humans. Recent studies have shown the role of wildlife in the VACV transmission chain, exploring the role of wild rodents as reservoirs that facilitate VACV spread throughout rural areas. Furthermore, VACV circulation in urban environments and the significance of this with respect to public health, have also been explored. In this review, we discuss the history, epidemiological, ecological and clinical aspects of natural VACV infections in Brazil, also highlighting alternative routes of VACV transmission, the factors involved in susceptibility to infection, and the natural history of the disease in humans and animals, and the potential for dissemination to urban environments.
Collapse
Affiliation(s)
- Jaqueline Silva de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Poliana de Oliveira Figueiredo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Galileu Barbosa Costa
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | | | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo 15090-000, Brazil.
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
114
|
Combined Proteomics/Genomics Approach Reveals Proteomic Changes of Mature Virions as a Novel Poxvirus Adaptation Mechanism. Viruses 2017; 9:v9110337. [PMID: 29125539 PMCID: PMC5707544 DOI: 10.3390/v9110337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
DNA viruses, like poxviruses, possess a highly stable genome, suggesting that adaptation of virus particles to specific cell types is not restricted to genomic changes. Cowpox viruses are zoonotic poxviruses with an extraordinarily broad host range, demonstrating their adaptive potential in vivo. To elucidate adaptation mechanisms of poxviruses, we isolated cowpox virus particles from a rat and passaged them five times in a human and a rat cell line. Subsequently, we analyzed the proteome and genome of the non-passaged virions and each passage. While the overall viral genome sequence was stable during passaging, proteomics revealed multiple changes in the virion composition. Interestingly, an increased viral fitness in human cells was observed in the presence of increased immunomodulatory protein amounts. As the only minor variant with increasing frequency during passaging was located in a viral RNA polymerase subunit and, moreover, most minor variants were found in transcription-associated genes, protein amounts were presumably regulated at transcription level. This study is the first comparative proteome analysis of virus particles before and after cell culture propagation, revealing proteomic changes as a novel poxvirus adaptation mechanism.
Collapse
|
115
|
Oliveira GP, Rodrigues RAL, Lima MT, Drumond BP, Abrahão JS. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review. Viruses 2017; 9:E331. [PMID: 29112165 PMCID: PMC5707538 DOI: 10.3390/v9110331] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maurício Teixeira Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
116
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
117
|
Shchelkunova GA, Shchelkunov SN. 40 Years without Smallpox. Acta Naturae 2017; 9:4-12. [PMID: 29340212 PMCID: PMC5762823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The last case of natural smallpox was recorded in October, 1977. It took humanity almost 20 years to achieve that feat after the World Health Organization had approved the global smallpox eradication program. Vaccination against smallpox was abolished, and, during the past 40 years, the human population has managed to lose immunity not only to smallpox, but to other zoonotic orthopoxvirus infections as well. As a result, multiple outbreaks of orthopoxvirus infections in humans in several continents have been reported over the past decades. The threat of smallpox reemergence as a result of evolutionary transformations of these zoonotic orthopoxviruses exists. Modern techniques for the diagnostics, prevention, and therapy of smallpox and other orthopoxvirus infections are being developed today.
Collapse
Affiliation(s)
- G. A. Shchelkunova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559 , Russia
| | - S. N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559 , Russia
- Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
118
|
Leendertz SAJ, Stern D, Theophil D, Anoh E, Mossoun A, Schubert G, Wiersma L, Akoua-Koffi C, Couacy-Hymann E, Muyembe-Tamfum JJ, Karhemere S, Pauly M, Schrick L, Leendertz FH, Nitsche A. A Cross-Sectional Serosurvey of Anti-Orthopoxvirus Antibodies in Central and Western Africa. Viruses 2017; 9:v9100278. [PMID: 28961172 PMCID: PMC5691630 DOI: 10.3390/v9100278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022] Open
Abstract
Since the eradication of smallpox and the subsequent discontinuation of the worldwide smallpox vaccination program, other Orthopoxviruses beside Variola virus have been increasingly representing a risk to human health. To investigate the extent of natural contact with Orthopoxviruses and possible demographic risk factors for such an exposure, we performed a cross-sectional serosurvey of anti-Orthopoxvirus IgG antibodies in West and Central Africa. To this end, people living in forest regions in Côte d’Ivoire (CIV, n = 737) and the Democratic Republic of the Congo (COD, n = 267) were assigned into groups according to their likely smallpox vaccination status. The overall prevalence of anti-Orthopoxvirus antibodies was 51% in CIV and 60% in COD. High rates of seropositivity among the vaccinated part of the population (80% in CIV; 96% COD) indicated a long-lasting post vaccination immune response. In non-vaccinated participants, seroprevalences of 19% (CIV) and 26% (COD) indicated regular contact with Orthopoxviruses. Multivariate logistic regression revealed that the antibody level in the vaccinated part of the population was higher in COD than in CIV, increased with age and was slightly higher in females than males. In the unvaccinated part of the population none of these factors influenced antibody level significantly. In conclusion, our results confirm expectedly high anti-Orthopoxvirus seroprevalences in previously smallpox-vaccinated people living in CIV and the COD but more unexpectedly imply regular contact with Orthopoxviruses both in Western and Central Africa, even in the absence of recognized outbreaks.
Collapse
Affiliation(s)
- Siv Aina J Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany.
- Department of Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany.
| | - Daniel Stern
- Centre for Biological Threats and Special Pathogens ZBS 1, Highly Pathogenic Viruses Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Dennis Theophil
- Centre for Biological Threats and Special Pathogens ZBS 1, Highly Pathogenic Viruses Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Etile Anoh
- Université Felix Houphouët Boigny, Abidjan BP 1174, Cote D'Ivoire.
- Centre de Recherche pour le Développement, Université Alassane Ouattara, Bouaké BP 1174, Cote D'Ivoire.
| | - Arsène Mossoun
- Université Felix Houphouët Boigny, Abidjan BP 1174, Cote D'Ivoire.
