101
|
Katuri A, Bryant JL, Patel D, Patel V, Andhavarapu S, Asemu G, Davis H, Makar TK. HIVAN associated tubular pathology with reference to ER stress, mitochondrial changes, and autophagy. Exp Mol Pathol 2018; 106:139-148. [PMID: 30605635 DOI: 10.1016/j.yexmp.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/25/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus associated nephropathy (HIVAN) is a unique form of a renal parenchymal disorder. This disease and its characteristics can be accredited to incorporation of DNA and mRNA of human immunodeficiency virus type 1 into the renal parenchymal cells. A proper understanding of the intricacies of HIVAN and the underlying mechanisms associated with renal function and disorders is vital for the potential development of a reliable treatment for HIVAN. Specifically, the renal tubule segment of the kidney is characterized by its transport capabilities and its ability to reabsorb water and salts into the blood. However, the segment is also known for certain disorders, such as renal tubular epithelial cell infection and microcyst formation, which are also closely linked to HIVAN. Furthermore, certain organelles, like the endoplasmic reticulum (ER), mitochondria, and lysosome, are vital for certain underlying mechanisms in kidney cells. A paradigm of the importance of said organelles can be seen in documented cases of HIVAN where the renal disorder results increased ER stress due to HIV viral propagation. This balance can be restored through the synthesis of secretory proteins, but, in return, the secretion requires more energy; therefore, there is a noticeable increase in mitochondrial stress. The increased ER changes and mitochondrial stress will greatly upregulate the process of autophagy, which involves the cell's lysosomes. In conjunction, we found that ER stress and mitochondrial changes are associated in the Tg26 animal model of HIVAN. The aim of our review is to consolidate current knowledge of important mechanisms in HIVAN, specifically related to the renal tubules' association with ER stress, mitochondrial changes and autophagy. Although the specific regulatory mechanism detailing the cross-talk between the various organelles is unknown in HIVAN, the continued research in this field may potentially shed light on a possible improved treatment for HIVAN.
Collapse
Affiliation(s)
- Akhil Katuri
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Joseph L Bryant
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Dhruvil Patel
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Vivek Patel
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Sanketh Andhavarapu
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Girma Asemu
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Harry Davis
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States; VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
102
|
Chou LF, Cheng YL, Hsieh CY, Lin CY, Yang HY, Chen YC, Hung CC, Tian YC, Yang CW, Chang MY. Effect of Trehalose Supplementation on Autophagy and Cystogenesis in a Mouse Model of Polycystic Kidney Disease. Nutrients 2018; 11:nu11010042. [PMID: 30585217 PMCID: PMC6356442 DOI: 10.3390/nu11010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Autophagy impairment has been demonstrated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) and could be a new target of treatment. Trehalose is a natural, nonreducing disaccharide that has been shown to enhance autophagy. Therefore, we investigated whether trehalose treatment reduces renal cyst formation in a Pkd1-hypomorphic mouse model. Pkd1 miRNA transgenic (Pkd1 miR Tg) mice and wild-type littermates were given drinking water supplemented with 2% trehalose from postnatal day 35 to postnatal day 91. The control groups received pure water or 2% sucrose for the control of hyperosmolarity. The effect on kidney weights, cystic indices, renal function, cell proliferation, and autophagic activities was determined. We found that Pkd1 miR Tg mice had a significantly lower renal mRNA expression of autophagy-related genes, including atg5, atg12, ulk1, beclin1, and p62, compared with wild-type control mice. Furthermore, immunohistochemical analysis showed that cystic lining cells had strong positive staining for the p62 protein, indicating impaired degradation of the protein by the autophagy-lysosome pathway. However, trehalose treatment did not improve reduced autophagy activities, nor did it reduce relative kidney weights, plasma blood urea nitrogen levels, or cystatin C levels in Pkd1 miR Tg mice. Histomorphological analysis revealed no significant differences in the renal cyst index, fibrosis score, or proliferative score among trehalose-, sucrose-, and water-treated groups. Our results demonstrate that adding trehalose to drinking water does not modulate autophagy activities and renal cystogenesis in Pkd1-deficient mice, suggesting that an oral supplement of trehalose may not affect the progression of ADPKD.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ya-Lien Cheng
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chun-Yih Hsieh
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chan-Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
103
|
Corremans R, Vervaet BA, D'Haese PC, Neven E, Verhulst A. Metformin: A Candidate Drug for Renal Diseases. Int J Mol Sci 2018; 20:E42. [PMID: 30583483 PMCID: PMC6337137 DOI: 10.3390/ijms20010042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past decades metformin has been the optimal first-line treatment for type 2 diabetes mellitus (T2DM). Only in the last few years, it has become increasingly clear that metformin exerts benign pleiotropic actions beyond its prescribed use and ongoing investigations focus on a putative beneficial impact of metformin on the kidney. Both acute kidney injury (AKI) and chronic kidney disease (CKD), two major renal health issues, often result in the need for renal replacement therapy (dialysis or transplantation) with a high socio-economic impact for the patients. Unfortunately, to date, effective treatment directly targeting the kidney is lacking. Metformin has been shown to exert beneficial effects on the kidney in various clinical trials and experimental studies performed in divergent rodent models representing different types of renal diseases going from AKI to CKD. Despite growing evidence on metformin as a candidate drug for renal diseases, in-depth research is imperative to unravel the molecular signaling pathways responsible for metformin's renoprotective actions. This review will discuss the current state-of-the-art literature on clinical and preclinical data, and put forward potential cellular mechanisms and molecular pathways by which metformin ameliorates AKI/CKD.
Collapse
Affiliation(s)
- Raphaëlle Corremans
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| |
Collapse
|
104
|
Qi YY, Zhou XJ, Cheng FJ, Hou P, Ren YL, Wang SX, Zhao MH, Yang L, Martinez J, Zhang H. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Ann Rheum Dis 2018; 77:1799-1809. [PMID: 30209031 PMCID: PMC6800572 DOI: 10.1136/annrheumdis-2018-213028] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE More recent studies suggested that defects in autophagy contribute to the pathogenesis of SLE, especially in adaptive immunity. Occurrence and progression of lupus nephritis (LN) is the end result of complex interactions between regulation of immune responses and pathological process by renal resident cells, but there is still a lot of missing information for an establishment on the role of autophagy in pathogenesis of LN and as a therapy target. METHODS Systemic and organ-specific aetiologies of autophagy were first evaluated by autophagy protein quantification in tissue homogenates in MRL lpr/lpr lupus prone and female C57BL mice. Analysis of gene expression was also adopted in human blood and urine sediments. Then, some key mediators of the disease, including complement inactivated serum, IgG from patients with LN (IgG-LN) and interferon (IFN)-α were chosen to induce podocyte autophagy. Podocyte injuries including apoptosis, podocin derangement, albumin filtration and wound healing were monitored simultaneously with autophagy steady-state and flux. RESULTS Elevated LC3B in kidney homogenates and increased autophagosomes in podocyte from MRL lpr/lpr were observed. In humans, mRNA levels of some key autophagy genes were increased in blood and urinary sediments, and podocyte autophagosomes were observed in renal biopsies from patients with LN. Complement inactivated serum, IgG-LN and IFN-α could induce podocyte autophagy in a time-dependent and dosage-dependent manner, and by reactive oxygen species production and mTORC1 inhibition, respectively. Autophagy inhibition aggravated podocyte damage whereas its inducer relieved the injury. CONCLUSION Podocyte autophagy is activated in lupus-prone mice and patients with lupus nephritis. Increased autophagy is cytoprotective against antibody and interferon-α induced podocyte injury.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Fa-Juan Cheng
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ping Hou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ya-Li Ren
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Su-Xia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Carolina, USA
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
105
|
Tan X, Zhu H, Tao Q, Guo L, Jiang T, Xu L, Yang R, Wei X, Wu J, Li X, Zhang JS. FGF10 Protects Against Renal Ischemia/Reperfusion Injury by Regulating Autophagy and Inflammatory Signaling. Front Genet 2018; 9:556. [PMID: 30532765 PMCID: PMC6265307 DOI: 10.3389/fgene.2018.00556] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common cause of acute kidney injury (AKI), which is associated with high mortality and poor outcomes. Autophagy plays important roles in the homeostasis of renal tubular cells (RTCs) and is implicated in the pathogenesis of AKI, although its role in the process is complex and controversial. Fibroblast growth factor 10 (FGF10), a multifunctional FGF family member, was reported to exert protective effect against cerebral ischemia injury and myocardial damage. Whether FGF10 has similar beneficial effect, and if so whether autophagy is associated with the potential protective activity against AKI has not been investigated. Herein, we report that FGF10 treatment improved renal function and histological integrity in a rat model of renal I/R injury. We observed that FGF10 efficiently reduced I/R-induced elevation in blood urea nitrogen, serum creatinine as well as apoptosis induction of RTCs. Interestingly, autophagy activation following I/R was suppressed by FGF10 treatment based on the immunohistochemistry staining and immunoblot analyses of LC3, Beclin-1 and SQSTM1/p62. Moreover, combined treatment of FGF10 with Rapamycin partially reversed the renoprotective effect of FGF10 suggesting the involvement of mTOR pathway in the process. Interestingly, FGF10 also inhibited the release of HMGB1 from the nucleus to the extracellular domain and regulated the expression of inflammatory cytokines such as TNF-α, IL-1β and IL-6. Together, these results indicate that FGF10 could alleviate kidney I/R injury by suppressing excessive autophagy and inhibiting inflammatory response and may therefore have the potential to be used for the prevention and perhaps treatment of I/R-associated AKI.
