151
|
Gao P, You M, Li L, Zhang Q, Fang X, Wei X, Zhou Q, Zhang H, Wang M, Lu Z, Wang L, Sun F, Liu D, Zheng H, Yan Z, Yang G, Zhu Z. Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3. Circulation 2022; 145:375-391. [PMID: 35100024 DOI: 10.1161/circulationaha.121.055600] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High salt intake is the leading dietary risk factor for cardiovascular diseases. Although clinical evidence suggests that high salt intake is associated with nonalcoholic fatty liver disease, which is an independent risk factor for cardiovascular diseases, it remains elusive whether salt-induced hepatic damage leads to the development of cardiovascular diseases. METHODS Mice were fed with normal or high-salt diet for 8 weeks to determine the effect of salt loading on liver histological changes and blood pressure, and salt withdrawal and metformin treatment were also conducted on some high-salt diet-fed mice. Adeno-associated virus 8, global knockout, or tissue-specific knockout mice were used to manipulate the expression of some target genes in vivo, including SIRT3 (sirtuin 3), NRF2 (NF-E2-related factor 2), and AMPK (AMP-activated protein kinase). RESULTS Mice fed with a high-salt diet displayed obvious hepatic steatosis and inflammation, accompanied with hypertension and cardiac dysfunction. All these pathological changes persisted after salt withdrawal, displaying a memory phenomenon. Gene expression analysis and phenotypes of SIRT3 knockout mice revealed that reduced expression of SIRT3 was a chief culprit responsible for the persistent inflammation in the liver, and recovering SIRT3 expression in the liver effectively inhibits the sustained hepatic inflammation and cardiovascular damage. Mechanistical studies reveal that high salt increases acetylated histone 3 lysine 27 (H3K27ac) on SIRT3 promoter in hepatocytes, thus inhibiting the binding of NRF2, and results in the sustained inhibition of SIRT3 expression. Treatment with metformin activated AMPK, which inhibited salt-induced hepatic inflammatory memory and cardiovascular damage by lowering the H3K27ac level on SIRT3 promoter, and increased NRF2 binding ability to activate SIRT3 expression. CONCLUSIONS This study demonstrates that SIRT3 inhibition caused by histone modification is the key factor for the persistent hepatic steatosis and inflammation that contributes to cardiovascular damage under high salt loading. Avoidance of excessive salt intake and active intervention of epigenetic modification may help to stave off the persistent inflammatory status that underlies high-salt-induced cardiovascular damage in clinical practice.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Xia Fang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital (H.Z.), Army Medical University, Chongqing China
| | - Xiao Wei
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Hexuan Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital (H.Z.), Army Medical University, Chongqing China
| | - Miao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Hongting Zheng
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| |
Collapse
|
152
|
Lee DH, Lee IH, Hong JT. Fermented field water-dropwort (Oenanthe javanica) alleviates diet-induced non-alcoholic steatohepatitis. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Dong Hun Lee
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Il Ho Lee
- OSBio, Co. Ltd., Cheongju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
153
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
154
|
Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells 2022; 11:cells11020288. [PMID: 35053404 PMCID: PMC8774478 DOI: 10.3390/cells11020288] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.
Collapse
|
155
|
Rebollo-Hernanz M, Aguilera Y, Martin-Cabrejas MA, Gonzalez de Mejia E. Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants (Basel) 2022; 11:antiox11010136. [PMID: 35052640 PMCID: PMC8772970 DOI: 10.3390/antiox11010136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Maria A. Martin-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-244-3196
| |
Collapse
|
156
|
Tamaki N, Ajmera V, Loomba R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat Rev Endocrinol 2022; 18:55-66. [PMID: 34815553 PMCID: PMC9012520 DOI: 10.1038/s41574-021-00584-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/27/2023]
Abstract
Hepatic steatosis is a key histological feature of nonalcoholic fatty liver disease (NAFLD). The non-invasive quantification of liver fat is now possible due to advances in imaging modalities. Emerging data suggest that high levels of liver fat and its temporal change, as measured by quantitative non-invasive methods, might be associated with NAFLD progression. Ultrasound-based modalities have moderate diagnostic accuracy for liver fat content and are suitable for screening. However, of the non-invasive imaging modalities, MRI-derived proton density fat fraction (MRI-PDFF) has the highest diagnostic accuracy and is used for trial enrolment and to evaluate therapeutic effects in early-phase clinical trials in nonalcoholic steatohepatitis (NASH). In patients with NAFLD without advanced fibrosis, high levels of liver fat are associated with rapid disease progression. Furthermore, changes on MRI-PDFF (≥30% decline relative to baseline) are associated with NAFLD activity score improvement and fibrosis regression. However, an inverse association exists between liver fat and complications of cirrhosis. Liver fat decreases as liver fibrosis progresses towards cirrhosis, and the clinical importance of quantitative measurements of liver fat differs by NAFLD status. As such, patients with NAFLD should be stratified by fibrosis severity to investigate the utility of quantitative measurements of liver fat for assessing NAFLD progression and prognosis.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
157
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
158
|
Molecular Networking for Drug Toxicities Studies: The Case of Hydroxychloroquine in COVID-19 Patients. Int J Mol Sci 2021; 23:ijms23010082. [PMID: 35008505 PMCID: PMC8744768 DOI: 10.3390/ijms23010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient’s plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.
Collapse
|
159
|
Discordant Liver Fibrosis Predictors in Virologically Suppressed People Living with HIV without Hepatitis Virus Infection. Diagnostics (Basel) 2021; 12:diagnostics12010014. [PMID: 35054179 PMCID: PMC8775200 DOI: 10.3390/diagnostics12010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Severe liver fibrosis (LF) is associated with poor long-term liver-related outcomes in people living with HIV (PLWH). The study aimed to explore the prevalence and predictors of LF and the concordance between different non-invasive methods for the estimation of LF in HIV-infected individuals without hepatitis virus infection. We enrolled PLWH with HIV-1-RNA <50 copies/mL for >12 months, excluding individuals with viral hepatitis. LF was assessed by transient elastography (TE) (significant >6.65 kPa), fibrosis-4 (FIB-4) (significant >2.67), and AST-to-platelet ratio index (APRI) (significant >1.5). We included 234 individuals (67% males, median age 49 years, median time from HIV diagnosis 11 years, 38% treated with integrase strand transfer inhibitors). In terms of the TE, 13% had ≥F2 stage; FIB-4 score was >1.5 in 7%; and APRI > 0.5 in 4%. Higher body mass index, diabetes mellitus, detectable baseline HIV-1 RNA and longer atazanavir exposure were associated with higher liver stiffness as per TE. Predictors of higher APRI score were CDC C stage and longer exposure to tenofovir alafenamide, while HBcAb positivity and longer exposure to tenofovir alafenamide were associated to higher FIB-4 scores. Qualitative agreement was poor between FIB-4/TE and between APRI/TE by non-parametric Spearman correlation and kappa statistic. In our study, in the group of PLWH without viral hepatitis, different non-invasive methods were discordant in predicting liver fibrosis.
