101
|
Gerdan Z, Saylan Y, Denizli A. Biosensing Platforms for Cardiac Biomarker Detection. ACS OMEGA 2024; 9:9946-9960. [PMID: 38463295 PMCID: PMC10918812 DOI: 10.1021/acsomega.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that occurs when there is an elevated demand for myocardial oxygen as a result of the rupture or erosion of atherosclerotic plaques. Globally, the mortality rates associated with MI are steadily on the rise. Traditional diagnostic biomarkers employed in clinical settings for MI diagnosis have various drawbacks, prompting researchers to investigate fast, precise, and highly sensitive biosensor platforms and technologies. Biosensors are analytical devices that combine biological elements with physicochemical transducers to detect and quantify specific compounds or analytes. These devices play a crucial role in various fields including healthcare, environmental monitoring, food safety, and biotechnology. Biosensors developed for the detection of cardiac biomarkers are typically electrochemical, mass, and optical biosensors. Nanomaterials have emerged as revolutionary components in the field of biosensing, offering unique properties that significantly enhance the sensitivity and specificity of the detection systems. This review provides a comprehensive overview of the advancements and applications of nanomaterial-based biosensing systems. Beginning with an exploration of the fundamental principles governing nanomaterials, we delve into their diverse properties, including but not limited to electrical, optical, magnetic, and thermal characteristics. The integration of these nanomaterials as transducers in biosensors has paved the way for unprecedented developments in analytical techniques. Moreover, the principles and types of biosensors and their applications in cardiovascular disease diagnosis are explained in detail. The current biosensors for cardiac biomarker detection are also discussed, with an elaboration of the pros and cons of existing platforms and concluding with future perspectives.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Department
of Biomedical Engineering, Istanbul Beykent
University, Istanbul 34398, Turkey
| | - Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
102
|
Di Ianni A, Di Ianni A, Cowan K, Barbero LM, Sirtori FR. Leveraging Cross-Linking Mass Spectrometry for Modeling Antibody-Antigen Complexes. J Proteome Res 2024; 23:1049-1061. [PMID: 38372774 DOI: 10.1021/acs.jproteome.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Elucidating antibody-antigen complexes at the atomic level is of utmost interest for understanding immune responses and designing better therapies. Cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for mapping protein-protein interactions, suggesting valuable structural insights. However, the use of XL-MS studies to enable epitope/paratope mapping of antibody-antigen complexes is still limited up to now. XL-MS data can be used to drive integrative modeling of antibody-antigen complexes, where cross-links information serves as distance restraints for the precise determination of binding interfaces. In this approach, XL-MS data are employed to identify connections between binding interfaces of the antibody and the antigen, thus informing molecular modeling. Current literature provides minimal input about the impact of XL-MS data on the integrative modeling of antibody-antigen complexes. Here, we applied XL-MS to retrieve information about binding interfaces of three antibody-antigen complexes. We leveraged XL-MS data to perform integrative modeling using HADDOCK (active-passive residues and distance restraints strategies) and AlphaLink2. We then compared these three approaches with initial predictions of investigated antibody-antigen complexes by AlphaFold Multimer. This work emphasizes the importance of cross-linking data in resolving conformational dynamics of antibody-antigen complexes, ultimately enhancing the design of better protein therapeutics and vaccines.
Collapse
Affiliation(s)
- Andrea Di Ianni
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Alessio Di Ianni
- Martin Luther University Halle-Wittenberg, Department of Pharmaceutical Chemistry and Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Kurt-Mothes-Str. 3, Halle/Saale D-06120, Germany
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, Darmstadt 64293, Germany
| | - Luca M Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| |
Collapse
|
103
|
Pastrana B, Culyba E, Nieves S, Sazinsky SL, Canto EI, Noda I. Streamlined Multi-Attribute Assessment of an Array of Clinical-Stage Antibodies: Relationship Between Degradation and Stability. APPLIED SPECTROSCOPY 2024; 79:37028241231824. [PMID: 38419510 PMCID: PMC11684140 DOI: 10.1177/00037028241231824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Clinical antibodies are an important class of drugs for the treatment of both chronic and acute diseases. Their manufacturability is subject to evaluation to ensure product quality and efficacy. One critical quality attribute is deamidation, a non-enzymatic process that is observed to occur during thermal stress, at low or high pH, or a combination thereof. Deamidation may induce antibody instability and lead to aggregation, which may pose immunogenicity concerns. The introduction of a negative charge via deamidation may impact the desired therapeutic function (i) within the complementarity-determining region, potentially causing loss of efficacy; or (ii) within the fragment crystallizable region, limiting the effector function involving antibody-dependent cellular cytotoxicity. Here we describe a transformative solution that allows for a comparative assessment of deamidation and its impact on stability and aggregation. The innovative streamlined method evaluates the intact protein in its formulation conditions. This breakthrough platform technology is comprised of a quantum cascade laser microscope, a slide cell array that allows for flexibility in the design of experiments, and dedicated software. The enhanced spectral resolution is achieved using two-dimensional correlation, co-distribution, and two-trace two-dimensional correlation spectroscopies that reveal the molecular impact of deamidation. Eight re-engineered immunoglobulin G4 scaffold clinical antibodies under control and forced degradation conditions were evaluated for deamidation and aggregation. We determined the site of deamidation, the overall extent of deamidation, and where applicable, whether the deamidation event led to self-association or aggregation of the clinical antibody and the molecular events that led to the instability. The results were confirmed using orthogonal techniques for four of the samples.
Collapse
Affiliation(s)
- Belinda Pastrana
- Research and Development, Protein Dynamic Solutions, Inc., Wakefield, Massachusetts, USA
| | - Elizabeth Culyba
- Research and Development, Protein Dynamic Solutions, Inc., Wakefield, Massachusetts, USA
- Antibody Discovery, Verseau Therapeutics, Inc., Bedford, Massachusetts, USA
| | - Sherly Nieves
- Research and Development, Protein Dynamic Solutions, Inc., Wakefield, Massachusetts, USA
| | | | - Eduardo I. Canto
- Translational Sciences, Auxilio BioLab, Auxilio Mutuo Hospital, San Juan, Puerto Rico, USA
| | - Isao Noda
- Infectious Disease Research, Department of Materials Sciences and Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
104
|
Toyos-Rodríguez C, Valero-Calvo D, Iglesias-Mayor A, de la Escosura-Muñiz A. Effect of nanoporous membranes thickness in electrochemical biosensing performance: application for the detection of a wound infection biomarker. Front Bioeng Biotechnol 2024; 12:1310084. [PMID: 38464543 PMCID: PMC10921427 DOI: 10.3389/fbioe.2024.1310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Nanoporous alumina membranes present a honeycomb-like structure characterized by two main parameters involved in their performance in electrochemical immunosening: pore diameter and pore thickness. Although this first one has been deeply studied, the effect of pore thickness in electrochemical-based nanopore immunosensors has been less taken into consideration. Methods: In this work, the influence of the thickness of nanoporous membranes in the steric blockage is studied for the first time, through the formation of an immunocomplex in their inner walls. Finally, the optimal nanoporous membranes were applied to the detection of catalase, an enzyme related with chronic wound infection and healing. Results: Nanoporous alumina membranes with a fixed pore diameter (60 nm) and variable pore thicknesses (40, 60, 100 μm) have been constructed and evaluated as immunosensing platform for protein detection. Our results show that membranes with a thickness of 40 μm provide a higher sensitivity and lower limit-of-detection (LOD) compared to thicker membranes. This performance is even improved when compared to commercial membranes (with 20 nm pore diameter and 60 μm pore thickness), when applied for human IgG as model analyte. A label-free immunosensor using a monoclonal antibody against anti-catalase was also constructed, allowing the detection of catalase in the range of 50-500 ng/mL and with a LOD of 1.5 ng/mL. The viability of the constructed sensor in real samples was also tested by spiking artificial wound infection solutions, providing recovery values of 110% and 118%. Discussion: The results obtained in this work evidence the key relevance of the nanochannel thickness in the biosensing performance. Such findings will illuminate nanoporous membrane biosensing research, considering thickness as a relevant parameter in electrochemical-based nanoporous membrane sensors.