Collapse
Affiliation(s)
- Xiaohua Tan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Qingdao University Medical College, Qingdao, China
| | - Hongmei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lisha Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianfang Jiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Le Xu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiayu Wei
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
106
|
Zhao W, Zhang L, Chen R, Lu H, Sui M, Zhu Y, Zeng L. SIRT3 Protects Against Acute Kidney Injury via AMPK/mTOR-Regulated Autophagy. Front Physiol 2018; 9:1526. [PMID: 30487750 PMCID: PMC6246697 DOI: 10.3389/fphys.2018.01526] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Acute kidney injury (AKI), which involves the loss of kidney function caused by damage to renal tubular cells, is an important public health concern. We previously showed that sirtuin (SIRT)3 protects the kidneys against mitochondrial damage by inhibiting the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, attenuating oxidative stress, and downregulating proinflammatory cytokines. In this article, we investigated the role of autophagy, mediated by a mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), in the protective effect of SIRT3, against sepsis-induced AKI, in a mouse model of cecal ligation and puncture (CLP). The AKI in CLP mice was associated with the upregulation of autophagy markers; this effect was abolished in SIRT3- mice in parallel with the downregulation of phospho (p)-AMPK and the upregulation of p-mTOR. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) or AMPK inhibitor compound isotonic saline (C), exacerbated AKI. SIRT3 overexpression promoted autophagy, upregulated p-AMPK and downregulated p-mTOR in CLP mice, attenuating sepsis-induced AKI, tubular cell apoptosis, and inflammatory cytokine accumulation in the kidneys. The blockage of autophagy induction largely abolished the protective effect of SIRT3 in sepsis-induced AKI. These findings indicate that SIRT3 protects against CLP-induced AKI by inducing autophagy through regulation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Wenyu Zhao
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hanlan Lu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mingxing Sui
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Youhua Zhu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
107
|
Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, Zhang X, Li G, Sun G, Sun X. Inhibitory Effects of Ginsenoside Rb1 on Early Atherosclerosis in ApoE-/- Mice via Inhibition of Apoptosis and Enhancing Autophagy. Molecules 2018; 23:molecules23112912. [PMID: 30413028 PMCID: PMC6278435 DOI: 10.3390/molecules23112912] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammation is a major contributing factor to the progression of atherosclerosis. Ginsenoside Rb1 (Rb1), an active saponin of Panax notoginseng, has been found to exert beneficial effects on inflammation and oxidative stress. This study investigated the ability of Rb1 to inhibit the formation of atherosclerotic plaques and the potential mechanisms. In this study, the effects of Rb1 on the development of atherosclerosis were investigated in ApoE-/- deficient mice fed with a western diet. Mice were intragastrically administrated with Rb1 (10 mg/kg) for 8 weeks. This study is that ginsenoside Rb1 exerted an inhibitory effect on early atherosclerosis in ApoE-/- mice via decreasing body weight and food intake daily, upregulating the lipid levels of serum plasma, including those of TC, TG and LDL-C and HDL-C and reducing the atherosclerotic plaque area, suppressing inflammatory cytokines (levels of IL-1β, IL-6 and TNF-α) in the serum of ApoE-/- mice, changing the expression levels of BCL-2, BAX, cleaved caspase-3 and cleaved caspase-9 and weakening apoptosis associated with anti-inflammatory activity. Hence, all these effects against atherosclerosis were tightly associated with regulation of necrosis or apoptosis associated with anti-inflammatory activity. Additionally, the results found that ginsenoside Rb1 increased autophagy flux to inhibit apoptosis via acceleration of autophagy by promoting transformation of LC3 from type I to type II in high-fat diet-induced atherosclerosis in ApoE-/- mice. This finding, along with those of the previous study, provides evidence that Rb1 promotes the process of autophagy to protect against atherosclerosis via regulating BCL-2 family-related apoptosis. These results indicate that Rb1 exhibits therapeutic effects in atherosclerosis by reversing the imbalance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Ziru Dai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Ruiying Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
108
|
Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev 2018; 47:183-197. [PMID: 30172870 DOI: 10.1016/j.arr.2018.08.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal degradation process and protective housekeeping mechanism to eliminate damaged organelles, long-lived misfolded proteins and invading pathogens. Autophagy functions to recycle building blocks and energy for cellular renovation and homeostasis, allowing cells to adapt to stress. Modulation of autophagy is a potential therapeutic target for a diverse range of diseases, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. Traditionally, food deprivation and calorie restriction (CR) have been considered to slow aging and increase longevity. Since autophagy inhibition attenuates the anti-aging effects of CR, it has been proposed that autophagy plays a substantive role in CR-mediated longevity. Among several stress stimuli inducers of autophagy, fasting and CR are the most potent non-genetic autophagy stimulators, and lack the undesirable side effects associated with alternative interventions. Despite the importance of autophagy, the evidence connecting fasting or CR with autophagy promotion has not previously been reviewed. Therefore, our objective was to weigh the evidence relating the effect of CR or fasting on autophagy promotion. We conclude that both fasting and CR have a role in the upregulation of autophagy, the evidence overwhelmingly suggesting that autophagy is induced in a wide variety of tissues and organs in response to food deprivation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
109
|
Song Y, Tao Q, Yu L, Li L, Bai T, Song X, Hu H, Li Y, Tan X. Activation of autophagy contributes to the renoprotective effect of postconditioning on acute kidney injury and renal fibrosis. Biochem Biophys Res Commun 2018; 504:641-646. [PMID: 30205956 DOI: 10.1016/j.bbrc.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/01/2018] [Indexed: 01/08/2023]
Abstract
Ischemia/Reperfusion injury contributes to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD) including renal fibrosis. Autophagy is a cytoplasmic components degradation pathway that has complex function in the development of various diseases such as fibrosis in kidney. Our previous work demonstrated that postconditioning (POC) showed excellent therapeutic effect on renal fibrosis via inhibiting the overproduction of reactive oxygen species (ROS) after reperfusion. But the connection of autophagy and POC in the renoprotective effect remains unclear. Here, we defined the relevance of autophagy and POC in the protective effect on AKI and subsequent renal fibrosis. We found that at two days after I/R injury, POC largely reduced renal tubular epithelial cell apoptosis and improved renal function; autophagy was significantly activated in kidneys of the POC rats. At two months after reperfusion, the I/R injury rats displayed severe renal fibrosis and epithelial-mesenchymal transition (EMT), whereas these were remarkably attenuated in the POC treated rats. Overall, our results demonstrated that POC could reduce renal damage and attenuate the degree of EMT after I/R injury via enhanced activation of autophagy.
Collapse
Affiliation(s)
- Yaolin Song
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Qianyu Tao
- Medical College of Qingdao University, Qingdao, Shandong, 266071, China; College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lixia Yu
- Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, 310000, China
| | - Ling Li
- Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Tingting Bai
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiaoxiao Song
- Department of E.N.T, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haiqi Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, 130021, China.
| | - Xiaohua Tan
- Medical College of Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
110
|
Naguib M, Rashed LA. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res Clin Pract 2018; 143:56-61. [PMID: 29959950 DOI: 10.1016/j.diabres.2018.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/09/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED Autophagy is a major cellular clearance mechanism that maintains cellular survival and homeostasis. Autophagy has a crucial role in the progression of diabetes and kidney diseases. AIMS To investigate serum concentrations of Beclin-1, a key regulator of autophagy, in patients with diabetic kidney disease (DKD). METHODS The study included 70 patients with type 2 diabetes and DKD (group 1; 35 patients with estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73 m2 and group 2; 35 patients with eGFR < 30 ml/min/1.73 m2) and 20 age- and sex-matched healthy subjects (group 3). Laboratory work up included; glycated hemoglobin (HbA1c), serum creatinine, eGFR using modification of diet in renal disease (MDRD) formula, urine albumin to creatinine ratio (ACR), and serum Beclin-1 measurement. RESULTS Patients with DKD had significantly lower Beclin-1 levels (2.38 ± 1.46 ng/mL) compared to control group (6.03 ± 1.94 ng/mL; P < 0.001). Moreover, serum Beclin-1 significantly decreased in group 2 (1.43 ± 0.83 ng/mL) compared to group 1 (3.36 ± 1.30 ng/mL; P < 0.001). In univariate analysis, the concentration of Beclin-1 correlated well with eGFR (r = 0.64, P < 0.001), ACR (r = -0.63, P < 0.001), and duration of diabetes (r = -0.43, P < 0.001) but didn't correlate with HbA1c (r = -0.17, P = 0.15). However, ACR was the only significant predictor of Beclin-1 level on performing multiple regression analysis (β = -0.40, P = 0.01). CONCLUSION Serum level of Beclin-1 is reduced in patients with DKD. Furthermore, its level is related to the stage of DKD and correlates with the degree of albuminuria.
