101
|
Korodi M, Horváth I, Rákosi K, Jenei Z, Hudák G, Kákes M, Dallos-Fejér K, Simai E, Páll O, Staver N, Briciu V, Lupșe M, Flonta M, Almaș A, Birlutiu V, Daniela Lupu C, Magdalena Ghibu A, Pianoschi D, Terza LM, Fejer SN. Longitudinal determination of BNT162b2 vaccine induced strongly binding SARS-CoV-2 IgG antibodies in a cohort of Romanian healthcare workers. Vaccine 2022; 40:5445-5451. [PMID: 35931634 PMCID: PMC9339977 DOI: 10.1016/j.vaccine.2022.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 12/09/2022]
Abstract
Mass vaccination against the disease caused by the novel coronavirus (COVID-19) was a crucial step in slowing the spread of SARS-CoV-2 in 2021. Even in the face of new variants, it still remains extremely important for reducing hospitalizations and COVID-19 deaths. In order to better understand the short- and long-term dynamics of humoral immune response, we present a longitudinal analysis of post-vaccination IgG levels in a cohort of 166 Romanian healthcare workers vaccinated with BNT162b2 with weekly follow-up until 35 days past the first dose and monthly follow-up up to 6 months post-vaccination. A subset of the patients continued with follow-up after 6 months and either received a booster dose or got infected during the Delta wave in Romania. Tests were carried out on 1694 samples using a CE-marked IgG ELISA assay developed in-house, containing S1 and N antigens of the wild type virus. Participants infected with SARS-CoV-2 before vaccination mount a quick immune response, reaching peak IgG levels two weeks after the first dose, while IgG levels of previously uninfected participants mount gradually, increasing abruptly after the second dose. Overall higher IgG levels are maintained for the previously infected group throughout the six month primary observation period (e.g. 36–65 days after the first dose, the median value in the previously infected group is 5.29 AU/ml, versus 3.58 AU/ml in the infection naïve group, p less than 0.001). The decrease of IgG levels is gradual, with lower median values in the infection naïve cohort even 7–8 months after vaccination, compared to the previously infected cohort (0.7 AU/ml versus 1.29 AU/ml, p = 0.006). Administration of a booster dose yielded higher median IgG antibody levels than post second dose in the infection naïve group and comparable levels in the previously infected group.
Collapse
|
102
|
Jutel M, Torres MJ, Palomares O, Akdis CA, Eiwegger T, Untersmayr E, Barber D, Zemelka-Wiacek M, Kosowska A, Palmer E, Vieths S, Mahler V, Canonica WG, Nadeau K, Shamji MH, Agache I. COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals-EAACI recommendations. Allergy 2022; 77:2313-2336. [PMID: 35147230 PMCID: PMC9111382 DOI: 10.1111/all.15252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Maria J Torres
- Allergy Unit, Regional University Hospital of Malaga, IBIMA-UMA-ARADyAL-BIONAND, Malaga, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Thomas Eiwegger
- Division of Immunology and Allergy, The Department of 13 Pediatrics, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Domingo Barber
- Facultad de Medicina, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Elizabeth Palmer
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Walter G Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Personalized Medicine Asthma, & Allergy Center-IRCCS Humanitas Research Hospital, Milan, Italy
| | - Kari Nadeau
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford, California, USA
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | |
Collapse
|
103
|
SARS-CoV-2 Spike Protein Vaccine-Induced Immune Imprinting Reduces Nucleocapsid Protein Antibody Response in SARS-CoV-2 Infection. J Immunol Res 2022; 2022:8287087. [PMID: 35935586 PMCID: PMC9355782 DOI: 10.1155/2022/8287087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immune imprinting or original antigenic sin (OAS) is the process by which the humoral memory response to an antigen can inhibit the response to new epitopes of that antigen originating from a second encounter with the pathogen. Given the situation of the COVID-19 pandemic, multiple vaccines have been developed against SARS-CoV-2 infection. These vaccines are directed to the spike protein (S protein) of the original variant of Wuhan D614G. Vaccine memory immune response against S protein in noninfected subjects could inhibit, through the OAS mechanism, the response to new epitopes of SARS-CoV-2 after infection. The present study analyzes whether the memory antibody B cell response generated by mRNA vaccines against S protein can inhibit the primary antibody immune response to other SARS-CoV-2 antigens, such as nucleocapsid protein (N protein). SARS-CoV-2 primary infection in vaccinated healthcare workers (HCWs) produced significantly lower titers of anti-N antibodies than that in nonvaccinated HCWs: 5.7 (IQR 2.3-15.2) versus 12.2 (IQR 4.2-32.0), respectively (p = 0.005). Therefore, spike protein vaccine-induced immune imprinting (original antigenic sin) reduces N protein antibody response.
Collapse
|
104
|
Fernández-Lázaro D, Garrosa M, Sánchez-Serrano N, Garrosa E, Jiménez-Callejo E, Pardo Yanguas MD, Mielgo-Ayuso J, Seco-Calvo J. Effectiveness of Comirnaty ® Vaccine and Correlates of Immunogenicity and Adverse Reactions: A Single-Center Prospective Case Series Study. Vaccines (Basel) 2022; 10:1170. [PMID: 35893819 PMCID: PMC9330441 DOI: 10.3390/vaccines10081170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The literature suggests that real-world data on the effectiveness and safety of the BNT162b2 vaccine depend on the characteristics of the vaccinated volunteers. The purpose of this study was to evaluate antibody responses and kinetics, established association with sociodemographic and clinical characteristics, and adverse reactions after complete vaccination with the BNT162b2 vaccine. A single-center prospective case series study was conducted with 112 eligible volunteers who were institutionalized elderly and health care workers with had a negative anti-SARS-CoV-2 IgG test prior to receiving the first dose of vaccine. At least one serological antibody test after each dose of vaccine was performed. Volunteers with a positive SARS-CoV-2 PCR test before vaccination were excluded. A chemiluminescent immunoassay anti-S1 antibody assay performed a serological evaluation. Both vaccine doses elicited positive IgG antibodies 3799.0 ± 2503.0 AU/mL and 8212.0 ± 4731.0 AU/mL after 20 days of the first and second doses of BNT162b2, respectively. Comirnaty® vaccine induced an immune response with antibody production against SARS-CoV-2 in 100% of participants, regardless of age (Spearman rho = −0.10, p-value = 0.312), body mass index (Spearman rho = 0.05, p-value = 0.640), blood group first dose (p-value for Kruskal−Wallis test = 0.093) and second dose (p-value for Kruskal−Wallis test = 0. 268), number of drugs (Spearman rho = −0.07, p-value = 0.490), and number of chronic diseases first dose (p-value for Kruskal−Wallis test = 0.632) and second dose (p-value for Kruskal−Wallis test = 0.510). IgG antibodies to SARS-CoV-2 were intensely elevated after the second administration of the BNT162b2 vaccine. The higher the titer of anti-peptide IgG antibodies generated after the first dose of vaccine, the higher the titer generated by the second dose of vaccine (Spearman rho = 0.86, p-value < 0.001) and the total antibody titer (Spearman rho = 0.93, p-value < 0.001). Furthermore, no serious adverse effects were reported among participants, although mild to moderate adverse effects (local or systemic) were reported after both doses of the BNT162b2 vaccine, being more frequent after the first dose of the vaccine. No participants showed a positive PCR. The BNT162b2 vaccine induces a robust and rapid antibody response regardless of participant characteristics. The second dose might be especially important because of the increased immunogenicity it produces and the possible temporal distancing of the interval between doses. In general, the vaccines were well tolerated.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Manuel Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, and Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| | - Nerea Sánchez-Serrano
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
- Microbiology Unit of Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42003 Soria, Spain
| | - Evelina Garrosa
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, and Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| | - Elena Jiménez-Callejo
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
- Preventive Medicine Service of the Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42003 Soria, Spain
| | - María Dolores Pardo Yanguas
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
- Emergency Medicine Service of the Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42003 Soria, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus of Vegazana, University of Leon, 24071 Leon, Spain
- Psychology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| |
Collapse
|
105
|
Neto DFDL, Fonseca V, Jesus R, Dutra LH, Portela LMDO, Freitas C, Fillizola E, Soares B, Abreu ALD, Twiari S, Azevedo V, Goes-Neto A, de Medeiros AC, Lopes NP, Zanotto PMDA, Kato RB. Molecular dynamics simulations of the SARS-CoV-2 Spike protein and variants of concern: structural evidence for convergent adaptive evolution. J Biomol Struct Dyn 2022:1-13. [PMID: 35848330 DOI: 10.1080/07391102.2022.2097955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Spike protein's structure of the SARS-CoV-2 provides a unique opportunity to consider perturbations at the atomic level. We used the cryo-electron microscopy structure of the open conformation of the Spike protein to assess the impact of the mutations observed in the variants of concern at the molecular level. Molecular dynamics were subsequently performed with both the wt and the mutated forms to compare the flexibility and variation data for each residue of the three-dimensional fluctuations in the region associated with each alpha carbon. Additionally, protein-protein docking was used to investigate the interaction of each mutated profile with the ACE-2 receptor. After the molecular dynamics, the results show that the mutations increased the stability of the trimeric protein, with greater stability observed in the Gamma variant harboring the 10 characteristic mutations. The results of molecular dynamics, as shown by RMSF demonstrated for the residues that comprise the binding domain receptor (RBD), exhibited a reduction in flexibility, which was more pronounced in the Gamma variant. Finally, protein-protein docking experiments revealed an increase in the number of hydrophobic interactions and hydrogen bonds in the Gamma variant against the ACE-2 receptor, as opposed to the other variants. Taken together, these in silico experiments suggest that the evolution of the mutations favored the increased stability of Spike protein while potentially improving its interaction with the ACE-2 receptor, which in turn may indicate putative structural outcomes of the selection of these mutations in the convergent adaptive evolution as it has been observed for SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Ferreira de Lima Neto
