101
|
Zhang MQ, Li JR, Yang L, Peng ZG, Wu S, Zhang JP. ATG10S promotes IFNL1 expression and autophagic degradation of multiple viral proteins mediated by IFNL1. Autophagy 2024; 20:2238-2254. [PMID: 38842055 PMCID: PMC11423677 DOI: 10.1080/15548627.2024.2361580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
ATG10S is a newly discovered subtype of the autophagy protein ATG10. It promotes complete macroautophagy/autophagy, degrades multiple viral proteins, and increases the expression of type III interferons. Here, we aimed to investigate the mechanism of ATG10S cooperation with IFNL1 to degrade viral proteins from different viruses. Using western blot, immunoprecipitation (IP), tandem sensor RFP-GFP-LC3B and in situ proximity ligation assays, we showed that exogenous recombinant ATG10S protein (rHsATG10S) could enter into cells through clathrin, and ATG10S combined with ATG7 with IFNL1 assistance to facilitate ATG12-ATG5 conjugation, thereby contributing to the autophagosome formation in multiple cell lines containing different virions or viral proteins. The results of DNA IP and luciferase assays also showed that ATG10S was able to directly bind to a core motif (CAAGGG) within a binding site of transcription factor ZNF460 on the IFNL1 promoter, by which IFNL1 transcription was activated. These results clarified that ATG10S promoted autophagosome formation with the assistance of IFNL1 to ensure autophagy flux and autophagic degradation of multiple viral proteins and that ATG10S could also act as a novel transcription factor to promote IFNL1 gene expression. Importantly, this study further explored the antiviral mechanism of ATG10S interaction with type III interferon and provided a theoretical basis for the development of ATG10S into a new broad-spectrum antiviral protein drug.Abbreviation: ATG: autophagy related; ATG10S: the shorter isoform of autophagy-related 10; CC50: half cytotoxicity concentration; CCV: clathrin-coated transport vesicle; CLTC: clathrin heavy chain; CM: core motif; co-IP: co-immunoprecipitation; CPZ: chlorpromazine; ER: endoplasmic reticulum; HCV: hepatitis C virus; HBV: hepatitis B virus; HsCoV-OC43: Human coronavirus OC43; IFN: interferon; PLA: proximity ligation assay; rHsATG10S: recombinant human ATG10S protein; RLU: relative light unit; SQSTM1: sequestosome 1; ZNF: zinc finger protein.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
102
|
Stopa V, Lileikyte G, Bakochi A, Agarwal P, Beske R, Stammet P, Hassager C, Årman F, Nielsen N, Devaux Y. Multiomic biomarkers after cardiac arrest. Intensive Care Med Exp 2024; 12:83. [PMID: 39331333 PMCID: PMC11436561 DOI: 10.1186/s40635-024-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiac arrest is a sudden cessation of heart function, leading to an abrupt loss of blood flow and oxygen to vital organs. This life-threatening emergency requires immediate medical intervention and can lead to severe neurological injury or death. Methods and biomarkers to predict neurological outcome are available but lack accuracy. Such methods would allow personalizing healthcare and help clinical decisions. Extensive research has been conducted to identify prognostic omic biomarkers of cardiac arrest. With the emergence of technologies allowing to combine different levels of omics data, and with the help of artificial intelligence and machine learning, there is a potential to use multiomic signatures as prognostic biomarkers after cardiac arrest. This review article delves into the current knowledge of cardiac arrest biomarkers across various omic fields and suggests directions for future research aiming to integrate multiple omics data layers to improve outcome prediction and cardiac arrest patient's care.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
| | - Gabriele Lileikyte
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Helsingborg Hospital, Svart-brödragränden 3, 251 87, Helsingborg, Sweden
| | - Anahita Bakochi
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Prasoon Agarwal
- Science for Life Laboratory, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden (NBIS), Lund University, 22362, Lund, Sweden
| | - Rasmus Beske
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pascal Stammet
- Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Filip Årman
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Helsingborg Hospital, Svart-brödragränden 3, 251 87, Helsingborg, Sweden
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| |
Collapse
|
103
|
Mao Z, Chen Y, Li H, Lu Q, Zhou K. TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013-2018 and Molecular Docking. TOXICS 2024; 12:693. [PMID: 39453113 PMCID: PMC11511422 DOI: 10.3390/toxics12100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear. OBJECTIVES To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs' effects on CVD. METHODS To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2. RESULTS There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, p = 0.022), especially coronary heart disease (CHD) (OR = 1.47, p = 0.007) and heart attack (OR = 1.58, p < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (p < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand-receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was -7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex. CONCLUSIONS Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (Z.M.); (H.L.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haixin Li
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (Z.M.); (H.L.)
| | - Qun Lu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
104
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
105
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
106
|
Bai L, Yang M, Wu J, You R, Chen Q, Cheng Y, Qian Z, Yang X, Wang Y, Liu Y. An injectable adhesive hydrogel for photothermal ablation and antitumor immune activation against bacteria-associated oral squamous cell carcinoma. Acta Biomater 2024; 186:229-245. [PMID: 39038749 DOI: 10.1016/j.actbio.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Pathogenic bacteria are closely associated with the occurrence, development and metastasis of oral squamous cell carcinoma (OSCC). Antibacterial therapy has been considered an enhancement strategy to suppress bacteria-associated tumors and promote anti-tumor immune responses. Herein, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for the in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis (Pg), one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, composed of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820, was prepared using a simple dissolve-dry-swell solvent exchange method. Upon 808 nm laser irradiation, PNIPAM/DL@TIR exerted photothermal effects to ablate Pg-colonized OSCC and generate dual tumor and bacterial antigens. Owing to its large number of catechol groups, PNIPAM/DL@TIR efficiently captured these antigens to form an in situ antigen repository, thereby eliciting robust and durable antitumor immune responses. Proteomic analysis revealed that the captured antigens comprised both tumor neoantigens and bacterial antigens. The catechol groups endowed PNIPAM/DL@TIR with antioxidant activity, which was also conducive to stimulating antitumor immunity. Altogether, this study develops an injectable adhesive hydrogel and provides a combination strategy for treating bacteria-associated OSCC. STATEMENT OF SIGNIFICANCE: In this study, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis, one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, which consists of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820 exhibited outstanding photothermal performance. Owing to the presence of catechol groups, PNIPAM/DL@TIR has good bioadhesive properties and can capture protein antigens to form in situ antigen repository, thus initiating robust and long-term antitumor immune responses. In addition, PNIPAM/DL@TIR exhibited strong antioxidant activity that is favorable for promoting antitumor immunity. In the mouse model of OSCC with bacterial infection, PNIPAM/DL@TIR not only ablated the primary tumors upon NIR laser irradiation, but also induced tumor and bacterial vaccination in situ to suppress distant tumors and lung metastasis.