Collapse
Affiliation(s)
- Mervat Naguib
- Department of Internal Medicine, School of Medicine, Cairo University, Egypt.
| | - Laila A Rashed
- Department of Medical Biochemistry, School of Medicine, Cairo University, Egypt
| |
Collapse
|
111
|
Hargarten JC, Williamson PR. Epigenetic Regulation of Autophagy: A Path to the Control of Autoimmunity. Front Immunol 2018; 9:1864. [PMID: 30154791 PMCID: PMC6102341 DOI: 10.3389/fimmu.2018.01864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are a significant cause of debilitation and mortality globally and are in need of cost-effective therapeutics. Autophagy is a cellular pathway that facilitates immune modulation involved in both pathogen control and autoimmunity. Regulation is multifactorial and includes a number of epigenetic pathways which can involve modification of DNA-binding histones to induce autophagy-related mRNA synthesis or microRNA and decapping-associated mRNA degradation which results in autophagy suppression. Appreciation of epigenetic-based pathways involved in autophagy and autoimmunity may facilitate application of a burgeoning group of epigenetic pharmaceuticals to these important diseases.
Collapse
Affiliation(s)
- Jessica C Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
112
|
Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI JOURNAL 2018; 17:709-720. [PMID: 30190661 PMCID: PMC6123605 DOI: 10.17179/excli2018-1353] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is an endocrine disorder. In coming decades it will be one of the leading causes of death globally. The key factors in the pathogenesis of diabetes are cellular injuries and disorders of energy metabolism leading to severe diabetic complications. Recent studies have confirmed that autophagy plays a pivotal role in diabetes and its complications. It has been observed that autophagy regulates the normal function of pancreatic β cells and insulin-target tissues, such as skeletal muscle, liver, and adipose tissue. This review will summarize the regulation of autophagy in diabetes and its complications, and explore how this process would emerge as a potential therapeutic target for diabetes treatment.
Collapse
Affiliation(s)
- Debalina Bhattacharya
- Department of Biochemistry, University of Calcutta, Kolkata-700019
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032
| | | | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032
| |
Collapse
|
113
|
Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 2018; 16:414-425. [PMID: 29653411 PMCID: PMC5953241 DOI: 10.1016/j.redox.2018.03.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/26/2022] Open
Abstract
Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time.
Collapse
Affiliation(s)
- Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhenzhen Kong
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Xin Mai
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Yu Lan
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Yang Liu
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhou Yang
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Tuo Deng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Shujue Li
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Wen Zhong
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China.
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China.
| |
Collapse
|
114
|
Pontrelli P, Oranger A, Barozzino M, Divella C, Conserva F, Fiore MG, Rossi R, Papale M, Castellano G, Simone S, Laviola L, Giorgino F, Piscitelli D, Gallone A, Gesualdo L. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy. J Mol Med (Berl) 2018; 96:645-659. [PMID: 29806072 DOI: 10.1007/s00109-018-1656-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Diabetic nephropathy patients (DN) are characterized by increased lysine63 ubiquitination (Lys63-Ub) at the tubular level. Autophagy is deregulated under diabetic conditions, even though the molecular mechanisms and the consequences of this alteration need to be elucidated. The aim of this study was to investigate the link between Lys63-Ub and autophagy in DN and the involvement of these two processes in tubular cell fate. Immunohistochemistry of beclin-1, LC3, and p62 on kidney biopsies highlighted increased protein expression of all these autophagic factors at the tubular level in DN compared to other nephritis. Transmission electron microscopy confirmed the presence of diffuse vacuolization and autophago(lyso)somal structures in proximal tubular cells in DN. Accumulation of Lys63-Ub proteins in DN increased in accordance with the tubular damage and was associated to increased LC3 expression both in vivo and in vitro. Hyperglycemia (HG) induced LC3 and p62 protein expression in HK2 cells together with Lys63-ubiquitinated proteins, and the inhibition of HG-induced Lys63-Ub by NSC697923 inhibitor, significantly reduced both LC3 and p62 expression. Moreover, in DN, those tubules expressing LC3 showed increased caspase-3 expression, supporting the hypothesis that deregulated autophagy induces apoptosis of tubular cells. In vitro, we confirmed a tight association between impaired autophagy, Lys63-Ub, and apoptosis since Lys63-Ub inhibition by NSC697923 abrogated HG-induced cell death and LC3 silencing also blocked hyperglycemia-induced caspase-3 activation. Our data suggested that prolonged hyperglycemia in diabetic patients can impair autophagy as a consequence of Lys63-Ub protein accumulation, thus promoting intracellular autophagic vesicles increase, finally leading to tubular cell death in DN. KEY MESSAGES In vivo autophagy is deregulated in diabetic patients with renal disease (DN). Accumulation of Lys63 ubiquitinated proteins is associated to autophagy deregulation. Accumulation of Lys63 ubiquitinated proteins correlated with apoptosis activation. Lys63 ubiquitination inhibition abrogated hyperglycemia-induced autophagy and apoptosis.
Collapse
Affiliation(s)
- Paola Pontrelli
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy.
| | - Annarita Oranger
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia Barozzino
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Divella
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Conserva
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Fiore
- Department of Emergency and Organ Transplantation - Division of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Rossi
- Department of Emergency and Organ Transplantation - Division of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Massimo Papale
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation - Division of Endocrinology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation - Division of Endocrinology, University of Bari Aldo Moro, Bari, Italy
| | - Domenico Piscitelli
- Department of Emergency and Organ Transplantation - Division of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs - Division of Applied Biology, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
115
|
Liu ZQ, Lee JN, Son M, Lim JY, Dutta RK, Maharjan Y, Kwak S, Oh GT, Byun K, Choe SK, Park R. Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy 2018; 14:1011-1027. [PMID: 29771182 DOI: 10.1080/15548627.2018.1448326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary cilia are evolutionarily conserved microtubule-based cellular organelles that perceive metabolic status and thus link the sensory system to cellular signaling pathways. Therefore, ciliogenesis is thought to be tightly linked to autophagy, which is also regulated by nutrient-sensing transcription factors, such as PPARA (peroxisome proliferator activated receptor alpha) and NR1H4/FXR (nuclear receptor subfamily 1, group H, member 4). However, the relationship between these factors and ciliogenesis has not been clearly demonstrated. Here, we present direct evidence for the involvement of macroautophagic/autophagic regulators in controlling ciliogenesis. We showed that activation of PPARA facilitated ciliogenesis independently of cellular nutritional states. Importantly, PPARA-induced ciliogenesis was mediated by controlling autophagy, since either pharmacological or genetic inactivation of autophagy significantly repressed ciliogenesis. Moreover, we showed that pharmacological activator of autophagy, rapamycin, recovered repressed ciliogenesis in ppara-/- cells. Conversely, activation of NR1H4 repressed cilia formation, while knockdown of NR1H4 enhanced ciliogenesis by inducing autophagy. The reciprocal activities of PPARA and NR1H4 in regulating ciliogenesis were highlighted in a condition where de-repressed ciliogenesis by NR1H4 knockdown was further enhanced by PPARA activation. The in vivo roles of PPARA and NR1H4 in regulating ciliogenesis were examined in greater detail in ppara-/- mice. In response to starvation, ciliogenesis was facilitated in wild-type mice via enhanced autophagy in kidney, while ppara-/- mice displayed impaired autophagy and kidney damage resembling ciliopathy. Furthermore, an NR1H4 agonist exacerbated kidney damage associated with starvation in ppara-/- mice. These findings indicate a previously unknown role for PPARA and NR1H4 in regulating the autophagy-ciliogenesis axis in vivo.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Joon No Lee
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| | - Myeongjoo Son
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Jae-Young Lim
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raghbendra Kumar Dutta
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Yunash Maharjan
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - SeongAe Kwak
- c Zoonosis Research Center , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Goo Taeg Oh
- f Laboratory of Cardiovascular Genomics, Division of Life and Pharmaceutical Sciences , Ewha Womans University , Seoul , Korea
| | - Kyunghee Byun
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Seong-Kyu Choe
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raekil Park
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| |
Collapse
|
116
|
Deshpande S, Abdollahi M, Wang M, Lanting L, Kato M, Natarajan R. Reduced Autophagy by a microRNA-mediated Signaling Cascade in Diabetes-induced Renal Glomerular Hypertrophy. Sci Rep 2018; 8:6954. [PMID: 29725042 PMCID: PMC5934412 DOI: 10.1038/s41598-018-25295-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays a key role in the pathogenesis of kidney diseases, however its role in diabetic nephropathy (DN), and particularly in kidney glomerular mesangial cells (MCs) is not very clear. Transforming Growth Factor- β1 (TGF-β), a key player in the pathogenesis of DN, regulates expression of various microRNAs (miRNAs), some of which are known to regulate the expression of autophagy genes. Here we demonstrate that miR-192, induced by TGF-β signaling, plays an important role in regulating autophagy in DN. The expression of key autophagy genes was decreased in kidneys of streptozotocin-injected type-1 and type-2 (db/db) diabetic mice and this was reversed by treatment with Locked Nucleic Acid (LNA) modified miR-192 inhibitors. Changes in autophagy gene expression were also attenuated in kidneys of diabetic miR-192-KO mice. In vitro studies using mouse glomerular mesangial cells (MMCs) also showed a decrease in autophagy gene expression with TGF-β treatment. miR-192 mimic oligonucleotides also decreased the expression of certain autophagy genes. These results demonstrate that TGF-β and miR-192 decrease autophagy in MMCs under diabetic conditions and this can be reversed by inhibition or deletion of miR-192, further supporting miR-192 as a useful therapeutic target for DN.