Collapse
Affiliation(s)
- C. Toyos-Rodríguez
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - D. Valero-Calvo
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - A. Iglesias-Mayor
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - A. de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
105
|
Kim MS, Bhargava HK, Shavey GE, Lim WA, El-Samad H, Ng AH. Degron-based bioPROTACs for controlling signaling in CAR T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580396. [PMID: 38405763 PMCID: PMC10888892 DOI: 10.1101/2024.02.16.580396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a tremendous impact in the clinic, but potent signaling through the CAR can be detrimental to treatment safety and efficacy. The use of protein degradation to control CAR signaling can address these issues in pre-clinical models. Existing strategies for regulating CAR stability rely on small molecules to induce systemic degradation. In contrast to small molecule regulation, genetic circuits offer a more precise method to control CAR signaling in an autonomous, cell-by-cell fashion. Here, we describe a programmable protein degradation tool that adopts the framework of bioPROTACs, heterobifunctional proteins that are composed of a target recognition domain fused to a domain that recruits the endogenous ubiquitin proteasome system. We develop novel bioPROTACs that utilize a compact four residue degron and demonstrate degradation of cytosolic and membrane protein targets using either a nanobody or synthetic leucine zipper as a protein binder. Our bioPROTACs exhibit potent degradation of CARs and can inhibit CAR signaling in primary human T cells. We demonstrate the utility of our bioPROTACs by constructing a genetic circuit to degrade the tyrosine kinase ZAP70 in response to recognition of a specific membrane-bound antigen. This circuit is able to disrupt CAR T cell signaling only in the presence of a specific cell population. These results suggest that bioPROTACs are a powerful tool for expanding the cell engineering toolbox for CAR T cells.
Collapse
Affiliation(s)
- Matthew S Kim
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA; Cell Design Institute, University of California, San Francisco, San Francisco, CA
| | - Hersh K Bhargava
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA; Cell Design Institute, University of California, San Francisco, San Francisco, CA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Gavin E Shavey
- Current: Arsenal Biociences, Inc., South San Francisco, CA; Cell Design Institute, University of California, San Francisco, San Francisco, CA
| | - Wendell A Lim
- Cell Design Institute, University of California, San Francisco, San Francisco, CA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Hana El-Samad
- Current: Altos Labs, Redwood City, CA; Cell Design Institute, University of California, San Francisco, San Francisco, CA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA; Chan-Zuckerberg Biohub, San Francisco, CA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Andrew H Ng
- Current: Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA; Cell Design Institute, University of California, San Francisco, San Francisco, CA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
106
|
D’Antona AM, Lee JM, Zhang M, Friedman C, He T, Mosyak L, Bennett E, Lin L, Silverman M, Cometa F, Meade C, Hageman T, Sousa E, Cohen J, Marquette K, Ferguson D, Zhong X. Tyrosine Sulfation at Antibody Light Chain CDR-1 Increases Binding Affinity and Neutralization Potency to Interleukine-4. Int J Mol Sci 2024; 25:1931. [PMID: 38339208 PMCID: PMC10855961 DOI: 10.3390/ijms25031931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Structure and function of therapeutic antibodies can be modulated by a variety of post-translational modifications (PTM). Tyrosine (Tyr) sulfation is a type of negatively charged PTM that occurs during protein trafficking through the Golgi. In this study, we discovered that an anti-interleukin (IL)-4 human IgG1, produced by transiently transfected HEK293 cells, contained a fraction of unusual negatively charged species. Interestingly, the isolated acidic species exhibited a two-fold higher affinity to IL-4 and a nearly four-fold higher potency compared to the main species. Mass spectrometry (MS) showed the isolated acidic species possessed an +80-Dalton from the expected mass, suggesting an occurrence of Tyr sulfation. Consistent with this hypothesis, we show the ability to control the acidic species during transient expression with the addition of Tyr sulfation inhibitor sodium chlorate or, conversely, enriched the acidic species from 30% to 92% of the total antibody protein when the IL-4 IgG was co-transfected with tyrosylprotein sulfotransferase genes. Further MS and mutagenesis analysis identified a Tyr residue at the light chain complementarity-determining region-1 (CDRL-1), which was sulfated specifically. These results together have demonstrated for the first time that Tyr sulfation at CDRL-1 could modulate antibody binding affinity and potency to a human immune cytokine.