Collapse
|
160
|
Ma C, Wang C, Zhang Y, Zhou H, Li Y. Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms. Curr Mol Pharmacol 2021; 15:846-861. [PMID: 34923950 DOI: 10.2174/1874467215666211217120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research. PURPOSE This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD. METHODS By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval. RESULTS The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed. CONCLUSION Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
161
|
Xu H, Wang L. The Role of Notch Signaling Pathway in Non-Alcoholic Fatty Liver Disease. Front Mol Biosci 2021; 8:792667. [PMID: 34901163 PMCID: PMC8652134 DOI: 10.3389/fmolb.2021.792667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH), liver cirrhosis, or hepatocellular carcinoma (HCC). NAFLD is a kind of metabolic disordered disease, which is commonly associated with lipid metabolism, insulin resistance, oxidative stress, inflammation, and fibrogenesis, as well as autophagy. Growing studies have shown Notch signaling pathway plays a pivotal role in the regulation of NAFLD progression. Here, we review the profile of the Notch signaling pathway, new evidence of Notch signaling involvement in NAFLD, and describe the potential of Notch as a biomarker and therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
162
|
Sinisalu L, Yeung LWY, Wang J, Pan Y, Dai J, Hyötyläinen T. Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics 2021; 17:103. [PMID: 34816353 PMCID: PMC8610959 DOI: 10.1007/s11306-021-01853-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Poly-/per-fluoroalkyl substances (PFAS) are widespread environmental pollutants that may induce metabolic perturbations in humans, including particularly alterations in lipid profiles. Prenatal exposure to PFAS can cause lasting effects on offspring metabolic health, however, the underlying mechanisms are still unknown. OBJECTIVES The goal of the study was to investigate the impact of prenatal PFAS exposure on the lipid profiles in cord blood. METHODS Herein, we combined determination of bile acids (BAs) and molecular lipids by liquid chromatography with ultra-high-resolution mass spectrometry, and separately quantified cord blood concentrations of sixteen PFAS in a cohort of Chinese infants (104 subjects) in a cross-sectional study. We then evaluated associations between PFAS concentration and lipidome using partial correlation network analysis, debiased sparse partial correlation, linear regression analysis and correlation analysis. RESULTS PFAS levels showed significant associations with the lipid profiles; specifically, PFAS exposure was positively correlated with triacylgycerols (TG) and several bile acids. Importantly, exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) were associated with increased levels of TGs with saturated fatty acids while multiple classes of phospholipids were decreased. In addition, several free fatty acids showed significant positive correlations with PFOS. CONCLUSIONS Our results indicated that prenatal exposure to PFAS mediated metabolic changes, which may explain the associations reported between PFAS exposure and metabolic health later in life.
Collapse
Affiliation(s)
- Lisanna Sinisalu
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Leo W Y Yeung
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
163
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|
164
|
Han L, Zhang Y, Li J, Xiao Y, Lu M, Li Y, Wang M. Phloretin attenuation of hepatic steatosis via an improvement of mitochondrial dysfunction by activating AMPK-dependent signaling pathways in C57BL/6J mice and HepG2 cells. Food Funct 2021; 12:12421-12433. [PMID: 34788781 DOI: 10.1039/d1fo02577e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phloretin, a dihydrochalcone, widely exists in the fruits of apple trees and crabapple trees (Malus prunifolia) with multiple biological activities. Presently, we studied the function of phloretin on the attenuation of hepatic steatosis and further explored the underlying mechanisms both in vitro and in vivo. Male C57BL/6J mice were fed a normal diet or high fat diet (HFD) with or without phloretin (100 mg kg-1) for 12 weeks. HepG2 cells were induced by 200 μM palmitic acid (PA) and co-incubated with phloretin (50 μM) for 24 h. The results showed that phloretin treatment significantly decreased the accumulation of lipids in the liver of the HFD-fed C57BL/6J mice and PA-induced HepG2 cells. Also, phloretin effectively ameliorated hepatic steatosis via promoting fatty acid β-oxidation (FAO). This biological activity of phloretin was closely related to its capacity to improve mitochondrial dysfunction, including the promotion of mitochondrial biosynthesis and inhibition of mitochondrial swelling through the AMPK-dependent SIRT1/PGC-1α and SIRT3/CypD signaling pathways, respectively. These results demonstrate that phloretin effectively improves mitochondrial function and ameliorates HFD-induced hepatic steatosis through an AMPK-dependent signaling pathway.
Collapse
Affiliation(s)
- Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China. .,Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404100, P. R. China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China.
| | - Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China.
| | - Mei Lu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
165
|
Glass O, Liu D, Bechard E, Guy CD, Pendergast J, Mae Diehl A, Abdelmalek MF. Perceptions of Exercise and Its Challenges in Patients With Nonalcoholic Fatty Liver Disease: A Survey-Based Study. Hepatol Commun 2021; 6:334-344. [PMID: 34697917 PMCID: PMC8793987 DOI: 10.1002/hep4.1808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 11/13/2022] Open
Abstract
Exercise is a foundational treatment for nonalcoholic fatty liver disease (NAFLD); however, the majority of patients are unable to initiate and maintain effective exercise habits and remain at increased risk for progressive liver disease. Barriers and limitations to exercise in patients with NAFLD have not been fully identified. We performed a single survey of 94 patients with biopsy‐proven NAFLD to understand baseline physical activity and sedentary behavior, self‐perceived fitness, limitations to exercise, potential solutions to increase physical activity behavior, and perception of exercise as a foundational treatment for NAFLD. For exploratory analyses, we evaluated differences in responses to the survey by grouping severity of hepatic fibrosis as follows: nonalcoholic fatty liver (NAFL); early stage (nonalcoholic steatohepatitis [NASH] F0, NASH F1, NASH F2); and late stage (NASH F3, NASH F4). Zero weekly total physical activity was reported by 29% of patients with NAFLD. Late‐stage NASH had significantly lower vigorous (P = 0.024), walking (P = 0.029), total weekly activity (P = 0.043), and current fitness level (P = 0.022) compared to early stage NASH. Overall, 72% of patients with NAFLD reported limitations to exercise, with the greatest proportion citing lack of energy (62%), fatigue (61%), prior/current Injury (50%), and shortness of breath (49%). A preference for personal training to increase their physical activity was indicated by 66% of patients with NAFLD, and 63% preferred exercise over medication to treat NAFLD. Conclusion: The majority of patients with NAFLD have limitations to exercise but prefer exercise as a treatment option for NAFLD in the form of personal training. Patients with NAFLD may have unique physiologic limitations to exercise that worsen with fibrosis severity. Exercise interventions or services that are personalized and scalable may improve sustainability of exercise habits in the long term.
Collapse
Affiliation(s)
- Oliver Glass
- Division of General Internal Medicine, Duke University, Durham, NC, USA
| | - Daniel Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, NC, USA
| | - Jane Pendergast
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC, USA
| |
Collapse
|
166
|
Li S, Li X, Chen F, Liu M, Ning L, Yan Y, Zhang S, Huang S, Tu C. Nobiletin mitigates hepatocytes death, liver inflammation, and fibrosis in a murine model of NASH through modulating hepatic oxidative stress and mitochondrial dysfunction. J Nutr Biochem 2021; 100:108888. [PMID: 34695558 DOI: 10.1016/j.jnutbio.2021.108888] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/13/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the therapeutic effects of nobiletin (NOB) on nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice and to elucidate its underlying molecular mechanisms. BALB/c mice were fed a normal chow diet or a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 8 wks and treated with NOB (50 mg/kg) or vehicle by daily intraperitoneally injection for the last 4 wks. In vitro, we used palmitate (PA) stimulated AML12 cells as the model of hepatocyte lipotoxicity to dissect the effect and molecular mechanisms of NOB' action. Our results exhibited that NOB dramatically reduced hepatic steatosis, lipid accumulation and hepatocyte apoptosis, and inhibited the infiltration of F4/80+ macrophages into the NASH livers. Furthermore, NOB limited liver fibrosis and hepatic stellate cells activation in NASH mice. In parallel, NOB alleviated hepatocytes apoptosis and lipid accumulation in PA-treated AML12 cells. Most importantly, these histological ameliorations in NASH and fibrosis in NOB-treated NASH mice were associated with improvement hepatic oxidative stress, lipid peroxidation product, mitochondrial respiratory chain complexes I and restored ATP production. Similarly, NOB attenuated PA-induced reactive oxygen species (ROS) generation and mitochondrial disfunction in cultured AML12 cells. Additionally, NOB diminished the expression of mitochondrial Ca2+ uniporter (MCU) both in NASH livers and in PA-treated AML12. Taken together, our results indicate that NOB mitigated NASH development and fibrosis through modulating hepatic oxidative stress and attenuating mitochondrial dysfunction. Therefore, NOB might be a novel and promising agent for treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Yan
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaoping Huang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
167
|
The Interplay between Insulin Resistance, Inflammation, Oxidative Stress, Base Excision Repair and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms222011128. [PMID: 34681787 PMCID: PMC8537238 DOI: 10.3390/ijms222011128] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most common chronic liver disorders, affecting mainly people in Western countries, is nonalcoholic fatty liver disease (NAFLD). Unfortunately, its pathophysiological mechanism is not fully understood, and no dedicated treatment is available. Simple steatosis can lead to nonalcoholic steatohepatitis and even to fibrosis, cancer, and cirrhosis of the liver. NAFLD very often occurs in parallel with type 2 diabetes mellitus and in obese people. Furthermore, it is much more likely to develop in patients with metabolic syndrome (MS), whose criteria include abdominal obesity, elevated blood triacylglycerol level, reduced high-density lipoprotein cholesterol level, increased blood pressure, and high fasting glucose. An important phenomenon in MS is also insulin resistance (IR), which is very common in NAFLD. Liver IR and NAFLD development are linked through an interaction between the accumulation of free fatty acids, hepatic inflammation, and increased oxidative stress. The liver is particularly exposed to elevated levels of reactive oxygen species due to a large number of mitochondria in hepatocytes. In these organelles, the main DNA repair pathway is base excision repair (BER). The present article will illustrate how impairment of BER may be related to the development of NAFLD.