Collapse
Affiliation(s)
- Supriya Deshpande
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| |
Collapse
|
117
|
Jin J, Wu D, Zhao L, Zou W, Shen W, Tu Q, He Q. Effect of autophagy and stromal interaction molecule 1 on podocyte epithelial-mesenchymal transition in diabetic nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2450-2459. [PMID: 31938357 PMCID: PMC6958286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/22/2018] [Indexed: 06/10/2023]
Abstract
AIM We aimed to assess the effect of autophagy and stromal interaction molecule 1 (STIM1) on podocyte epithelial-mesenchymal transition in diabetic nephropathy. METHODS The sera of 8-week-old db/db and C57BL/KsJ rats were used to culture MPC5 cells. The experiment was divided into 4 groups: MPC5 + siRNA-Scr + 10% C57BL/KsJ (Group A), MPC5 + siRNA-STIM1 + 10% C57BL/KsJ (Group B), MPC5 + siRNA-Scr + 10% db/db (Group C), and MPC5 + siRNA-STIM1 + 10% db/db (Group D). Podocyte autophagy was evaluated via immunofluorescence staining for LC3II and P62, and via Western blotting for P62 and LC3 (LC3II/LC3I). Western blotting was also used to assess the expression of TRPC6, Orai1, Beclin-1, Bcl-2, Caspase3, E-cadherin, fibronectin, and α-SMA protein. Furthermore, podocyte apoptosis was assessed via flow cytometry. RESULTS We found that, in podocytes cultured in the serum of diabetic nephrotic rats, the autophagy level decreased, whereas the apoptosis level increased, and EMT can be advanced. However, after silencing STIM1 with siRNA, a converse outcome was noted. Furthermore, in diabetic nephropathy rats, the up-regulated expression of podocyte STIM1 can activate TRPC6 and Orai1 channels, which results in Ca2+ entry. CONCLUSIONS We found that, in podocytes cultured in the serum of diabetic nephrotic rats, the autophagy level increased, whereas the apoptosis level decreased, and EMT can be inhibited by silencing STIM1 with siRNA.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Diandian Wu
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Wenli Zou
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Wei Shen
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Qiudi Tu
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, P. R. China
- People’s Hospital of Hangzhou Medical CollegeHangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
118
|
Pawlowska E, Szczepanska J, Wisniewski K, Tokarz P, Jaskólski DJ, Blasiak J. NF-κB-Mediated Inflammation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage. Does Autophagy Play a Role? Int J Mol Sci 2018; 19:E1245. [PMID: 29671828 PMCID: PMC5979412 DOI: 10.3390/ijms19041245] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The rupture of saccular intracranial aneurysms (IA) is the commonest cause of non-traumatic subarachnoid hemorrhage (SAH)—the most serious form of stroke with a high mortality rate. Aneurysm walls are usually characterized by an active inflammatory response, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) has been identified as the main transcription factor regulating the induction of inflammation-related genes in IA lesions. This transcription factor has also been related to IA rupture and resulting SAH. We and others have shown that autophagy interacts with inflammation in many diseases, but there is no information of such interplay in IA. Moreover, NF-κB, which is a pivotal factor controlling inflammation, is regulated by autophagy-related proteins, and autophagy is regulated by NF-κB signaling. It was also shown that autophagy mediates the normal functioning of vessels, so its disturbance can be associated with vessel-related disorders. Early brain injury, delayed brain injury, and associated cerebral vasospasm are among the most serious consequences of IA rupture and are associated with impaired function of the autophagy⁻lysosomal system. Further studies on the role of the interplay between autophagy and NF-κB-mediated inflammation in IA can help to better understand IA pathogenesis and to identify IA patients with an increased SAH risk.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Karol Wisniewski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego 22, 90-153 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Dariusz J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego 22, 90-153 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
119
|
Esterline RL, Vaag A, Oscarsson J, Vora J. MECHANISMS IN ENDOCRINOLOGY: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol 2018; 178:R113-R125. [PMID: 29371333 DOI: 10.1530/eje-17-0832] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2D) is associated with inhibition of autophagic and lysosomal housekeeping processes that detrimentally affect key organ functioning; a process likely to be exacerbated by conventional insulin-driven anabolic therapies. We propose that the cardio-renal benefits demonstrated with sodium-glucose cotransporter-2 inhibitor (SGLT2i) treatment in T2D partly may be explained by their ability to drive consistent, overnight periods of increased catabolism brought about by constant glucosuria. Key steps driving this catabolic mechanism include: a raised glucagon/insulin ratio initially depleting glycogen in the liver and ultimately activating gluconeogenesis utilizing circulating amino acids (AAs); a general fuel switch from glucose to free fatty acids (accompanied by a change in mitochondrial morphology from a fission to a sustained fusion state driven by a decrease in AA levels); a decrease in circulating AAs and insulin driving inhibition of mammalian target of rapamycin complex 1 (mTORC1), which enhances autophagy/lysosomal degradation of dysfunctional organelles, eventually causing a change in mitochondrial morphology from a fission to a sustained fusion state. Resumption of eating in the morning restores anabolic biogenesis of new and fully functional organelles and proteins. Restoration of diurnal metabolic rhythms and flexibility by SGLT2is may have therapeutic implications beyond those already demonstrated for the cardio-renal axis and may therefore affect other non-diabetes disease states.
Collapse
Affiliation(s)
| | - Allan Vaag
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Oscarsson
- AstraZeneca Pharmaceuticals, Gaithersburg, Maryland, USA
| | - Jiten Vora
- Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
120
|
Ma Y, Zhang Y, Zhao Y, Wang X, Lin Y, Ma A. Expression of autophagy-related genes in cerebrospinal fluid of patients with tuberculous meningitis. Exp Ther Med 2018; 15:4671-4676. [PMID: 29805485 PMCID: PMC5952066 DOI: 10.3892/etm.2018.5999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The expression of autophagy-related genes in cerebrospinal fluid of patients with tuberculous meningitis (TBM) and their clinical significance in patients with TBM was investigated. Sixty patients with TBM (observation group) and twenty healthy volunteers during the same period (control group) were selected and the cerebrospinal fluid was collected. The expression levels of p62, Beclin1 and LC3-II genes in cerebrospinal fluid were detected via semi-quantitative reverse transcription-polymerase chain reaction and patients in observation group were divided into high expression and normal or low expression group on the basis of LC3-II expression levels. On the other hand, the contents of inflammatory factors interleukin-6, −10 (IL-6, −10), and tumor necrosis factor-α (TNF-α) were detected using the enzyme-linked immunosorbent assay kit. The mRNA levels of p62, Beclin1 and LC3-II in cerebrospinal fluid of patients in observation were significantly higher than those in the control group (P<0.01). TUNEL assay showed that the apoptosis level of cerebro-spinal fluid in high expression was obviously lower than that in normal or low expression group (P<0.01); the content of IL-6 and TNF-α in cerebrospinal fluid in high expression was significantly lower than those in normal or low expression group (P<0.01); the content of IL-10 in cerebrospinal fluid in high expression was obviously higher than that in normal or low expression group (P<0.01). Correlation analysis revealed that LC3-II was positively correlated with IL-10, but negatively correlated with IL-6 and TNF-α. The mRNA levels of p62, Beclin1 and LC3-II in cerebrospinal fluid of patients with TBM are increased, there is a correlation between expression levels of autophagy-related genes and inflammatory factors, and the high expression of autophagy-related genes may have a protective effect on patients with TBM.