Collapse
Affiliation(s)
- Aaron M. D’Antona
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Julie M. Lee
- Translational Clinical Sciences, Pfizer Discovery & Early Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Clarence Friedman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tao He
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Lidia Mosyak
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Bennett
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Laura Lin
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Maddison Silverman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Funi Cometa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Caryl Meade
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tyler Hageman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Sousa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Justin Cohen
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Kimberly Marquette
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Darren Ferguson
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Xiaotian Zhong
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| |
Collapse
|
107
|
Yanaka S, Watanabe H, Yogo R, Kongsema M, Kondo S, Yagi H, Uchihashi T, Kato K. Quantitative Analysis of Therapeutic Antibody Interactions with Fcγ Receptors Using High-Speed Atomic Force Microscopy. Biol Pharm Bull 2024; 47:334-338. [PMID: 38143078 DOI: 10.1248/bpb.b23-00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
This study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions. We conducted real-time, label-free observations of the interactions of rituximab and mogamulizumab with the recombinant FcγRIIIa and FcγRIIa. The dwell times of FcγR binding were measured at the single-molecule level, which revealed an extended interaction duration of mogamulizumab with FcγRIIIa compared with that of rituximab. This is linked to enhanced antibody-dependent cellular cytotoxicity that is attributed to the absence of the core fucosylation of Fc-linked N-glycan. This study also emphasizes the crucial role of the Fab segments in the interaction with FcγRIIa as well as that with FcγRIIIa. This approach provided quantitative insight into therapeutic antibody interactions and exemplified kinetic proofreading, where cellular discrimination relies on ligand residence times. Observing the dwell times of antibodies on the effector molecules has emerged as a robust indicator of therapeutic antibody efficacy. Ultimately, these findings pave the way for the development of refined therapeutic antibodies with tailored interactions with specific FcγRs. This research contributes to the advancement of biopharmaceutical antibody design and optimizing antibody-based treatments for enhanced efficacy and precision.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | - Sachiko Kondo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Department of Physics and Institute for Glyco-core Research (iGCORE), Nagoya University
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
108
|
Harmsen MM, Ackerschott B, de Smit H. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species. Front Immunol 2024; 15:1346328. [PMID: 38352869 PMCID: PMC10862077 DOI: 10.3389/fimmu.2024.1346328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Single-domain antibody fragments (sdAbs) can be isolated from heavy-chain-only antibodies that occur in camelids or the heavy chain of conventional antibodies, that also occur in camelids. Therapeutic application of sdAbs is often complicated by their low serum half-life. Fusion to sdAb that bind to long-lived serum proteins albumin or IgG can prolong serum half-life of fusion partners. Such studies mostly focused on human application. For half-life prolongation in multiple animal species novel species cross-reacting sdAb are needed. We here describe the isolation from immunized llamas of sdAbs G6 and G13 that bound IgG of 9-10 species analysed, including horse, dog, cat, and swine, as well as sdAb A12 that bound horse, dog, swine and cat albumin. A12 bound albumin with 13 to 271 nM affinity dependent on the species. G13 affinity was difficult to determine by biolayer interferometry due to low and heterogeneous signals. G13 and G6 compete for the same binding domain on Fab fragments. Furthermore, they both lack the hallmark residues typical of camelid sdAbs derived from heavy-chain antibodies and had sequence characteristics typical of human sdAbs with high solubility and stability. This suggests they are derived from conventional llama antibodies. They most likely bind IgG through pairing with VL domains at the VH-VL interface rather than a paratope involving complementarity determining regions. None of the isolated sdAb interfered with FcRn binding to albumin or IgG, and thus do not prevent endosomal albumin/IgG-sdAb complex recycling. Fusions of albumin-binding sdAb A12 to several tetanus neurotoxin (TeNT) binding sdAbs prolonged the terminal serum half-life in piglets to about 4 days, comparable to authentic swine albumin. However, G13 conferred a much lower half-life of 0.84 days. Similarly, in horse, G13 prolonged half-life to only 1.2 days whereas A12 fused to two TeNT binding domains (T6T16A12) had a half-life of 21 days. The high half-life of T6T16A12, which earlier proved to be a highly potent TeNT antitoxin, further supports its therapeutic value. Furthermore, we have identified several additional sdAbs that enable tailored half-life extension of biologicals in multiple animal species.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | | | - Hans de Smit
- Research and Development, Smivet B.V., Wijchen, Netherlands
| |
Collapse
|
109
|
Almeida CMR, Merillas B, Pontinha ADR. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int J Mol Sci 2024; 25:1309. [PMID: 38279307 PMCID: PMC10816975 DOI: 10.3390/ijms25021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. This structure leads to extended structural characteristics as well as physicochemical properties of the nanoscale building blocks to macroscale, and integrated typical features of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. Due to their combination of excellent properties, aerogels attract much interest in various applications, ranging from medicine to construction. In recent decades, their potential was exploited in many aerogels' materials, either organic, inorganic or hybrid. Considerable research efforts in recent years have been devoted to the development of aerogel-based biosensors and encouraging accomplishments have been achieved. In this work, recent (2018-2023) and ground-breaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Different types of biosensors in which aerogels play a fundamental role are being explored and are collected in this manuscript. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based biosensors are summarized.
Collapse
Affiliation(s)
- Cláudio M. R. Almeida
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- LAQV-REQUIMTE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Beatriz Merillas
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, 3030-788 Coimbra, Portugal
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, N° 40A, Parque Industrial Da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
110
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
111
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
112
|
Heisler J, Kovner D, Izadi S, Zarzar J, Carter PJ. Modulation of the high concentration viscosity of IgG 1 antibodies using clinically validated Fc mutations. MAbs 2024; 16:2379560. [PMID: 39028186 PMCID: PMC11262234 DOI: 10.1080/19420862.2024.2379560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤ 2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.
Collapse
Affiliation(s)
- Joel Heisler
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Daniel Kovner
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
113
|
Liu Y, VanAernum Z, Zhang Y, Gao X, Vlad M, Feng B, Cross R, Kilgore B, Newman A, Wang D, Schuessler HA, Richardson DD, Chadwick JS. LC-MS Approach to Decipher a Light Chain Chromatographic Peak Splitting of a Monoclonal Antibody. Pharm Res 2023; 40:3087-3098. [PMID: 37936013 DOI: 10.1007/s11095-023-03631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE Monoclonal antibodies (mAbs), like other protein therapeutics, are prone to various forms of degradation, some of which are difficult to distinguish from the native form yet may alter potency. A generalizable LC-MS approach was developed to enable quantitative analysis of isoAsp. In-depth understanding of product quality attributes (PQAs) enables optimization of the manufacturing process, better formulation selection, and decreases risk associated with product handling in the clinic or during shipment. METHODS Reversed-phase chromatographic peak splitting was observed when a mAb was exposed to elevated temperatures. Multiple LC-MS based methods were applied to identify the reason for peak splitting. The approach involved the use of complementary HPLC columns, multiple enzymatic digestions and different MS/MS ion dissociation methods. In addition, mAb potency was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The split peaks had identical masses, and the root cause of the peak splitting was identified as isomerization of an aspartic acid located in the complementarity-determining region (CDR) of the light chain. And the early eluting and late eluting peaks were collected and performed enzymatic digestion to confirm the isoAsp enrichment in the early eluting peak. In addition, decreased potency was observed in the same heat-stressed sample, and the increased isoAsp levels in the CDR correlate well with a decrease of potency. CONCLUSION Liquid chromatography-mass spectrometry (LC-MS) has been utilized extensively to assess PQAs of biological therapeutics. In this study, a generalizable LC-MS-based approach was developed to enable identification and quantitation of the isoAsp-containing peptides.
Collapse
Affiliation(s)
- Yanjun Liu
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA.
| | - Zac VanAernum
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA.