- Laboratoire National D'appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville BP 206, Cote D'Ivoire.
| | - Grit Schubert
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany.
| | - Lidewij Wiersma
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany.
| | - Chantal Akoua-Koffi
- Centre de Recherche pour le Développement, Université Alassane Ouattara, Bouaké BP 1174, Cote D'Ivoire.
| | - Emmanuel Couacy-Hymann
- Laboratoire National D'appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville BP 206, Cote D'Ivoire.
| | | | - Stomy Karhemere
- Institut National de Recherche Biomédicale, Kinshasa BP 1197, Democratic Republic of the Congo.
| | - Maude Pauly
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany.
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg.
| | - Livia Schrick
- Centre for Biological Threats and Special Pathogens ZBS 1, Highly Pathogenic Viruses Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany.
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens ZBS 1, Highly Pathogenic Viruses Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
119
|
Mätz-Rensing K, Yue C, Klenner J, Ellerbrok H, Stahl-Hennig C. Limited susceptibility of rhesus macaques to a cowpox virus isolated from a lethal outbreak among New World monkeys. Primate Biol 2017; 4:163-171. [PMID: 32110704 PMCID: PMC7041510 DOI: 10.5194/pb-4-163-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/08/2017] [Indexed: 11/11/2022] Open
Abstract
This study was undertaken to investigate the susceptibility of
rhesus monkeys to the calpox virus, an orthopoxvirus (OPXV) of the
Cowpox virus species (CPXV), which is uniformly lethal in common marmosets. Six rhesus
monkeys were either intravenously (i.v.) or intranasally (i.n.) exposed to
the virus. Monitoring of the macaques after viral exposure included physical
examinations, the determination of viral load by real-time PCR and plaque assay, and
the analysis of humoral responses. Two i.v. inoculated animals
developed numerous classical pox lesions that started after inoculation at
days 7 and 10. Both animals became viremic and seroconverted.
They exhibited maximal numbers of lesions of approximately 50 and 140 by
day 21. One animal completely recovered, while the other one suffered from a
phlegmonous inflammation of a leg initially induced by a secondarily infected
pox lesion and was euthanized for animal welfare reasons. In contrast to
previous pathogenicity studies with the calpox virus in marmosets, none of the
four animals inoculated intranasally with doses of the calpox virus exceeding those used
in marmosets by orders of magnitude showed typical clinical symptoms. No
viral DNA was detectable in the blood of those animals, but three animals
seroconverted. In two of these three animals, infectious virus was sporadically
isolated from saliva. This indicates that rhesus monkeys are less susceptible
to calpox virus infection, which limits their use in further intervention
studies with OPXV.
Collapse
Affiliation(s)
| | - Constanze Yue
- Robert Koch Institute, Highly Pathogenic Viruses (ZBS 1), Berlin, Germany.,present address: Paul Ehrlich Institute, Frankfurt, Germany
| | - Jeanette Klenner
- Robert Koch Institute, Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Heinz Ellerbrok
- Robert Koch Institute, Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | | |
Collapse
|
120
|
Rodrigues RAL, Andrade ACDSP, Boratto PVDM, Trindade GDS, Kroon EG, Abrahão JS. An Anthropocentric View of the Virosphere-Host Relationship. Front Microbiol 2017; 8:1673. [PMID: 28912772 PMCID: PMC5582082 DOI: 10.3389/fmicb.2017.01673] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
For over a century, viruses have been known as the most abundant and diverse group of organisms on Earth, forming a virosphere. Based on extensive meta-analyses, we present, for the first time, a wide and complete overview of virus–host network, covering all known viral species. Our data indicate that most of known viral species, regardless of their genomic category, have an intriguingly narrow host range, infecting only 1 or 2 host species. Our data also show that the known virosphere has expanded based on viruses of human interest, related to economical, medical or biotechnological activities. In addition, we provide an overview of the distribution of viruses on different environments on Earth, based on meta-analyses of available metaviromic data, showing the contrasting ubiquity of head-tailed phages against the specificity of some viral groups in certain environments. Finally, we uncovered all human viral species, exploring their diversity and the most affected organic systems. The virus–host network presented here shows an anthropocentric view of the virology. It is therefore clear that a huge effort and change in perspective is necessary to see more than the tip of the iceberg when it comes to virology.
Collapse
Affiliation(s)
- Rodrigo A L Rodrigues
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Ana C Dos S P Andrade
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Paulo V de M Boratto
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Giliane de S Trindade
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Erna G Kroon
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Jônatas S Abrahão
- Laboratório de Vírus, Department of Microbiology, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
121
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
122
|
Inhibition of Poxvirus Gene Expression and Genome Replication by Bisbenzimide Derivatives. J Virol 2017; 91:JVI.00838-17. [PMID: 28659488 PMCID: PMC5571260 DOI: 10.1128/jvi.00838-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022] Open
Abstract
Virus infection of humans and livestock can be devastating for individuals and populations, sometimes resulting in large economic and societal impact. Prevention of virus disease by vaccination or antiviral agents is difficult to achieve. A notable exception was the eradication of human smallpox by vaccination over 30 years ago. Today, humans and animals remain susceptible to poxvirus infections, including zoonotic poxvirus transmission. Here we identified a small molecule, bisbenzimide (bisbenzimidazole), and its derivatives as potent agents against prototypic poxvirus infection in cell culture. We show that bisbenzimide derivatives, which preferentially bind the minor groove of double-stranded DNA, inhibit vaccinia virus infection by blocking viral DNA replication and abrogating postreplicative intermediate and late gene transcription. The bisbenzimide derivatives are potent against vaccinia virus and other poxviruses but ineffective against a range of other DNA and RNA viruses. The bisbenzimide derivatives are the first inhibitors of their class, which appear to directly target the viral genome without affecting cell viability. IMPORTANCE Smallpox was one of the most devastating diseases in human history until it was eradicated by a worldwide vaccination campaign. Due to discontinuation of routine vaccination more than 30 years ago, the majority of today's human population remains susceptible to infection with poxviruses. Here we present a family of bisbenzimide (bisbenzimidazole) derivatives, known as Hoechst nuclear stains, with high potency against poxvirus infection. Results from a variety of assays used to dissect the poxvirus life cycle demonstrate that bisbenzimides inhibit viral gene expression and genome replication. These findings can lead to the development of novel antiviral drugs that target viral genomes and block viral replication.