Collapse
|
168
|
Gao H, Wan X, Xiao B, Yang K, Wang Y, Zhang C, Li P, Liu L, Xia T, Wang A, Zhang S. Impacts of PBDE-47 exposure before, during and after pregnancy on the maternal gut microbiome and its association with host metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112530. [PMID: 34280840 DOI: 10.1016/j.ecoenv.2021.112530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Maternal gut microbiota play an important role in the modulation of offspring disease susceptibility and gut microbiota dysbiosis has been proposed as a mechanism through which toxic environmental chemicals exert their adverse impacts on health. The brominated flame retardants polybrominated diphenyl ethers (PBDEs) are developmental toxicants and induce dysbiotic gut microbiota in offspring. Yet, whether and how PBDEs impact the maternal gut microbiota remain unclear. Here, we sought to investigate the effect of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) exposure from preconception through lactation cessation on maternal gut microbiota and its link to host serum metabolic consequences. Female Sprague-Dawley rats were daily exposed to 10 mg/kg PBDE-47 via oral gavage from ten days before conception until offspring were weaned on postnatal day 21, then maternal fecal and blood samples were collected for microbiome and metabolome analyses by using 16S ribosomal RNA gene sequencing and gas chromatography-mass spectrometry, respectively. Maternal exposure to PBDE-47 showed a distinct profile in gut microbiota compared to control dams, as evidenced by increased Actinobacteria phylum and genera Blautia, Gemella and Phascolarctobacterium, and decreased genera AF12 and Oscillospira. Additionally, global metabolomics analysis identified 26 differential serum metabolites to distinguish PBDE-47 from controls, which were mainly involved in amino acid, lipid, carbohydrate and energy metabolism, further confirmed by pathway analysis. Importantly, the differential serum metabolites are closely correlated with the disturbed gut microbiota in response to PBDE-47. Collectively, our results suggest that maternal gut microbial dysbiosis may serve as a potential mechanism underlying PBDE-47-elicited health hazards to mothers or even offspring.
Collapse
Affiliation(s)
- Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Kaichao Yang
- Immunization Planning Institute, Henan Provincial Center for Disease Control and Prevention, 105 Nongye South Road, Zhengzhou, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Cheng Zhang
- Department of Occupational Health, Wuhan Prevention and Treatment Center for Occupational Diseases, 18 Jianghan North Road, Wuhan, China
| | - Pei Li
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Luming Liu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
169
|
Kwon HC, Kim DH, Jeong CH, Kim YJ, Han JH, Lim SJ, Shin DM, Kim DW, Han SG. Tebuconazole Fungicide Induces Lipid Accumulation and Oxidative Stress in HepG2 Cells. Foods 2021; 10:2242. [PMID: 34681291 PMCID: PMC8534864 DOI: 10.3390/foods10102242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Tebuconazole (TEB), a triazole fungicide, is frequently applied to agriculture for the increase of food production. Although TEB causes liver toxicity, its effects on cellular lipid accumulation are rarely investigated. Therefore, this study aimed to study the effects of TEB on lipid metabolism and accumulation in HepG2 cells. HepG2 cells were exposed to 0-320 µM TEB for 1-24 h. TEB (20-80 µM, 24 h)-treated cells showed lipid accumulation. Further, TEB (20-80 µM, 1-12 h) increased the nuclear translocation of peroxisome proliferator-activated receptors and the expression of lipid uptake and oxidation-related markers such as cluster of differentiation 36, fatty acid transport protein (FATP) 2, FATP5, and carnitine palmitoyltransferase 1. Oxidative stress levels in TEB-treated cells (20-80 µM, 24 h) were higher, compared to those in the control. TEB (20-80 µM, 24 h) also induced the loss of mitochondrial membrane potential and lower levels of microsomal triglyceride transfer protein in the cells. Thus, TEB can induce lipid accumulation by altering the expression of lipid-metabolizing molecules and can therefore impair lipid metabolism. Our data suggest that human exposure to TEB may be a risk factor for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Do-Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Chang-Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea;
| | - Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Jong-Hyun Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Su-Jin Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Dong-Min Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| | - Dong-Wook Kim
- Department of Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-C.K.); (D.-H.K.); (Y.-J.K.); (J.-H.H.); (S.-J.L.); (D.-M.S.)
| |
Collapse
|
170
|
Chang GR, Hou PH, Wang CM, Lin JW, Lin WL, Lin TC, Liao HJ, Chan CH, Wang YC. Imipramine Accelerates Nonalcoholic Fatty Liver Disease, Renal Impairment, Diabetic Retinopathy, Insulin Resistance, and Urinary Chromium Loss in Obese Mice. Vet Sci 2021; 8:189. [PMID: 34564583 PMCID: PMC8473438 DOI: 10.3390/vetsci8090189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well defined. In this study, we evaluated C57BL6/J mice subjected to a high-fat diet (HFD) to study imipramine's influences on obesity, fatty liver scores, glucose homeostasis, hepatic damage, distribution of chromium, and retinal/renal impairments. Obese mice receiving imipramine treatment had higher body, epididymal fat pad, and liver weights; higher serum triglyceride, aspartate and alanine aminotransferase, creatinine, blood urea nitrogen, renal antioxidant enzyme, and hepatic triglyceride levels; higher daily food efficiency; and higher expression levels of a marker of fatty acid regulation in the liver compared with the controls also fed an HFD. Furthermore, the obese mice that received imipramine treatment exhibited insulin resistance, worse glucose intolerance, decreased glucose transporter 4 expression and Akt phosphorylation levels, and increased chromium loss through urine. In addition, the treatment group exhibited considerably greater liver damage and higher fatty liver scores, paralleling the increases in patatin-like phospholipid domain containing protein 3 and the mRNA levels of sterol regulatory element-binding protein 1 and fatty acid-binding protein 4. Retinal injury worsened in imipramine-treated mice; decreases in retinal cell layer organization and retinal thickness and increases in nuclear factor κB and inducible nitric oxide synthase levels were observed. We conclude that administration of imipramine may result in the exacerbation of nonalcoholic fatty liver disease, diabetes, diabetic retinopathy, and kidney injury.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
- College of Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 50544, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| |
Collapse
|
171
|
Sharma N, Biswas S, Al-Dayan N, Alhegaili AS, Sarwat M. Antioxidant Role of Kaempferol in Prevention of Hepatocellular Carcinoma. Antioxidants (Basel) 2021; 10:1419. [PMID: 34573051 PMCID: PMC8470426 DOI: 10.3390/antiox10091419] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) are noxious to cells because their increased level interacts with the body's defense mechanism. These species also cause mutations and uncontrolled cell division, resulting in oxidative stress (OS). Prolonged oxidative stress is responsible for incorrect protein folding in the endoplasmic reticulum (ER), causing a stressful condition, ER stress. These cellular stresses (oxidative stress and ER stress) are well-recognized biological factors that play a prominent role in the progression of hepatocellular carcinoma (HCC). HCC is a critical global health problem and the third leading cause of cancer-related mortality. The application of anti-oxidants from herbal sources significantly reduces oxidative stress. Kaempferol (KP) is a naturally occurring, aglycone dietary flavonoid that is present in various plants (Crocus sativus, Coccinia grandis, Euphorbia pekinensis, varieties of Aloe vera, etc.) It is capable of interacting with pleiotropic proteins of the human body. Efforts are in progress to develop KP as a potential candidate to prevent HCC with no adverse effects. This review emphasizes the molecular mechanism of KP for treating HCC, targeting oxidative stress.