Collapse
Affiliation(s)
- Yunbo Ma
- Department of Preventive Medicine, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yongxia Zhang
- Department of Emergency, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yanyan Zhao
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Xianhua Wang
- School of Public Health, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yuefu Lin
- Department of Preventive Medicine, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
121
|
Jia H, Yan Y, Liang Z, Tandra N, Zhang B, Wang J, Xu W, Qian H. Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep 2018; 17:3439-3447. [PMID: 29257336 DOI: 10.3892/mmr.2017.8311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is a common and serious medical condition associated with poor health outcomes. Autophagy is a conserved multistep pathway that serves a major role in many biological processes and diseases. Recent studies have demonstrated that autophagy is induced in proximal tubular cells during AKI. Autophagy serves a pro‑survival or pro‑death role under certain conditions. Furthermore, mesenchymal stem cells (MSCs) have therapeutic potential in the repair of renal injury. This review summarizes the recent progress on the role of autophagy in AKI and MSCs‑based therapy for AKI. Further research is expected to prevent and treat acute kidney injury.
Collapse
Affiliation(s)
- Haoyuan Jia
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongmin Yan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Nitin Tandra
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Juanjuan Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
122
|
Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis 2018; 9:322. [PMID: 29476062 PMCID: PMC5833747 DOI: 10.1038/s41419-018-0374-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.
Collapse
|
123
|
Zhang J, Xiang X, Shu S, Zhang C, Liang Y, Jiang T, Zhang W, Guo T, Liang X, Tang X. Advanced oxidation protein products inhibit the autophagy of renal tubular epithelial cells. Exp Ther Med 2018; 15:3908-3916. [PMID: 29556265 PMCID: PMC5844045 DOI: 10.3892/etm.2018.5875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
It is well known that autophagy serves a crucial role in renal tubular epithelial cell (RTEC) injury in the pathogenesis of chronic kidney disease (CKD). The accumulation of advanced oxidation protein products (AOPPs) also participates in the progression of CKD. However, the effects of AOPPs on autophagy remain unknown. To clarify the underlying mechanism of RTEC injury in CKD, the effect of AOPPs on HK-2 cells, an RTEC cell line, was investigated. The results of the present study revealed that AOPP exposure downregulated the expression of B-cell lymphoma-2-interacting myosin-like coiled-coil protein 1, reduced the conversion of microtubule-associated proteins 1 light chain 3B (LC3)-I to LC3-II and the formation of autophagosomes, and lead to an accumulation of p62. These results suggest that AOPPs may inhibit the autophagic activity of HK-2 cells. Furthermore, the aforementioned changes were mediated by the AOPP-phosphorylated phosphoinositide 3-kinase3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway; this was verified by treatment with LY294002, a PI3K inhibitor, which reversed the AOPP-induced changes. The present study also demonstrated that the activation of autophagy with rapamycin led to an improvement in the AOPP-induced overexpression of kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, two biomarkers of RTEC injury, whereas inhibiting autophagy with chloroquine further increased their expression during AOPP treatment. Collectively, these results indicate that AOPPs may inhibit autophagy in RTECs via activation of the PI3K/AKT/mTOR pathway and that autophagy inhibition serves a role in AOPP-induced RTEC injury.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiaohong Xiang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuangshuang Shu
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Cuiling Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuling Liang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tingting Jiang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wenying Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiujie Liang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
124
|
Fang Y, Zhang H, Zhong Y, Ding X. Prolyl hydroxylase 2 (PHD2) inhibition protects human renal epithelial cells and mice kidney from hypoxia injury. Oncotarget 2018; 7:54317-54328. [PMID: 27527871 PMCID: PMC5342344 DOI: 10.18632/oncotarget.11104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) is a key oxygen sensor, setting low steady-state level of hypoxia-inducible factor-α (HIF-α). Here, we showed that treatment of cobalt chloride (CoCl2), a hypoxia mimic, in HK-2 tubular epithelial cells induced PHD2 and HIF-1/2α expression as well as cell apoptosis and autophagy activation. Three methyladenine (3-MA), the autophagy inhibitor, blocked autophagy and protected HK-2 cells from CoCl2. Significantly, siRNA knockdown of PHD2 also protected HK-2 cells from CoCl2,possibly via increasing HIF-1α expression. Reversely, HIF-1α siRNA knockdown almost abolished cytoprotection by PHD2 siRNA in CoCl2-treated HK-2 cells. In vivo, pretreatment with a PHD inhibitor L-mimosine remarkably attenuated mice renal ischemia-reperfusion injuries. Molecularly, L-mimosine inhibited apoptosis and inflammatory responses in injured mice kidneys. Together, our results suggest that PHD2 silence or inhibition protects human renal epithelial cells and mice kidney from hypoxia injuries.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Hui Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihong Zhong
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
125
|
Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018; 75:669-688. [PMID: 28871310 PMCID: PMC5771948 DOI: 10.1007/s00018-017-2639-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.
Collapse
Affiliation(s)
- Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
126
|
Ischemic Preconditioning Promotes Autophagy and Alleviates Renal Ischemia/Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8353987. [PMID: 29607326 PMCID: PMC5828321 DOI: 10.1155/2018/8353987] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is important for cellular survival during renal ischemia/reperfusion (I/R) injury. Ischemic preconditioning (IPC) has a strong renoprotective effect during renal I/R. Our study here aimed to explore the effect of IPC on autophagy during renal I/R injury. Rats were subjected to unilateral renal ischemia with or without prior IPC. Hypoxia/reoxygenation (H/R) injury was induced in HK-2 cells with or without prior hypoxic preconditioning (HPC). Autophagy and apoptosis were detected after reperfusion or reoxygenation for different time. The results showed that the levels of LC3II, Beclin-1, SQSTM1/p62, and cleaved caspase-3 were altered in a time-dependent manner during renal I/R. IPC further induced autophagy as indicated by increased levels of LC3II and Beclin-1, decreased level of SQSTM1/p62, and accumulation of autophagosomes compared to I/R groups at corresponding reperfusion time. In addition, IPC reduced the expression of cleaved caspase-3 and alleviated renal cell injury, as evaluated by the levels of serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) in renal tissues. In conclusion, autophagy and apoptosis are dynamically altered during renal I/R. IPC protects against renal I/R injury and upregulates autophagic flux, thus increasing the possibility for a novel therapy to alleviate I/R-induced acute kidney injury (AKI).
Collapse
|
127
|
Li Z, Wang Z. Aging Kidney and Aging-Related Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:169-187. [PMID: 30232759 DOI: 10.1007/978-981-13-1117-8_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the development of society and improvement of health care, the life span is much longer than before, which brings serious aging problems. Among all the aging problems, renal aging grows to be nonnegligible issue. The aging process of kidney is always accompanied with structural and functional changes. Molecular changes, including Klotho and Sirtuins, are the basic causes of phenotypical changes. Cell senescence and cell autophagy play fundamental roles in the process of renal aging. To effectively intervene in the process of renal aging, different methods have been tried separately, which could produce different effects. Effective intervention of renal aging could be meaningful for healthy state of the whole body.
Collapse
Affiliation(s)
- Zhongchi Li
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
128
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
129
|
Guo H, Wang B, Li H, Ling L, Niu J, Gu Y. Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes. Am J Physiol Renal Physiol 2017; 314:F181-F189. [PMID: 29070572 DOI: 10.1152/ajprenal.00302.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate the role of glucagon-like peptide-1 analog (GLP-1) in high-fat diet-induced obesity-related glomerulopathy (ORG). Male C57BL/6 mice fed a high-fat diet for 12 wk were treated with GLP-1 (200 μg/kg) or 0.9% saline for 4 wk. Fasting blood glucose and insulin and the expression of podocin, nephrin, phosphoinositide 3-kinase (PI3K), glucose transporter type (Glut4), and microtubule-associated protein 1A/1B-light chain 3 (LC3) were assayed. Glomerular morphology and podocyte foot structure were evaluated by periodic acid-Schiff staining and electron microscopy. Podocytes were treated with 150 nM GLP-1 and incubated with 400 μM palmitic acid (PA) for 12 h. The effect on autophagy was assessed by podocyte-specific Glut4 siRNA. Insulin resistance and autophagy were assayed by immunofluorescence and Western blotting. The high-fat diet resulted in weight gain, ectopic glomerular lipid accumulation, increased insulin resistance, and fusion of podophyte foot processes. The decreased translocation of Glut4 to the plasma membrane and excess autophagy seen in mice fed a high-fat diet and in PA-treated cultured podocytes were attenuated by GLP-1. Podocyte-specific Glut4 siRNA promoted autophagy, and rapamycin-enhanced autophagy worsened the podocyte injury caused by PA. Excess autophagy in podocytes was induced by inhibition of Glut4 translocation to the plasma membrane and was involved in the pathology of ORG. GLP-1 restored insulin sensitivity and ameliorated renal injury by decreasing the level of autophagy.