Collapse
Affiliation(s)
- Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiaxin Wu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran You
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoying Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
107
|
Bang WJ, Seol A, Shin S. Insights from multigene analysis: first report of a Southeast Asian Mosquito, Aedes (Mucidus) laniger (Diptera: Culicidae) on Jeju Island from Korea. Parasit Vectors 2024; 17:386. [PMID: 39267122 PMCID: PMC11395179 DOI: 10.1186/s13071-024-06373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/24/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Certain mosquitoes are known as dominant vectors worldwide, and transmit infectious diseases. The expansion of mosquito habitats due to climate change and increased human activities poses a significant health threat by facilitating the spread of various non-native infectious diseases. This study focused on the detection of the Southeast Asian mosquito species, Aedes (Mucidus) laniger (Wiedemann, 1820) on Jeju Island, the southernmost region of the Republic of Korea (ROK), highlighting the potential risks associated with the spread of vector-borne diseases, particularly emphasizing the elevated likelihood of invasion by Southeast Asian mosquitoes. METHODS Field surveys were conducted in August 2023 on Jeju Island. Adult mosquitoes were collected using BG-sentinel traps and identified to the species level using taxonomic keys. Morphological and molecular analyses were employed to confirm species designations. Molecular data, including mitochondrial and nuclear genes, were used for phylogenetic analysis, which was performed to compare and identify among recorded subgenera in ROK. Species distribution modeling for Ae. laniger was performed to predict potential habitats using R package 'BIOMOD2'. RESULTS The two specimens of Ae. laniger were collected for the first time on Jeju Island. Morphological and molecular analyses confirmed the identity of this species within the subgenus Mucidus and validated the first record of this species in the ROK. We employed a simple multigene phylogenetic analysis to confirm a new mosquito record at the genus and subgenus levels, finally validating the consistency between morphological identification and molecular phylogenetic outcomes. Furthermore, we have updated the taxonomic keys for the genus Aedes in the ROK, and revised mosquito lists for Jeju Island, incorporating the inclusion of Ae. laniger. On the basis of species distribution modeling, the area of suitable habitat for Ae. laniger is expected to expand due to climate change, but this change did not appear to be meaningful in East Asia. CONCLUSIONS This case offers the first report of the Southeast Asian mosquito, Ae. laniger, in the ROK. The detection of this species on Jeju Island suggests the potential establishment of a breeding population their habitat and raises concerns about further expansion into the Korean Peninsula. Considering the annual occurrence of mosquito-borne disease cases in the Southeast Asia, it is essential to conduct monitoring not only in Jeju Island, where Ae. laniger has been identified, but also across the entire Korean Peninsula.
Collapse
Affiliation(s)
- Woo Jun Bang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ara Seol
- Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Jeju, 63582, Republic of Korea
| | - Seunggwan Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
108
|
Li K, Wang Y, Li X, Wang H. Comparative analysis of bile acid composition and metabolism in the liver of Bufo gargarizans aquatic larvae and terrestrial adults. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101322. [PMID: 39260083 DOI: 10.1016/j.cbd.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Bile acids are crucial for lipid metabolism and their composition and metabolism differ among species. However, there have been no data on the differences in the composition and metabolism of bile acids between aquatic larvae and terrestrial adults of amphibians. This study explored the differences in composition and metabolism of bile acid between Bufo gargarizans larvae and adults. The results demonstrated that adult liver had a lower total bile acid level and a higher conjugated/total bile acid ratio than larval liver. Meanwhile, histological analysis revealed that the larvae showed a larger cross-sectional area of bile canaliculi lumen compared with the adults. The transcriptomic analysis showed that B. gargarizans larvae synthesized bile acids through both the alternative and the 24-hydroxylase pathway, while adults only synthesized bile acids through the 24-hydroxylase pathway. Moreover, bile acid regulator-related genes FXR and RXRα were highly expressed in adult, whereas genes involved in bile acid synthesis (CYP27A1 and CYP46A1) were highly expressed in larvae. The present study will provide valuable insights into understanding metabolic disorders and exploring novel bile acid-based therapeutics.
Collapse
Affiliation(s)
- Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yufei Wang
- School of Biological Sciences, College of Science and Engineering, The University of Edinburgh, United Kingdom
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
109
|
Jain M, Yu X, Schneck JP, Green JJ. Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo. SMALL SCIENCE 2024; 4:2400248. [PMID: 40212067 PMCID: PMC11935263 DOI: 10.1002/smsc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Indexed: 04/13/2025] Open
Abstract
Lipid nanoparticles and polymeric nanoparticles are promising biomaterial platforms for robust intracellular DNA and mRNA delivery, highlighted by the widespread use of nanoparticle- (NP) based mRNA vaccines to help end the COVID-19 pandemic. Recent research has sought to adapt this nanotechnology to transfect and engineer immune cells in vivo. The immune system is an especially appealing target due to its involvement in many different diseases, and ex vivo-engineered immune cell therapies like chimeric antigen receptor (CAR) T therapy have already demonstrated remarkable clinical success in certain blood cancers. Although gene delivery can potentially address some of the cost and manufacturing concerns associated with current autologous immune cell therapies, transfecting immune cells in vivo is challenging. Not only is extrahepatic NP delivery to lymphoid organs difficult, but immune cells like T cells have demonstrated particular resistance to transfection. Despite these challenges, the modular nature of NPs allows researchers to examine critical structure-function relationships between a particle's properties and its ability to specifically engineer immune cells in vivo. Herein, several nanomaterial components are outlined, including targeting ligands, nucleic acid cargo, chemical properties, physical properties, and the route of administration to specifically target NPs to immune cells for optimal in vivo transfection.