Collapse
|
123
|
Damaso CR. Revisiting Jenner's mysteries, the role of the Beaugency lymph in the evolutionary path of ancient smallpox vaccines. THE LANCET. INFECTIOUS DISEASES 2017; 18:e55-e63. [PMID: 28827144 DOI: 10.1016/s1473-3099(17)30445-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
In 1796, Edward Jenner developed the smallpox vaccine consisting of pustular material obtained from lesions on cows affected by so-called cow-pox. The disease, caused by cowpox virus, confers crossprotection against smallpox. However, historical evidence suggests that Jenner might have used vaccinia virus or even horsepox virus instead of cowpox virus. Mysteries surrounding the origin and nature of the smallpox vaccine persisted during the 19th century, a period of intense exchange of vaccine strains, including the Beaugency lymph. This lymph was obtained from spontaneous cases of cow-pox in France in 1866 and then distributed worldwide. A detailed Historical Review of the distribution of the Beaugency lymph supports recent genetic analyses of extant vaccine strains, suggesting the lymph was probably a vaccinia strain or a horsepox-like virus. This Review is a historical investigation that revisits the mysteries of the smallpox vaccine and reveals an intricate evolutionary relationship of extant vaccinia strains.
Collapse
Affiliation(s)
- Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
124
|
Eldi P, Cooper TH, Liu L, Prow NA, Diener KR, Howley PM, Suhrbier A, Hayball JD. Production of a Chikungunya Vaccine Using a CHO Cell and Attenuated Viral-Based Platform Technology. Mol Ther 2017; 25:2332-2344. [PMID: 28720468 PMCID: PMC5628773 DOI: 10.1016/j.ymthe.2017.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/03/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023] Open
Abstract
Vaccinia-based systems have been extensively explored for the development of recombinant vaccines. Herein we describe an innovative vaccinia virus (VACV)-derived vaccine platform technology termed Sementis Copenhagen Vector (SCV), which was rendered multiplication-defective by targeted deletion of the essential viral assembly gene D13L. A SCV cell substrate line was developed for SCV vaccine production by engineering CHO cells to express D13 and the VACV host-range factor CP77, because CHO cells are routinely used for manufacture of biologics. To illustrate the utility of the platform technology, a SCV vaccine against chikungunya virus (SCV-CHIK) was developed and shown to be multiplication-defective in a range of human cell lines and in immunocompromised mice. A single vaccination of mice with SCV-CHIK induced antibody responses specific for chikungunya virus (CHIKV) that were similar to those raised following vaccination with a replication-competent VACV-CHIK and able to neutralize CHIKV. Vaccination also provided protection against CHIKV challenge, preventing both viremia and arthritis. Moreover, SCV retained capacity as an effective mouse smallpox vaccine. In summary, SCV represents a new and safe vaccine platform technology that can be manufactured in modified CHO cells, with pre-clinical evaluation illustrating utility for CHIKV vaccine design and construction.
Collapse
Affiliation(s)
- Preethi Eldi
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Sementis Ltd., Melbourne, VIC 3000, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
125
|
Abstract
Viruses rapidly evolve and can emerge in unpredictable ways. Transmission pathways by which foodborne viruses may enter human populations and evolutionary mechanisms by which viruses can become virulent are discussed in this chapter. A majority of viruses emerge from zoonotic animal reservoirs, often by adapting and infecting intermediate hosts, such as domestic animals and livestock. Viruses that are known foodborne threats include hepatitis E virus, tick-borne encephalitis virus, enteroviruses, adenovirus, and astroviruses, among others. Viruses may potentially evolve and emerge as a result of modern agricultural practices which can concentrate livestock and bring them into contact with wild animals. Examples of viruses that have emerged in this manner are influenza, coronaviruses such as severe acute respiratory syndrome and Middle East respiratory syndrome, and the Nipah virus. The role of bats, bush meat, rodents, pigs, cattle, and poultry as reservoirs from which infectious pathogenic viruses emerge are discussed.
Collapse
|
126
|
Szulc-Dąbrowska L, Struzik J, Ostrowska A, Guzera M, Toka FN, Bossowska-Nowicka M, Gieryńska MM, Winnicka A, Nowak Z, Niemiałtowski MG. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus. PLoS One 2017; 12:e0179166. [PMID: 28604814 PMCID: PMC5467855 DOI: 10.1371/journal.pone.0179166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- * E-mail:
| | - Justyna Struzik
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | - Maciej Guzera
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Felix N. Toka
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Magdalena Bossowska-Nowicka
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Małgorzata M. Gieryńska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Zuzanna Nowak
- Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marek G. Niemiałtowski
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
127
|
Oldal M, Sironen T, Henttonen H, Vapalahti O, Madai M, Horváth G, Dallos B, Kutas A, Földes F, Kemenesi G, Németh V, Bányai K, Jakab F. Serologic survey of orthopoxvirus infection among rodents in hungary. Vector Borne Zoonotic Dis 2017; 15:317-22. [PMID: 25988441 DOI: 10.1089/vbz.2014.1731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a result of discontinuing vaccination against smallpox after the late 1970s, different orthopoxviruses (OPVs), such as cowpox virus (CPXV), have become a re-emerging healthcare threat among zoonotic pathogens. In Hungary, data on OPV prevalence among its rodent host species have been absent. Here, rodents belonging to four species, i.e., striped field mouse (Apodemus agrarius), yellow-necked mouse (A. flavicollis), wood mouse (A. sylvaticus) and bank vole (Myodes glareolus), were live trapped at 13 sampling plots on a 149-ha area in the Mecsek Mountains, Hungary, from March to September in 2011 and 2012. Rodent sera were collected and screened for OPV-reactive antibodies with an immunfluorescence assay (IFA). Among the 1587 tested rodents, 286 (18.0%) harbored OPV-specific antibodies. Seroprevalence was the highest for the bank vole (71.4%) and the striped field mouse (66.7%). Due to a masting event in the autumn of 2011 across Central Europe, the abundance of bank voles increased drastically in the 2012 season, raising the overall OPV seroprevalence. We provide the first data on OPV occurrence and seroprevalence in rodents in Hungary. The circulation of OPV in rodents in densely populated areas warrants further studies to elucidate the zoonotic potential of OPV in humans.