Collapse
Affiliation(s)
- Honglei Guo
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China.,Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu Province, China
| | - Bin Wang
- Department of Nephrology, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, China
| | - Hongmei Li
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - Lilu Ling
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - Jianying Niu
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - Yong Gu
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China.,Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University , Shanghai , China
| |
Collapse
|
130
|
Aristolochic Acid-Induced Autophagy Promotes Epithelial-to-Myofibroblast Transition in Human Renal Proximal Tubule Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9596256. [PMID: 29234448 PMCID: PMC5664270 DOI: 10.1155/2017/9596256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 01/16/2023]
Abstract
Autophagy plays an essential role in cellular homeostasis in kidney. Previous studies have found that aristolochic acid (AA) can induce autophagy of renal tubular epithelial cells and epithelial-to-myofibroblast transition (EMT). However, the relationship between AA-induced autophagy and EMT is unclear. Our results showed that, after AA stimulation, the appearance of autophagy preceded EMT. Autophagy of HKC cells began to increase gradually from the 3rd hour, reached the peak at 12th hour, and then weakened gradually until 36th hour; the EMT process of HKC continued to increase from 6th hour to 36th hour after AA stimulation. The enhancement of autophagy using autophagy inducers, rapamycin or serum-free medium, led to an aggravation of EMT and upregulated expression of fibronectin, a component of extracellular matrix, in AA-treated HKC cells. In contrast, the inhibition of autophagy by autophagy inhibitor, 3-methyladenine, or by knockdown of Beclin 1 led to an attenuation of EMT and downregulated expression of fibronectin in AA-treated HKC cells. Taken together, our study suggests that, after AA stimulation, two types of cell responses of HKC cells, autophagy and EMT, will successively appear, and autophagy can promote EMT of HKC.
Collapse
|
131
|
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017; 13:681-696. [DOI: 10.1038/nrneph.2017.129] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
132
|
Matboli M, Azazy AEM, Adel S, Bekhet MM, Eissa S. Evaluation of urinary autophagy transcripts expression in diabetic kidney disease. J Diabetes Complications 2017; 31:1491-1498. [PMID: 28760651 DOI: 10.1016/j.jdiacomp.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/10/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND We identified and validated novel urinary autophagy markers in diabetic kidney disease (DKD) based on bioinformatics analysis and clinical validation. PATIENTS & METHODS We retrieved three novel autophagy genes related to DKD from public microarray databases, namely; microtubule-associated protein light chain (MAP1LC3A), WD Repeat Domain, Phosphoinositide Interacting 2 (WIPI2), and RB1-Inducible Coiled-Coil 1 (RB1CC1). Secondly we assessed the expression of the chosen autophagy transcript in urine sediment of 86 patients with DKD and 74 (age and sex matched) controls by reverse transcription quantitative real-time PCR. RESULTS The urinary expression levels of MAP1LC3A, WIPI, RB1CC1 were significantly lower in DKD than control group (P<0.001).The receiver-operating characteristic curve (ROC) analyses that each urinary autophagy transcript showed high sensitivity and specificity for distinguishing DKD from control (MAP1LC3A, 81.4% and 81.1%; WIPI, 74.4% and 67.6%, and RB1CC1, 81.4%,70.3%, respectively). Notably, a negative correlation was found between these autophagy markers, serum creatinine and urinary albumin creatinine ratio. The sensitivity and specificity of this urinary autophagy based panel reached 90.6% and 60% in diagnosis of DKD. CONCLUSION We identified and validated a novel diagnostic urinary autophagy based panel with high sensitivity and moderate specificity representing a vital player in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. Box 11381, Cairo, Egypt.
| | | | - Seham Adel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. Box 11381, Cairo, Egypt
| | - Miram M Bekhet
- Diabetes and Endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. Box 11381, Cairo, Egypt.
| |
Collapse
|
133
|
Zhu P, Sieben CJ, Xu X, Harris PC, Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum Mol Genet 2017; 26:158-172. [PMID: 28007903 DOI: 10.1093/hmg/ddw376] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. It is one of the most common heritable human diseases with eventual development of renal failure; however, effective treatment is lacking. While inhibition of mechanistic target of rapamycin (mTOR) effectively slows cyst expansions in animal models, results from clinical studies are controversial, prompting further mechanistic studies of mTOR-based therapy. Here, we aim to establish autophagy, a downstream pathway of mTOR, as a new therapeutic target for PKD. We generated zebrafish mutants for pkd1 and noted cystic kidney and mTOR activation in pkd1a mutants, suggesting a conserved ADPKD model. Further assessment of the mutants revealed impaired autophagic flux, which was conserved in kidney epithelial cells derived from both Pkd1-null mice and ADPKD patients. We found that inhibition of autophagy by knocking down the core autophagy protein Atg5 promotes cystogenesis, while activation of autophagy using a specific inducer Beclin-1 peptide ameliorates cysts in the pkd1a model. Treatment with compound autophagy activators, including mTOR-dependent rapamycin as well as mTOR-independent carbamazepine and minoxidil, markedly attenuated cyst formation and restored kidney function. Finally, we showed that combination treatment with low doses of rapamycin and carbamazepine was able to attenuate cyst formation as effectively as a single treatment with a high dose of rapamycin alone. In summary, our results suggested a modifying effect of autophagy on ADPKD, established autophagy activation as a novel therapy for ADPKD, and presented zebrafish as an efficient vertebrate model for developing PKD therapeutic strategies.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia J Sieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
134
|
Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun 2017; 8:413. [PMID: 28871079 PMCID: PMC5583183 DOI: 10.1038/s41467-017-00498-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury is a major determinant of proteinuric kidney disease and the identification of potential therapeutic targets for preventing podocyte injury has clinical importance. Here, we show that histone deacetylase Sirt6 protects against podocyte injury through epigenetic regulation of Notch signaling. Sirt6 is downregulated in renal biopsies from patients with podocytopathies and its expression correlates with glomerular filtration rate. Podocyte-specific deletion of Sirt6 exacerbates podocyte injury and proteinuria in two independent mouse models, diabetic nephropathy, and adriamycin-induced nephropathy. Sirt6 has pleiotropic protective actions in podocytes, including anti-inflammatory and anti-apoptotic effects, is involved in actin cytoskeleton maintenance and promotes autophagy. Sirt6 also reduces urokinase plasminogen activator receptor expression, which is a key factor for podocyte foot process effacement and proteinuria. Mechanistically, Sirt6 inhibits Notch1 and Notch4 transcription by deacetylating histone H3K9. We propose Sirt6 as a potential therapeutic target for the treatment of proteinuric kidney disease. Podocytes are essential components of the renal glomerular filtration barrier and podocyte dysfunction leads to proteinuric kidney disease. Here Liu et al. show that Sirt6 protects podocytes from apoptosis and inflammation by increasing autophagic flux through inhibition of the Notch pathway.
Collapse
|
135
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
136
|
Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy. Int J Biochem Cell Biol 2017; 90:17-28. [DOI: 10.1016/j.biocel.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 02/05/2023]
|
137
|
Xu L, Fan Q, Wang X, Li L, Lu X, Yue Y, Cao X, Liu J, Zhao X, Wang L. Ursolic acid improves podocyte injury caused by high glucose. Nephrol Dial Transplant 2017; 32:1285-1293. [PMID: 26567247 DOI: 10.1093/ndt/gfv382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. METHODS Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. RESULTS During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. CONCLUSIONS Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Li Xu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Qiuling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xu Wang
- Department of Gastroenterology, First Hospital of China Medical University, Shenyang, China
| | - Lin Li
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xinxing Lu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yue
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xu Cao
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Jia Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xue Zhao
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Lining Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
138
|
Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 2017; 7:6852. [PMID: 28761152 PMCID: PMC5537362 DOI: 10.1038/s41598-017-07061-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant endoplasmic reticulum (ER) stress and autophagy are associated with diabetic nephropathy. Here we investigated the effect of astragaloside IV (AS-IV) on the progression of diabetic nephropathy (DN) and the underlying mechanism involving ER stress and autophagy in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-incubated podocytes. The diabetic mice developed progressive albuminuria and glomerulosclerosis within 8 weeks, which were significantly ameliorated by AS-IV treatment in a dose-dependent manner. Moreover, diabetes or HG-induced podocyte apoptosis was markedly attenuated by AS-IV, paralleled by a marked remission in ER stress and a remarkable restoration in impaired autophagy, which were associated with a significant improvement in the expression of sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) and AMP-activated protein kinase α (AMPKα) phosphorylation, respectively. Knockdown of SERCA2 in podocytes induced ER stress and largely abolished the protective effect of AS-IV, but had no obvious effect on the expression of autophagy-associated proteins. On the other hand, blockade of either autophagy induction or AMPKα activation could also significantly mitigate AS-IV-induced beneficial effect. Collectively, these results suggest that AS-IV prevented the progression of DN, which is mediated at least in part by SERCA2-dependent ER stress attenuation and AMPKα-promoted autophagy induction.