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Vagner Fonseca
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa.,Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ronaldo Jesus
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil.,Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Hermes Dutra
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Layssa Miranda de Oliveria Portela
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Carla Freitas
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Eduardo Fillizola
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Breno Soares
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - André Luiz de Abreu
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Sandeep Twiari
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Goes-Neto
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arnaldo Correia de Medeiros
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Marinho de Andrade Zanotto
- Laboratório de Evolução Molecular e Bioinformática (LEMB), Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Bentes Kato
- Coordenação-Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil.,Laboratório de Biologia Molecular e Computacional de Fungos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
106
|
Lewis C, Gupta A, Gupta NK. An Atypical Case of Prolonged COVID-19 Infection. Cureus 2022; 14:e26921. [PMID: 35983394 PMCID: PMC9377411 DOI: 10.7759/cureus.26921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Immunocompromised patients with COVID-19 can have prolonged disease courses that require escalation in care to inpatient or ICU settings. We report a case of a prolonged, active COVID-19 infection in an immunocompromised 61-year-old female with a history of non-Hodgkin’s lymphoma. During her hospitalization, her cycle thresholds (CT) continued to worsen despite clinical improvement. We compared our patient’s course and CTs to other reported cases in immunocompromised patients, investigating the efficacy of CTs and their use in evaluating disease progression and severity. RT-PCR tests targeting specific types of replicative viral RNA may have more utility in assessing disease severity and infectivity in immunocompromised patients. Our patient’s disease course, similar to other reported cases, illustrates the need for improved treatment protocols and infection prevention for the immunocompromised population against SARS-CoV-2.
Collapse
|
107
|
Gil-Manso S, Carbonell D, Pérez-Fernández VA, López-Esteban R, Alonso R, Muñoz P, Ochando J, Sánchez-Arcilla I, Bellón JM, Correa-Rocha R, Pion M. Cellular and Humoral Responses Follow-up for 8 Months after Vaccination with mRNA-Based Anti-SARS-CoV-2 Vaccines. Biomedicines 2022; 10:biomedicines10071676. [PMID: 35884980 PMCID: PMC9312914 DOI: 10.3390/biomedicines10071676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination against SARS-CoV-2 has become the main method of reducing mortality and severity of COVID-19. This work aims to study the evolution of the cellular and humoral responses conferred by two mRNA vaccines after two doses against SARS-CoV-2. On days 30 and 240 after the second dose of both vaccines, the anti-S antibodies in plasma were evaluated from 82 volunteers vaccinated with BNT162b2 and 68 vaccinated with mRNA-1273. Peripheral blood was stimulated with peptides encompassing the entire SARS-CoV-2 Spike sequence. IgG Anti-S antibodies (humoral) were quantified on plasma, and inflammatory cytokines (cellular) were measured after stimulation. We observed a higher response (both humoral and cellular) with the mRNA-1273 vaccine. Stratifying by age and gender, differences between vaccines were observed, especially in women under 48 and men over 48 years old. Therefore, this work could help to set up a vaccination strategy that could be applied to confer maximum immunity.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Advanced Immunoregulation Group, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (S.G.-M.); (D.C.); (V.A.P.-F.)
| | - Diego Carbonell
- Advanced Immunoregulation Group, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (S.G.-M.); (D.C.); (V.A.P.-F.)
- Department of Hematology, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Advanced Immunoregulation Group, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (S.G.-M.); (D.C.); (V.A.P.-F.)
| | - Rocío López-Esteban
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (R.L.-E.); (R.C.-R.)
| | - Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases, Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (R.A.); (P.M.)
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (R.A.); (P.M.)
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jordi Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- National Centre of Microbiology, Carlos III Health Institute, 28222 Madrid, Spain
| | - Ignacio Sánchez-Arcilla
- Department of Occupational Risk Prevention, Gregorio Marañón University General Hospital, 28009 Madrid, Spain;
| | - Jose M Bellón
- Department of Biostatistics, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain;
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (R.L.-E.); (R.C.-R.)
| | - Marjorie Pion
- Advanced Immunoregulation Group, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, 28009 Madrid, Spain; (S.G.-M.); (D.C.); (V.A.P.-F.)
- Correspondence: ; Tel.: +34-664-43-44-02
| |
Collapse
|
108
|
Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. COMPUTATION 2022. [DOI: 10.3390/computation10070117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.
Collapse
|
109
|
Post ChAdOx1 nCoV-19 vaccination frontal lobe syndrome. Neurol Sci 2022; 43:4099-4101. [PMID: 35461470 PMCID: PMC9034769 DOI: 10.1007/s10072-022-06086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022]
|
110
|
Ripoll M, Bernard MC, Vaure C, Bazin E, Commandeur S, Perkov V, Lemdani K, Nicolaï MC, Bonifassi P, Kichler A, Frisch B, Haensler J. An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials 2022; 286:121570. [PMID: 35576809 PMCID: PMC9078044 DOI: 10.1016/j.biomaterials.2022.121570] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.
Collapse
Affiliation(s)
- Manon Ripoll
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | - Céline Vaure
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Emilie Bazin
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Sylvie Commandeur
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Vladimir Perkov
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Katia Lemdani
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Neovacs, 3 impasse Reille, 75014 Paris, France.
| | - Marie-Claire Nicolaï
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Patrick Bonifassi
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Benoit Frisch
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Jean Haensler
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| |
Collapse
|
111
|
Zamfir MA, Moraru L, Dobrea C, Scheau AE, Iacob S, Moldovan C, Scheau C, Caruntu C, Caruntu A. Hematologic Malignancies Diagnosed in the Context of the mRNA COVID-19 Vaccination Campaign: A Report of Two Cases. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:874. [PMID: 35888593 PMCID: PMC9316988 DOI: 10.3390/medicina58070874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND During the last two years, the COVID-19 pandemic led to millions of disease-related deaths worldwide. The efforts of the scientific community facing this global challenge resulted in outstanding achievements. Thus, within one year, new mRNA-based vaccines against SARS-CoV-2 viral infection were released, providing highly efficient protection and showing a very good safety profile in the general population. However, clinical data collection after vaccination is a continuous process for the long-term safety of any new medical product. The aim of our paper is to present two cases of hematological malignancies: diffuse large B-cell non-Hodgkin lymphoma and T/NK-cell lymphoma, diagnosed shortly after the administration of the mRNA COVID-19 vaccine. METHODS AND RESULTS Case 1: A female patient was admitted with a suspicious cervical mass that emerged within one week after the administration of second dose of the BNT162b2 COVID-19 vaccine. Surgical removal followed by pathology assessment of the specimen confirmed the diagnosis of diffuse large B-cell non-Hodgkin lymphoma. Case 2: A male patient was admitted with multiple ulcerative oral lesions arising on the third day after the initial dose of the BNT162b2 COVID-19 vaccine. These lesions had a progressive character and during the following months were complicated with repetitive episodes of heavy oral bleeding, requiring blood transfusions. The incisional biopsy of the lesions and pathological assessment of the specimens confirmed the diagnosis of T/NK-cell lymphoma. CONCLUSIONS The safety profile of the mRNA-based vaccines is an undeniable fact. In most cases, suspicions of potentially aggressive side effects were ruled out, proving to be transient post-vaccine reactions. Clinicians should remain alert to report any potentially aggressive manifestations emerging in the context of mRNA COVID-19 vaccination, such as these cases of hematological malignancies, in order to promote additional investigations on the particular mechanisms of action of COVID-19 vaccines and to provide the best medical care to the patients.