Collapse
Affiliation(s)
- Nidhi Sharma
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India;
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India;
| | - Noura Al-Dayan
- Medical Laboratory Department, Applied Medical Science, Prince Sattam bin Abdul Aziz University, Al-Kharj 16278, Saudi Arabia; (N.A.-D.); (A.S.A.)
| | - Alaa Saud Alhegaili
- Medical Laboratory Department, Applied Medical Science, Prince Sattam bin Abdul Aziz University, Al-Kharj 16278, Saudi Arabia; (N.A.-D.); (A.S.A.)
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India;
| |
Collapse
|
172
|
Biagioli M, Fiorucci S. Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. LIVER RESEARCH 2021; 5:119-141. [PMID: 39957845 PMCID: PMC11791866 DOI: 10.1016/j.livres.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are a family of atypical steroids generated at the interface of liver-intestinal microbiota acting on a ubiquitously expressed family of membrane and nuclear receptors known as bile acid activated receptors. The two best characterized receptors of this family are the nuclear receptor, farnesoid X receptor (FXR) and the G protein-coupled receptor, G protein-coupled bile acid receptor 1 (GPBAR1). FXR and GPBAR1 regulate major aspects of lipid and glucose metabolism, energy balance, autophagy and immunity and have emerged as potential pharmaceutical targets for the treatment of metabolic and inflammatory disorders. Clinical trials in non-alcoholic fatty liver disease (NAFLD), however, have shown that selective FXR agonists cause side effects while their efficacy is partial. Because FXR and GPBAR1 exert additive effects, dual FXR/GPBAR1 ligands have been developed for the treatment of metabolic disorders and are currently advanced to clinical trials. Here, we will review the role of FXR and GPBAR1 agonism in NAFLD and how the two receptors could be exploited to target multiple components of the disease.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
173
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
174
|
Mosca A, Crudele A, Smeriglio A, Braghini MR, Panera N, Comparcola D, Alterio A, Sartorelli MR, Tozzi G, Raponi M, Trombetta D, Alisi A. Antioxidant activity of Hydroxytyrosol and Vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig Liver Dis 2021; 53:1154-1158. [PMID: 33060043 DOI: 10.1016/j.dld.2020.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The rise in paediatric non-alcoholic fatty liver disease (NAFLD) is particularly alarming. We recently reported that Hydroxytyrosol (HXT) and Vitamin E (VitE) may improve oxidative stress, insulin resistance, and steatosis in children with biopsy-proven NAFLD. AIM Here, we investigated if HXT+VitE may reduce systemic inflammation in the above-mentioned patients. METHODS This study analysed the plasma levels of IL (interleukin)-6, IL-1β, IL-10, tumour necrosis factor (TNF)-α, 4‑hydroxy-2-nonenal (4-HNE) and 8-hydroxy-2'deoxyguanosine (8-OHdG) in children enrolled in the HXT+VitE trial (ClinicalTrials.gov, NCT02842567). RESULTS Changes in markers of systemic inflammation were found in both placebo (Pla) and HXT+VitE. In particular, after four months, the levels of IL-1β and TNF-α were reduced in both groups, while IL-6 decreased, and IL-10 increased significantly only in the group treated with HXT+VitE. Children treated with HXT+VitE showed a significant decrease of 4-HNE and 8-OHdG that correlated with the improvement of triglyceride levels. Noticeably, only the 8-OHdG decrease correlated with steatosis amelioration and with the increase of IL-10 levels. CONCLUSION The treatment with HXT and VitE reduced the NAFLD-related systemic inflammation in children, mainly by an increase of IL-10 circulating levels that occurred in response to DNA damage recovery, ultimately improving steatosis and hypertriglyceridemia.
Collapse
Affiliation(s)
- Antonella Mosca
- Unit of Hepatology, Gastroenterology, and Nutrition, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Rita Braghini
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donatella Comparcola
- Unit of Hepato-Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Alterio
- Unit of Hepato-Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Rita Sartorelli
- Unit of Hepato-Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Tozzi
- Unit of Hepatology, Gastroenterology, and Nutrition, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
175
|
Chen LJ, Guo J, Zhang SX, Xu Y, Zhao Q, Zhang W, Xiao J, Chen Y. Sirtuin3 rs28365927 functional variant confers to the high risk of non-alcoholic fatty liver disease in Chinese Han population. Lipids Health Dis 2021; 20:92. [PMID: 34446002 PMCID: PMC8390275 DOI: 10.1186/s12944-021-01520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition associated with aging, insulin resistance, metabolic syndrome, genetic factors and more. Although genetic traits are among the most important risks factors for NAFLD, the understanding of their influence is still quite limited. The present study aimed at identifying novel single nucleotide polymorphisms (SNPs) that may confer a risk for NAFLD in the Han Chinese population. Methods Based on the “two-hit hypothesis”, candidate SNPs, including Sirtuin3 rs28365927, were genotyped by MassARRAY in B-type ultrasonography-proven NAFLD patients (n = 292) and healthy controls (n = 387). Results In a model analysis of individuals matched based on gender and age that compared 223 NAFLD and 223 non-NAFLD patients, the rs28365927 GA + AA genotype was a significant risk factor for the development of NAFLD in a dominant model. Rs28365927 was significantly associated with a higher NAFLD risk in both an additive model (A vs G) and genotypic model (GA vs GG). Among the NAFLD patients, serum levels of total bilirubin (TBIL), DBIL direct bilirubin (DBIL) and glutamic-pyruvic transaminase (ALT) in rs28365927 A allele carriers (GA + AA) were 11.1, 14.7 and 41.5% higher, respectively, than in non-carriers (GG). Furthermore, among the NAFLD patients, the carriers of Rs28365927 allele A were positively correlated with higher ALT levels. Conclusion Sirtuin3 rs28365927 functional variant confers to the high risk of non-alcoholic fatty liver disease in Chinese Han population. The rs28365927 A allele significantly increased the ALT levels of NAFLD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01520-x.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China. .,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China.
| |
Collapse
|
176
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
177
|
Sánchez-Calvo B, Cassina A, Mastrogiovanni M, Santos M, Trias E, Kelley EE, Rubbo H, Trostchansky A. Olive oil-derived nitro-fatty acids: protection of mitochondrial function in non-alcoholic fatty liver disease. J Nutr Biochem 2021; 94:108646. [PMID: 33838229 PMCID: PMC8197755 DOI: 10.1016/j.jnutbio.2021.108646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.