Collapse
Affiliation(s)
- Manav Jain
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Xinjie Yu
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jonathan P. Schneck
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Pathology and MedicineJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Bloomberg∼Kimmel Institute for Cancer ImmunotherapyJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Ophthalmology, Neurosurgery, and Materials Science & EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
110
|
Charizani E, Dushku E, Kyritsi M, Metallinou ET, Karathodorou A, Amanetidou E, Kokkaleniou MM, Passalis N, Tefas A, Staikou A, Yiangou M. Predicting the immunomodulatory activity of probiotic lactic acid bacteria using supervised machine learning in a Cornu aspersum snail model. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109788. [PMID: 39053586 DOI: 10.1016/j.fsi.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In the process of screening for probiotic strains, there are no clearly established bacterial phenotypic markers which could be used for the prediction of their in vivo mechanism of action. In this work, we demonstrate for the first time that Machine Learning (ML) methods can be used for accurately predicting the in vivo immunomodulatory activity of probiotic strains based on their cell surface phenotypic features using a snail host-microbe interaction model. A broad range of snail gut presumptive probiotics, including 240 new lactic acid bacterial strains (Lactobacillus, Leuconostoc, Lactococcus, and Enterococcus), were isolated and characterized based on their capacity to withstand snails' gastrointestinal defense barriers, such as the pedal mucus, gastric mucus, gastric juices, and acidic pH, in association with their cell surface hydrophobicity, autoaggregation, and biofilm formation ability. The implemented ML pipeline predicted with high accuracy (88 %) strains with a strong capacity to enhance chemotaxis and phagocytic activity of snails' hemolymph cells, while also revealed bacterial autoaggregation and cell surface hydrophobicity as the most important parameters that significantly affect host immune responses. The results show that ML approaches may be useful to derive a predictive understanding of host-probiotic interactions, while also highlighted the use of snails as an efficient animal model for screening presumptive probiotic strains in the light of their interaction with cellular innate immune responses.
Collapse
Affiliation(s)
- Elissavet Charizani
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Esmeralda Dushku
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kyritsi
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleftheria Theodora Metallinou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Argyro Karathodorou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni Amanetidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Marianthi-Maria Kokkaleniou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikolaos Passalis
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Tefas
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandra Staikou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
111
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
112
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
113
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
114
|
Yang Y, Ren C, Xu X, Yang X, Shao W. Decoding the connection between SLE and DNA Sensors: A comprehensive review. Int Immunopharmacol 2024; 137:112446. [PMID: 38878488 DOI: 10.1016/j.intimp.2024.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Systemic lupus erythematosus (SLE) is recognized as a prevalent autoimmune disorder characterized by a multifaceted pathogenesis potentially influenced by a combination of environmental factors, genetic predisposition, and hormonal regulation. The continuous study of immune system activation is especially intriguing. Analysis of blood samples from individuals with SLE reveals an abnormal increase in interferon levels, along with the existence of anti-double-stranded DNA antibodies. This evidence suggests that the development of SLE may be initiated by innate immunity. The presence of abnormal dsDNA fragments can activate DNA sensors within cells, particularly immune cells, leading to the initiation of downstream signaling cascades that result in the upregulation of relevant cytokines and the subsequent initiation of adaptive immune responses, such as B cell differentiation and T cell activation. The intricate pathogenesis of SLE results in DNA sensors exhibiting a wide range of functions in innate immune responses that are subject to variation based on cell types, developmental processes, downstream effector signaling pathways and other factors. The review aims to reorganize how DNA sensors influence signaling pathways and contribute to the development of SLE according to current studies, with the aspiration of furnishing valuable insights for future investigations into the pathological mechanisms of SLE and potential treatment approaches.
Collapse
Affiliation(s)
- Yuxiang Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changhuai Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xiaopeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xinyi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
115
|
Jin GN, Wang Y, Liu YM, Lu YN, Lu JM, Wang JH, Ma JW, Quan YZ, Gao HY, Cui YX, Xu X, Piao LX. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02117-z. [PMID: 39154088 DOI: 10.1007/s10753-024-02117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong-Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue-Xian Cui
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
116
|
Yang Z, Tian D, Zhao X, Luo Y, Chen Y. The gut-retina axis: Uncovering the role of autoimmunity in glaucoma development. Heliyon 2024; 10:e35516. [PMID: 39170439 PMCID: PMC11336731 DOI: 10.1016/j.heliyon.2024.e35516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by progressive loss of retinal ganglion cells (RGCs) and optic nerve damage. While elevated intraocular pressure (IOP) is the only known modifiable risk factor, normal-tension glaucoma (NTG) challenges this notion, suggesting other mechanisms beyond IOP may contribute to its development. Emerging evidence support the hypothesis that glaucoma may be an autoimmune disease. This review summarizes evidence for this hypothesis, focusing on the gut-retina axis. We discuss how antigens of gut bacterial prime peripheral T cells to breach the blood-retina barrier (BRB) and initiate cross-reactivity with ocular tissues via molecular mimicry, resulting in autoimmune RGC damage. Understanding these mechanisms may uncover new diagnostic biomarkers and therapeutic strategies targeting immune pathways alongside conventional IOP-lowering treatments.
Collapse
Affiliation(s)
- Zuyi Yang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianzhe Tian
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
117
|
North AJ, Sharma VP, Pyrgaki C, Lim S Y J, Atwal S, Saharat K, Wright GD, Salje J. A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607698. [PMID: 39211076 PMCID: PMC11361006 DOI: 10.1101/2024.08.12.607698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conventional optical microscopy imaging of obligate intracellular bacteria is hampered by the small size of bacterial cells, tight clustering exhibited by some bacterial species and challenges relating to labelling such as background from host cells, a lack of validated reagents, and a lack of tools for genetic manipulation. In this study we imaged intracellular bacteria from the species Orientia tsutsugamushi (Ot) using five different fluorescence microscopy techniques: standard confocal, Airyscan confocal, instant Structured Illumination Microscopy (iSIM), three-dimensional Structured Illumination Microscopy (3D-SIM) and Stimulated Emission Depletion Microscopy (STED). We compared the ability of each to resolve bacterial cells in intracellular clumps in the lateral (xy) axis, using full width half maximum (FWHM) measurements of a labelled outer membrane protein (ScaA) and the ability to detect small, outer membrane vesicles external to the cells. We next compared the ability of each technique to sufficiently resolve bacteria in the axial (z) direction and found 3D-STED to be the most successful method for this. We then combined this approach with a custom 3D cell segmentation and analysis pipeline using the open-source, deep learning software, Cellpose to segment the cells and subsequently the commercial software Imaris to analyze their 3D shape and size. Using this combination, we demonstrated differences in bacterial shape, but not their size, when grown in different mammalian cell lines. Overall, we compare the advantages and disadvantages of different super-resolution microscopy techniques for imaging this cytoplasmic obligate intracellular bacterium based on the specific research question being addressed.