Collapse
Affiliation(s)
- Maria-Alexandra Zamfir
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (M.-A.Z.); (L.M.); (A.C.)
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (M.-A.Z.); (L.M.); (A.C.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Camelia Dobrea
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania;
- Department of Hematology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Simona Iacob
- Pathology Laboratory Personal Genetics, 010987 Bucharest, Romania;
| | - Cosmin Moldovan
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania;
- General Surgery Ward, Witting Clinical Hospital, 010243 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (M.-A.Z.); (L.M.); (A.C.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
112
|
Bellamkonda N, Lambe UP, Sawant S, Nandi SS, Chakraborty C, Shukla D. Immune Response to SARS-CoV-2 Vaccines. Biomedicines 2022; 10:1464. [PMID: 35884770 PMCID: PMC9312515 DOI: 10.3390/biomedicines10071464] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19 vaccines have been developed to confer immunity against the SARS-CoV-2 infection. Prior to the pandemic of COVID-19 which started in March 2020, there was a well-established understanding about the structure and pathogenesis of previously known Coronaviruses from the SARS and MERS outbreaks. In addition to this, vaccines for various Coronaviruses were available for veterinary use. This knowledge supported the creation of various vaccine platforms for SARS-CoV-2. Before COVID-19 there are no reports of a vaccine being developed in under a year and no vaccine for preventing coronavirus infection in humans had ever been developed. Approximately nine different technologies are being researched and developed at various levels in order to design an effective COVID-19 vaccine. As the spike protein of SARS-CoV-2 is responsible for generating substantial adaptive immune response, mostly all the vaccine candidates have been targeting the whole spike protein or epitopes of spike protein as a vaccine candidate. In this review, we have compiled the immune response to SARS-CoV-2 infection and followed by the mechanism of action of various vaccine platforms such as mRNA vaccines, Adenoviral vectored vaccine, inactivated virus vaccines and subunit vaccines in the market. In the end we have also summarized the various adjuvants used in the COVID-19 vaccine formulation.
Collapse
Affiliation(s)
- Navya Bellamkonda
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | | | - Sonali Sawant
- ICMR-NIV, Mumbai Unit, A. D. Road, Parel, Mumbai 400012, India; (U.P.L.); (S.S.)
| | - Shyam Sundar Nandi
- ICMR-NIV, Mumbai Unit, A. D. Road, Parel, Mumbai 400012, India; (U.P.L.); (S.S.)
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
113
|
Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022; 13:889643. [PMID: 35722303 PMCID: PMC9201468 DOI: 10.3389/fmicb.2022.889643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics’ historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Andrea Torneri
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia G Seabra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Pieter J K Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| |
Collapse
|
114
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
115
|
Calcoen B, Callewaert N, Vandenbulcke A, Kerstens W, Imbrechts M, Vercruysse T, Dallmeier K, Van Weyenbergh J, Maes P, Bossuyt X, Zapf D, Dieckmann K, Callebaut K, Thibaut HJ, Vanhoorelbeke K, De Meyer SF, Maes W, Geukens N. High Incidence of SARS-CoV-2 Variant of Concern Breakthrough Infections Despite Residual Humoral and Cellular Immunity Induced by BNT162b2 Vaccination in Healthcare Workers: A Long-Term Follow-Up Study in Belgium. Viruses 2022; 14:1257. [PMID: 35746728 PMCID: PMC9228150 DOI: 10.3390/v14061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
To mitigate the massive COVID-19 burden caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccination campaigns were initiated. We performed a single-center observational trial to monitor the mid- (3 months) and long-term (10 months) adaptive immune response and to document breakthrough infections (BTI) in healthcare workers (n = 84) upon BNT162b2 vaccination in a real-world setting. Firstly, serology was determined through immunoassays. Secondly, antibody functionality was analyzed via in vitro binding inhibition and pseudovirus neutralization and circulating receptor-binding domain (RBD)-specific B cells were assessed. Moreover, the induction of SARS-CoV-2-specific T cells was investigated by an interferon-γ release assay combined with flowcytometric profiling of activated CD4+ and CD8+ T cells. Within individuals that did not experience BTI (n = 62), vaccine-induced humoral and cellular immune responses were not correlated. Interestingly, waning over time was more pronounced within humoral compared to cellular immunity. In particular, 45 of these 62 subjects no longer displayed functional neutralization against the delta variant of concern (VoC) at long-term follow-up. Noteworthily, we reported a high incidence of symptomatic BTI cases (17.11%) caused by alpha and delta VoCs, although vaccine-induced immunity was only slightly reduced compared to subjects without BTI at mid-term follow-up.
Collapse
Affiliation(s)
- Bas Calcoen
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Nico Callewaert
- AZ Groeninge Hospital, Department of Laboratory Medicine, 8500 Kortrijk, Belgium; (K.C.); (N.C.)
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Winnie Kerstens
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Maya Imbrechts
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Thomas Vercruysse
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Kai Dallmeier
- Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium;
| | - Johan Van Weyenbergh
- Laboratory for Clinical and Epidemiological Virology, KU Leuven Rega Institute, 3000 Leuven, Belgium; (J.V.W.); (P.M.)
| | - Piet Maes
- Laboratory for Clinical and Epidemiological Virology, KU Leuven Rega Institute, 3000 Leuven, Belgium; (J.V.W.); (P.M.)
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dorinja Zapf
- Institut für Experimentelle Immunologie, EUROIMMUN Medizinische Labordiagnostika AG, 23552 Lübeck, Germany; (D.Z.); (K.D.)
| | - Kersten Dieckmann
- Institut für Experimentelle Immunologie, EUROIMMUN Medizinische Labordiagnostika AG, 23552 Lübeck, Germany; (D.Z.); (K.D.)
| | - Kim Callebaut
- AZ Groeninge Hospital, Department of Laboratory Medicine, 8500 Kortrijk, Belgium; (K.C.); (N.C.)
| | - Hendrik Jan Thibaut
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Wim Maes
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Nick Geukens
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| |
Collapse
|
116
|
Chakrabarti SS, Tiwari A, Jaiswal S, Kaur U, Kumar I, Mittal A, Singh A, Jin K, Chakrabarti S. Rapidly Progressive Dementia with Asymmetric Rigidity Following ChAdOx1 nCoV-19 Vaccination. Aging Dis 2022; 13:633-636. [PMID: 35656106 PMCID: PMC9116920 DOI: 10.14336/ad.2021.1102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sankha Shubhra Chakrabarti
- 1Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ashutosh Tiwari
- 2Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sumit Jaiswal
- 3Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Upinder Kaur
- 4Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ishan Kumar
- 5Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Amit Mittal
- 6Department of Radiology, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Anup Singh
- 7Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Kunlin Jin
- 8Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sasanka Chakrabarti
- 9Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| |
Collapse
|
117
|
Shahid I. nSARS-CoV-2 and COVID-19 Pandemic: From Emergence to Vaccination. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9083482 DOI: 10.1007/s44229-022-00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Since its first emergence in Wuhan, China, the novel severe acute respiratory syndrome coronavirus-2 (nSARS-CoV-2)-associated coronavirus disease 2019 (COVID-19) has alarmingly disrupted the world’s healthcare systems and evolved as a major public health threat around the globe. Despite the advent and emergency use listing (EUL) of mRNA- and adenovirus-based vaccines to prevent the further transmission of SARS-CoV-2 infection, the pandemic burden is still significant worldwide as new cases are being reported daily. It is the first time in vaccine history that vaccines against SARS-CoV-2 have been rapidly designed, developed, and clinically evaluated and surprisingly, they have worked better than clinical trial data predicted. However, this EUL of vaccines prior to full approvals stems from the perception of inadequate testing and experience with benefit–risk balance. Similarly, the emergence of superspreader SARS-CoV-2 mutant virus strains at the end of 2020 has also raised concerns about the efficacies of approved vaccines in real-world clinical scenarios. The inconclusive, murky, and anecdotal reports about vaccine hesitancy, antibody-dependent enhancement of disease risk in vaccine injectors, and certain severe adverse events have also frightened a large segment of the world’s population, preventing them from receiving the vaccine. This review presents an overview of the remarkable efforts rendered by different vaccine producers to combat the pandemic, explains the challenges of vaccine safety and efficacies against SARS-CoV-2 variants of concern, and explores their potential roles in eradicating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah, 21955 Saudi Arabia
| |
Collapse
|
118
|
Buonsenso D, Pujol FE, Munblit D, Pata D, McFarland S, Simpson FK. Clinical characteristics, activity levels and mental health problems in children with long coronavirus disease: a survey of 510 children. Future Microbiol 2022; 17:577-588. [PMID: 35360923 PMCID: PMC9248023 DOI: 10.2217/fmb-2021-0285] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Whether long coronavirus disease pertains to children as well is not yet clear. Methods: The authors performed a survey in children suffering from persistent symptoms since initial infection. A total of 510 children infected between January 2020 and January 2021 were included. Results: Symptoms such as fatigue, headache, muscle and joint pain, rashes and heart palpitations and issues such as lack of concentration and short-term memory problems were particularly frequent and confirm previous observations, suggesting that they may characterize this condition. Conclusion: A better comprehension of long coronavirus disease is urgently needed.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University, Moscow, Russia
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Davide Pata
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | |
Collapse
|
119
|
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022; 345:314-333. [PMID: 35331783 PMCID: PMC8935967 DOI: 10.1016/j.jconrel.2022.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.