| | - Yue Zhang
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Xinliu Gao
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Mariana Vlad
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bo Feng
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Robert Cross
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bruce Kilgore
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Alice Newman
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Dongdong Wang
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
- Takeda Pharmaceutical Company, 35 Landsdowne St, Cambridge, MA, 02139, USA
| | - Hillary A Schuessler
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Douglas D Richardson
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Jennifer S Chadwick
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
| |
Collapse
|
114
|
Goi A, De Marchi M, Costa A. Minerals and essential amino acids of bovine colostrum: Phenotypic variability and predictive ability of mid- and near-infrared spectroscopy. J Dairy Sci 2023; 106:8341-8356. [PMID: 37641330 DOI: 10.3168/jds.2023-23459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Colostrum quality and volume are fundamental for calves because it is the primary supplier of antibodies and the first source of energy, carbohydrates, lipids, proteins, minerals, and vitamins for the newborn. Assessing the detailed composition (i.e., AA and mineral content) of bovine colostrum (BC) on-line and at a reasonable cost would help dairy stakeholders such as farmers or veterinarians for precision feeding purposes and industries producing preparations containing BC such as foodstuff, supplements, and medicaments. In the present study we evaluated mid- (MIRS) and near-infrared spectroscopy (NIRS) prediction ability for AA and mineral composition of individual BC. Second, we the investigated the major factors affecting the phenotypic variability of such traits also evaluating the correlations with the Ig concentration. Results demonstrated that MIRS and NIRS were able to provide sufficiently accurate predictions for all the AA. The coefficient of determination in external validation (R2V) fell, in fact, within the range of 0.70 to 0.86, with the exception of Ile, His, and Met. Only some minerals reached a sufficient accuracy (i.e., Ca, P, S, and Mg; R2V ≥ 0.66) using MIRS, and also S (R2V = 0.87) using NIRS. Phenotypically, both parity and calving season affected the variability of these BC composition traits. Heifers' colostrum was the one with the greatest concentration of Ca and P, the 2 most abundant minerals. These minerals were however very low in cows calving in summer compared with the rest of the year. The pattern of AA across parities and calving season was not linear, likely because their variability was scarcely (or not) affected by these effects. Finally, samples characterized by high IgG concentration were those presenting on average greater concentration of AA. Findings suggest that infrared spectroscopy has the potential to be used to predict certain AA and minerals, outlining the possibility of implementing on-site analyses for the evaluation of the broad-sense BC quality.
Collapse
Affiliation(s)
- A Goi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy.
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| | - A Costa
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
115
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
116
|
Hoerschinger V, Waibl F, Pomarici ND, Loeffler JR, Deane CM, Georges G, Kettenberger H, Fernández-Quintero ML, Liedl KR. PEP-Patch: Electrostatics in Protein-Protein Recognition, Specificity, and Antibody Developability. J Chem Inf Model 2023; 63:6964-6971. [PMID: 37934909 PMCID: PMC10685443 DOI: 10.1021/acs.jcim.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes. Here, we present PEP-Patch, a tool to visualize and quantify the electrostatic potential on the protein surface in terms of surface patches, denoting separated areas of the surface with a common physical property. We highlight its applicability to elucidate protease substrate specificity and antibody-antigen recognition and predict heparin column retention times of antibodies as an indicator of pharmacokinetics.
Collapse
Affiliation(s)
- Valentin
J. Hoerschinger
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Nancy D. Pomarici
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Charlotte M. Deane
- Department
of Statistics, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guy Georges
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Hubert Kettenberger
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Monica L. Fernández-Quintero
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
117
|
Polonsky K, Pupko T, Freund NT. Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1578-1588. [PMID: 37782047 DOI: 10.4049/jimmunol.2300150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab-Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab-Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab-Ag interactions and suggests areas for possible improvement.
Collapse
Affiliation(s)
- Ksenia Polonsky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
118
|
Abelson D, Barajas J, Stuart L, Kim D, Marimuthu A, Hu C, Yamamoto B, Ailor E, Whaley KJ, Vu H, Agans KN, Borisevich V, Deer DJ, Dobias NS, Woolsey C, Prasad AN, Peel JE, Lawrence WS, Cross RW, Geisbert TW, Fenton KA, Zeitlin L. Long-term Prophylaxis Against Aerosolized Marburg Virus in Nonhuman Primates With an Afucosylated Monoclonal Antibody. J Infect Dis 2023; 228:S701-S711. [PMID: 37474248 PMCID: PMC11009508 DOI: 10.1093/infdis/jiad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.
Collapse
Affiliation(s)
- Dafna Abelson
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Lauren Stuart
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | - Do Kim
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Chris Hu
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Eric Ailor
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| | | | - Hong Vu
- Integrated Biotherapeutics, Rockville, Maryland, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E Peel
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S Lawrence
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc, San Diego, California, USA
| |
Collapse
|
119
|
Frisby TS, Langmead CJ. Identifying promising sequences for protein engineering using a deep transformer protein language model. Proteins 2023; 91:1471-1486. [PMID: 37337902 DOI: 10.1002/prot.26536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Protein engineers aim to discover and design novel sequences with targeted, desirable properties. Given the near limitless size of the protein sequence landscape, it is no surprise that these desirable sequences are often a relative rarity. This makes identifying such sequences a costly and time-consuming endeavor. In this work, we show how to use a deep transformer protein language model to identify sequences that have the most promise. Specifically, we use the model's self-attention map to calculate a Promise Score that weights the relative importance of a given sequence according to predicted interactions with a specified binding partner. This Promise Score can then be used to identify strong binders worthy of further study and experimentation. We use the Promise Score within two protein engineering contexts-Nanobody (Nb) discovery and protein optimization. With Nb discovery, we show how the Promise Score provides an effective way to select lead sequences from Nb repertoires. With protein optimization, we show how to use the Promise Score to select site-specific mutagenesis experiments that identify a high percentage of improved sequences. In both cases, we also show how the self-attention map used to calculate the Promise Score can indicate which regions of a protein are involved in intermolecular interactions that drive the targeted property. Finally, we describe how to fine-tune the transformer protein language model to learn a predictive model for the targeted property, and discuss the capabilities and limitations of fine-tuning with and without knowledge transfer within the context of protein engineering.
Collapse
Affiliation(s)
- Trevor S Frisby
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
120
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
121
|
Holborough-Kerkvliet MD, Mucignato G, Moons SJ, Psomiadou V, Konada RSR, Pedowitz NJ, Pratt MR, Kissel T, Koeleman CAM, Tjokrodirijo RTN, van Veelen PA, Huizinga T, van Schie KAJ, Wuhrer M, Kohler JJ, Bonger KM, Boltje TJ, Toes REM. A photoaffinity glycan-labeling approach to investigate immunoglobulin glycan-binding partners. Glycobiology 2023; 33:732-744. [PMID: 37498177 PMCID: PMC10627247 DOI: 10.1093/glycob/cwad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies. It has been indicated that glycans expressed by these B-cell-specific molecules can modulate immune activation via glycan-binding proteins. In several autoimmune diseases, an increased prevalence of variable domain glycosylation of IgG autoantibodies has been observed. Especially, the hallmarking autoantibodies in rheumatoid arthritis, anti-citrullinated protein antibodies, carry a substantial amount of variable domain glycans. The variable domain glycans expressed by these autoantibodies are N-linked, complex-type, and α2-6 sialylated, and B-cell receptors carrying variable domain glycans have been hypothesized to promote selection of autoreactive B cells via interactions with glycan-binding proteins. Here, we use the anti-citrullinated protein antibody response as a prototype to study potential in solution and in situ B-cell receptor-variable domain glycan interactors. We employed SiaDAz, a UV-activatable sialic acid analog carrying a diazirine moiety that can form covalent bonds with proximal glycan-binding proteins. We show, using oligosaccharide engineering, that SiaDAz can be readily incorporated into variable domain glycans of both antibodies and B-cell receptors. Our data show that antibody variable domain glycans are able to interact with inhibitory receptor, CD22. Interestingly, although we did not detect this interaction on the cell surface, we captured CD79 β glycan-B-cell receptor interactions. These results show the utility of combining photoaffinity labeling and oligosaccharide engineering for identifying antibody and B-cell receptor interactions and indicate that variable domain glycans appear not to be lectin cis ligands in our tested conditions.
