151
|
Li J, Xiao H, Zhang C, Liu G, Liu X. From virus to immune system: Harnessing membrane-derived vesicles to fight COVID-19 by interacting with biological molecules. Eur J Immunol 2024; 54:e2350916. [PMID: 38778737 DOI: 10.1002/eji.202350916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Emerging and re-emerging viral pandemics have emerged as a major public health concern. Highly pathogenic coronaviruses, which cause severe respiratory disease, threaten human health and socioeconomic development. Great efforts are being devoted to the development of safe and efficacious therapeutic agents and preventive vaccines to combat them. Nevertheless, the highly mutated virus poses a challenge to drug development and vaccine efficacy, and the use of common immunomodulatory agents lacks specificity. Benefiting from the burgeoning intersection of biological engineering and biotechnology, membrane-derived vesicles have shown superior potential as therapeutics due to their biocompatibility, design flexibility, remarkable bionics, and inherent interaction with phagocytes. The interactions between membrane-derived vesicles, viruses, and the immune system have emerged as a new and promising topic. This review provides insight into considerations for developing innovative antiviral strategies and vaccines against SARS-CoV-2. First, membrane-derived vesicles may provide potential biomimetic decoys with a high affinity for viruses to block virus-receptor interactions for early interruption of infection. Second, membrane-derived vesicles could help achieve a balanced interplay between the virus and the host's innate immunity. Finally, membrane-derived vesicles have revealed numerous possibilities for their employment as vaccines.
Collapse
Affiliation(s)
- Jiayuan Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Haiqing Xiao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Shen Zhen Research Institute of Xiamen University, Xiamen University, Shenzhen, China
| |
Collapse
|
152
|
Molfino A, Anastasi E, Assanto E, Toccini L, Imbimbo G, Gigante A, Viggiani V, Farina A, Picconi O, Angeloni A, Muscaritoli M. Association between serum levels of GDF-15, suPAR, PIVKA-II, sdLDL and clinical outcomes in hospitalized COVID-19 patients. Intern Emerg Med 2024; 19:1557-1566. [PMID: 38700782 PMCID: PMC11405538 DOI: 10.1007/s11739-024-03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 09/17/2024]
Abstract
To quantify the circulating levels of novel serum biomarkers including GDF-15, PIVKA-II, sdLDL, suPAR, and of CRP in hospitalized COVID-19 patients compared with healthy subjects, and to evaluate their association(s) with outcomes in COVID-19. We considered patients with confirmed COVID-19, hospitalized in an Internal Medicine ward. The clinical characteristics were collected, including the number and type of comorbidities. Serum levels of GDF-15, PIVKA-II, suPAR, sdLDL, as well as CRP were measured. As outcomes, we considered Intensive Care Unit (ICU) transfer or death, as well as the length of stay (days) and in-hospital complications. Data were statistically analyzed, as appropriate, and a p value < 0.05 was considered significant. Ninety-three patients and 20 healthy controls were enrolled. COVID-19 patients vs. controls showed higher median levels of GDF-15 (p < 0.0001), PIVKA-II (p < 0.0001) and sdLDL (p = 0.0002), whereas no difference was observed for suPAR. In COVID-19 patients, the most frequent comorbidities were arterial hypertension (62.4%) and cardiovascular disease (30.1%). GDF-15 levels positively correlated with age (r = 0.433, p < 0.0001), and this correlation was confirmed for suPAR (r = 0.308, p = 0.003) and CRP (Rho = 0.40 p < 0.0001), but not for PIVKA-II and sdLDL. Higher GDF-15 levels were associated with a higher number of comorbidities (p = 0.021). The median length of stay was 22 (15; 30) days. During hospitalization, 15 patients (16%) were ICU transferred, and 6 (6.45%) died. GDF-15 serum levels correlated with the length of stay (rho = 0.27 p = 0.010), and were associated with ICU transfer or death (p = 0.003), as well as PIVKA-II (p = 0.038) and CRP (p < 0.001). Moreover, higher GDF-15 and PIVKA-II serum levels were associated with infectious complications (p = 0.008 and p = 0.017, respectively). In this cohort of hospitalized COVID-19 patients, novel inflammatory biomarkers, including GDF-15, suPAR and PIVKA II were associated with some patient's clinical characteristics, complications, and poor outcomes.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Eleonora Assanto