Collapse
Affiliation(s)
- Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Irfan
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; School of Business Administration, Ilma University, Karachi 75190, Pakistan
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
120
|
Lotz C, Herrmann J, Hübsch ME, Notz Q, Meybohm P. [Measurement of Anti-SARS CoV-2 Antibodies following Vaccination: Valuable Monitoring or Irrelevant Tool?]. Anasthesiol Intensivmed Notfallmed Schmerzther 2022; 57:302-306. [PMID: 35451036 DOI: 10.1055/a-1783-3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) provides effective protection against infection or severe coronavirus disease 2019 (COVID-19). Moreover, it is regarded as the single most important measure to end the pandemic. Individual vaccination effectiveness is often judged via measurement of anti-SARS-CoV-2 antibodies. However, considering the complexity of the humoral and cellular immune response the question arises whether the relation of anti-SARS-CoV-2 antibody titers and COVID-19 vaccine effectiveness is a myth or a fact? The current article aims to answer this question and provide a short review of the immunological mechanisms of SARS-CoV-2 vaccination. Recommendations for clinical practice are given based on the current evidence and known problems of anti-SARS-CoV-2 antibody measurements after vaccination.
Collapse
|
121
|
Dagla I, Iliou A, Benaki D, Gikas E, Mikros E, Bagratuni T, Kastritis E, Dimopoulos MA, Terpos E, Tsarbopoulos A. Plasma Metabolomic Alterations Induced by COVID-19 Vaccination Reveal Putative Biomarkers Reflecting the Immune Response. Cells 2022; 11:1241. [PMID: 35406806 PMCID: PMC8997405 DOI: 10.3390/cells11071241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.
Collapse
Affiliation(s)
- Ioanna Dagla
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
| | - Aikaterini Iliou
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Dimitra Benaki
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 157 71 Athens, Greece;
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Anthony Tsarbopoulos
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 27 Athens, Greece
| |
Collapse
|
122
|
Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, Herzel E, Alapi H, Cohen D, Muhsen K, Chodick G, Patalon T. SARS-CoV-2 Naturally Acquired Immunity vs. Vaccine-induced Immunity, Reinfections versus Breakthrough Infections: a Retrospective Cohort Study. Clin Infect Dis 2022; 75:e545-e551. [PMID: 35380632 PMCID: PMC9047157 DOI: 10.1093/cid/ciac262] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
Background Waning of protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) conferred by 2 doses of the BNT162b2 vaccine begins shortly after inoculation and becomes substantial within 4 months. With that, the impact of prior infection on incident SARS-CoV-2 reinfection is unclear. Therefore, we examined the long-term protection of naturally acquired immunity (protection conferred by previous infection) compared to vaccine-induced immunity. Methods A retrospective observational study of 124 500 persons, compared 2 groups: (1) SARS-CoV-2-naive individuals who received a 2-dose regimen of the BioNTech/Pfizer mRNA BNT162b2 vaccine, and (2) previously infected individuals who have not been vaccinated. Two multivariate logistic regression models were applied, evaluating four SARS-CoV-2-related outcomes—infection, symptomatic disease (coronavirus disease 2019 [COVID-19]), hospitalization, and death—between 1 June and 14 August 2021, when the Delta variant was dominant in Israel. Results SARS-CoV-2-naive vaccinees had a 13.06-fold (95% confidence interval [CI], 8.08–21.11) increased risk for breakthrough infection with the Delta variant compared to unvaccinated-previously-infected individuals, when the first event (infection or vaccination) occurred during January and February of 2021. The increased risk was significant for symptomatic disease as well. When allowing the infection to occur at any time between March 2020 and February 2021, evidence of waning naturally acquired immunity was demonstrated, although SARS-CoV-2 naive vaccinees still had a 5.96-fold (95% CI: 4.85–7.33) increased risk for breakthrough infection and a 7.13-fold (95% CI: 5.51–9.21) increased risk for symptomatic disease. Conclusions Naturally acquired immunity confers stronger protection against infection and symptomatic disease caused by the Delta variant of SARS-CoV-2, compared to the BNT162b2 2-dose vaccine-indued immunity.
Collapse
Affiliation(s)
- Sivan Gazit
- Kahn Sagol Maccabi (KSM) Research & Innovation Center, Maccabi Healthcare Services, Tel Aviv, 68125, Israel.,Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| | - Roei Shlezinger
- Kahn Sagol Maccabi (KSM) Research & Innovation Center, Maccabi Healthcare Services, Tel Aviv, 68125, Israel
| | - Galit Perez
- Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| | - Roni Lotan
- Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| | - Asaf Peretz
- Kahn Sagol Maccabi (KSM) Research & Innovation Center, Maccabi Healthcare Services, Tel Aviv, 68125, Israel.,Internal Medicine COVID-19 Ward, Samson Assuta Ashdod University Hospital, Ashdod Israel
| | - Amir Ben-Tov
- Kahn Sagol Maccabi (KSM) Research & Innovation Center, Maccabi Healthcare Services, Tel Aviv, 68125, Israel.,Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Esma Herzel
- Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| | - Hillel Alapi
- Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| | - Dani Cohen
- Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Chodick
- Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel.,Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Tal Patalon
- Kahn Sagol Maccabi (KSM) Research & Innovation Center, Maccabi Healthcare Services, Tel Aviv, 68125, Israel.,Maccabitech Institute for Research and Innovation, Maccabi Healthcare Services, Israel
| |
Collapse
|
123
|
Wong MK, Liu JT, Budylowksi P, Yue FY, Li Z, Rini JM, Carlyle JR, Zia A, Ostrowski M, Martin A. Convergent CDR3 homology amongst Spike-specific antibody responses in convalescent COVID-19 subjects receiving the BNT162b2 vaccine. Clin Immunol 2022; 237:108963. [PMID: 35259543 PMCID: PMC8897198 DOI: 10.1016/j.clim.2022.108963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Convalescent coronavirus disease 2019 (COVID-19) subjects who receive BNT162b2 develop robust antibody responses against SARS-CoV-2. However, our understanding of the clonal B cell response pre- and post-vaccination in such individuals is limited. Here we characterized B cell phenotypes and the BCR repertoire after BNT162b2 immunization in two convalescent COVID-19 subjects. BNT162b2 stimulated many B cell clones that were under-represented during SARS-CoV-2 infection. In addition, the vaccine generated B cell clusters with >65% similarity in CDR3 VH and VL region consensus sequences both within and between subjects. This result suggests that the CDR3 region plays a dominant role adjacent to heavy and light chain V/J pairing in the recognition of the SARS-CoV-2 spike protein. Antigen-specific B cell populations with homology to published SARS-CoV-2 antibody sequences from the CoV-AbDab database were observed in both subjects. These results point towards the development of convergent antibody responses against the virus in different individuals.