Collapse
Affiliation(s)
- Beatriz Sánchez-Calvo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Nutrición Básica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariela Santos
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Homero Rubbo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
178
|
Wang H, Pai S, Ishiyama S, Guo X, Gao WD, Santhanam L, Gabrielson K, Njoku DB. Mitochondrial-triggered immune responses mechanistically connect drug-induced steatohepatitis and cardiomyopathy associated with nonalcoholic steatohepatitis. Cell Mol Immunol 2021; 18:2078-2080. [PMID: 34253858 PMCID: PMC8322313 DOI: 10.1038/s41423-021-00724-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Haoran Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sananda Pai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shun Ishiyama
- Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Guo
- Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kathy Gabrielson
- Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Dolores B Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
179
|
Dynamin-related protein 1 deficiency accelerates lipopolysaccharide-induced acute liver injury and inflammation in mice. Commun Biol 2021; 4:894. [PMID: 34290349 PMCID: PMC8295278 DOI: 10.1038/s42003-021-02413-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial fusion and fission, which are strongly related to normal mitochondrial function, are referred to as mitochondrial dynamics. Mitochondrial fusion defects in the liver cause a non-alcoholic steatohepatitis-like phenotype and liver cancer. However, whether mitochondrial fission defect directly impair liver function and stimulate liver disease progression, too, is unclear. Dynamin-related protein 1 (DRP1) is a key factor controlling mitochondrial fission. We hypothesized that DRP1 defects are a causal factor directly involved in liver disease development and stimulate liver disease progression. Drp1 defects directly promoted endoplasmic reticulum (ER) stress, hepatocyte death, and subsequently induced infiltration of inflammatory macrophages. Drp1 deletion increased the expression of numerous genes involved in the immune response and DNA damage in Drp1LiKO mouse primary hepatocytes. We administered lipopolysaccharide (LPS) to liver-specific Drp1-knockout (Drp1LiKO) mice and observed an increased inflammatory cytokine expression in the liver and serum caused by exaggerated ER stress and enhanced inflammasome activation. This study indicates that Drp1 defect-induced mitochondrial dynamics dysfunction directly regulates the fate and function of hepatocytes and enhances LPS-induced acute liver injury in vivo.
Collapse
|
180
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
181
|
Aragón-Herrera A, Feijóo-Bandín S, Moraña-Fernández S, Anido-Varela L, Roselló-Lletí E, Portolés M, Tarazón E, Lage R, Moscoso I, Barral L, Bani D, Bigazzi M, Gualillo O, González-Juanatey JR, Lago F. Relaxin has beneficial effects on liver lipidome and metabolic enzymes. FASEB J 2021; 35:e21737. [PMID: 34143495 DOI: 10.1096/fj.202002620rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
Relaxin is an insulin-like hormone with pleiotropic protective effects in several organs, including the liver. We aimed to characterize its role in the control of hepatic metabolism in healthy rats. Sprague-Dawley rats were treated with human recombinant relaxin-2 for 2 weeks. The hepatic metabolic profile was analyzed using UHPLC-MS platforms. Hepatic gene expression of key enzymes of desaturation (Fads1/Fads2) of n-6 and n-3 polyunsaturated fatty acids (PUFAs), of phosphatidylethanolamine (PE) N-methyltransferase (Pemt), of fatty acid translocase Cd36, and of glucose-6-phosphate isomerase (Gpi) were quantified by Real Time-PCR. Activation of 5'AMP-activated protein kinase (AMPK) was analyzed by Western Blot. Relaxin-2 significantly modified the hepatic levels of 19 glycerophospholipids, 2 saturated (SFA) and 1 monounsaturated (MUFA) fatty acids (FA), 3 diglycerides, 1 sphingomyelin, 2 aminoacids, 5 nucleosides, 2 nucleotides, 1 carboxylic acid, 1 redox electron carrier, and 1 vitamin. The most noteworthy changes corresponded to the substantially decreased lysoglycerophospholipids, and to the clearly increased FA (16:1n-7/16:0) and MUFA + PUFA/SFA ratios, suggesting enhanced desaturase activity. Hepatic gene expression of Fads1, Fads2, and Pemt, which mediates lipid balance and liver health, was increased by relaxin-2, while mRNA levels of the main regulator of hepatic FA uptake Cd36, and of the essential glycolysis enzyme Gpi, were decreased. Relaxin-2 augmented the hepatic activation of the hepatoprotector and master regulator of energy homeostasis AMPK. Relaxin-2 treatment also rised FADS1, FADS2, and PEMT gene expression in cultured Hep G2 cells. Our results bring to light the hepatic metabolic features stimulated by relaxin, a promising hepatoprotective molecule.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain.,Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Manuel Portolés
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Estefanía Tarazón
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Ricardo Lage
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Moscoso
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Luis Barral
- Polymers Research Group, Department of Physics and Earth Sciences, University of A Coruña, Polytechnic University School of Serantes, Ferrol, Spain
| | - Daniele Bani
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Bigazzi
- Endocrine Section, Prosperius Institute, Florence, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saúde) and IDIS (Instituto de Investigación Sanitaria de Santiago) NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
182
|
Oke SL, Lee K, Papp R, Laviolette SR, Hardy DB. In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver. Int J Mol Sci 2021; 22:ijms22147502. [PMID: 34299119 PMCID: PMC8305322 DOI: 10.3390/ijms22147502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Rosemary Papp
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
| | - Steven R. Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
183
|
Tang G, Xu Y, Zhang C, Wang N, Li H, Feng Y. Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel) 2021; 10:1076. [PMID: 34356308 PMCID: PMC8301033 DOI: 10.3390/antiox10071076] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) represent a set of liver disorders progressing from steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, which induce huge burden to human health. Many pathophysiological factors are considered to influence NAFLD in a parallel pattern, involving insulin resistance, oxidative stress, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory cascades, fibrogenic reaction, etc. However, the underlying mechanisms, including those that induce NAFLD development, have not been fully understood. Specifically, oxidative stress, mainly mediated by excessive accumulation of reactive oxygen species, has participated in the multiple NAFLD-related signaling by serving as an accelerator. Ameliorating oxidative stress and maintaining redox homeostasis may be a promising approach for the management of NAFLD. Green tea is one of the most important dietary resources of natural antioxidants, above which epigallocatechin gallate (EGCG) notably contributes to its antioxidative action. Accumulative evidence from randomized clinical trials, systematic reviews, and meta-analysis has revealed the beneficial functions of green tea and EGCG in preventing and managing NAFLD, with acceptable safety in the patients. Abundant animal and cellular studies have demonstrated that green tea and EGCG may protect against NAFLD initiation and development by alleviating oxidative stress and the related metabolism dysfunction, inflammation, fibrosis, and tumorigenesis. The targeted signaling pathways may include, but are not limited to, NRF2, AMPK, SIRT1, NF-κB, TLR4/MYD88, TGF-β/SMAD, and PI3K/Akt/FoxO1, etc. In this review, we thoroughly discuss the oxidative stress-related mechanisms involved in NAFLD development, as well as summarize the protective effects and underlying mechanisms of green tea and EGCG against NAFLD.
Collapse
Affiliation(s)
- Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Huabin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| |
Collapse
|
184
|
Oke SL, Hardy DB. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism. Int J Mol Sci 2021; 22:6986. [PMID: 34209700 PMCID: PMC8268884 DOI: 10.3390/ijms22136986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
185
|
Simões ICM, Amorim R, Teixeira J, Karkucinska-Wieckowska A, Carvalho A, Pereira SP, Simões RF, Szymanska S, Dąbrowski M, Janikiewicz J, Dobrzyń A, Oliveira PJ, Potes Y, Wieckowski MR. The Alterations of Mitochondrial Function during NAFLD Progression-An Independent Effect of Mitochondrial ROS Production. Int J Mol Sci 2021; 22:ijms22136848. [PMID: 34202179 PMCID: PMC8268944 DOI: 10.3390/ijms22136848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.
Collapse
Affiliation(s)
- Inês C. M. Simões
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Ricardo Amorim
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José Teixeira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | | | - Adriana Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Susana P. Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Sylwia Szymanska
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (S.S.)
| | - Michał Dąbrowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
- Correspondence: (Y.P.); (M.R.W.)