Collapse
Affiliation(s)
- Miklós Oldal
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tarja Sironen
- 3Haartman institute and Dept of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Olli Vapalahti
- 3Haartman institute and Dept of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,5Hospital District of Helsinki and Uusimaa, Finland.,6HUSLAB, HUS, Finland
| | - Mónika Madai
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- 2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Bianka Dallos
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Anna Kutas
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Fanni Földes
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Viktória Németh
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- 7Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Jakab
- 1Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,2Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
128
|
Khalafalla AI, Abdelazim F. Human and Dromedary Camel Infection with Camelpox Virus in Eastern Sudan. Vector Borne Zoonotic Dis 2017; 17:281-284. [PMID: 28055328 DOI: 10.1089/vbz.2016.2070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We provide evidence for the zoonotic nature of camelpox virus by reporting infections that involved dromedary camels and three camel herders in Showak area of eastern Sudan between September and December 2014. The skin lesions in the camel herders consisted of erythema, vesicles, and pustules that involved arms, hands, legs, back, and abdomen and resolved within less than 2 months with no human-to-human transmission. The diagnosis was achieved through molecular technique, virus isolation in cell culture, and partial genome sequencing.
Collapse
Affiliation(s)
- Abdelmalik I Khalafalla
- 1 Department of Veterinary Laboratories, Abu Dhabi Food Control Authority , Abu Dhabi, United Arab Emirates
- 2 Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North , Sudan
| | - Fatima Abdelazim
- 3 Department of Virology, Veterinary Research Institute (VRI) , Khartoum, Sudan
| |
Collapse
|
129
|
Maksyutov RA, Yakubitskyi SN, Kolosova IV, Shchelkunov SN. Comparing New-Generation Candidate Vaccines against Human Orthopoxvirus Infections. Acta Naturae 2017; 9:88-93. [PMID: 28740731 PMCID: PMC5509005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
The lack of immunity to the variola virus in the population, increasingly more frequent cases of human orthopoxvirus infection, and increased risk of the use of the variola virus (VARV) as a bioterrorism agent call for the development of modern, safe vaccines against orthopoxvirus infections. We previously developed a polyvalent DNA vaccine based on five VARV antigens and an attenuated variant of the vaccinia virus (VACV) with targeted deletion of six genes (VACΔ6). Independent experiments demonstrated that triple immunization with a DNA vaccine and double immunization with VACΔ6 provide protection to mice against a lethal dose (10 LD50) of the ectromelia virus (ECTV), which is highly pathogenic for mice. The present work was aimed at comparing the immunity to smallpox generated by various immunization protocols using the DNA vaccine and VACΔ6. It has been established that immunization of mice with a polyvalent DNA vaccine, followed by boosting with recombinant VACΔ6, as well as double immunization with VACΔ6, induces production of VACV-neutralizing antibodies and provides protection to mice against a 150 LD50 dose of ECTV. The proposed immunization protocols can be used to develop safe vaccination strategies against smallpox and other human orthopoxvirus infections.
Collapse
Affiliation(s)
- R. A. Maksyutov
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559 , Russia
| | - S. N. Yakubitskyi
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559 , Russia
| | - I. V. Kolosova
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559 , Russia
| | - S. N. Shchelkunov
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559 , Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090 , Russia
| |
Collapse
|
130
|
Gazzani P, Gach JE, Colmenero I, Martin J, Morton H, Brown K, Milford DV. Fatal disseminated cowpox virus infection in an adolescent renal transplant recipient. Pediatr Nephrol 2017; 32:533-536. [PMID: 27796621 DOI: 10.1007/s00467-016-3534-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/17/2016] [Accepted: 10/04/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND A 17-year-old boy on long-term immunosuppression following renal transplantation for chronic kidney disease (CKD), the result of dysplastic kidneys, initially presented with a swelling in his neck while attending hospital for an unrelated problem. A clinical diagnosis of tonsillitis was made, and he was treated with broad-spectrum antibiotics. Over a few days, his condition deteriorated, and he developed multiple vesicopustular skin lesions and required an emergency tonsillectomy due to respiratory distress. CASE DIAGNOSIS/TREATMENT Histological investigation of the skin and tonsillar tissue suggested a viral aetiology, and subsequent electron microscopy and polymerase chain reaction (PCR) tissue examination proved disseminated cowpox infection. The family cat, which was reported as having self-resolving sores on its skin, was likely the source of the infection. The child failed to respond to antiviral treatment and succumbed to multiorgan failure within a month of admission. CONCLUSIONS We report this case of fatal disseminated cowpox infection to highlight an increasing risk of this illness in the post-transplant population and to detail some unusual features not previously described, such as tonsillar involvement, disseminated skin lesions and multiorgan failure.
Collapse
Affiliation(s)
- Paul Gazzani
- Dermatology Department, Birmingham Children's Hospital, Birmingham, UK.
| | - Joanna E Gach
- Dermatology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Isabel Colmenero
- Histopathology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Jeff Martin
- Intensive Care Department, Birmingham Children's Hospital, Birmingham, UK
| | - Hugh Morton
- Microbiology Department, Worcestershire Royal Hospital, Worcester, UK
| | - Kevin Brown
- Virus Reference Department, Public Health England, London, UK
| | - David V Milford
- Nephrology Department, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
131
|
|
132
|
Abstract
Poxviruses cause many diseases in humans and animals worldwide, and there is a need for vaccines with improved safety and good efficacy. In addition, poxvirus vectors are widely used as recombinant vaccines for various infectious diseases and as recombinant and oncolytic vaccines for cancer. One concern with poxvirus vaccine vectors is that some poxviruses can infect a developing fetus and cause fetal loss or congenital disease. This can be an issue both for patients receiving a vaccine and for pregnant health care providers, including doctors, nurses, and veterinarians, who might receive accidental exposure to the poxvirus by injection or during patient care. We describe here a method for analyzing the safety of virus exposure in pregnant mammals using a mouse model testing vaccinia, canarypox, and raccoonpox virus vectors.