Collapse
Affiliation(s)
- Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jun T Liu
- Department of Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Budylowksi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Amin Zia
- dYcode Bio, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto; Toronto, ON, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
124
|
Daniel S, Kis Z, Kontoravdi C, Shah N. Quality by Design for enabling RNA platform production processes. Trends Biotechnol 2022; 40:1213-1228. [DOI: 10.1016/j.tibtech.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
125
|
Belete TM. The Immune Response, Safety, and Efficacy of Emergency Use Authorization-Granted COVID-19 Vaccines: A Review. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2201240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 has affected millions of people, causing a burden on healthcare systems as well as economies throughout the world. Antiviral drugs do not work well enough for everyone. The mortality rate in the world is still significant. Developing safe, effective, affordable, and fast-acting vaccines for COVID-19 is critical for reducing new viral strains in this pandemic and re-establishing normality in the future. Therefore, several pharmaceutical companies are racing to develop effective vaccines for COVID-19. Scientists have developed different kinds of candidate vaccines with various platforms. By March 2021, thirteen vaccines were approved for emergency use in several countries across the world, whilst over 90 vaccine candidates were under clinical trials. There are also several vaccine candidates in Phase 3 trials awaiting results and approval for their use. These candidate vaccines revealed positive results in the previous phase trials, whereby they can induce an immune response with less adverse reaction in the participants. This review focuses on the development of COVID-19 vaccines and highlights the efficacy and adverse reactions of vaccines authorized for emergency use.
Collapse
|
126
|
Liu Y, Ye Q. Safety and Efficacy of the Common Vaccines against COVID-19. Vaccines (Basel) 2022; 10:vaccines10040513. [PMID: 35455262 PMCID: PMC9027683 DOI: 10.3390/vaccines10040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) has imposed a challenge on human health worldwide, and vaccination represents a vital strategy to control the pandemic. To date, multiple COVID-19 vaccines have been granted emergency use authorization, including inactivated vaccines, adenovirus-vectored vaccines, and nucleic acid vaccines. These vaccines have different technical principles, which will necessarily lead to differences in safety and efficacy. Therefore, we aim to implement a systematic review by synthesizing clinical experimental data combined with mass vaccination data and conducting a synthesis to evaluate the safety and efficacy of COVID-19 vaccines. Compared with other vaccines, adverse reactions after vaccination with inactivated vaccines are relatively low. The efficacy of inactivated vaccines is approximately 60%, adenovirus-vectored vaccines are 65%, and mRNA vaccines are 90%, which are always efficient against asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic COVID-19, COVID-19 hospitalization, severe or critical hospitalization, and death. RNA-based vaccines have a number of advantages and are one of the most promising vaccines identified to date and are particularly important during a pandemic. However, further improvements are required. In time, all the antibody levels weaken gradually, so a booster dose is needed to maintain immunity. Compared with homologous prime-boost immunization, heterologous prime-boost immunization prompts more robust humoral and cellular immune responses.
Collapse
|
127
|
Fung KM, Lai SJ, Lin TL, Tseng TS. Antigen–Antibody Complex-Guided Exploration of the Hotspots Conferring the Immune-Escaping Ability of the SARS-CoV-2 RBD. Front Mol Biosci 2022; 9:797132. [PMID: 35392535 PMCID: PMC8981523 DOI: 10.3389/fmolb.2022.797132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic resulting from the spread of SARS-CoV-2 spurred devastating health and economic crises around the world. Neutralizing antibodies and licensed vaccines were developed to combat COVID-19, but progress was slow. In addition, variants of the receptor-binding domain (RBD) of the spike protein confer resistance of SARS-CoV-2 to neutralizing antibodies, nullifying the possibility of human immunity. Therefore, investigations into the RBD mutations that disrupt neutralization through convalescent antibodies are urgently required. In this study, we comprehensively and systematically investigated the binding stability of RBD variants targeting convalescent antibodies and revealed that the RBD residues F456, F490, L452, L455, and K417 are immune-escaping hotspots, and E484, F486, and N501 are destabilizing residues. Our study also explored the possible modes of actions of emerging SARS-CoV-2 variants. All results are consistent with experimental observations of attenuated antibody neutralization and clinically emerging SARS-CoV-2 variants. We identified possible immune-escaping hotspots that could further promote resistance to convalescent antibodies. The results provide valuable information for developing and designing novel monoclonal antibody drugs to combat emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Kit-Man Fung
- Academia Sinica, Institute of Biological Chemistry, Taipei, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tzu-Lu Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Tien-Sheng Tseng,
| |
Collapse
|
128
|
Dos Santos VP, Rodrigues A, Dutra G, Bastos L, Mariano D, Mendonça JG, Lobo YJG, Mendes E, Maia G, Machado KDS, Werhli AV, Rocha G, de Lima LHF, de Melo-Minardi R. E-Volve: understanding the impact of mutations in SARS-CoV-2 variants spike protein on antibodies and ACE2 affinity through patterns of chemical interactions at protein interfaces. PeerJ 2022; 10:e13099. [PMID: 35341044 PMCID: PMC8953562 DOI: 10.7717/peerj.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background The SARS-CoV-2 pandemic reverberated, posing health and social hygiene obstacles throughout the globe. Mutant lineages of the virus have concerned scientists because of convergent amino acid alterations, mainly on the viral spike protein. Studies have shown that mutants have diminished activity of neutralizing antibodies and enhanced affinity with its human cell receptor, the ACE2 protein. Methods Hence, for real-time measuring of the impacts caused by variant strains in such complexes, we implemented E-Volve, a tool designed to model a structure with a list of mutations requested by users and return analyses of the variant protein. As a proof of concept, we scrutinized the spike-antibody and spike-ACE2 complexes formed in the variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), by using contact maps depicting the interactions made amid them, along with heat maps to quantify these major interactions. Results The results found in this study depict the highly frequent interface changes made by the entire set of mutations, mainly conducted by N501Y and E484K. In the spike-Antibody complex, we have noticed alterations concerning electrostatic surface complementarity, breaching essential sites in the P17 and BD-368-2 antibodies. Alongside, the spike-ACE2 complex has presented new hydrophobic bonds. Discussion Molecular dynamics simulations followed by Poisson-Boltzmann calculations corroborate the higher complementarity to the receptor and lower to the antibodies for the K417T/E484K/N501Y (Gamma) mutant compared to the wild-type strain, as pointed by E-Volve, as well as an intensification of this effect by changes at the protein conformational equilibrium in solution. A local disorder of the loop α1'/β1', as well its possible effects on the affinity to the BD-368-2 antibody were also incorporated to the final conclusions after this analysis. Moreover, E-Volve can depict the main alterations in important biological structures, as shown in the SARS-CoV-2 complexes, marking a major step in the real-time tracking of the virus mutant lineages. E-Volve is available at http://bioinfo.dcc.ufmg.br/evolve.
Collapse
Affiliation(s)
- Vitor Pimentel Dos Santos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Rodrigues
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Dutra
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luana Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - José Gutembergue Mendonça
- Laboratory of Quantum and Computational Chemistry, Center of Exact and Natural Sciences, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Yan Jerônimo Gomes Lobo
- Laboratory of Molecular Modeling and Bioinformatics, Campus Sete Lagoas, Department of Exact and Biological Sciences, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - Eduardo Mendes
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovana Maia
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina dos Santos Machado
- Computational Biology Laboratory (ComBi-Lab), Center for Computational Sciences-C3, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Adriano Velasque Werhli
- Computational Biology Laboratory (ComBi-Lab), Center for Computational Sciences-C3, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Gerd Rocha
- Laboratory of Quantum and Computational Chemistry, Center of Exact and Natural Sciences, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory of Molecular Modeling and Bioinformatics, Campus Sete Lagoas, Department of Exact and Biological Sciences, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - Raquel de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
129
|
Lederer K, Bettini E, Parvathaneni K, Painter MM, Agarwal D, Lundgreen KA, Weirick M, Muralidharan K, Castaño D, Goel RR, Xu X, Drapeau EM, Gouma S, Ort JT, Awofolaju M, Greenplate AR, Le Coz C, Romberg N, Trofe-Clark J, Malat G, Jones L, Rosen M, Weiskopf D, Sette A, Besharatian B, Kaminiski M, Hensley SE, Bates P, Wherry EJ, Naji A, Bhoj V, Locci M. Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell 2022; 185:1008-1024.e15. [PMID: 35202565 PMCID: PMC8808747 DOI: 10.1016/j.cell.2022.01.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.