Collapse
|
139
|
Miaomiao W, Chunhua L, Xiaochen Z, Xiaoniao C, Hongli L, Zhuo Y. Autophagy is involved in regulating VEGF during high-glucose-induced podocyte injury. MOLECULAR BIOSYSTEMS 2017; 12:2202-12. [PMID: 27138352 DOI: 10.1039/c6mb00195e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Podocytes are the major sites of vascular endothelial growth factor (VEGF) production in kidneys. Over-expression of VEGF is involved in the pathogenesis of diabetic nephropathy (DN), and an emerging body of evidence suggests that autophagy plays an important role in DN. In this study, the effect of autophagy on over-expressed VEGF along with its underlying mechanism was investigated in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-induced podocytes. We found that diabetes caused podocyte foot process effacement and VEGF upregulation significantly. In vitro, high glucose induced VEGF and reduced the podocyte viability. After treatment with rapamycin in podocytes, an autophagy inducer, VEGF activation was significantly abrogated and podocyte injury was ameliorated. In contrast, podocytes treated with 3-methyladenine (3-MA), a potent autophagy inhibitor, had increased VEGF expression. Furthermore, 3-MA significantly increased the production of HG-induced reactive oxygen species (ROS), whereas rapamycin decreased the cellular ROS level. Inhibition of ROS production by N-acetyl-l-cysteine (NAC) effectively reduced the over-expression of VEGF. These studies show the vital role of autophagy in the regulation of VEGF, which presents a protective effect on HG-induced podocyte injury. ROS production may be an important mechanism for mediating this process.
Collapse
Affiliation(s)
- Wei Miaomiao
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, China.
| | - Liu Chunhua
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, China.
| | - Zhang Xiaochen
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, China.
| | - Chen Xiaoniao
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, China.
| | - Lin Hongli
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yang Zhuo
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, China.
| |
Collapse
|
140
|
Li L, Zviti R, Ha C, Wang ZV, Hill JA, Lin F. Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction. J Biol Chem 2017; 292:13774-13783. [PMID: 28705935 DOI: 10.1074/jbc.m117.791483] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy has been shown to be important for normal homeostasis and adaptation to stress in the kidney. Yet, the molecular mechanisms regulating renal epithelial autophagy are not fully understood. Here, we explored the role of the stress-responsive transcription factor forkhead box O3 (FoxO3) in mediating injury-induced proximal tubular autophagy in mice with unilateral ureteral obstruction (UUO). We show that following UUO, FoxO3 is activated and displays nuclear expression in the hypoxic proximal tubules exhibiting high levels of autophagy. Activation of FoxO3 by mutating phosphorylation sites to enhance its nuclear expression induces profound autophagy in cultured renal epithelial cells. Conversely, deleting FoxO3 in mice results in fewer numbers of autophagic cells in the proximal tubules and reduced ratio of the autophagy-related protein LC3-II/I in the kidney post-UUO. Interestingly, autophagic cells deficient in FoxO3 contain lower numbers of autophagic vesicles per cell. Analyses of individual cells treated with autophagic inhibitors to sequentially block the autophagic flux suggest that FoxO3 stimulates the formation of autophagosomes to increase autophagic capacity but has no significant effect on autophagosome-lysosome fusion or autolysosomal clearance. Furthermore, in kidneys with persistent UUO for 7 days, FoxO3 activation increases the abundance of mRNA and protein levels of the core autophagy-related (Atg) proteins including Ulk1, Beclin-1, Atg9A, Atg4B, and Bnip3, suggesting that FoxO3 may function to maintain components of the autophagic machinery that would otherwise be consumed during prolonged autophagy. Taken together, our findings indicate that FoxO3 activation can both induce and maintain autophagic activities in renal epithelial cells in response to injury from urinary tract obstruction.
Collapse
Affiliation(s)
- Ling Li
- From the Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Ronald Zviti
- From the Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Catherine Ha
- From the Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Zhao V Wang
- the Departments of Internal Medicine (Cardiology) and.,Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Joseph A Hill
- the Departments of Internal Medicine (Cardiology) and.,Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Fangming Lin
- From the Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| |
Collapse
|
141
|
Kaufman DR, Papillon J, Larose L, Iwawaki T, Cybulsky AV. Deletion of inositol-requiring enzyme-1α in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell 2017; 28:1636-1651. [PMID: 28428258 PMCID: PMC5469607 DOI: 10.1091/mbc.e16-12-0828] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
Inositol-requiring enzyme-1α (IRE1α) is an endoplasmic reticulum (ER)-transmembrane endoribonuclease kinase that plays an essential function in extraembryonic tissues during normal development and is activated during ER stress. To address the functional role of IRE1α in glomerular podocytes, we produced podocyte-specific IRE1α-deletion mice. In male mice, deletion of IRE1α in podocytes resulted in albuminuria beginning at 5 mo of age and worsening with time. Electron microscopy revealed focal podocyte foot-process effacement in 9-mo-old male IRE1α-deletion mice, as well as microvillous transformation of podocyte plasma membranes. Compared with control, glomerular cross-sectional and capillary lumenal areas were greater in deletion mice, and there was relative podocyte depletion. Levels of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II expression and c-Jun N-terminal kinase-1 phosphorylation were decreased in IRE1α-deletion glomeruli, in keeping with reduced autophagy. Deletion of IRE1α exacerbated glomerular injury in anti-glomerular basement membrane nephritis. In cell culture, IRE1α dominant-negative mutants reduced the physiological (basal) accumulation of LC3B-II and the size of autophagic vacuoles but did not affect ER-associated degradation. Thus IRE1α is essential for maintaining podocyte and glomerular integrity as mice age and in glomerulonephritis. The mechanism is related, at least in part, to the maintenance of autophagy in podocytes.
Collapse
Affiliation(s)
- Daniel Robert Kaufman
- Department of Physiology, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Joan Papillon
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Louise Larose
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Andrey V Cybulsky
- Department of Physiology, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
142
|
Zhang LX, Zhao HJ, Sun DL, Gao SL, Zhang HM, Ding XG. Niclosamide attenuates inflammatory cytokines via the autophagy pathway leading to improved outcomes in renal ischemia/reperfusion injury. Mol Med Rep 2017. [PMID: 28627643 PMCID: PMC5561795 DOI: 10.3892/mmr.2017.6768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury is a debilitating condition that leads to loss renal function and damage to kidney tissue in the majority of patients with acute kidney disease. Previous studies have indicated that autophagy serves a protective function in renal I/R injury. In the present study, the effect of the anthelmintic niclosamide in the regulation of inflammatory responses in kidney I/R was investigated. A total of 40 Sprague-Dawley rats were randomly divided into the following 5 groups (n=8 in each group): Sham group; renal I/R injury; renal I/R injury plus 3-methyladenine (3-MA) treatment (15 mg/kg); renal I/R injury plus niclosamide (25 mg/kg); and renal I/R injury plus rapamycin (10 mg/kg). The expression levels of autophagy-associated proteins in kidney samples obtained from rats with I/R injury were examined using reverse transcription-quantitative polymerase chain reaction and western blotting techniques. In addition, histopathological alterations, the expression of cytokines and renal function were evaluated. Treatment with niclosamide was associated with induction of autophagy and an overall improvement in renal function. There was an increased expression of autophagosome-associated proteins, suggesting a strong correlation between autophagy and improvement of renal function. The increased levels of anti-inflammatory cytokines and decreased levels of pro-inflammatory cytokines provided additional evidence that niclosamide may be effective for the treatment of renal I/R injury. Clinical studies are required to further validate the results of the present study.