Collapse
Affiliation(s)
| | - Greta Mucignato
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sam J Moons
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Venetia Psomiadou
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Rohit S R Konada
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390-09185, United States
| | - Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Petrus A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thomas Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karin A J van Schie
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390-09185, United States
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Reinaldus E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
122
|
Bergonzo C, Hoopes JT, Kelman Z, Gallagher DT. Effects of glycans and hinge on dynamics in the IgG1 Fc. J Biomol Struct Dyn 2023; 42:12571-12579. [PMID: 37897185 PMCID: PMC11055941 DOI: 10.1080/07391102.2023.2270749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Christina Bergonzo
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - J. Todd Hoopes
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - Zvi Kelman
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Biomolecular Labeling Laboratory, 9600 Gudelsky Dr. Rockville, MD, 20850
| | - D. Travis Gallagher
- National Institute of Standards and Technology, 9600 Gudelsky Dr. Rockville, MD, 20850
- The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr. Rockville, MD, 20850
| |
Collapse
|
123
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
124
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
125
|
Ebrahimi SB, Hong X, Ludlow J, Doucet D, Thirumangalathu R. Studying Intermolecular Interactions in an Antibody-Drug Conjugate Through Chemical Screening and Computational Modeling. J Pharm Sci 2023; 112:2621-2628. [PMID: 37572780 DOI: 10.1016/j.xphs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Antibody-drug conjugates (ADCs) combine the selectivity of antibodies with the cytotoxicity of drug payloads to yield highly targeted and potent therapeutics. Owing to the need to chemically modify residues for attachment of the payload and their more complex structure compared to either component alone, ADCs can present additional challenges related to stability of the final drug product. Here, we report for the first time the use of high-throughput experimental screens and computational techniques to tune the conformational and colloidal behavior of a monomethyl auristatin F-based ADC. The ADC, which exhibits high opalescence with strongly attractive protein-protein interactions, is transformed into a more stable structure by experimentally traversing a library of more than ∼100 formulations. A significant reduction in turbidity and increase in diffusion interaction parameter is observed by varying properties such as pH and ionic strength. Computational modeling rationalized these changes and pointed to the presence of attractive electrostatic interactions between ADC molecules facilitated by the drug payload and histidine residues. Taken together, the experimental and computational work presented provides a general roadmap of studies to perform during ADC development to find stable formulations, while the mechanistic learnings can be applied towards the design and stabilization of other IgG1-based ADCs.
Collapse
Affiliation(s)
- Sasha B Ebrahimi
- Drug Product Development, Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States.
| | - Xuan Hong
- Computational Sciences, GlaxoSmithKline, Collegeville, PA 19426, United States
| | - James Ludlow
- Drug Product Development, Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States
| | - Dany Doucet
- Drug Product Development Packaging, Device and Design Solutions, GlaxoSmithKline, Collegeville, PA 19426, United States
| | - Renuka Thirumangalathu
- Drug Product Development, Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States
| |
Collapse
|
126
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
127
|
Wallner B. AFsample: improving multimer prediction with AlphaFold using massive sampling. Bioinformatics 2023; 39:btad573. [PMID: 37713472 PMCID: PMC10534052 DOI: 10.1093/bioinformatics/btad573] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
SUMMARY The AlphaFold2 neural network model has revolutionized structural biology with unprecedented performance. We demonstrate that by stochastically perturbing the neural network by enabling dropout at inference combined with massive sampling, it is possible to improve the quality of the generated models. We generated ∼6000 models per target compared with 25 default for AlphaFold-Multimer, with v1 and v2 multimer network models, with and without templates, and increased the number of recycles within the network. The method was benchmarked in CASP15, and compared with AlphaFold-Multimer v2 it improved the average DockQ from 0.41 to 0.55 using identical input and was ranked at the very top in the protein assembly category when compared with all other groups participating in CASP15. The simplicity of the method should facilitate the adaptation by the field, and the method should be useful for anyone interested in modeling multimeric structures, alternate conformations, or flexible structures. AVAILABILITY AND IMPLEMENTATION AFsample is available online at http://wallnerlab.org/AFsample.
Collapse
Affiliation(s)
- Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
128
|
Misorin AK, Chernyshova DO, Karbyshev MS. State-of-the-Art Approaches to Heterologous Expression of Bispecific Antibodies Targeting Solid Tumors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1215-1231. [PMID: 37770390 DOI: 10.1134/s0006297923090031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Bispecific antibodies (bsAbs) are some of the most promising biotherapeutics due to the versatility provided by their structure and functional features. bsAbs simultaneously bind two antigens or two epitopes on the same antigen. Moreover, they are capable of directing immune effector cells to cancer cells and delivering various compounds (radionuclides, toxins, and immunologic agents) to the target cells, thus offering a broad spectrum of clinical applications. Current review is focused on the technologies used in bsAb engineering, current progress and prospects of these antibodies, and selection of various heterologous expression systems for bsAb production. We also discuss the platforms development of bsAbs for the therapy of solid tumors.
Collapse
|
129
|
Tungekar AA, Ruddock LW. Design of an alternate antibody fragment format that can be produced in the cytoplasm of Escherichia coli. Sci Rep 2023; 13:14188. [PMID: 37648872 PMCID: PMC10469194 DOI: 10.1038/s41598-023-41525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
With increased accessibility and tissue penetration, smaller antibody formats such as antibody fragments (Fab) and single chain variable fragments (scFv) show potential as effective and low-cost choices to full-length antibodies. These formats derived from the modular architecture of antibodies could prove to be game changers for certain therapeutic and diagnostic applications. Microbial hosts have shown tremendous promise as production hosts for antibody fragment formats. However, low target protein yields coupled with the complexity of protein folding result in production limitations. Here, we report an alternative antibody fragment format 'FabH3' designed to overcome some key bottlenecks associated with the folding and production of Fabs. The FabH3 molecule is based on the Fab format with the constant domains replaced by engineered immunoglobulin G1 (IgG1) CH3 domains capable of heterodimerization based on the electrostatic steering approach. We show that this alternative antibody fragment format can be efficiently produced in the cytoplasm of E. coli using the catalyzed disulfide-bond formation system (CyDisCo) in a natively folded state with higher soluble yields than its Fab counterpart and a comparable binding affinity against the target antigen.