Collapse
|
118
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2024:10.1007/s12035-024-04412-0. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
119
|
Purushothaman S, Azhahianambi P, Dharman M, Gokula Kannan R, Tirumurugaan KG, Soundararajan C, Aravindh Babu RP, Devaraju P, Prakash JAJ. A cross sectional study on molecular prevalence of Orientia tsutsugamushi in household rat population of South India. Comp Immunol Microbiol Infect Dis 2024; 111:102212. [PMID: 38880051 DOI: 10.1016/j.cimid.2024.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to assess the molecular prevalence of mite-borne zoonotic pathogen O. tsutsugamushi in household rats of South India through nested polymerase chain reaction amplification of O. tsutsugamushi 47-kDa htrA gene and to determine the most suitable sample type for screening of O. tsutsugamushi in rats. Out of 85 rats trapped in Tamil Nadu, Karnataka, and Puducherry regions, 47 rats were found positive for the O. tsutsugamushi genome with prevalence of 55.29 %. Among different sample types screened, faecal samples exhibited the highest positivity rate, followed by liver, spleen, kidney, and blood samples. Agreement between faecal and spleen samples of rats for the presence of O. tsutsugamushi was the highest. Principal component analysis revealed a positive correlation between the spleen, liver, and faeces and a negative correlation between blood and faeces for the presence of O. tsutsugamushi genome. These findings underscore the varied distribution of O. tsutsugamushi among different samples and indicate that the faecal and liver samples of rats are an ideal choice of samples for epidemiological studies. This is the first study to report a high level of presence of O. tsutsugamushi in faecal samples of rats.
Collapse
Affiliation(s)
- S Purushothaman
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | - P Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India.
| | - M Dharman
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | - R Gokula Kannan
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | - K G Tirumurugaan
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | - C Soundararajan
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | - R P Aravindh Babu
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600051, India
| | | | - John A J Prakash
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| |
Collapse
|
120
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
121
|
Baek BS, Park H, Choi JW, Lee EY, Youn JI, Seong SY. Dendritic cells pulsed with penetratin-OLFM4 inhibit the growth and metastasis of melanoma in mice. Biomed Pharmacother 2024; 177:117083. [PMID: 38968793 DOI: 10.1016/j.biopha.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2 % and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97 %, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7 % compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea
| | - Je-In Youn
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon Province, South Korea; Department of Biomedical Sciences, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Shaperon Inc. Ltd, Seoul, South Korea.
| |
Collapse
|
122
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
123
|
Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR, Read CB, Johnson EE, Arora G, Dai Y, Cui Y, Chuang YM, Yu Q, Rahman MS, Mendes MT, Rolandelli A, Singh P, Tripathi AK, Ben Mamoun C, Caimano MJ, Radolf JD, Lin YP, Fingerle V, Margos G, Pal U, Johnson RM, Pedra JHF, Azad AF, Salje J, Dimopoulos G, Vinetz JM, Carlyon JA, Palm NW, Fikrig E, Ring AM. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell 2024; 187:4113-4127.e13. [PMID: 38876107 PMCID: PMC11959484 DOI: 10.1016/j.cell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Collapse
Affiliation(s)
- Thomas M Hart
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian Tang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reetika Chaurasia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Curtis B Read
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Emily E Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gunjan Arora
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yingjun Cui
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yu-Min Chuang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Yu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pallavi Singh
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Raymond M Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanne Salje
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph M Vinetz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Aaron M Ring
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98102, USA.
| |
Collapse
|
124
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
125
|
Shen N, Lu S, Kong Z, Gao Y, Hu J, Si S, Wang J, Li J, Han W, Wang R, Lv Z. The causal role between circulating immune cells and diabetic nephropathy: a bidirectional Mendelian randomization with mediating insights. Diabetol Metab Syndr 2024; 16:164. [PMID: 39014501 PMCID: PMC11253417 DOI: 10.1186/s13098-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Diabetic nephropathy (DN) is a critical inflammatory condition linked to diabetes, affecting millions worldwide. This study employs Mendelian randomization (MR) to explore the causal relationship between immune cell signatures and DN, analyzing over 731 immune signatures and incorporating data from 1400 metabolites to investigate potential mediators. Despite no statistically significant influence of DN on immunophenotypes after FDR correction, some phenotypes with unadjusted low P-values warranted mention, including CD34 on Hematopoietic Stem Cell (Myeloid cell Panel), CD45 on CD33- HLA DR- (Myeloid cell Panel). Furthermore, three immunophenotypes were identified to have a significant impact on DN risk: CD16-CD56 on HLA DR+ NK (TBNK Panel), CD45 on HLA DR+ T cell (TBNK Panel), and CD33dim HLA DR+ CD11b+ AC (Myeloid cell Panel). Our findings underscore the critical role of immune cells in DN, highlighting potential mediators and offering new insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuxuan Si
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Junlin Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jie Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Han
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
126
|
Lee HS, Noh BE, Kim SY, Kim H, Lee HI. The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea. INSECTS 2024; 15:531. [PMID: 39057263 PMCID: PMC11276881 DOI: 10.3390/insects15070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Monitoring mosquito populations is essential for controlling mosquito-borne diseases, and the selection of mosquito traps should be tailored to specific surveillance objectives. Here, we tested four mosquito traps for their efficiency and applicability: the Nozawa-style black light trap (BLT), BG-sentinel trap II (BGT), UV-LED Blackhole Plus Mosquito Buster trap (LED), and digital mosquito monitoring system (DMS). The traps were rotated weekly for a 24 h cycle at the same location for 13 weeks. Overall, 1649 female mosquitoes belonging to seven genera and sixteen species were collected by the traps. The traps exhibited differences in both the number of collected individuals and species composition. The BLT showed superior collection efficiency in terms of the number of collected individuals and species evenness, whereas the BGT showed the highest species diversity among all the traps. Thus, the BLT and BGT are the best choices for effective mosquito surveillance based on trap performance. Additionally, despite the relatively low efficiency of the LED and DMS observed in this study, the LED is known to be efficient when used for indoor conditions such as cowsheds, while the DMS has an advanced function that can automatically count the number of mosquitoes. Thus, our findings provide significant guidelines for planning new mosquito surveillance projects in the ROK.