Collapse
Affiliation(s)
- Katlyn Lederer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Bettini
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kalpana Parvathaneni
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark M Painter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Divyansh Agarwal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kendall A Lundgreen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madison Weirick
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kavitha Muralidharan
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia 050010, Colombia
| | - Rishi R Goel
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Xiaoming Xu
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Drapeau
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sigrid Gouma
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T Ort
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moses Awofolaju
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Carole Le Coz
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Neil Romberg
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Trofe-Clark
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Malat
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa Jones
- Department of Radiology, Division of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Rosen
- Department of Radiology, Division of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, La Jolla, CA 92093, USA
| | - Behdad Besharatian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Kaminiski
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Vijay Bhoj
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michela Locci
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
130
|
Clémenceau B, Guillaume T, Coste-Burel M, Peterlin P, Garnier A, Le Bourgeois A, Jullien M, Ollier J, Grain A, Béné MC, Vié H, Chevallier P. SARS-CoV-2 T-Cell Responses in Allogeneic Hematopoietic Stem Cell Recipients following Two Doses of BNT162b2 mRNA Vaccine. Vaccines (Basel) 2022; 10:448. [PMID: 35335079 PMCID: PMC8950166 DOI: 10.3390/vaccines10030448] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND At variance to humoral responses, cellular immunity after anti-SARS-CoV-2 vaccines has been poorly explored in recipients of allogeneic hematopoietic stem-cell transplantation (Allo-HSCT), especially within the first post-transplant years where immunosuppression is more profound and harmful. METHODS SARS-CoV-2 Spike protein-specific T-cell responses were explored after two doses of BNT162b2 mRNA vaccine in 45 Allo-HSCT recipients with a median time from transplant of less than 2 years by using INF-γ ELISPOT assay and flow-cytometry enumeration of CD4+ and CD8+ T lymphocytes with intracellular cytokine production of IFN-γ and TNF-α. RESULTS A strong TNF-α+ response from SARS-CoV-2-specific CD4+ T-cells was detected in a majority of humoral responders (89%) as well as in a consistent population of non-humoral responders (40%). CONCLUSIONS T-cells are likely to participate in protection against COVID-19 viral infection, even in the absence of detectable antibody response, especially in the first years post-transplant in Allo-HSCT recipients.
Collapse
Affiliation(s)
- Béatrice Clémenceau
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
| | - Thierry Guillaume
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| | - Marianne Coste-Burel
- Virology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France;
| | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| | - Alice Garnier
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| | - Amandine Le Bourgeois
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| | - Maxime Jullien
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| | - Jocelyn Ollier
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
| | - Audrey Grain
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
| | - Marie C. Béné
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
- Hematology Biology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France
| | - Henri Vié
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
| | - Patrice Chevallier
- CHU Nantes, CRCINA, INSERM, CNRS, Université de Nantes, F-44000 Nantes, France; (T.G.); (J.O.); (A.G.); (M.C.B.); (H.V.)
- Hematology Department, Nantes University Hospital, Nantes University, F-44000 Nantes, France; (P.P.); (A.G.); (A.L.B.); (M.J.)
| |
Collapse
|
131
|
COVID-19 Vaccine: Between Myth and Truth. Vaccines (Basel) 2022; 10:vaccines10030349. [PMID: 35334981 PMCID: PMC8950941 DOI: 10.3390/vaccines10030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, a pandemic caused by the newly identified SARS-CoV-2 spread across the entire globe, causing 364,191,494 confirmed cases of COVID-19 to date. SARS-CoV-2 is a betacoronavirus, a positive-sense, single-stranded RNA virus with four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S protein plays a crucial role both in cell binding and in the induction of a strong immune response during COVID-19 infection. The clinical impact of SARS-CoV-2 and its spread led to the urgent need for vaccine development to prevent viral transmission and to reduce the morbidity and mortality associated with the disease. Multiple platforms have been involved in the rapid development of vaccine candidates, with the S protein representing a major target because it can stimulate the immune system, yielding neutralizing antibodies (NAbs), blocking viral entry into host cells, and evoking T-cell immune responses. To date, 178 SARS-CoV-2 vaccine candidates have been challenged in clinical trials, of which 33 were approved by various national regulatory agencies. In this review, we discuss the FDA- and/or EMA-authorized vaccines that are mostly based on mRNA or viral vector platforms. Furthermore, we debunk false myths about the COVID-19 vaccine as well as discuss the impact of viral variants and the possible future developments.
Collapse
|
132
|
Aleebrahim-Dehkordi E, Molavi B, Mokhtari M, Deravi N, Fathi M, Fazel T, Mohebalizadeh M, Koochaki P, Shobeiri P, Hasanpour-Dehkordi A. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. Transpl Immunol 2022; 70:101495. [PMID: 34774738 PMCID: PMC8579696 DOI: 10.1016/j.trim.2021.101495] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Cytokines produced by T helper cells (Th cells) have essential roles in the body's defense against viruses. Type 1 T helper (Th1) cells are essential for the host defense toward intracellular pathogens while T helper type 2 (Th2) cells are considered to be critical for the helminthic parasites' elimination swine-origin influenza A (H1N1) virus, a disease led to an epidemic in 2009 and rapidly spread globally via human-to-human transmission. Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic in 2020 and is a serious threat to the public health. Pulmonary immunopathology is the leading cause of death during influenza and SARS-CoV-2 epidemics and pandemics. Influenza and SARS-CoV-2 cause high levels of cytokines in the lung. Both inadequate levels and high levels of specific cytokines can have side effects. In this literature review article, we want to compare the Th1 and Th2 cells responses in SARS-CoV-2 and H1N1.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Bahareh Molavi
- Department of Anesthesiology, Faculty of Paramedical, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Melika Mokhtari
- Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- school of international campus, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Mohebalizadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Pooneh Koochaki
- Islamic Azad University, Tehran Medical Science Branch, faculty of medicine, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanpour-Dehkordi
- Social Determinants of Health Research Center, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran..
| |
Collapse
|
133
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), emerged in China in December 2019 and quickly spread around the globe, killing more than 4 million people and causing a severe economic crisis. This extraordinary situation prompted entities in government, industry, and academia to work together at unprecedented speed to develop safe and effective vaccines. Indeed, vaccines of multiple types have been generated in record time, and many have been evaluated in clinical trials. Of these, messenger RNA (mRNA) vaccines have emerged as lead candidates due to their speed of development and high degree of safety and efficacy. To date, two mRNA vaccines have received approval for human use, providing proof of the feasibility of this next-generation vaccine modality. This review gives a detailed overview about the types of mRNA vaccines developed for SARS-CoV-2, discusses and compares preclinical and clinical data, gives a mechanistic overview about immune responses generated by mRNA vaccination, and speculates on the challenges and promising future of this emergent vaccine platform.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
134
|
Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases. Viruses 2022; 14:v14020207. [PMID: 35215801 PMCID: PMC8876976 DOI: 10.3390/v14020207] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The novel mRNA-based vaccines against SARS-CoV-2 display encouraging safety and efficacy profiles. However, there is a paucity of data regarding their immunogenicity and safety in patients with liver diseases (PWLD), especially in those with cirrhosis. We prospectively assessed anti-SARS-CoV-2 S-spike IgG antibodies and neutralizing activity in fully vaccinated PWLD (n = 87) and controls (n = 40). Seroconversion rates were 97.4% (37/38) in cirrhotic PWLD, 87.8% (43/49) in non-cirrhotic PWLD and 100% (40/40) in controls. Adequate neutralizing activity was detected in 92.1% (35/38), 87.8% (43/49) and 100% (40/40) of cirrhotics, non-cirrhotics and controls, respectively. On multivariable analysis, immunosuppressive treatment was negatively correlated with anti-SARS-CoV-2 antibody titers (coefficient (SE): −2.716 (0.634), p < 0.001) and neutralizing activity (coefficient (SE): −24.379 (4.582), p < 0.001), while age was negatively correlated only with neutralizing activity (coefficient (SE): −0.31(0.14), p = 0.028). A total of 52 responder PWLD were reassessed approximately 3 months post-vaccination and no differences were detected in humoral responses between cirrhotic and non-cirrhotic PWLD. No significant side effects were noted post vaccination, while no symptomatic breakthrough infections were reported during a 6-month follow up. Overall, our study shows that m-RNA-based SARS-CoV-2 vaccines are safe and efficacious in PWLD. However, PWLD under immunosuppressive treatment and those of advanced age should probably be more closely monitored after vaccination.
Collapse
|
135
|
Affiliation(s)
- Diana L Lam
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - Meghan R Flanagan
- Department of Surgery, University of Washington School of Medicine, Seattle
| |
Collapse
|
136
|
Glial fibrillary acidic protein astrocytopathy in a patient with recent mRNA SARS-CoV-2 vaccination. NEUROIMMUNOLOGY REPORTS 2022. [PMCID: PMC8694819 DOI: 10.1016/j.nerep.2021.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
137
|
Suzuki K, Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery. Biomater Sci 2022; 10:1920-1928. [DOI: 10.1039/d1bm01985f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaluronic acid (HA)-coated biodegradable polymeric micelles were developed as nanoparticulate vaccine delivery systems to establish an effective nasal vaccine. We previously reported HA-coated micelles prepared by forming a polyion complex...