Collapse
|
133
|
Trindade GDS, Emerson GL, Sammons S, Frace M, Govil D, Fernandes Mota BE, Abrahão JS, de Assis FL, Olsen-Rasmussen M, Goldsmith CS, Li Y, Carroll D, Guimarães da Fonseca F, Kroon E, Damon IK. Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans. Viruses 2016; 8:v8120328. [PMID: 27973399 PMCID: PMC5192389 DOI: 10.3390/v8120328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/01/2016] [Accepted: 11/24/2016] [Indexed: 01/14/2023] Open
Abstract
Vaccinia virus (VACV) has been implicated in infections of dairy cattle and humans, and outbreaks have substantially impacted local economies and public health in Brazil. During a 2005 outbreak, a VACV strain designated Serro 2 virus (S2V) was collected from a 30-year old male milker. Our aim was to phenotypically and genetically characterize this VACV Brazilian isolate. S2V produced small round plaques without associated comets when grown in BSC40 cells. Furthermore, S2V was less virulent than the prototype strain VACV-Western Reserve (WR) in a murine model of intradermal infection, producing a tiny lesion with virtually no surrounding inflammation. The genome of S2V was sequenced by primer walking. The coding region spans 184,572 bp and contains 211 predicted genes. Mutations in envelope genes specifically associated with small plaque phenotypes were not found in S2V; however, other alterations in amino acid sequences within these genes were identified. In addition, some immunomodulatory genes were truncated in S2V. Phylogenetic analysis using immune regulatory-related genes, besides the hemagglutinin gene, segregated the Brazilian viruses into two clusters, grouping the S2V into Brazilian VACV group 1. S2V is the first naturally-circulating human-associated VACV, with a low passage history, to be extensively genetically and phenotypically characterized.
Collapse
Affiliation(s)
- Giliane de Souza Trindade
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Ginny L Emerson
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Scott Sammons
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Michael Frace
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Dhwani Govil
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Jônatas Santos Abrahão
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Felipe Lopes de Assis
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Melissa Olsen-Rasmussen
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Cynthia S Goldsmith
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Yu Li
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Darin Carroll
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Erna Kroon
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Inger K Damon
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| |
Collapse
|
134
|
Stern D, Olson VA, Smith SK, Pietraszczyk M, Miller L, Miethe P, Dorner BG, Nitsche A. Rapid and sensitive point-of-care detection of Orthopoxviruses by ABICAP immunofiltration. Virol J 2016; 13:207. [PMID: 27938377 PMCID: PMC5148848 DOI: 10.1186/s12985-016-0665-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/02/2016] [Indexed: 11/26/2022] Open
Abstract
Background The rapid and reliable detection of infectious agents is one of the most challenging tasks in scenarios lacking well-equipped laboratory infrastructure, like diagnostics in rural areas of developing countries. Commercially available point-of-care diagnostic tests for emerging and rare diseases are particularly scarce. Results In this work we present a point-of-care test for the detection of Orthopoxviruses (OPV). The OPV ABICAP assay detects down to 1 × 104 plaque forming units/mL of OPV particles within 45 min. It can be applied to clinical material like skin crusts and detects all zoonotic OPV infecting humans, including Vaccinia, Cowpox, Monkeypox, and most importantly Variola virus. Conclusions Given the high sensitivity and the ease of handling, the novel assay could be highly useful for on-site diagnostics of suspected Monkeypox virus infections in areas lacking proper laboratory infrastructure as well as rapid on-site testing of suspected bioterrorism samples. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0665-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Stern
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Seestrasse 10, 13353, Berlin, Germany.
| | - Victoria A Olson
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott K Smith
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Lilija Miller
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Seestrasse 10, 13353, Berlin, Germany.,Novel Vaccination Strategies and Early Immune Responses, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Brigitte G Dorner
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Seestrasse 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens (ZBS), Robert Koch Institute, Seestrasse 10, 13353, Berlin, Germany
| |
Collapse
|
135
|
Abstract
We investigated the first laboratory-confirmed human case of cowpox virus infection in Russia since 1991. Phylogenetic studies of haemagglutinin, TNF-α receptor-like protein and thymidine kinase regions showed significant differences with known orthopoxviruses, including unique amino-acid substitutions and deletions. The described cowpox virus strain, taking into account differences, is genetically closely related to strains isolated years ago in the same geographical region (European part of Russia and Finland), which suggests circulation of viral strains with common origin in wild rodents without spread over long distances and appearance in other parts of the world.
Collapse
|
136
|
Franco-Luiz APM, Oliveira DB, Pereira AF, Gasparini MCS, Bonjardim CA, Ferreira PCP, Trindade GDS, Puentes R, Furtado A, Abrahão JS, Kroon EG. Detection of Vaccinia Virus in Dairy Cattle Serum Samples from 2009, Uruguay. Emerg Infect Dis 2016; 22:2174-2177. [PMID: 27869601 PMCID: PMC5189138 DOI: 10.3201/eid2212.160447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We detected orthopoxvirus in 28 of 125 serum samples collected during 2009 from cattle in Uruguay. Two samples were PCR-positive for vaccinia virus and had sequences similar to those for vaccinia virus associated with outbreaks in Brazil. Autochthonous circulation of vaccinia virus in Uruguay and other South American countries cannot be ruled out.