Collapse
Affiliation(s)
| | | | | | | | - Hee Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea; (H.S.L.); (B.-E.N.); (S.Y.K.); (H.K.)
| |
Collapse
|
127
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
128
|
Huang L, Wang W, Wang Y, Chen J, Jin S, Qi X, Qian Y, Cheng Q. Effectiveness and pregnancy outcomes of ultrasound-indicated and physical examination-indicated cervical cerclage: a retrospective study from a single centre. BMC Pregnancy Childbirth 2024; 24:467. [PMID: 38977997 PMCID: PMC11229292 DOI: 10.1186/s12884-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide, and cervical incompetence (CIC) is a significant contribution. Cervical cerclage (CC) is an effective obstetric intervention. However, many clinical factors affect the success rate of surgery. The objective was to investigate and compare the pregnancy and neonatal outcomes of patients who underwent ultrasound- and physical examination-indicated cervical cerclage and to explore the influencing factors of preterm delivery before 34 weeks. METHODS The sociodemographic characteristics and clinical data of patients with a diagnosis of cervical incompetence who underwent ultrasound- and physical examination-indicated transvaginal cervical cerclage at Nanjing Maternal and Child Health Hospital from January 2020 to December 2022 were retrospectively analyzed. The pregnancy and neonatal outcomes of the patients were evaluated. Continuous variables were compared using Student's t test (for normally distributed data) or the Mann-Whitney U test (for nonnormally distributed data). Categorical variables were analysed using the chi-square test or Fisher's exact test. Additionally, logistic regression analyses and receiver operating characteristic curves were used to evaluate the associations of inflammatory markers with maternal and neonatal outcomes. RESULTS This study included 141 participants who underwent cervical cerclage, including 71 with ultrasound-indicated cerclage and 70 with physical examination-indicated cerclage. Compared to those in the ultrasound-indicated cerclage group, the duration from cerclage to delivery, birth weight, and APGAR score in the physical examination-indicated cerclage group were significantly lower, and the rates of delivery at < 28 weeks, < 32 weeks, < 34 weeks, and < 37 weeks of gestation and neonatal mortality were significantly higher (all P < 0.05). Compared to those in the physical ultrasound-indicated cerclage group, in the physical examination-indicated cerclage group, maternal blood inflammatory markers, such as C-reactive protein (CRP), the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) were significantly higher (P < 0.05). Additionally, maternal blood inflammatory markers, such as the CRP, white blood cell count, platelet to lymphocyte ratio (PLR), SII, and SIRI were significantly higher in the group with delivery before 34 weeks of gestation. Furthermore, the results demonstrated that twin pregnancy had the highest OR for preterm delivery before 34 weeks of gestation (OR = 3.829; 95% CI 1.413-10.373; P = 0.008), as well as the following: the SII level (OR = 1.001; 95% CI 1.000-1.002; P = 0.003) and CRP level (OR = 1.083; 95% CI 1.038-1.131; P = 0.022). The risk factors for preterm delivery before 34 weeks of gestation were twin gestation, an increased SII level and an increased CRP level, which had good combined predictive value. CONCLUSION In patients with cervical insufficiency, ultrasound-indicated cervical cerclage appears to lead to better pregnancy outcomes than physical examination-indicated cerclage. Twin pregnancy and maternal blood inflammatory markers, such as the CRP level and the SII, are associated with preterm delivery before 34 weeks of gestation.
Collapse
Affiliation(s)
- Linxiang Huang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wenting Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Yuchuan Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Jie Chen
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Shuping Jin
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Xiaoxuan Qi
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Yujia Qian
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Qing Cheng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| |
Collapse
|
129
|
Tang J, Maihemuti N, Fang Y, Tan J, Jia M, Mu Q, Huang K, Gan H, Zhao J. JR14a: A novel antagonist of C3aR attenuates neuroinflammation in cerebral ischemia-reperfusion injury. Brain Res Bull 2024; 213:110986. [PMID: 38810789 DOI: 10.1016/j.brainresbull.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.
Collapse
Affiliation(s)
- Jiutang Tang
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Nueraili Maihemuti
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yu Fang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Junyi Tan
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Mengjie Jia
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qinglan Mu
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Keli Huang
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Gan
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhao
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
130
|
Coelho JQ, Ramos MJ, Ranchor R, Pichel R, Guerra L, Miranda H, Simões J, Azevedo SX, Febra J, Araújo A. What's new about the tumor microenvironment of urothelial carcinoma? Clin Transl Oncol 2024; 26:1549-1560. [PMID: 38332225 DOI: 10.1007/s12094-024-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Urothelial carcinoma is a significant global health concern that accounts for a substantial part of cancer diagnoses and deaths worldwide. The tumor microenvironment is a complex ecosystem composed of stromal cells, soluble factors, and altered extracellular matrix, that mutually interact in a highly immunomodulated environment, with a prominent role in tumor development, progression, and treatment resistance. This article reviews the current state of knowledge of the different cell populations that compose the tumor microenvironment of urothelial carcinoma, its main functions, and distinct interactions with other cellular and non-cellular components, molecular alterations and aberrant signaling pathways already identified. It also focuses on the clinical implications of these findings, and its potential to translate into improved quality of life and overall survival. Determining new targets or defining prognostic signatures for urothelial carcinoma is an ongoing challenge that could be accelerated through a deeper understanding of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ridhi Ranchor
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Rita Pichel
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Laura Guerra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Hugo Miranda
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Joana Simões
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | | | - Joana Febra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - António Araújo
- Unidade Local de Saúde de Santo António, Porto, Portugal
- Oncology Research Unit, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
131
|
Sun L, Yang N, Liu Z, Ye X, Cheng M, Deng L, Zhang J, Wu J, Shi M, Liao W. Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis. J Biomed Sci 2024; 31:66. [PMID: 38951890 PMCID: PMC11218316 DOI: 10.1186/s12929-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated. METHODS Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8+ T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq. RESULTS Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8+ T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice. CONCLUSIONS Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.