Collapse
Affiliation(s)
- Aatir A Tungekar
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Lloyd W Ruddock
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
| |
Collapse
|
130
|
Jukič M, Kralj S, Kolarič A, Bren U. Design of Tetra-Peptide Ligands of Antibody Fc Regions Using In Silico Combinatorial Library Screening. Pharmaceuticals (Basel) 2023; 16:1170. [PMID: 37631085 PMCID: PMC10459493 DOI: 10.3390/ph16081170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides, or short chains of amino-acid residues, are becoming increasingly important as active ingredients of drugs and as crucial probes and/or tools in medical, biotechnological, and pharmaceutical research. Situated at the interface between small molecules and larger macromolecular systems, they pose a difficult challenge for computational methods. We report an in silico peptide library generation and prioritization workflow using CmDock for identifying tetrapeptide ligands that bind to Fc regions of antibodies that is analogous to known in vitro recombinant peptide libraries' display and expression systems. The results of our in silico study are in accordance with existing scientific literature on in vitro peptides that bind to antibody Fc regions. In addition, we postulate an evolving in silico library design workflow that will help circumvent the combinatorial problem of in vitro comprehensive peptide libraries by focusing on peptide subunits that exhibit favorable interaction profiles in initial in silico peptide generation and testing.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Sebastjan Kralj
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Anja Kolarič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
131
|
Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon AE, Kumar S. How can we discover developable antibody-based biotherapeutics? Front Mol Biosci 2023; 10:1221626. [PMID: 37609373 PMCID: PMC10441133 DOI: 10.3389/fmolb.2023.1221626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-based biotherapeutics have emerged as a successful class of pharmaceuticals despite significant challenges and risks to their discovery and development. This review discusses the most frequently encountered hurdles in the research and development (R&D) of antibody-based biotherapeutics and proposes a conceptual framework called biopharmaceutical informatics. Our vision advocates for the syncretic use of computation and experimentation at every stage of biologic drug discovery, considering developability (manufacturability, safety, efficacy, and pharmacology) of potential drug candidates from the earliest stages of the drug discovery phase. The computational advances in recent years allow for more precise formulation of disease concepts, rapid identification, and validation of targets suitable for therapeutic intervention and discovery of potential biotherapeutics that can agonize or antagonize them. Furthermore, computational methods for de novo and epitope-specific antibody design are increasingly being developed, opening novel computationally driven opportunities for biologic drug discovery. Here, we review the opportunities and limitations of emerging computational approaches for optimizing antigens to generate robust immune responses, in silico generation of antibody sequences, discovery of potential antibody binders through virtual screening, assessment of hits, identification of lead drug candidates and their affinity maturation, and optimization for developability. The adoption of biopharmaceutical informatics across all aspects of drug discovery and development cycles should help bring affordable and effective biotherapeutics to patients more quickly.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
| | - Nandhini Rajagopal
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Priyanka Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Pankaj Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Sandeep Kumar
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
132
|
Bhandari V, Bril V. FcRN receptor antagonists in the management of myasthenia gravis. Front Neurol 2023; 14:1229112. [PMID: 37602255 PMCID: PMC10439012 DOI: 10.3389/fneur.2023.1229112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder characterized by autoantibodies specifically directed against proteins located within the postsynaptic membrane of the neuromuscular junction. These pathogenic autoantibodies can be reduced by therapies such as plasma exchange, IVIG infusions and other immunosuppressive agents. However, there are significant side effects associated with most of these therapies. Since there is a better understanding of the molecular structure and the biological properties of the neonatal Fc receptors (FcRn), it possesses an attractive profile in treating myasthenia gravis. FcRn receptors prevent the catabolism of IgG by impeding their lysosomal degradation and facilitating their extracellular release at physiological pH, consequently extending the IgG half-life. Thus, the catabolism of IgG can be enhanced by blocking the FcRn, leading to outcomes similar to those achieved through plasma exchange with no significant safety concerns. The available studies suggest that FcRn holds promise as a versatile therapeutic intervention, capable of delivering beneficial outcomes in patients with distinct characteristics and varying degrees of MG severity. Efgartigimod is already approved for the treatment of generalized MG, rozanolixizumab is under review by health authorities, and phase 3 trials of nipocalimab and batoclimab are underway. Here, we will review the available data on FcRn therapeutic agents in the management of MG.
Collapse
Affiliation(s)
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
133
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
134
|
Garcia-Villen F, Gallego I, Sainz-Ramos M, Ordoyo-Pascual J, Ruiz-Alonso S, Saenz-del-Burgo L, O’Mahony C, Pedraz JL. Stability of Monoclonal Antibodies as Solid Formulation for Auto-Injectors: A Pilot Study. Pharmaceutics 2023; 15:2049. [PMID: 37631263 PMCID: PMC10459033 DOI: 10.3390/pharmaceutics15082049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Drug adherence is a significant medical issue, often responsible for sub-optimal outcomes during the treatment of chronic diseases such as rheumatoid or psoriatic arthritis. Monoclonal antibodies (which are exclusively given parenterally) have been proven to be an effective treatment in these cases. The use of auto-injectors is an effective strategy to improve drug adherence in parenteral treatments since these pen-like devices offer less discomfort and increased user-friendliness over conventional syringe-based delivery. This study aims to investigate the feasibility of including a monoclonal antibody as a solid formulation inside an auto-injector pen. Specifically, the objective was to evaluate the drug stability after a concentration (to reduce the amount of solvent and space needed) and freeze-drying procedure. A preliminary screening of excipients to improve stability was also performed. The nano-DSC results showed that mannitol improved the stability of the concentrated, freeze-dried antibody in comparison to its counterpart without it. However, a small instability of the CH2 domain was still found for mannitol samples, which will warrant further investigation. The present results serve as a stepping stone towards advancing future drug delivery systems that will ultimately improve the patient experience and associated drug adherence.
Collapse
Affiliation(s)
- Fatima Garcia-Villen
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jorge Ordoyo-Pascual
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Conor O’Mahony
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
135
|
Dai J, Ji C. In-depth size and charge variants characterization of monoclonal antibody with native mass spectrometry. Anal Chim Acta 2023; 1265:341360. [PMID: 37230578 DOI: 10.1016/j.aca.2023.341360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Although the reversed-phase liquid chromatography (RPLC) is the most used separation front for mass spectrometry, many other separation modes are critical for enabling characterization of the protein therapeutics. Specifically, chromatographic separations under native conditions, such as those based on size exclusion chromatography (SEC) and ion-exchange chromatography (IEX), are used for characterizing important biophysical properties of protein variants in drug substance and drug product. Because most native state separation modes use non-volatile buffers with high salt concentration, optical detection has been traditionally used. However, there is an increasing need to understand and identify the optical underlying peaks by mass spectrometry for structure elucidation. For size variant separation by SEC, the native MS helps to understand the nature of the high molecular weight species, as well as clipping sites for low molecular weight fragments. For charge variant separation by IEX, native MS can reveal the post-translational modifications or other important factors contributing to charge heterogeneity at the intact level. Here, we demonstrate the power of native MS by direct coupling of SEC and IEX eluent to a time-of-flight mass spectrometer to characterize bevacizumab and NISTmAb. Our studies exemplify the effectiveness of native SEC-MS for characterizing bevacizumab's high molecular weight species at less than 0.3% (based on SEC/UV peak area%) and analyzing the fragment pathway with single amino acid difference for its low molecular weight species at less than 0.05%. Good IEX charge variant separation was obtained with consistent UV and MS profiles. The identity of separated acidic and basic variants were elucidated by native MS at intact level. We successfully differentiated several charge variants including glycoform variants that have not been reported before. In addition, native MS allowed identification of higher molecular weight species as late eluted variants. Overall, the SEC and IEX separation combined with high resolution and high sensitivity native MS, which is significantly different from the traditional RPLC-MS workflows, can be an effective tool that offers valuable insights for us to understand protein therapeutics at native state.