Collapse
|
137
|
Ziem B, Thien H, Achazi K, Yue C, Stern D, Silberreis K, Gholami MF, Beckert F, Gröger D, Mülhaupt R, Rabe JP, Nitsche A, Haag R. Highly Efficient Multivalent 2D Nanosystems for Inhibition of Orthopoxvirus Particles. Adv Healthc Mater 2016; 5:2922-2930. [PMID: 27581958 DOI: 10.1002/adhm.201600812] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/15/2022]
Abstract
Efficient inhibition of cell-pathogen interaction to prevent subsequent infection is an urgent but yet unsolved problem. In this study, the synthesis and functionalization of novel multivalent 2D carbon nanosystems as well as their antiviral efficacy in vitro are shown. For this reason, a new multivalent 2D flexible carbon architecture is developed in this study, functionalized with sulfated dendritic polyglycerol, to enable virus interaction. A simple "graft from" approach enhances the solubility of thermally reduced graphene oxide and provides a suitable 2D surface for multivalent ligand presentation. Polysulfation is used to mimic the heparan sulfate-containing surface of cells and to compete with this natural binding site of viruses. In correlation with the degree of sulfation and the grafted polymer density, the interaction efficiency of these systems can be varied. In here, orthopoxvirus strains are used as model viruses as they use heparan sulfate for cell entry as other viruses, e.g., herpes simplex virus, dengue virus, or cytomegalovirus. The characterization results of the newly designed graphene derivatives demonstrate excellent binding as well as efficient inhibition of orthopoxvirus infection. Overall, these new multivalent 2D polymer nanosystems are promising candidates to develop potent inhibitors for viruses, which possess a heparan sulfate-dependent cell entry mechanism.
Collapse
Affiliation(s)
- Benjamin Ziem
- Institute of Chemistry and Biochemistry; Freie Universität; 14195 Berlin Germany
| | - Hendrik Thien
- Institute of Virology; University of Leipzig; 04103 Leipzig Germany
- Robert Koch Institute; Center for Biological Threats and Special Pathogens; 13353 Berlin Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry; Freie Universität; 14195 Berlin Germany
| | - Constanze Yue
- Robert Koch Institute; Center for Biological Threats and Special Pathogens; 13353 Berlin Germany
| | - Daniel Stern
- Robert Koch Institute; Center for Biological Threats and Special Pathogens; 13353 Berlin Germany
| | - Kim Silberreis
- Robert Koch Institute; Center for Biological Threats and Special Pathogens; 13353 Berlin Germany
| | | | - Fabian Beckert
- Institute for Macromolecular Chemistry; University of Freiburg; 79104 Freiburg Germany
| | - Dominic Gröger
- Institute of Chemistry and Biochemistry; Freie Universität; 14195 Berlin Germany
| | - Rolf Mülhaupt
- Institute for Macromolecular Chemistry; University of Freiburg; 79104 Freiburg Germany
| | - Jürgen P. Rabe
- Institute for Physics and IRIS Adlershof; Humboldt-Universität Berlin; 12489 Berlin Germany
| | - Andreas Nitsche
- Robert Koch Institute; Center for Biological Threats and Special Pathogens; 13353 Berlin Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität; 14195 Berlin Germany
| |
Collapse
|
138
|
Maksyutov RA, Gavrilova EV, Shchelkunov SN. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J Virol Methods 2016; 236:215-220. [PMID: 27477914 PMCID: PMC9629046 DOI: 10.1016/j.jviromet.2016.07.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022]
Abstract
A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species.
Collapse
Affiliation(s)
- Rinat A Maksyutov
- State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia.
| | - Elena V Gavrilova
- State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia.
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia.
| |
Collapse
|
139
|
Costa GB, Augusto LTS, Leite JA, Ferreira PCP, Bonjardim CA, Abrahão JS, Kroon EG, Moreno EC, Trindade GDS. Seroprevalence of Orthopoxvirus in rural Brazil: insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virol J 2016; 13:121. [PMID: 27377374 PMCID: PMC4932698 DOI: 10.1186/s12985-016-0575-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus, a virus from Orthopoxvirus genus (OPV) that affects mainly cattle herds and humans in rural areas in Brazil. Because most studies have focused on outbreaks situations, data on BV epidemiology is limited. A cross sectional study in Brazilian rural areas during 2012–2013 was conducted to determine the neutralizing antibodies seroprevalence and risk factors for BV. Methods A structured questionnaire was applied to elicit demographics data and farming practices considered risk factors for BV exposure. Neutralizing anti-OPV antibodies were investigated using plaque reduction neutralization test. The neutralizing antibodies prevalence rates were calculated and the risk factor analysis was performed using multivariate logistic regression. Results Two hundred and forty participants were enrolled in this study with a prevalence of neutralizing antibodies of 30.8 % (95 % confidence interval [CI], 25.3–36.9). In multivariate analysis, age > 35 years (Odds Ratio [OR] = 18.2; CI 95 % = 7.7 – 43.2) and previous outbreak in property (OR = 3.9; C I95 % = 1.2 – 12.6) were independently associated with anti-OPV neutralizing antibodies. Conclusions In this study, anti-OPV protective immunity (neutralizing antibody titers) was assessed in an endemic BV Brazilian rural area. Our findings indicate that epidemiological surveillance is required and should be applied by public health authorities to create interventions and/or prevention strategies to avoid viral spread causing future outbreaks among individuals who are under risk of infection.
Collapse
Affiliation(s)
- Galileu Barbosa Costa
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,, Present address: Av Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil.
| | | | - Juliana Almeida Leite
- Respiratory Virus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Paulo César Peregrino Ferreira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudio Antônio Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elizabeth Castro Moreno
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais (HEMOMINAS), Belo Horizonte, Brazil
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,, Present address: Av Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil.
| |
Collapse
|
140
|
Tamošiūnaitė A, Hoffmann D, Franke A, Schluckebier J, Tauscher K, Tischer BK, Beer M, Klopfleisch R, Osterrieder N. Histopathological and Immunohistochemical Studies of Cowpox Virus Replication in a Three-Dimensional Skin Model. J Comp Pathol 2016; 155:55-61. [PMID: 27291992 DOI: 10.1016/j.jcpa.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 11/26/2022]
Abstract
Human cowpox virus (CPXV) infections are rare, but can result in severe and sometimes fatal outcomes. The majority of recent cases were traced back to contacts with infected domestic cats or pet rats. The aim of the present study was to evaluate a three-dimensional (3D) skin model as a possible replacement for animal experiments. We monitored CPXV lesion formation, viral gene expression and cell cycle patterns after infection of 3D skin cultures with two CPXV strains of different pathogenic potential: a recent pet rat isolate (RatPox09) and the reference Brighton red strain. Infected 3D skin cultures exhibited histological alterations that were similar to those of mammal skin infections, but there were no differences in gene expression patterns and tissue damage between the two CPXV strains in the model system. In conclusion, 3D skin cultures reflect the development of pox lesions in the skin very well, but seem not to allow differentiation between more or less virulent virus strains, a distinction that is made possible by experimental infection in suitable animal models.