Collapse
Affiliation(s)
- Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Oncology, Air Force Medical Center of PLA, Air Force Medical University, Beijing, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingjing Wu
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Foshan Key Laboratory of Translational Medicine in Oncology, Cancer Center, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong, China.
| |
Collapse
|
132
|
Li Y, Ji R, Li Y, Li J, Chen H. Early-Stage Protein Adsorption Sequence on Blood-Contacting Surfaces: Answer to Vroman's Question. Anal Chem 2024; 96:10434-10442. [PMID: 38866710 DOI: 10.1021/acs.analchem.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Plasma protein adsorption on blood-contacting surfaces is the initiating significant event and modulates the subsequent coagulation response. Despite decades of research in this area, Vroman's questions in 1986 "Who gets there first?" and "When does the next protein arrive?" remain unanswered due to the lack of detection techniques with sufficient temporal resolution. In this work, we develop a droplet microfluidic technology to detect protein adsorption sequences on six typical blood-contacting surfaces in milliseconds. Apolipoproteins (Apo) are found to be the first proteins to adsorb onto the surfaces in a plasma droplet, and the specific type of apolipoprotein depends on the surface. Apo CI is the first protein adsorbed on gold, platinum, graphene, stainless steel, and polyvinyl chloride with the adsorption time varying from 0.01 to 1 s, while Apo CIII preferentially reaches the titanium alloy surface within 1 s. Subsequent to the initial adsorption, Apo AI, AII, and other proteins continue to adsorb until albumin arrives. Thus, the adsorption sequence is revealed, and Vroman's questions are answered. Moreover, this finding demonstrates the influence of the initial protein adsorption on subsequent coagulation at the surface, and it offers new insights into the development of anticoagulant surfaces.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing 100084, China
| | - Rui Ji
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing 100084, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing 100084, China
| | - Jiang Li
- Department of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing 100084, China
| |
Collapse
|
133
|
Han GH, Kim HR, Yun H, Chung JY, Kim JH, Cho H. Developing a comprehensive molecular subgrouping model for cervical cancer using machine learning. Am J Cancer Res 2024; 14:3186-3197. [PMID: 39005664 PMCID: PMC11236797 DOI: 10.62347/mter1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
This study developed a molecular classification model for cervical cancer using machine learning, integrating prognosis related biomarkers with clinical features. Analyzing 281 specimens, 27 biomarkers were identified, associated with recurrence and treatment response. The model identified four molecular subgroups: group 1 (OALO) with Overexpression of ATP5H and LOw risk; group 2 (LASIM) with low expression of ATP5H and SCP, indicating InterMediate risk; group 3 (LASNIM) characterized by Low expression of ATP5H, SCP, and NANOG, also at InterMediate risk; and group 4 (LASONH), with Low expression of ATP5H, and SCP, Over expression of NANOG, indicating High risk, and potentially aggressive disease. This classification correlated with clinical outcomes such as tumor stage, lymph node metastasis, and response to treatment, demonstrating that combining molecular and clinical factors could significantly enhance the prediction of recurrence and aid in personalized treatment strategies for cervical cancer.
Collapse
Affiliation(s)
- Gwan Hee Han
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, Inje University College of MedicineSeoul 01757, Republic of Korea
| | - Hae-Rim Kim
- Department of Statistics, College of Natural Science, University of SeoulSeoul 02504, Republic of Korea
| | - Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul 06299, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of MedicineSeoul 03722, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of MedicineSeoul 03722, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of MedicineSeoul 03722, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of MedicineSeoul 03722, Republic of Korea
| |
Collapse
|
134
|
Srivastava P, Shukla A, Singh R, Kant R, Mishra N, Behera SP, Dwivedi GR, Yadav DK. Orientia tsutsugamushi: An Unusual Intracellular Bacteria-Adaptation Strategies, Available Antibiotics, and Alternatives for Treatment. Curr Microbiol 2024; 81:236. [PMID: 38907107 DOI: 10.1007/s00284-024-03754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
During evolution Orientia tsutsugamushi became a smarter obligate bacterium to establish as intracellular pathogens. O. tsutsugamushi is a human pathogenic bacterium responsible for 1 billion infections of scrub typhus. Several novel mechanisms make this bacterium unique (cell wall, genetic constitutions, secretion system, etc.). In 2007, O. tsutsugamushi Boryong was pioneer strain for whole-genome sequencing. But the fundamental biology of this bacterial cell is a mystery till date. The unusual biology makes this organism as model for host cell interaction. Only a few antibiotics are effective against this intracellular pathogen but emergence of less susceptibility toward antibiotics make the situation alarming. The review was captivated to highlight the unusual aspects of adaptation, antibiotics, and drugs beyond antibiotics.
Collapse
Affiliation(s)
- Prashansha Srivastava
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Aishwarya Shukla
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Nalini Mishra
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Sthita P Behera
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-Gu, Incheon, 21924, Korea
| |
Collapse
|
135
|
Aitken KJ, Schröder A, Haddad A, Sidler M, Penna F, Fernandez N, Ahmed T, Marino V, Bechbache M, Jiang JX, Tolg C, Bägli DJ. Epigenetic insights to pediatric uropathology: Celebrating the fundamental biology vision of Tony Khoury. J Pediatr Urol 2024; 20 Suppl 1:S43-S57. [PMID: 38944627 DOI: 10.1016/j.jpurol.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.