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
- Correspondence: (Y.P.); (M.R.W.)
| |
Collapse
|
186
|
Zhang Q, Ye L, Xin F, Zhou J, Cao B, Dong Y, Qian L. Milk Fat Globule Membrane Supplementation During Suckling Ameliorates Maternal High Fat Diet-Induced Hepatic Steatosis in Adult Male Offspring of Mice. J Nutr 2021; 151:1487-1496. [PMID: 33693864 DOI: 10.1093/jn/nxab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to a maternal high-fat diet (HFD) predisposes offspring to nonalcoholic fatty liver disease. OBJECTIVES The aim of this study was to explore whether milk fat globule membrane (MFGM) supplementation during suckling exerts a long-term protective effect on hepatic lipid metabolism in adult offspring exposed to maternal HFD. METHODS We fed 5-week-old female C57BL/6J mice either a HFD (60% kcal fat) or control diet (CD; 16.7% kcal fat) for 3 weeks before mating, as well as throughout gestation and lactation. After delivery, male offspring from HFD dams were supplemented with 1 g/(kg body weight·day) MFGM (HFD + MFGM group) or the same volume of vehicle (HFD group) during suckling. Male offspring from CD dams were also supplemented with vehicle during suckling (CD group). All offspring were weaned onto CD for 8 weeks. Histopathology, metabolic parameters, lipogenic level, oxidative stress, and mitochondria function in the liver were analyzed. A 1-way ANOVA and a Kruskal-Wallis test were used for multi-group comparisons. RESULTS As compared to the CD group, the HFD group had more lipid droplets in livers, and exhibited ∼100% higher serum triglycerides, ∼38% higher hepatic triglycerides, ∼75% higher serum aspartate aminotransferase, and ∼130% higher fasting blood glucose (P < 0.05). The changes of these metabolic parameters were normalized in the HFD + MFGM group. Phosphorylated mammalian targets of rapamycin and AKT were downregulated, but phosphorylated adenosine monophosphate-activated protein kinase was upregulated in the HFD + MFGM group as compared to the HFD group (P < 0.05). As compared to the CD group, the HFD group showed an ∼80% higher malondialdehyde level, and ∼20% lower superoxide dismutase activity (P < 0.05), which were normalized in the HFD + MFGM group. Additionally, mitochondria function was also impaired in the HFD group and normalized in the HFD + MFGM group. CONCLUSIONS MFGM supplementation during suckling ameliorates maternal HFD-induced hepatic steatosis in mice via suppressing de novo lipogenesis, reinforcing antioxidant defenses and improving mitochondrial function.
Collapse
Affiliation(s)
- Qianren Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Fengzhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
187
|
Dusabimana T, Park EJ, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW. P2Y2R Deficiency Ameliorates Hepatic Steatosis by Reducing Lipogenesis and Enhancing Fatty Acid β-Oxidation through AMPK and PGC-1α Induction in High-Fat Diet-Fed Mice. Int J Mol Sci 2021; 22:ijms22115528. [PMID: 34073834 PMCID: PMC8197197 DOI: 10.3390/ijms22115528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease associated with obesity and insulin resistance. Activation of the purinergic receptor P2Y2R has been reported to promote adipogenesis, inflammation and dyslipidemia in adipose tissues in obese mice. However, the role of P2Y2R and its mechanisms in NAFLD remain unknown. We hypothesized that P2Y2R deficiency may play a protective role in NAFLD by modulating lipid metabolism in the liver. In this study, we fed wild type and P2Y2R knockout mice with a high-fat diet (HFD) for 12 weeks and analyzed metabolic phenotypes. First, P2Y2R deficiency effectively improved insulin resistance with a reduction in body weight and plasma insulin. Second, P2Y2R deficiency attenuated hepatic lipid accumulation and injury with reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Third, P2Y2R deficiency decreased the expression of fatty acid synthesis mediators (cluster of differentiation (CD36), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1)); and increased the expression of adipose triglyceride lipase (ATGL), a lipolytic enzyme. Mechanistically, P2Y2R deficiency increased the AMP-activated protein kinase (AMPK) activity to improve mitochondrial fatty acid β-oxidation (FAO) by regulating acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase 1A (CPT1A)-mediated FAO pathway. In addition, P2Y2R deficiency increased peroxisome proliferator-activated gamma co-activator-1α (PGC-1α)-mediated mitochondrial biogenesis. Conclusively, P2Y2R deficiency ameliorated HFD-induced hepatic steatosis by enhancing FAO through AMPK signaling and PGC-1α pathway, suggesting P2Y2R as a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (T.D.); (E.J.P.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
188
|
Lazebnik LB, Golovanova EV, Alekseenko SA, Bueverov AO, Plotnikova EY, Dolgushina AI, Ilchenko LY, Ermolova TV, Tarasova LV, Lee ED, Tsyganova YV, Akhmedov VA, Ageeva EA, Losev VM, Kupriyanova IN, Serikova SN, Korochanskaya NV, Vologzhanina LG, Zimmerman YS, Sas EI, Zhuravel SV, Okovitiy SV, Osipenko MF, Radchenko VG, Soldatova GS, Sitkin SI, Seliverstov PV, Shavkuta GV, Butova EN, Kozhevnikova SA. Russian Consensus “Hyperammonemia in Adults” (Version 2021). EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:97-118. [DOI: 10.31146/1682-8658-ecg-187-3-97-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Justification Given the large number of reports on the peculiarities of liver lesions during the Sars-Cov-2 infection [1], a team of experts who participated in the 23rd Congress of the Scientific Society of Gastroenterologists of Russia and 15 National Congress of Therapists of November 19, 2020 decided to make additions to the Russian Consensus of “Hyperammonemia in Adults” published early 2020 [2, 3].
Collapse
Affiliation(s)
- L. B. Lazebnik
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”
| | - E. V. Golovanova
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”
| | | | - A. O. Bueverov
- I. M. Sechenov first Moscow state medical university (Sechenov university); Moscow regional research and clinical Institute of M. F. Vladimirsky
| | - E. Yu. Plotnikova
- Federal State Budgetary Institution of Higher Education Kemerovo state medical University of the Ministry of health of Russia
| | - A. I. Dolgushina
- “South-Ural State Medical University” of the Ministry of Health of Russia
| | - L. Yu. Ilchenko
- Pirogov Russian National Research Medical University (RNRMU)
| | - T. V. Ermolova
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - L. V. Tarasova
- BI of HE “The Surgut State University”; “The Chuvashian State University”
| | - E. D. Lee
- Multifocal Medicine Center of The Central Bank of Russian Federation
| | | | - V. A. Akhmedov
- “Omsk State Medical University” of the Ministry of Health
| | | | | | - I. N. Kupriyanova
- “Ural state medical University” of the Ministry of health of the Russian Federation
| | - S. N. Serikova
- State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - N. V. Korochanskaya
- State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - L. G. Vologzhanina
- “Perm State Medical University named E. A. Wagner” of the Ministry of Health of Russia
| | - Ya. S. Zimmerman
- “Perm State Medical University named E. A. Wagner” of the Ministry of Health of Russia
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | - S. V. Zhuravel
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”; Scientific Research Institute of Emergency Medicine of N. V. Sklifosovskiy of Healthcare Department of Moscow
| | - S. V. Okovitiy
- Saint Petersburg State Chemical Pharmaceutical University (SPCPA)
| | - M. F. Osipenko
- Public budgetary educational institution of higher education “Novosibirsk State Medical University” of the Ministry of Healthcare of the Russia
| | | | | | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation; Federal Medical and Biological Agency “State Research Institute of Highly Pure Biopreparations”
| | - P. V. Seliverstov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - G. V. Shavkuta
- Rostov State Medical University of the Ministry of Health of Russia
| | - E. N. Butova
- Rostov State Medical University of the Ministry of Health of Russia
| | | |
Collapse
|
189
|