Collapse
|
138
|
Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021; 14:5271-5285. [PMID: 34916811 PMCID: PMC8668227 DOI: 10.2147/idr.s341694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
mRNA-based technologies have been of interest for the past few years to be used for therapeutics. Several mRNA vaccines for various diseases have been in preclinical and clinical stages. With the outbreak of the COVID-19 pandemic, the emergence of mRNA vaccines has transformed modern science. Recently, two major mRNA vaccines have been developed and approved by global health authorities for administration on the general population for protection against SARS-CoV-2. They have been proven to be successful in conferring protection against the ongoing SARS-CoV-2 and its emerging variants. This will draw attention to various mRNA vaccines against infectious diseases that are in the early stages of clinical trials. mRNA vaccines offer several advantages ranging from rapid design, generation, manufacturing, and administration and have strong potential to be used against various diseases in the future. Here, we summarize the mRNA-based vaccines in development against various infectious diseases.
Collapse
Affiliation(s)
- Nitika
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| | - Jiao Wei
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| | - Ai-Min Hui
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
139
|
Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, Manzoni TB, Knox JJ, Johnson JL, Laczkó D, Muramatsu H, Davis B, Meng W, Rosenfeld AM, Strohmeier S, Lin PJC, Mui BL, Tam YK, Karikó K, Jacquet A, Krammer F, Bates P, Cancro MP, Weissman D, Luning Prak ET, Allman D, Locci M, Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54:2877-2892.e7. [PMID: 34852217 PMCID: PMC8566475 DOI: 10.1016/j.immuni.2021.11.001] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.
Collapse
Affiliation(s)
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chutamath Sittplangkoon
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Y Soliman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczkó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Katalin Karikó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
140
|
Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines 2021; 20:1549-1560. [PMID: 34582298 PMCID: PMC8567274 DOI: 10.1080/14760584.2021.1987223] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022]
Abstract
Introduction: Coronavirus outbreak 2019 (COVID-19) has affected all the corners of the globe and created chaos to human life. In order to put some control on the pandemic, vaccines are urgently required that are safe, cost effective, easy to produce, and most importantly induce appropriate immune responses and protection against viral infection. DNA vaccines possess all these features and are promising candidates for providing protection against SARS-CoV-2.Area covered: Current understanding and advances in DNA vaccines toward COVID-19, especially those under various stages of clinical trials.Expert opinion: Through DNA vaccines, host cells are momentarily transformed into factories that produce proteins of the SARS-CoV-2. The host immune system detects these proteins to develop antibodies that neutralize and prevent the infection. This vaccine platform has additional benefits compared to traditional vaccination strategies like strong cellular immune response, higher safety margin, a simple production process as per cGMP norms, lack of any infectious agent, and a robust platform for large-scale production.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Radhika Pandya
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Vasso Apostolopoulos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
141
|
Mahallawi WH, Mumena WA. Reactogenicity and Immunogenicity of the Pfizer and AstraZeneca COVID-19 Vaccines. Front Immunol 2021; 12:794642. [PMID: 34925378 PMCID: PMC8671995 DOI: 10.3389/fimmu.2021.794642] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background The relationships of the coronavirus disease 2019 (COVID-19) vaccination with reactogenicity and the humoral immune response are important to study. The current study aimed to assess the reactogenicity and immunogenicity of the Pfizer and AstraZeneca COVID-19 vaccines among adults in Madinah, Saudi Arabia. Methods A cross-sectional study, including 365 randomly selected adult Pfizer or AstraZeneca vaccine recipients who received a homologous prime-boost vaccination between February 1st and June 30th, 2021. Data of height and weight were collected to assess the weight status of percipients. An evaluation of seropositivity for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies was assessed using enzyme-linked immunosorbent assay (ELISA). Results Among the participants, 69% (n = 250) reported at least one vaccine-related symptom. Pain at the injection site was the most frequently reported vaccine-related symptom. The mean total score for vaccine-related symptoms was significantly higher among participants who received the AstraZeneca vaccine, women, and participants with no previous COVID-19 infection (p < 0.05). Spike-specific IgG antibodies were detected in 98.9% of participants after the receipt of two vaccine doses, including 99.5% of Pfizer vaccine recipients and 98.3% of AstraZeneca vaccine recipients. Significantly, higher proportions of participants in the <35-year age group developed a humoral immune response after the first vaccine dose compared with the participants in other age groups. Conclusion Participants who received the Pfizer COVID-19 vaccine reported fewer vaccine-related complications compared with those who received the AstraZeneca COVID-19 vaccine, but no serious side effects were reported in response to either vaccine. Health status and age were factors that may influence COVID-19 vaccine effectiveness for the generation of antibodies against the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Waleed H. Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
142
|
Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 179:114000. [PMID: 34637846 PMCID: PMC8502079 DOI: 10.1016/j.addr.2021.114000] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
mRNA vaccines have received major attention in the fight against COVID-19. Formulations from companies such as Moderna and BioNTech/Pfizer have allowed us to slowly ease the social distancing measures, mask requirements, and lockdowns that have been prevalent since early 2020. This past year's focused work on mRNA vaccines has catapulted this technology to the forefront of public awareness and additional research pursuits, thus leading to new potential for bionanotechnology principles to help drive further innovation using mRNA. In addition to alleviating the burden of COVID-19, mRNA vaccines could potentially provide long-term solutions all over the world for diseases ranging from influenza to AIDS. Herein, we provide a brief commentary based on the history and development of mRNA vaccines in the context of the COVID-19 pandemic. Furthermore, we address current research using the technology and future directions of mRNA vaccine research.
Collapse
Affiliation(s)
- Samagra Jain
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abhijeet Venkataraman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Marissa E. Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA,Corresponding author
| |
Collapse
|
143
|
Bilotta C, Perrone G, Adelfio V, Spatola GF, Uzzo ML, Argo A, Zerbo S. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Front Immunol 2021; 12:729251. [PMID: 34912330 PMCID: PMC8666479 DOI: 10.3389/fimmu.2021.729251] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The World Health Organization declared the coronavirus disease 2019 (COVID-19) pandemic on March 11, 2020. Two vaccine types were developed using two different technologies: viral vectors and mRNA. Thrombosis is one of the most severe and atypical adverse effects of vaccines. This study aimed to analyze published cases of thrombosis after COVID-19 vaccinations to identify patients' features, potential pathophysiological mechanisms, timing of appearance of the adverse events, and other critical issues. Materials and Methods We performed a systematic electronic search of scientific articles regarding COVID-19 vaccine-related thrombosis and its complications on the PubMed (MEDLINE) database and through manual searches. We selected 10 out of 50 articles from February 1 to May 5, 2021 and performed a descriptive analysis of the adverse events caused by the mRNA-based Pfizer and Moderna vaccines and the adenovirus-based AstraZeneca vaccine. Results In the articles on the Pfizer and Moderna vaccines, the sample consisted of three male patients with age heterogeneity. The time from vaccination to admission was ≤3 days in all cases; all patients presented signs of petechiae/purpura at admission, with a low platelet count. In the studies on the AstraZeneca vaccine, the sample consisted of 58 individuals with a high age heterogeneity and a high female prevalence. Symptoms appeared around the ninth day, and headache was the most common symptom. The platelet count was below the lower limit of the normal range. All patients except one were positive for PF4 antibodies. The cerebral venous sinus was the most affected site. Death was the most prevalent outcome in all studies, except for one study in which most of the patients remained alive. Discussion Vaccine-induced thrombotic thrombocytopenia (VITT) is an unknown nosological phenomenon secondary to inoculation with the COVID-19 vaccine. Several hypotheses have been formulated regarding its physiopathological mechanism. Recent studies have assumed a mechanism that is assimilable to heparin-induced thrombocytopenia, with protagonist antibodies against the PF4-polyanion complex. Viral DNA has a negative charge and can bind to PF4, causing VITT. New experimental studies have assumed that thrombosis is related to a soluble adenoviral protein spike variant, originating from splicing events, which cause important endothelial inflammatory events, and binding to endothelial cells expressing ACE2. Conclusion Further studies are needed to better identify VITT's pathophysiological mechanisms and genetic, demographic, or clinical predisposition of high-risk patients, to investigate the correlation of VITT with the different vaccine types, and to test the significance of the findings.