Collapse
Affiliation(s)
- Lin-Xia Zhang
- Department of Geriatrics, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hui-Juan Zhao
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Dong-Li Sun
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shan-Lin Gao
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hong-Mei Zhang
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xin-Guo Ding
- Department of Nephrology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
143
|
Zhang X, Yuan D, Sun Q, Xu L, Lee E, Lewis AJ, Zuckerbraun BS, Rosengart MR. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J 2017; 31:4382-4395. [PMID: 28615325 DOI: 10.1096/fj.201601096rrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/06/2017] [Indexed: 11/11/2022]
Abstract
During sepsis and shock states, mitochondrial dysfunction occurs. Consequently, adaptive mechanisms, such as fission, fusion, and mitophagy, are induced to eliminate damaged portions or entire dysfunctional mitochondria. The regulatory PINK1/Parkin and DJ-1 pathways are strongly induced by mitochondrial depolarization, although a direct link between loss of mitochondrial membrane potential (ΔΨ) and mitophagy has not been identified. Mitochondria also buffer Ca2+, and their buffering capacity is dependent on ΔΨ Here, we characterize a role for calcium/calmodulin-dependent protein kinase (CaMK) I in the regulation of these mechanisms. Loss of ΔΨ with either pharmacologic depolarization or LPS leads to Ca2+-dependent mitochondrial recruitment and activation of CaMKI that precedes the colocalization of PINK1/Parkin and DJ-1. CaMKI is required and serves as both a PINK1 and Parkin kinase. The mechanisms operate in both immune and nonimmune cells and are induced in in vivo models of endotoxemia, sepsis, and hemorrhagic shock. These data support the idea that CaMKI links mitochondrial stress with the PINK1/Parkin and DJ-1 mechanisms of mitophagy.-Zhang, X., Yuan, D., Sun, Q., Xu, L., Lee, E., Lewis, A. J., Zuckerbraun, B. S., Rosengart, M. R. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Du Yuan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emma Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
144
|
Lin F. Autophagy in renal tubular injury and repair. Acta Physiol (Oxf) 2017; 220:229-237. [PMID: 28112877 PMCID: PMC7814874 DOI: 10.1111/apha.12852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is a fundamental cellular process that maintains normal function and structure of the cell. It can be induced during stress and serves as an adaptive response for cell survival. Normal kidneys have high metabolic demands yet are relatively hypoxic, especially in the medulla and papilla. Injury or ageing aggravates metabolic perturbation and activates autophagy in many types of renal cells. In the kidney, tubular epithelial cells consume the most energy due to active transport mechanisms and therefore are the most susceptible to injuries from hypoxic or low-energy states. This brief review will summarize current understandings of the biological function and molecular regulation of epithelial autophagy during tubular injury and repair.
Collapse
Affiliation(s)
- F Lin
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
145
|
Li C, Siragy HM. Autophagy upregulates (pro)renin receptor expression via reduction of P62/SQSTM1 and activation of ERK1/2 signaling pathway in podocytes. Am J Physiol Regul Integr Comp Physiol 2017; 313:R58-R64. [PMID: 28450279 DOI: 10.1152/ajpregu.00088.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Abstract
Autophagy plays a major role in podocytes health and disease. P62, also known as sequestosome-1 (SQSTM1), is a marker for autophagic activity and is required for the formation and degradation of ubiquitnated protein by autophagy. Knockout of p62 enhanced extracellular signal-regulated kinases (ERK1/2) activity. (pro)renin receptor (PRR) is expressed in podocytes where it contributes to the homeostasis of these cells. The influence of autophagy on PRR expression is unknown. We hypothesized that in podocytes, upregulation of autophagic activity increases PRR expression via reduction of p62 and stimulation of ERK1/2 signaling pathway. Cultured mouse podocytes were treated with the autophagy activators, rapamycin or Earle's balanced salt solution (EBSS), for 48 h. Both rapamycin and EBSS significantly decreased p62 protein levels, increased ERK1/2 activation by phosphorylating pTpY185/187, and increased mRNA and protein expressions of PRR. Utilizing confocal microscopy demonstrated that rapamycin and EBSS significantly decreased p62/SQSTM1 and increased PRR protein expressions. Similarly, by enhancing autophagic activity by transfection with autophagy-related 5 (ATG5) cDNA or ATG7 cDNA, results similar to those observed with rapamycin and EBSS treatments were produced. Inhibition of autophagic flux with bafilomycin A1 reversed the effects of rapamycin. ERK1/2 inhibitor U0126 significantly attenuated mRNA and protein expressions of PRR in podocytes treated with rapamycin. In conclusion, upregulation of autophagy enhanced PRR expression through reduction of p62 and stimulation of ERK1/2 activity signaling pathway.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
146
|
Schiffer TA, Friederich-Persson M. Mitochondrial Reactive Oxygen Species and Kidney Hypoxia in the Development of Diabetic Nephropathy. Front Physiol 2017; 8:211. [PMID: 28443030 PMCID: PMC5386984 DOI: 10.3389/fphys.2017.00211] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
The underlying mechanisms in the development of diabetic nephropathy are currently unclear and likely consist of a series of dynamic events from the early to late stages of the disease. Diabetic nephropathy is currently without curative treatments and it is acknowledged that even the earliest clinical manifestation of nephropathy is preceded by an established morphological renal injury that is in turn preceded by functional and metabolic alterations. An early manifestation of the diabetic kidney is the development of kidney hypoxia that has been acknowledged as a common pathway to nephropathy. There have been reports of altered mitochondrial function in the diabetic kidney such as altered mitophagy, mitochondrial dynamics, uncoupling, and cellular signaling through hypoxia inducible factors and AMP-kinase. These factors are also likely to be intertwined in a complex manner. In this review, we discuss how these pathways are connected to mitochondrial production of reactive oxygen species (ROS) and how they may relate to the development of kidney hypoxia in diabetic nephropathy. From available literature, it is evident that early correction and/or prevention of mitochondrial dysfunction may be pivotal in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Medical Cell Biology, Uppsala UniversityUppsala, Sweden.,Department of Medical and Health Sciences, Linköping UniversityLinköping, Sweden
| | | |
Collapse
|
147
|
Abstract
Autophagy, a highly conserved mechanism for cell survival, emerges as an important pathway in many biological processes and diseases conditions. Studies of cultured renal cells, human kidney tissues and experimental animal models implicate that autophagy regulation is the critical aspects in chronic kidney diseases (CKD). Here, we summarize the current studies on the role of autophagy in CKD. Unveiling the precise regulation mechanism of autophagy in CKD is essential for developing potential prevention, diagnostic and therapeutic targets of these sticky clinical challenges.
Collapse
Affiliation(s)
- Xu Deng
- a Department of Nephrology , Children's Hospital of Nanjing Medical University , Nanjing , China.,b Jiangsu Key Laboratory of Pediatrics , Nanjing Medical University , Nanjing , China
| | - Yifan Xie
- a Department of Nephrology , Children's Hospital of Nanjing Medical University , Nanjing , China.,b Jiangsu Key Laboratory of Pediatrics , Nanjing Medical University , Nanjing , China
| | - Aihua Zhang
- a Department of Nephrology , Children's Hospital of Nanjing Medical University , Nanjing , China.,b Jiangsu Key Laboratory of Pediatrics , Nanjing Medical University , Nanjing , China
| |
Collapse
|
148
|
Liu D, Liu Y, Chen G, He L, Tang C, Wang C, Yang D, Li H, Dong Z, Liu H. Rapamycin Enhances Repressed Autophagy and Attenuates Aggressive Progression in a Rat Model of IgA Nephropathy. Am J Nephrol 2017; 45:293-300. [PMID: 28237991 DOI: 10.1159/000456039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has been considered to be the most frequent form of primary glomerulonephritis that occurs worldwide with a variety of factors involved in its occurrence and development. The impact of autophagy in IgAN, however, remains partially unclear. This study was designed to investigate the effects of rapamycin in an IgAN model. METHOD After establishing an IgAN rat model, SD rats were divided into 4 groups: control, control + rapamycin, IgAN, IgAN + rapamycin. Proteinuria and the pathological changes and the level of autophagy of kidney were texted. Identify the expression of phosphorylation and total mammalian target of rapamycin (mTOR) and s6k1 as well as cyclin D1 in the kidney of rats through Western blot and immunohistochemistry. RESULTS With rapamycin treatment, we observed a significant reduction in the progression of proteinuria as well as alleviation of pathological lesions in IgAN rats. Besides, autophagy was inhibited, while the mTOR/S6k1 pathway was activated and expression of cyclin D1 was increased in IgAN. Rapamycin treatment increased autophagy and decreased the expression of cyclin D1. CONCLUSION These results may suggest that mTOR-mediated autophagy inhibition may result in mesangial cell proliferation in IgAN.
Collapse
Affiliation(s)
- Di Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Blood Purification Center in 2nd Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro. Sci Rep 2017; 7:42764. [PMID: 28225005 PMCID: PMC5320537 DOI: 10.1038/srep42764] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.
Collapse
|
150
|
Bae SY, Byun S, Bae SH, Min DS, Woo HA, Lee K. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy 2017; 13:820-833. [PMID: 28409693 DOI: 10.1080/15548627.2017.1287650] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Sanguine Byun
- b Division of Bioengineering , College of Life and Sciences and Bioengineering, Incheon National University , Incheon , Korea
| | - Soo Han Bae
- c Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Do Sik Min
- d Department of Molecular Biology , College of Natural Sciences, Pusan National University , Busan , Korea
| | - Hyun Ae Woo
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Kyunglim Lee
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| |
Collapse
|