Zhang Z, Chen X, Cui B. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food Funct 2021; 12:4504-4518. [PMID: 33885128 DOI: 10.1039/d1fo00249j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting the gut-liver axis by manipulating the intestinal microbiome is a promising therapy for nonalcoholic fatty liver disease (NAFLD). This study modulated the intestinal microbiota to explore whether resistant dextrin, as a potential prebiotic, could ameliorate high-fat diet (HFD)-induced hepatic steatosis in C57BL/6J mice. After two months of feeding, significant hepatic steatosis with mitochondrial dysfunction was observed in the HFD-fed mice. However, the concentrations of triglycerides and malondialdehyde in liver tissue and the levels of alanine aminotransferase and aspartate aminotransferase in the serum of mice fed an HFD plus resistant dextrin diet (HFID) were significantly decreased compared to the HFD-fed mice. Additionally, hepatic mitochondrial integrity and reactive oxygen species accumulation were improved in HFID-fed mice, ameliorating hepatic steatosis. The fecal microbiome of HFD-fed mice was enriched in Bifidobacterium, Lactobacillus, and Globicatella, while resistant dextrin increased the abundance of Parabacteroides, Blautia, and Dubosiella. Major changes in fecal metabolites were confirmed for HFID-fed mice, including those related to entero-hepatic circulation (i.e., bile acids), tryptophan metabolism (e.g., indole derivatives), and lipid metabolism (e.g., lipoic acid), as well as increased antioxidants including isorhapontigenin. Furthermore, resistant dextrin decreased inflammatory cytokine levels and intestinal permeability and ameliorated intestinal damage. Together, these findings augmented current knowledge on prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | | | | |
Collapse
|
190
|
Guo W, Lei L, Shi X, Li R, Wang Q, Han J, Yang L, Chen L, Zhou B. Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6926-6935. [PMID: 33938212 DOI: 10.1021/acs.est.1c01476] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a novel brominated flame retardant, can potentially cause lipid metabolism disorder; however, its biological effects on lipid homeostasis remain unknown. We investigated its ability to cause nonalcoholic fatty liver disease (NAFLD) in zebrafish. Female zebrafish were fed a high-fat diet (HFD, 24% crude fat) or normal diet (ND, 6% crude fat), and exposed to TBPH (0.02, 2.0 μM) for 2 weeks. Consequently, HFD-fed fish showed a higher measured concentration of TBPH than ND-fed fish. Further, TBPH-treated fish in the HFD group showed higher hepatic triglyceride levels and steatosis. In comparison to ND-fed fish, treating HFD-fed fish with TBPH led to an increase in the concentration of several proinflammatory markers (e.g., TNF-α, IL-6); TBPH exposure also caused oxidative stress. In addition, the mRNA levels of genes encoding peroxisome proliferator-activated receptors were increased, and the transcription of genes involved in lipid synthesis, transport, and oxidation was upregulated in both ND- and HFD-fed fish. Both the ND and HFD groups also showed demethylation of the peroxisome proliferator-activated receptor-γ coactivator 1-α gene promoter, accompanied by the upregulation of tet1 and tet2 transcription. To summarize, we found that TBPH amplified the disruption of lipid homeostasis in zebrafish, leading to the enhancement of diet-induced NAFLD progression.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjie Shi
- College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
191
|
Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale? Cells 2021; 10:cells10051212. [PMID: 34063534 PMCID: PMC8156893 DOI: 10.3390/cells10051212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
After the introduction of antiretroviral treatment (ART) back in 1996, the lifespan of people living with HIV (PLWH) has been substantially increased, while the major causes of morbidity and mortality have switched from opportunistic infections and AIDS-related neoplasms to cardiovascular and liver diseases. HIV itself may lead to liver damage and subsequent liver fibrosis (LF) through multiple pathways. Apart from HIV, viral hepatitis, alcoholic and especially non-alcoholic liver diseases have been implicated in liver involvement among PLWH. Another well known cause of hepatotoxicity is ART, raising clinically significant concerns about LF in long-term treatment. In this review we present the existing data and analyze the association of LF with all ART drug classes. Published data derived from many studies are to some extent controversial and therefore remain inconclusive. Among all the antiretroviral drugs, nucleoside reverse transcriptase inhibitors, especially didanosine and zidovudine, seem to carry the greatest risk for LF, with integrase strand transfer inhibitors and entry inhibitors having minimal risk. Surprisingly, even though protease inhibitors often lead to insulin resistance, they do not seem to be associated with a significant risk of LF. In conclusion, most ART drugs are safe in long-term treatment and seldom lead to severe LF when no liver-related co-morbidities exist.
Collapse
|
192
|
Oliveira AKDS, de Oliveira E Silva AM, Pereira RO, Santos AS, Barbosa Junior EV, Bezerra MT, Barreto RSS, Quintans-Junior LJ, Quintans JSS. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit Rev Food Sci Nutr 2021; 62:7827-7848. [PMID: 33970708 DOI: 10.1080/10408398.2021.1919051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a major public health problem, and there is increasing scientific interest in its mechanisms, as well as a search for new compounds with antioxidant and anti-inflammatory properties that can minimize the metabolic complications associated with its pathology. One potential source of these compounds is natural products; Among these, flavonoids are a promising group of natural substances. Flavonoids are active constituents with diverse biological activities and are widely found in plants kingdom. Numerous studies have shown that flavonoids can effectively inhibit obesity and related metabolic disorders. The review synthesizes recent evidence in respect of progress in the understanding of the anti-obesity effects of flavonoids. Such effects which occurs through the modulation of proteins, genes and transcriptional factors involved in decreasing lipogenesis, increasing lipolysis, expenditure energy, stimulating fatty acids B-oxidation, digestion and metabolism of carbohydrates. In addition to mitigating inflammatory responses and suppress oxidative stress. A better understanding of the modulating effects and mechanisms of flavonoids in relation to obesity will allow us to better use these compounds to treat or even prevent obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Anne Karoline de Souza Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ana Mara de Oliveira E Silva
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Nutrition, Federal University of Sergipe, UFS, São Cristóvão, SE, Brazil
| | | | | | | | - Mikaella Tuanny Bezerra
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Lucindo J Quintans-Junior
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| |
Collapse
|
193
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
194
|
Wei X, Hogstrand C, Chen G, Lv W, Song Y, Xu Y, Luo Z. Zn Induces Lipophagy via the Deacetylation of Beclin1 and Alleviates Cu-Induced Lipotoxicity at Their Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4943-4953. [PMID: 33739816 DOI: 10.1021/acs.est.0c08609] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the mechanisms of environmentally relevant doses of Cu and Zn mixtures influencing lipid deposition and metabolism were investigated in freshwater teleost yellow catfish Pelteobagrus fulvidraco (2 months old, 4.95 (t0.01 g, mean ± SEM). Our study indicated that waterborne Cu exposure increased lipid content, while Zn activated lipophagic flux and alleviated Cu-induced lipid accumulation. Yellow catfish hepatocytes treated with Zn or Zn + Cu activated autophagy-specific lipophagy, decreased lipid storage, and increased nonesterified fatty acid (NEFA) release, suggesting a causal relationship between lipophagy and lipid droplet (LD) breakdown under Zn and Zn + Cu conditions. Our further investigation found that Beclin1 deacetylation by sirtuin 1 (SIRT1) was required for Zn- and Zn + Cu-induced lipophagy and lipolysis, and lysine residues 427 and 434 were key sites for Beclin1 deacetylation. Taken together, these findings show that the Zn-induced deacetylation of Beclin1 promotes lipophagy as an important pathway to alleviate Cu-induced lipid accumulation in fish, which reveals a previously unidentified mechanism for understanding the antagonistic effects of Cu and Zn on metabolism at their environmentally relevant concentrations. Our results highlight the importance of combined exposure when the biological effects of heavy metals are evaluated during environmental risk assessments.