Collapse
Affiliation(s)
- A Tamošiūnaitė
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - A Franke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - J Schluckebier
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - K Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Südufer 10, Greifswald-Insel Riems, Germany
| | - B K Tischer
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - R Klopfleisch
- Institute for Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - N Osterrieder
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany.
| |
Collapse
|
141
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
142
|
Yakubitskyi SN, Kolosova IV, Maksyutov RA, Shchelkunov SN. Highly immunogenic variant of attenuated vaccinia virus. DOKL BIOCHEM BIOPHYS 2016; 466:35-8. [PMID: 27025484 DOI: 10.1134/s1607672916010105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 11/23/2022]
Abstract
The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections.
Collapse
Affiliation(s)
- S N Yakubitskyi
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia.
| | - I V Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| | - R A Maksyutov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| | - S N Shchelkunov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| |
Collapse
|
143
|
Franco-Luiz APM, Fagundes Pereira A, de Oliveira CHS, Barbosa JD, Oliveira DB, Bonjardim CA, Ferreira PCP, de Souza Trindade G, Abrahão JS, Kroon EG. The detection of Vaccinia virus confirms the high circulation of Orthopoxvirus in buffaloes living in geographical isolation, Marajó Island, Brazilian Amazon. Comp Immunol Microbiol Infect Dis 2016; 46:16-9. [PMID: 27260805 DOI: 10.1016/j.cimid.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/18/2022]
Abstract
In Brazil, serologic evidence of Orthopoxvirus (OPV) circulation showed positivity around 20% in cattle, humans, monkeys and rodents. Although OPV seropositivity has been described in buffalo herds in southeastern Brazil, no Vaccinia virus (VACV) (member of genus OPV) outbreaks in buffalo herds have been described in this country. This study aimed to investigate the detection of anti-OPV antibodies and to study the OPV genome in Brazilian buffalo herds. Our results demonstrated a high OPV seropositivity in buffalo herds on Marajó Island and molecular data confirmed the circulation of VACV. The geographical isolation conditionmight be a sine qua non condition to explain our results.
Collapse
Affiliation(s)
- Ana Paula Moreira Franco-Luiz
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Alexandre Fagundes Pereira
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Cairo Henrique Sousa de Oliveira
- Setor de Medicina Veterinária Preventiva, Escola de Veterinária e Zootecnia da Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Diomedes Barbosa
- Hospital Veterinário de Grandes Animais, Instituto de Medicina Veterinária da Universidade Federal do Pará, Castanhal, PA, Brazil.
| | - Danilo Bretas Oliveira
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Cláudio Antônio Bonjardim
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Paulo César Peregrino Ferreira
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Giliane de Souza Trindade
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Erna Geessien Kroon
- Laboratório de Vírus do Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
144
|
Figueiredo PDO, Silva-Fernandes ATD, Mota BEF, Costa GB, Borges IA, Ferreira PCP, Abrahão JS, Braga EM, Kroon EG, Trindade GDS. Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era. Mem Inst Oswaldo Cruz 2016; 110:804-8. [PMID: 26517662 PMCID: PMC4667586 DOI: 10.1590/0074-02760150215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Vaccinia virus naturally circulates in Brazil and is the causative agent of a zoonotic disease known as bovine vaccinia (BV). We retrospectively evaluated two populations from the Amazon and Southeast Regions. BV outbreaks had not been reported in these regions before sample collection. Neutralising antibodies were found in 13 individuals (n = 132) with titres ranging from 100 ≥ 6,400 neutralising units/mL. Univariate analysis identified age and vaccination as statistically significant risk factors in individuals from the Southeast Region. The absence of detectable antibodies in vaccinated individuals raises questions about the protection of smallpox vaccine years after vaccination and reinforces the need for surveillance of Orthopoxvirus in Brazilian populations without evidence of previous outbreaks.
Collapse
Affiliation(s)
- Poliana de Oliveira Figueiredo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - André Tavares da Silva-Fernandes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Galileu Barbosa Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Iara Apolinário Borges
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Paulo César Peregrino Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Jônatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Erika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Giliane de Souza Trindade
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
145
|
Stern D, Pauly D, Zydek M, Miller L, Piesker J, Laue M, Lisdat F, Dorner MB, Dorner BG, Nitsche A. Development of a Genus-Specific Antigen Capture ELISA for Orthopoxviruses - Target Selection and Optimized Screening. PLoS One 2016; 11:e0150110. [PMID: 26930499 PMCID: PMC4773239 DOI: 10.1371/journal.pone.0150110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Orthopoxvirus species like cowpox, vaccinia and monkeypox virus cause zoonotic infections in humans worldwide. Infections often occur in rural areas lacking proper diagnostic infrastructure as exemplified by monkeypox, which is endemic in Western and Central Africa. While PCR detection requires demanding equipment and is restricted to genome detection, the evidence of virus particles can complement or replace PCR. Therefore, an easily distributable and manageable antigen capture enzyme-linked immunosorbent assay (ELISA) for the detection of orthopoxviruses was developed to facilitate particle detection. By comparing the virus particle binding properties of polyclonal antibodies developed against surface-exposed attachment or fusion proteins, the surface protein A27 was found to be a well-bound, highly immunogenic and exposed target for antibodies aiming at virus particle detection. Subsequently, eight monoclonal anti-A27 antibodies were generated and characterized by peptide epitope mapping and surface plasmon resonance measurements. All antibodies were found to bind with high affinity to two epitopes at the heparin binding site of A27, toward either the N- or C-terminal of the crucial KKEP-segment of A27. Two antibodies recognizing different epitopes were implemented in an antigen capture ELISA. Validation showed robust detection of virus particles from 11 different orthopoxvirus isolates pathogenic to humans, with the exception of MVA, which is apathogenic to humans. Most orthopoxviruses could be detected reliably for viral loads above 1 × 103 PFU/mL. To our knowledge, this is the first solely monoclonal and therefore reproducible antibody-based antigen capture ELISA able to detect all human pathogenic orthopoxviruses including monkeypox virus, except variola virus which was not included. Therefore, the newly developed antibody-based assay represents important progress towards feasible particle detection of this important genus of viruses.