Collapse
Affiliation(s)
- Clio Bilotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Giulio Perrone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Valeria Adelfio
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | - Giovanni Francesco Spatola
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Maria Laura Uzzo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
144
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
145
|
Contaldi E, Comi C, Cantello R, Magistrelli L. Motor and non-motor symptom improvement after mRNA-1273 vaccine in a Parkinson's disease patient. Neurol Sci 2021; 43:1447-1448. [PMID: 34791567 PMCID: PMC8598215 DOI: 10.1007/s10072-021-05753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Elena Contaldi
- Department of Translational Medicine, Movement Disorders Centre, Neurology Unit, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy. .,PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy.
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, Vercelli, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Movement Disorders Centre, Neurology Unit, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, Neurology Unit, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy.,PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| |
Collapse
|
146
|
Dziedzic A, Riad A, Attia S, Klugar M, Tanasiewicz M. Self-Reported Adverse Events of COVID-19 Vaccines in Polish Healthcare Workers and Medical Students. Cross-Sectional Study and Pooled Analysis of CoVaST Project Results in Central Europe. J Clin Med 2021; 10:5338. [PMID: 34830620 PMCID: PMC8623766 DOI: 10.3390/jcm10225338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Optimization of COVID-19 vaccination rate among healthcare personnel is of utmost priority to secure provision of uninterrupted care and to protect the most vulnerable patients. This study, as part of the global CoVaST project, aimed to assess the occurrence of short-term adverse events (SRAEs) of two most administered COVID-19 vaccines, mRNA-based (Pfizer-BioNTech and Moderna) and viral vector-based (AstraZeneca) in healthcare sector workers (HWs). METHODS A cross-sectional survey-based study was carried out for the first time among 317 Polish healthcare sector personnel and medical students using a validated and pre-tested questionnaire. The online questionnaire included 25 pre-tested, validated questions concerning demographic data, medical parameters, COVID-19-related anamneses, and local or systemic reactions (reactogenicity) associated with COVID-19 vaccination. Descriptive statistics, inferential tests and binary logistic regression were performed. RESULTS Out of the 247 participating HWs, 79.8% were females, and 77.5% received mRNA-based vaccines, while 24.5% received a viral vector-based vaccine. Cumulatively, 78.9% and 60.7% of the participants reported at least one local and one systemic SRAE respectively, following their COVID-19 first or second dose of vaccine. A wide array of SRAEs was observed, while pain at injection site (76.9%) was the most common local SRAE, and fatigue (46.2%), headache (37.7%), muscle pain (31.6%) were the most common systemic SRAEs. The vast proportion of local (35.2%) and systemic (44.8%) SRAEs subsided up to 1 day after inoculation with both types of vaccines. The mRNA-based vaccine versions seem to cause higher prevalence of local SRAEs, mainly pain within injection site (81.3% vs. 71.7%; p = 0.435), while the viral vector-based vaccine was linked with increased incidents of mild systemic side effects (76.7% vs. 55.3%; p = 0.004) after both doses. Pooled analysis revealed uniform results while comparing the prevalence of SRAEs in HWs as recipients in four central European countries (OR = 2.38; 95% CI = 2.03-2.79). CONCLUSIONS The study confirmed the safety of commonly administered vaccines against COVID-19, which were associated with mild, self-resolving adverse events. No major vaccine-related incidents were reported which would affect every day functioning, significantly. The younger age group (below 29 y.o.) were associated with an increased risk of adverse events generally. The results enhanced current data regarding COVID-19 vaccination active surveillance in selected occupational groups.
Collapse
Affiliation(s)
- Arkadiusz Dziedzic
- Department of Restorative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Abanoub Riad
- Czech National Centre for Evidence-Based Healthcare and Knowledge Translation, Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (A.R.); (M.K.)
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sameh Attia
- Department of Oral and Maxillofacial Surgery, Justus-Liebig-University, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Miloslav Klugar
- Czech National Centre for Evidence-Based Healthcare and Knowledge Translation, Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (A.R.); (M.K.)
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marta Tanasiewicz
- Department of Restorative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
147
|
Abstract
The SARS-CoV-2 infection spread rapidly throughout the world and appears to involve in both humoral and cell-mediated immunity. SARS-CoV-2 is attached to host cells via binding to the viral spike (S) proteins and its cellular receptors angiotensin-converting enzyme 2 (ACE2). Consequently, the S protein is primed with serine proteases TMPRSS2 and TMPRSS4, which facilitate the fusion of viral and cellular membranes result in the entry of viral RNA into the host cell. Vaccines are urgently required to combat the coronavirus disease 2019 (COVID-19) outbreak and aid in the recovery to pre-pandemic levels of normality. The long-term protective immunity is provided by the vaccine antigen (or pathogen)-specific immune effectors and the activation of immune memory cells that can be efficiently and rapidly reactivated upon pathogen exposure. Research efforts aimed towards the design and development of vaccines for SARS-CoV-2 are increasing. Numerous coronavirus disease 2019 (COVID-19) vaccines have passed late-stage clinical investigations with promising outcomes. This review focuses on the present state and future prospects of COVID-19 vaccines research and development, with a particular emphasis on immunological mechanisms of various COVID-19vaccines such as adenoviral vector-based vaccines, mRNA vaccines, and DNA vaccines that elicits immunological responses against SARS-CoV-2 infections in humans.
Collapse
|
148
|
Abstract
Coronavirus disease, COVID-19, has touched every country globally except five countries (North Korea, Turkmenistan, Tonga, Tuvalu and Nauru). Vaccination is the most effective method to protect against infectious diseases. The objective is to ensure that everyone has access to a COVID-19 vaccine. The conventional vaccine development platforms are complex and time-consuming to obtain desired approved vaccine candidates through rigorous regulatory pathways. These safeguards guarantee that the optimized vaccine product is safe and efficacious for various demographic populations prior to it being approved for general use. Nucleic acid vaccines employ genetic material from a pathogen, such as a virus or bacteria, to induce an immune response against it. Based on the vaccination, the genetic material might be DNA or RNA; as such, it offers instructions for producing a specific pathogen protein that the immune system will perceive as foreign and mount an immune response. Nucleic acid vaccines for multiple antigens might be made in the same facility, lowering costs even more. Most traditional vaccine regimens do not allow for this. Herein, we demonstrate the recent understanding and advances in nucleic acid vaccines (DNA and mRNA based) against COVID-19, specifically those in human clinical trials.
Collapse
|
149
|
Ball-Burack MR, Kosowsky JM. A Case of Leukocytoclastic Vasculitis Following SARS-COV-2 Vaccination. J Emerg Med 2021; 63:e62-e65. [PMID: 35690533 PMCID: PMC8536729 DOI: 10.1016/j.jemermed.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Background Although vaccination against coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven generally safe, rare but potentially serious adverse reactions do occur. Leukocytoclastic vasculitis (LCV) is a small-vessel vasculitis that has been associated with other immunizations, but, to our knowledge, has not been previously reported in association with vaccines directed against SARS-CoV-2. Case Report We report the case of a 22-year-old man with no known past medical history who presented to the Emergency Department with 2 days of migratory arthritis in his ankles and palpable purpura on his bilateral lower extremities, occurring 10 days after receiving the Johnson & Johnson SARS-CoV-2 vaccine. The patient's clinical presentation was suggestive of leukocytoclastic vasculitis, and this diagnosis was confirmed on skin biopsy. Why Should an Emergency Physician Be Aware of This? Recognition of vasculitides is important for timely treatment and prevention of complications. In a patient presenting with palpable purpura after immunization against SARS-CoV-2, LCV should be promptly considered and worked up by the Emergency Physician, though management is most often entirely outpatient and the clinical course is typically mild and self-resolving.
Collapse
Affiliation(s)
- Maya R Ball-Burack
- Harvard Medical School, Boston, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts
| | - Joshua M Kosowsky
- Harvard Medical School, Boston, Massachusetts; Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
150
|
Gil-Manso S, Carbonell D, López-Fernández L, Miguens I, Alonso R, Buño I, Muñoz P, Ochando J, Pion M, Correa-Rocha R. Induction of High Levels of Specific Humoral and Cellular Responses to SARS-CoV-2 After the Administration of Covid-19 mRNA Vaccines Requires Several Days. Front Immunol 2021; 12:726960. [PMID: 34671348 PMCID: PMC8521189 DOI: 10.3389/fimmu.2021.726960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. Methods We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. Results Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. Conclusion This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Diego Carbonell
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,Department of Hematology, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Luis López-Fernández
- Pharmacy Service, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Iria Miguens
- Emergency Service, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases of the University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases of the University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jordi Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| |
Collapse
|