Collapse
Affiliation(s)
- Xiaolei Wei
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE5 9RJ, U.K
| | - Guanghui Chen
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wuhong Lv
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Song
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichuang Xu
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
195
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
196
|
Cui P, Hu W, Ma T, Hu M, Tong X, Zhang F, Shi J, Xu X, Li X, Shao LR, Billig H, Feng Y. Long-term androgen excess induces insulin resistance and non-alcoholic fatty liver disease in PCOS-like rats. J Steroid Biochem Mol Biol 2021; 208:105829. [PMID: 33513383 DOI: 10.1016/j.jsbmb.2021.105829] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Women with polycystic ovary syndrome (PCOS) are at higher risk for metabolic disorders compared to healthy women, and about 51 % of women with PCOS suffer from non-alcoholic fatty liver disease (NAFLD). Investigation into the pathological mechanism behind this association will provide insights for the prevention and treatment of this complication. METHODS Dihydrotestosterone (DHT), a nonaromatic androgen, was used to mimic the pathological conditions of hyperandrogenism and insulin resistance. Hematoxylin and eosin staining, Oil Red O staining, immunofluorescent staining, Western blots, and qRT-PCR were used to verify the hepatic steatosis and inflammation, and the latter two methods were also used for energy and mitochondrion-related assays. ELISA was used to measure the level of reactive oxygen species. RESULTS Twelve weeks of DHT exposure led to obesity and insulin resistance as well as hepatic steatosis, lipid deposition, and different degrees of inflammation. The expression of molecules involved in respiratory chain and aerobic respiration processes, such as electron transfer complex II, pyruvate dehydrogenase, and succinate dehydrogenase complex subunit A, was inhibited. In addition, molecules associated with apoptosis and autophagy were also abnormally expressed, such as increased Bak mRNA, an increased activated caspase-3 to caspase-3 ratio, and increased Atg12 protein expression. All of these changes are associated with the mitochondria and lead to lipid deposition and inflammation in the liver. CONCLUSIONS Long-term androgen excess contributes to insulin resistance and hepatic steatosis by affecting mitochondrial function and causing an imbalance in apoptosis and autophagy, thus suggesting the pathogenesis of NAFLD in women with PCOS.
Collapse
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China; Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Feifei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Jiemei Shi
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xiaoqing Xu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Linus Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
197
|
Allard J, Bucher S, Massart J, Ferron PJ, Le Guillou D, Loyant R, Daniel Y, Launay Y, Buron N, Begriche K, Borgne-Sanchez A, Fromenty B. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol 2021; 37:151-175. [PMID: 32535746 PMCID: PMC8012331 DOI: 10.1007/s10565-020-09537-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Simon Bucher
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Julie Massart
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
- HCS Pharma, 250 rue Salvador Allende, 59120 Loos, France
| | - Dounia Le Guillou
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Roxane Loyant
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Yoann Daniel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Nelly Buron
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Karima Begriche
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Annie Borgne-Sanchez
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
198
|
Sangineto M, Bukke VN, Bellanti F, Tamborra R, Moola A, Duda L, Villani R, Romano AD, Serviddio G. A Novel Nutraceuticals Mixture Improves Liver Steatosis by Preventing Oxidative Stress and Mitochondrial Dysfunction in a NAFLD Model. Nutrients 2021; 13:652. [PMID: 33671262 PMCID: PMC7923152 DOI: 10.3390/nu13020652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease globally, and represents a health care burden as treatment options are very scarce. The reason behind the NAFLD progression to non-alcoholic steatohepatitis (NASH) is not completely understood. Recently, the deficiency of micronutrients (e.g., vitamins, minerals, and other elements) has been suggested as crucial in NAFLD progression, such that recent studies reported the potential hepatic antioxidant properties of micronutrients supplementation. However, very little is known. Here we have explored the potential beneficial effects of dietary supplementation with FLINAX, a novel mixture of nutraceuticals (i.e., vitamin E, vitamin D3, olive dry-extract, cinnamon dry-extract and fish oil) in a NAFLD model characterized by oxidative stress and mitochondrial function impairment. Steatosis was firstly induced in Wistar rats by feeding with a high-fat/high-cholesterol diet for 4 weeks, and following this the rats were divided into two groups. One group (n = 8) was treated for 2 weeks with a normal chow-diet, while a second group (n = 8) was fed with a chow-diet supplemented with 2% FLINAX. Along with the entire experiment (6 weeks), a third group of rats was fed with a chow-diet only as control. Statistical analysis was performed with Student's T test or one-way ANOVA followed by post-hoc Bonferroni test when appropriate. Steatosis, oxidative stress and mitochondrial respiratory chain (RC) complexes activity were analyzed in liver tissues. The dietary supplementation with FLINAX significantly improved hepatic steatosis and lipid accumulation compared to untreated rats. The mRNA and protein levels analysis showed that CPT1A and CPT2 were up-regulated by FLINAX, suggesting the enhancement of fatty acids oxidation (FAO). Important lipoperoxidation markers (i.e., HNE- and MDA-protein adducts) and the quantity of total mitochondrial oxidized proteins were significantly lower in FLINAX-treated rats. Intriguingly, FLINAX restored the mitochondrial function, stimulating the activity of mitochondrial RC complexes (i.e., I, II, III and ATP-synthase) and counteracting the peroxide production from pyruvate/malate (complex I) and succinate (complex II). Therefore, the supplementation with FLINAX reprogrammed the cellular energy homeostasis by restoring the efficiency of mitochondrial function, with a consequent improvement in steatosis.
Collapse
Affiliation(s)
- Moris Sangineto
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Vidyasagar Naik Bukke
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Francesco Bellanti
- Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Rosanna Tamborra
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Archana Moola
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Loren Duda
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Rosanna Villani
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Antonino Davide Romano
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| | - Gaetano Serviddio
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (V.N.B.); (R.T.); (A.M.); (R.V.); (A.D.R.)
| |
Collapse
|
199
|
Ma C, Wang Z, Xia R, Wei L, Zhang C, Zhang J, Zhao L, Wu H, Kang L, Yang S. Danthron ameliorates obesity and MAFLD through activating the interplay between PPARα/RXRα heterodimer and adiponectin receptor 2. Biomed Pharmacother 2021; 137:111344. [PMID: 33581653 DOI: 10.1016/j.biopha.2021.111344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated metabolic associated fatty liver diseases (MAFLD) are strongly associated with dysfunction of glucose and lipid metabolism. AMPKα and PPARα are key regulators in the lipid and glucose homeostasis, indicating that novel agents to activate them are promising therapeutic approaches for metabolic syndrome. Noticeably, as a natural anthraquinone derivative extracted from rhubarb, danthron can activate AMPKα in vitro. However, the protective effect of danthron on obesity and associated MAFLD in vivo, as well as the underlying mechanism remains unknown. In this study, obesity and associated MAFLD was induced in C57BL/6J mice by high fat diet (HFD), which were subjected to evaluations on the parameters of systematic metabolism. Simultaneously, the molecular mechanism of danthron on lipid metabolism was investigated in 3T3-L1-derived adipocytes and HepG2 cells in vitro. In vivo, danthron significantly attenuated the obesity and MAFLD by enhancing hepatic fatty acid oxidation, decreasing lipid synthesis, and promoting mitochondrial homeostasis. Mechanistically, danthron significantly promoted combination of RXRα and PPARα, enhanced the binding of RXRα/PPARα heterodimer to the promoter of adiponectin receptor 2 (AdipoR2), by which activating the AMPKα and PPARα pathway. Moreover, PPARα and AdipoR2 can interplay in a loop style. Collectively, this study demonstrates that danthron can substantially ameliorate obesity and associated hepatic steatosis via AdipoR2-mediated dual PPARα/AMPKα activation, which suggests that danthron might be a novel therapeutic approach for inhibition of obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ronglin Xia
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Hospital, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.
| |
Collapse
|
200
|
Mitochondrial metabolism and calcium homeostasis in the development of NAFLD leading to hepatocellular carcinoma. Mitochondrion 2021; 58:24-37. [PMID: 33581332 DOI: 10.1016/j.mito.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome characterized by excessive accumulation of hepatic lipid droplets. The disease progresses with steatosis as the premise for hepatocytic damage and tissue scarring, often culminating in hepatocellular carcinoma (HCC). Perturbations in mitochondrial metabolism and energetics were found to be associated with, and often instrumental in various stages of this progression. Functional impairment of the mitochondria affects all aspects of cellular functioning and a particularly important one is calcium signalling. Changes in mitochondrial calcium specifically in hepatocytes of a fatty liver, is reflected by alterations in calcium signalling as well as calcium transporter activities. This deranged Ca2+ homeostasis aids in even more uptake of lipids into the mitochondria and a shift in equilibrium, both metabolically as well as in terms of energy production, leading to completely altered cellular states. These alterations have been reviewed as a perspective to understand the disease progression through NAFLD leading to HCC.
Collapse
|