Collapse
Affiliation(s)
- Jun Dai
- NovaBioAssays LLC, 52 Dragon Ct, Suite 3B, Woburn, MA, 01801, USA.
| | - Chengjie Ji
- NovaBioAssays LLC, 52 Dragon Ct, Suite 3B, Woburn, MA, 01801, USA
| |
Collapse
|
136
|
Olsen TH, Abanades B, Moal IH, Deane CM. KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies. Sci Rep 2023; 13:11612. [PMID: 37463925 DOI: 10.1038/s41598-023-38108-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the [Formula: see text]2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch .
Collapse
Affiliation(s)
- Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Brennan Abanades
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Iain H Moal
- GSK Medicines Research Centre, GlaxoSmithKline plc, Stevenage, SG1 2NY, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
- Exscientia plc, Oxford, OX4 4GE, UK.
| |
Collapse
|
137
|
De Pauw T, De Mey L, Debacker JM, Raes G, Van Ginderachter JA, De Groof TWM, Devoogdt N. Current status and future expectations of nanobodies in oncology trials. Expert Opin Investig Drugs 2023; 32:705-721. [PMID: 37638538 DOI: 10.1080/13543784.2023.2249814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Monoclonal antibodies have revolutionized personalized medicine for cancer in recent decades. Despite their broad application in oncology, their large size and complexity may interfere with successful tumor targeting for certain applications of cancer diagnosis and therapy. Nanobodies have unique structural and pharmacological features compared to monoclonal antibodies and have successfully been used as complementary anti-cancer diagnostic and/or therapeutic tools. AREAS COVERED Here, an overview is given of the nanobody-based diagnostics and therapeutics that have been or are currently being tested in oncological clinical trials. Furthermore, preclinical developments, which are likely to be translated into the clinic in the near future, are highlighted. EXPERT OPINION Overall, the presented studies show the application potential of nanobodies in the field of oncology, making it likely that more nanobodies will be clinically approved in the upcoming future.
Collapse
Affiliation(s)
- Tessa De Pauw
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn De Mey
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Jens M Debacker
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Geert Raes
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
138
|
Cruz Amaya J, Walcheck B, Smith-Gagen J, Lombardi VC, Hudig D. Detection of Antibody-Dependent Cell-Mediated Cytotoxicity-Supporting Antibodies by NK-92-CD16A Cell Externalization of CD107a: Recognition of Antibody Afucosylation and Assay Optimization. Antibodies (Basel) 2023; 12:44. [PMID: 37489366 PMCID: PMC10366760 DOI: 10.3390/antib12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) lymphocytes eliminates cells infected with viruses. Anti-viral ADCC requires three components: (1) antibody; (2) effector lymphocytes with the Fc-IgG receptor CD16A; and (3) viral proteins in infected cell membranes. Fc-afucosylated antibodies bind with greater affinity to CD16A than fucosylated antibodies; individuals' variation in afucosylation contributes to differences in ADCC. Current assays for afucosylated antibodies involve expensive methods. We report an improved bioassay for antibodies that supports ADCC, which encompasses afucosylation. This assay utilizes the externalization of CD107a by NK-92-CD16A cells after antibody recognition. We used anti-CD20 monoclonal antibodies, GA101 WT or glycoengineered (GE), 10% or ~50% afucosylated, and CD20-positive Raji target cells. CD107a increased detection 7-fold compared to flow cytometry to detect Raji-bound antibodies. WT and GE antibody effective concentrations (EC50s) for CD107a externalization differed by 20-fold, with afucosylated GA101-GE more detectable. The EC50s for CD107a externalization vs. 51Cr cell death were similar for NK-92-CD16A and blood NK cells. Notably, the % CD107a-positive cells were negatively correlated with dead Raji cells and were nearly undetectable at high NK:Raji ratios required for cytotoxicity. This bioassay is very sensitive and adaptable to assess anti-viral antibodies but unsuitable as a surrogate assay to monitor cell death after ADCC.
Collapse
Affiliation(s)
- Judith Cruz Amaya
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Bruce Walcheck
- Department of Veterinary and Biological Sciences, Center for Immunology and Masonic Cancer Center, University of Minnesota, 295J AS/VM Building, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Dorothy Hudig
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
139
|
Hernández-Bello J, Sierra-García-de-Quevedo JJ, Morales-Núñez JJ, Santoscoy-Ascencio G, Díaz-Pérez SA, Gutiérrez-Brito JA, Muñoz-Valle JF. BNT162b2 Vaccination after SARS-CoV-2 Infection Changes the Dynamics of Total and Neutralizing Antibodies against SARS-CoV-2: A 6-Month Prospective Cohort Study. Vaccines (Basel) 2023; 11:1127. [PMID: 37376516 DOI: 10.3390/vaccines11061127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to analyze the dynamics, duration, and production of total and neutralizing antibodies induced by the BNT162b2 vaccine and the possible effect of gender and prior SARS-CoV-2 infection on the generation of these antibodies. Total antibodies were quantified via chemiluminescent microparticle immunoassay (CMIA), and neutralizing antibodies were quantified using the cPass SARS-CoV-2 kit. Individuals with a history of COVID-19 produced twice as many antibodies than vaccinated individuals without prior SARS-CoV-2 infection, with an exponential increase observed in just six days. In those without a COVID-19 history, similar antibody production was reached 45 days after vaccination. Although total antibodies decline considerably in the first two months, the neutralizing antibodies and their inhibitory capacity (>96%) persist up to 6 months after the first dose. There was a tendency for higher total antibodies in women than men, but not at the inhibition capacity level. We suggest that the decline in total antibodies should not be considered as an indicator of loss of protective immunity because most antibodies decay two months after the second dose, but neutralizing antibodies remain constant for at least six months. Therefore, these latter antibodies could be better indicators for estimating the time-dependent vaccine efficacy.
Collapse
Affiliation(s)
- Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | | | - José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | | | - Saúl Alberto Díaz-Pérez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesús Alberto Gutiérrez-Brito
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
140
|
Coulet M, Lachkar S, Leduc M, Trombe M, Gouveia Z, Perez F, Kepp O, Kroemer G, Basmaciogullari S. Identification of Small Molecules Affecting the Secretion of Therapeutic Antibodies with the Retention Using Selective Hook (RUSH) System. Cells 2023; 12:1642. [PMID: 37371112 DOI: 10.3390/cells12121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Sylvie Lachkar
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | | | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | | |
Collapse
|
141
|
Stark MC, Joubert AM, Visagie MH. Molecular Farming of Pembrolizumab and Nivolumab. Int J Mol Sci 2023; 24:10045. [PMID: 37373192 DOI: 10.3390/ijms241210045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a class of immunotherapy agents capable of alleviating the immunosuppressive effects exerted by tumorigenic cells. The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most ubiquitous checkpoints utilized by tumorigenic cells for immune evasion by inducing apoptosis and inhibiting the proliferation and cytokine production of T lymphocytes. Currently, the most frequently used ICIs targeting the PD-1/PD-L1 checkpoint include monoclonal antibodies (mAbs) pembrolizumab and nivolumab that bind to PD-1 on T lymphocytes and inhibit interaction with PD-L1 on tumorigenic cells. However, pembrolizumab and nivolumab are costly, and thus their accessibility is limited in low- and middle-income countries (LMICs). Therefore, it is essential to develop novel biomanufacturing platforms capable of reducing the cost of these two therapies. Molecular farming is one such platform utilizing plants for mAb production, and it has been demonstrated to be a rapid, low-cost, and scalable platform that can be potentially implemented in LMICs to diminish the exorbitant prices, ultimately leading to a significant reduction in cancer-related mortalities within these countries.