Collapse
Affiliation(s)
- Daniel Stern
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Diana Pauly
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Martin Zydek
- Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences, Wildau, Germany
| | - Lilija Miller
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Janett Piesker
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences, Wildau, Germany
| | - Martin B. Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
146
|
Abrahão JS, Campos RK, Trindade GDS, Guimarães da Fonseca F, Ferreira PCP, Kroon EG. Outbreak of severe zoonotic vaccinia virus infection, Southeastern Brazil. Emerg Infect Dis 2015; 21:695-8. [PMID: 25811411 PMCID: PMC4378504 DOI: 10.3201/eid2104.140351] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In 2010, a vaccinia virus isolate caused an atypically severe outbreak that affected humans and cattle in Brazil. Of 26 rural workers affected, 12 were hospitalized. Our data raise questions about the risk factors related to the increasing number and severity of vaccinia virus infections.
Collapse
|
147
|
Stellberger T, Stockmar I, Haase M, Meyer H, Zoeller G, Pavlovic M, Büttner M, Konrad R, Lang H, Tischer K, Kaufer BB, Busch U, Baiker A. Multiplex Real-Time PCR Assay for the Detection and Differentiation of Poxviruses and Poxvirus Vectors. APPLIED BIOSAFETY 2015. [DOI: 10.1177/153567601502000405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Iris Stockmar
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Maren Haase
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Hermann Meyer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Melanie Pavlovic
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Mathias Büttner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Heike Lang
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | | | | | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Armin Baiker
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| |
Collapse
|
148
|
Doellinger J, Schaade L, Nitsche A. Comparison of the Cowpox Virus and Vaccinia Virus Mature Virion Proteome: Analysis of the Species- and Strain-Specific Proteome. PLoS One 2015; 10:e0141527. [PMID: 26556597 PMCID: PMC4640714 DOI: 10.1371/journal.pone.0141527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/09/2015] [Indexed: 01/29/2023] Open
Abstract
Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus' zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing.
Collapse
Affiliation(s)
- Joerg Doellinger
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
- * E-mail:
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
149
|
Yakubitskiy SN, Kolosova IV, Maksyutov RA, Shchelkunov SN. Attenuation of Vaccinia Virus. Acta Naturae 2015; 7:113-21. [PMID: 26798498 PMCID: PMC4717256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections.
Collapse
Affiliation(s)
- S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, Russia
| | - I. V. Kolosova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, Russia
| | - R. A. Maksyutov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, Russia
| | - S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, Russia
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
150
|
Genomic Analysis, Phenotype, and Virulence of the Historical Brazilian Smallpox Vaccine Strain IOC: Implications for the Origins and Evolutionary Relationships of Vaccinia Virus. J Virol 2015; 89:11909-25. [PMID: 26378174 DOI: 10.1128/jvi.01833-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Smallpox was declared eradicated in 1980 after an intensive vaccination program using different strains of vaccinia virus (VACV; Poxviridae). VACV strain IOC (VACV-IOC) was the seed strain of the smallpox vaccine manufactured by the major vaccine producer in Brazil during the smallpox eradication program. However, little is known about the biological and immunological features as well as the phylogenetic relationships of this first-generation vaccine. In this work, we present a comprehensive characterization of two clones of VACV-IOC. Both clones had low virulence in infected mice and induced a protective immune response against a lethal infection comparable to the response of the licensed vaccine ACAM2000 and the parental strain VACV-IOC. Full-genome sequencing revealed the presence of several fragmented virulence genes that probably are nonfunctional, e.g., F1L, B13R, C10L, K3L, and C3L. Most notably, phylogenetic inference supported by the structural analysis of the genome ends provides evidence of a novel, independent cluster in VACV phylogeny formed by VACV-IOC, the Brazilian field strains Cantagalo (CTGV) and Serro 2 viruses, and horsepox virus, a VACV-like virus supposedly related to an ancestor of the VACV lineage. Our data strongly support the hypothesis that CTGV-like viruses represent feral VACV that evolved in parallel with VACV-IOC after splitting from a most recent common ancestor, probably an ancient smallpox vaccine strain related to horsepox virus. Our data, together with an interesting historical investigation, revisit the origins of VACV and propose new evolutionary relationships between ancient and extant VACV strains, mainly horsepox virus, VACV-IOC/CTGV-like viruses, and Dryvax strain. IMPORTANCE First-generation vaccines used to eradicate smallpox had rates of adverse effects that are not acceptable by current health care standards. Moreover, these vaccines are genetically heterogeneous and consist of a pool of quasispecies of VACV. Therefore, the search for new-generation smallpox vaccines that combine low pathogenicity, immune protection, and genetic homogeneity is extremely important. In addition, the phylogenetic relationships and origins of VACV strains are quite nebulous. We show the characterization of two clones of VACV-IOC, a unique smallpox vaccine strain that contributed to smallpox eradication in Brazil. The immunogenicity and reduced virulence make the IOC clones good options for alternative second-generation smallpox vaccines. More importantly, this study reveals the phylogenetic relationship between VACV-IOC, feral VACV established in nature, and the ancestor-like horsepox virus. Our data expand the discussion on the origins and evolutionary connections of VACV lineages.
Collapse
|