Collapse
Affiliation(s)
- K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada.
| | - Annette Schröder
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Urology and Pediatric Urology of the University Medical Center Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ahmed Haddad
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Penna
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas Fernandez
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Marino
- DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada
| | - Matthew Bechbache
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Cornelia Tolg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Darius J Bägli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
136
|
Jing ZQ, Luo ZQ, Chen SR, Sun ZJ. Heterogeneity of myeloid cells in common cancers: Single cell insights and targeting strategies. Int Immunopharmacol 2024; 134:112253. [PMID: 38735257 DOI: 10.1016/j.intimp.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Qi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Si-Rui Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
137
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
138
|
Huang S, Xu Z, Zhi W, Li Y, Hu Y, Zhao F, Zhu X, Miao M, Jia Y. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer. J Nanobiotechnology 2024; 22:324. [PMID: 38858692 PMCID: PMC11163783 DOI: 10.1186/s12951-024-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China.
| | - Zhiling Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Weiwei Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yijing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| |
Collapse
|
139
|
Cheng W, Li F, Yang R. The Roles of Gut Microbiota Metabolites in the Occurrence and Development of Colorectal Cancer: Multiple Insights for Potential Clinical Applications. GASTRO HEP ADVANCES 2024; 3:855-870. [PMID: 39280926 PMCID: PMC11401567 DOI: 10.1016/j.gastha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The occurrence and development of CRC are related to multiple risk factors such as gut microbiota. Indeed, gut microbiota plays an important role in the different phases of colorectal cancers (CRCs) from oncogenesis to metastasis. Some specific bacteria such as Fusobacterium nucleatum (F. nucleatum) associated with CRCs have been found. However, recently identified bile acid and tryptophan metabolites as well as short chain fatty acids (SCFAs), which are derived from gut microbiota, can also exert effects on the CRCs such as that SCFAs directly inhibit CRC growth. Importantly these metabolites also modulate immune responses to affect CRCs. They not only act as tumor inhibiting factor(s) but also promotor(s) in the occurrence, development, and metastasis of CRCs. While gut microbiota metabolites (GMMs) inhibit immunity against CRCs, some of them also improve immune responses to CRCs. Notably, GMMs also potentially affect the shaping of immune-privileged metastatic niches through direct roles or immune cells such as macrophages and myeloid-derived suppressive cells. These findings offer new insights for clinical application of gut microbiota in precise and personalized treatments of CRCs. Here, we will mainly discuss direct and indirect (via immune cells) effects of GMMs, especially SCFAs, bile acid and tryptophan metabolites on the occurrence, development and metastasis of CRCs.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
140
|
Kong Y, Cao L, Wang J, Zhuang J, Liu Y, Bi L, Qiu Y, Hou Y, Huang Q, Xie F, Yang Y, Shi K, Rominger A, Guan Y, Jin H, Ni R. Increased Cerebral Level of P2X7R in a Tauopathy Mouse Model by PET Using [ 18F]GSK1482160. ACS Chem Neurosci 2024; 15:2112-2120. [PMID: 38776461 PMCID: PMC11157487 DOI: 10.1021/acschemneuro.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Lei Cao
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
- Institute
for Regenerative Medicine, University of
Zurich, Zurich 8952, Switzerland
| | - Jiao Wang
- Lab
of Molecular
Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Junyi Zhuang
- Lab
of Molecular
Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yongshan Liu
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yifan Qiu
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yuyi Hou
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Qi Huang
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Fang Xie
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yunhao Yang
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Kuangyu Shi
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
| | - Axel Rominger
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
| | - Yihui Guan
- PET Center,
Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Hongjun Jin
- Guangdong
Provincial Engineering Research Center of Molecular Imaging, The Fifth
Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Ruiqing Ni
- Institute
for Regenerative Medicine, University of
Zurich, Zurich 8952, Switzerland
- Department
of Nuclear Medicine, University Hospital,
Inselspital Bern, Bern 3010, Switzerland
- Institute
for Biomedical Engineering, University of
Zurich & ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
141
|
Yoon SZ, Park JJ, Jung JS, Kim JE, Lee SH, Lee J, Kim EH. Effects of intravenous inflammasome inhibitor (NuSepin) on suppression of proinflammatory cytokines release induced by cardiopulmonary bypass in swine model: a pilot study. Sci Rep 2024; 14:12797. [PMID: 38834773 DOI: 10.1038/s41598-024-62944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
The systemic inflammatory response syndrome can occur due to an inflammatory reaction to the release of cytokines, and it has been linked to the circulation of pro- and anti-inflammatory cytokines. The cardiopulmonary bypass (CPB) system is known to activate numerous inflammatory pathways. Applying CPB in large animals for an extended period may be useful as a controlled experimental model for systemic inflammatory responses. The authors hypothesized that 0.2 mg/kg NuSepin® would inhibit CBP-induced proinflammatory cytokine release, and attenuate CPB-induced vasoplegia. CPB was maintained for 2 h in 8 male Yorkshire pigs. Ten ml of saline was administered intravenously to the control group, while the study group received 10 ml of NuSepin® (0.2 mg/kg), before start of CPB. Blood samples were collected at four different time points to evaluating the level of cytokine (TNF-α, IL-1β, IL-6, IL-8) release during and after CBP. All vital signals were recorded as continuous waveforms using the vital recorder®. Our study demonstrated that IL-6 increased in both groups during CPB remained unchanged. However, in the Nusepin group, IL-6 levels rapidly decreased when CPB was stopped and the proinflammatory reaction subsided. Furthermore, the dose of norepinephrine required to maintain a mean pressure of 60 mmHg was also lower in the Nusepin group.
Collapse
Affiliation(s)
- Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea.
| | - Jeong Jun Park
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Ji Eon Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Seung Hyong Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Jeonghoon Lee
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eung Hwi Kim
- Institute for Healthcare Innovation, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
142
|
Konen JM, Wu H, Gibbons DL. Immune checkpoint blockade resistance in lung cancer: emerging mechanisms and therapeutic opportunities. Trends Pharmacol Sci 2024; 45:520-536. [PMID: 38744552 PMCID: PMC11189143 DOI: 10.1016/j.tips.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Immune checkpoint blockade (ICB) therapy works by inhibiting suppressive checkpoints that become upregulated after T cell activation, like PD-1/PD-L1 and CTLA-4. While the initial FDA approvals of ICB have revolutionized cancer therapies and fueled a burgeoning immuno-oncology field, more recent clinical development of new agents has been slow. Here, focusing on lung cancer, we review the latest research uncovering tumor cell intrinsic and extrinsic ICB resistance mechanisms as major hurdles to treatment efficacy and clinical progress. These include genomic and non-genomic tumor cell alterations, along with host and microenvironmental factors like the microbiome, metabolite accumulation, and hypoxia. Together, these factors can cooperate to promote immunosuppression and ICB resistance. Opportunities to prevent resistance are constantly evolving in this rapidly expanding field, with the goal of moving toward personalized immunotherapeutic regimens.
Collapse
Affiliation(s)
- Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Haoyi Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
143
|
Oo TT. Ischemic stroke and diabetes: a TLR4-mediated neuroinflammatory perspective. J Mol Med (Berl) 2024; 102:709-717. [PMID: 38538987 DOI: 10.1007/s00109-024-02441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recovery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflammation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.