Collapse
Affiliation(s)
- Michael C Stark
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Anna M Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Michelle H Visagie
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| |
Collapse
|
142
|
Abbood A. Optimization of the Imaged cIEF Method for Monitoring the Charge Heterogeneity of Antibody-Maytansine Conjugate. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:8150143. [PMID: 37305029 PMCID: PMC10256444 DOI: 10.1155/2023/8150143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop a whole-column imaging-detection capillary isoelectric focusing (icIEF) method for the analytical characterization of charge heterogeneity of a novel humanized anti-EphA2 antibody conjugated to a maytansine derivative. In addition to focusing time, sample composition was optimized: pH range, percent of carrier ampholytes, conjugated antibody concentration, and urea concentration. A good separation of charge isoforms was obtained with 4% carrier ampholytes of a large (3-10) and narrow pH range (8-10.5) (1 : 1 ratio), conjugated antibody concentration (0.3-1 mg/ml) with a good linearity (R2: 0.9905), 2 M of urea concentration, and 12 minute for focusing. The optimized icIEF method demonstrated a good interday repeatability with RSD values: <1% (pI), <8% (% peak area), and 7% (total peak areas). The optimized icIEF was useful as an analytical characterization tool to assess the charged isoform profile of a discovery batch of the studied maytansinoid-antibody conjugate in comparison to its naked antibody. It exhibited a large pI range (7.5-9.0), while its naked antibody showed a narrow pI range (8.9-9.0). In the discovery batch of maytansinoid-antibody conjugate, 2% of charge isoforms had the same pI as the pI of naked antibody isoforms.
Collapse
Affiliation(s)
- Ayat Abbood
- Department of Medicinal Chemistry and Quality Control, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| |
Collapse
|
143
|
Choudhary R, Singh KS, Bisht S, Kumar S, Mohanty AK, Grover S, Kaushik JK. Host-microbe interaction and pathogen exclusion mediated by an aggregation-prone surface layer protein of Lactobacillus helveticus. Int J Biol Macromol 2023:125146. [PMID: 37271267 DOI: 10.1016/j.ijbiomac.2023.125146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.
Collapse
Affiliation(s)
- Ritu Choudhary
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Kumar Siddharth Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sonu Bisht
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sunita Grover
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India).
| |
Collapse
|
144
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
145
|
Hartung J, McCann N, Doe E, Hayth H, Benkato K, Johnson MB, Viard M, Afonin KA, Khisamutdinov EF. Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25300-25312. [PMID: 37204867 PMCID: PMC10331730 DOI: 10.1021/acsami.3c01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time. Three distinct RNA aptamers─malachite green (MG), broccoli, and mango─were embedded within NANPs as reporter domains to confirm shape transitions. While MG "lights up" within the square, pentagonal, and hexagonal constructs, the broccoli is activated only upon formation of pentagon and hexagon NANPs, and mango reports only the presence of hexagons. Moreover, the designed RNA fluorogenic platform can be employed to construct a logic gate that performs an AND operation with three single-stranded RNA inputs by implementing a non-sequential polygon transformation approach. Importantly, the polygonal scaffolds displayed promising potential as drug delivery agents and biosensors. All polygons exhibited effective cellular internalization followed by specific gene silencing when decorated with fluorophores and RNAi inducers. This work offers a new perspective for the design of toehold-mediated shape-switching nanodevices to activate different light-up aptamers for the development of biosensors, logic gates, and therapeutic devices in the nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Jordan Hartung
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Nathan McCann
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Kheiria Benkato
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
- Basic Science Program, Leidos Biomedical Research Inc. National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
146
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
147
|
Nguyen SN, Le SH, Ivanov DG, Ivetic N, Nazy I, Kaltashov IA. Structural characterization of a pathogenic antibody underlying vaccine-induced immune thrombotic thrombocytopenia (VITT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542636. [PMID: 37398203 PMCID: PMC10312456 DOI: 10.1101/2023.05.28.542636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but extremely dangerous side effect that has been reported for several adenoviral (Ad)-vectored COVID-19 vaccines. VITT pathology had been linked to production of antibodies that recognize platelet factor 4 (PF4), an endogenous chemokine. In this work we characterize anti-PF4 antibodies obtained from a VITT patient's blood. Intact-mass MS measurements indicate that a significant fraction of this ensemble is comprised of antibodies representing a limited number of clones. MS analysis of large antibody fragments (the light chain, as well as the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire, and reveals the presence of a fully mature complex biantennary N-glycan within its Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS analysis were used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to IgG2 subclass and verify that the light chain belongs to the λ-type. Incorporation of enzymatic de- N -glycosylation into the peptide mapping routine allows the N -glycan in the Fab region of the antibody to be localized to the framework 3 region of the V H domain. This novel N -glycosylation site (absent in the germline sequence) is a result of a single mutation giving rise to an NDT motif in the antibody sequence. Peptide mapping also provides a wealth of information on lower-abundance proteolytic fragments derived from the polyclonal component of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1 through IgG4) and both types of the light chain (λ and κ). The structural information reported in this work will be indispensable for understanding the molecular mechanism of VITT pathogenesis.
Collapse
|
148
|
Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Commun Biol 2023; 6:575. [PMID: 37248282 DOI: 10.1038/s42003-023-04927-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art accuracy while being far faster than AlphaFold2. For example, on a benchmark of 34 recently solved antibodies, ABodyBuilder2 predicts CDR-H3 loops with an RMSD of 2.81Å, a 0.09Å improvement over AlphaFold-Multimer, while being over a hundred times faster. Similar results are also achieved for nanobodies, (NanoBodyBuilder2 predicts CDR-H3 loops with an average RMSD of 2.89Å, a 0.55Å improvement over AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder also gives an error estimate for every residue in its final prediction. ImmuneBuilder is made freely available, both to download ( https://github.com/oxpig/ImmuneBuilder ) and to use via our webserver ( http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred ). We also make available structural models for ~150 thousand non-redundant paired antibody sequences ( https://doi.org/10.5281/zenodo.7258553 ).
Collapse
Affiliation(s)
| | - Wing Ki Wong
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fergus Boyles
- Department of Statistics, University of Oxford, Oxford, UK
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexander Bujotzek
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | |
Collapse
|
149
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
150
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|