Collapse
Affiliation(s)
- Thura Tun Oo
- Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, IL, USA.
| |
Collapse
|
144
|
Ren W, Sun Y, Zhao L, Shi X. NLRP3 inflammasome and its role in autoimmune diseases: A promising therapeutic target. Biomed Pharmacother 2024; 175:116679. [PMID: 38701567 DOI: 10.1016/j.biopha.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines IL-1β and IL-18. Numerous studies have highlighted its crucial role in the pathogenesis and development of inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid diseases, and other autoimmune diseases. Therefore, investigating the underlying mechanisms of NLRP3 in disease and targeted drug therapies holds clinical significance. This review summarizes the structure, assembly, and activation mechanisms of the NLRP3 inflammasome, focusing on its role and involvement in various autoimmune diseases. This review also identifies studies where the involvement of the NLRP3 inflammasome in the disease mechanism within the same disease appears contradictory, as well as differences in NLRP3-related gene polymorphisms among different ethnic groups. Additionally, the latest therapeutic advances in targeting the NLRP3 inflammasome for autoimmune diseases are outlined, and novel clinical perspectives are discussed. Conclusively, this review provides a consolidated source of information on the NLRP3 inflammasome and may guide future research efforts that have the potential to positively impact patient outcomes.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
145
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
146
|
Jung YH, Ku YA, Moon J, Kim S, Ryu JS, Yoon CH, Chung MH, Kim YH, Kim MK, Kim DH. Efficacy of RCI001 as a therapeutic candidate of dry eye disease in a modified mixed dry eye model. EYE AND VISION (LONDON, ENGLAND) 2024; 11:19. [PMID: 38822444 PMCID: PMC11143567 DOI: 10.1186/s40662-024-00388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND To evaluate the therapeutic effects of topical RCI001 (RCI) and compare its efficacy with that of 1% prednisolone acetate (PDE) and 5% Lifitegrast in a modified mixed dry eye disease (DED) model. METHODS The environmental DED model was induced in BALB/c mice in a dry chamber with scopolamine. The eyes of the mice were treated topically with phosphate buffered saline (PBS), PDE, Lifitegrast or RCI twice daily for 1 week. Ocular surface staining (OSS), tear secretion, inflammatory cytokines in the ocular surface and lacrimal gland, and immunofluorescence staining in the conjunctiva and cornea(CC) were assessed. RESULTS The RCI group demonstrated better improvement of OSS and tear secretion than the PBS group (OSS, PBS: 13.0 ± 1.6, RCI: 9.4 ± 3.0; tear secretion, PBS: 5.0 ± 0.4 mm, RCI: 7.0 ± 0.3 mm, each P < 0.001) and better clinical efficacy than PDE and Lifitegrast groups on Day 7 (improvement rate of OSS, RCI: 32.45%, Lifitegrast: 13.13%, PDE: 12.25%). The RCI group resulted in significantly lower expression of oxidative stress markers in the CC than the PBS group (4-HNE, NOX2, and NOX4 in the conjunctiva; NOX2 in the cornea, each P < 0.05). However, the PDE and Lifitegrast groups did not show significant differences compared with the PBS group. There were no significant differences of inflammatory cytokines in the ocular surface and lacrimal gland between all groups. CONCLUSION Topical RCI001 showed excellent therapeutic effects in environmental DED models by stimulating tear secretion, modulating oxidative stress and improving corneal epithelial healing compared to 1% PDE and 5% Lifitegrast.
Collapse
Affiliation(s)
- Young-Ho Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Ah Ku
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jayoon Moon
- Department of Ophthalmology, Saevit Eye Hospital, Goyang, Republic of Korea
| | - Seunghoon Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Yong Ho Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
147
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
148
|
Lim PN, Cervantes MM, Pham LK, Doherty S, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-dose LPS in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594428. [PMID: 38826239 PMCID: PMC11142172 DOI: 10.1101/2024.05.22.594428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.
Collapse
Affiliation(s)
- Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sydney Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
149
|
Ge X, Han H, Desert R, Das S, Song Z, Komakula SSB, Chen W, Athavale D, Lantvit D, Nieto N. A Protein Complex of Liver Origin Activates a Pro-inflammatory Program That Drives Hepatic and Intestinal Injury in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101362. [PMID: 38788899 PMCID: PMC11296289 DOI: 10.1016/j.jcmgh.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | | | - Wei Chen
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
150
|
Yang H, Gao Y, Liu M, Ma J, Lu Q. Process Optimization of Scaled-Up Production and Biosafety Evaluation of the Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nano-Vaccine. J Funct Biomater 2024; 15:127. [PMID: 38786638 PMCID: PMC11122170 DOI: 10.3390/jfb15050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic acid) (PLA) and cationic lipid didodecyl-dimethyl-ammonium bromide (DDAB), develop the scale-up process, and evaluate the stability and biosafety of it. The optimum preparation conditions of DDAB/PLA NPs on a small scale were as follows: DDAB amount of 30 mg, aqueous phase volume of 90 mL, stirring rate at 550 rpm, and solidifying time of 12 h. Under the optimum conditions, the size of the NPs was about 170 nm. In scale-up preparation experiments, the vacuum rotary evaporation of 6 h and the Tangential flow ultrafiltration (TFU) method were the optimum conditions. The results suggested that DDAB/PLA NPs exhibited a uniform particle size distribution, with an average size of 150.3 ± 10.4 nm and a narrow polydispersity index (PDI) of 0.090 ± 0.13, coupled with a high antigen loading capacity of 85.4 ± 4.0%. In addition, the DDAB/PLA NPs can be stored stably for 30 days and do not have side effects caused by residual solvents. For biosafety, the acute toxicity experiments showed good tolerance of the vaccine formulation even at a high adjuvant dose. The local irritation experiment demonstrated the reversibility of muscular irritation, and the repeated toxicity experiment revealed no significant necrosis or severe lesions in mice injected with the high-dose vaccine formulation. Overall, the DDAB/PLA NPs exhibit potential for clinical translation as a safe candidate vaccine adjuvant.
Collapse
Affiliation(s)
- Hengye Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| | - Yuan Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Meijuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Juan Ma
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Qun Lu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| |
Collapse
|