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Toccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Viggiani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
153
|
Wu J, Koelzer VH. GILEA: In silico phenome profiling and editing using GAN Inversion. Comput Biol Med 2024; 179:108825. [PMID: 39002318 DOI: 10.1016/j.compbiomed.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Modeling heterogeneous disease states by data-driven methods has great potential to advance biomedical research. However, a comprehensive analysis of phenotypic heterogeneity is often challenged by the complex nature of biomedical datasets and emerging imaging methodologies. METHODS Here, we propose a novel GAN Inversion-enabled Latent Eigenvalue Analysis (GILEA) framework and apply it to in silico phenome profiling and editing. RESULTS We show the performance of GILEA using cellular imaging datasets stained with the multiplexed fluorescence Cell Painting protocol. The quantitative results of GILEA can be biologically supported by editing of the latent representations and simulation of dynamic phenotype transitions between physiological and pathological states. CONCLUSION In conclusion, GILEA represents a new and broadly applicable approach to the quantitative and interpretable analysis of biomedical image data. The GILEA code and video demos are available at https://github.com/CTPLab/GILEA.
Collapse
Affiliation(s)
- Jiqing Wu
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
154
|
Luckner KM, Seckel MA. Understanding the Evolving Pathophysiology of Coronavirus Disease 2019 and Adult Nursing Management. Crit Care Nurs Clin North Am 2024; 36:295-321. [PMID: 39069352 DOI: 10.1016/j.cnc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19) was first identified in December 2019 and quickly became a global pandemic. The understanding of the pathophysiology, treatment, and management of the disease has evolved since the beginning of the pandemic in 2020. COVID-19 can be complicated by immune system dysfunction, lung injury with hypoxemia, acute kidney injury, and coagulopathy. The treatment and management of COVID-19 is based on the severity of illness, ranging from asymptomatic to severe and often life-threatening disease. The 3 main recommended medication classes include antivirals, immunomodulators, and anticoagulants. Other supportive therapies include ensuring adequate oxygenation, mechanical ventilation, and prone positioning.
Collapse
|
155
|
Holland J, Brown S, O'Flanagan S, Savinelli S, McCann K, Gaynor K, Mallon P, Feeney E, Kenny G, Boyd C, O'Keeffe F, Bramham J. Self-reported immune status and COVID-19 associated subjective cognitive functioning in post-COVID-19 syndrome: Examination of an Irish cohort. Brain Behav 2024; 14:e70027. [PMID: 39317976 PMCID: PMC11422179 DOI: 10.1002/brb3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Cognitive changes are very frequently reported by people with post-COVID-19 syndrome (PCS), but there is limited understanding of the underpinning mechanisms leading to these difficulties. It is possible that cognitive difficulties are related to immune status and/or low mood. The aim of the present study was to examine the relationship between immune status and cognitive functioning in PCS, while considering whether depression symptoms also influence this association. METHODS Participants were recruited in an online study of cognitive and psychological consequences of PCS, involving individuals attending a post-COVID clinic in an acute general hospital in Ireland, and a comparison sample of age- and sex-matched community controls who had also been infected with COVID-19 but had not experienced PCS. Participants with PCS (n = 71) and community controls (n = 50) completed the immune status questionnaire, Cognitive Failures Questionnaire (CFQ), Hospital Anxiety and Depression Scale (HADS), and the Functional Assessment of Chronic Illness Therapy-Fatigue Scale (FACIT-F). RESULTS Significant differences were observed between groups in terms of perceived immune status, perceived cognitive function, depression scores, and fatigue, with the "PCS" group reporting lower immune status, more cognitive difficulties, and higher levels of depression and fatigue. Regression analysis in the PCS group indicated that immune status and depression significantly contributed to variance in subjective cognitive functioning, with immune status remaining a significant predictor of cognitive functioning scores even when accounting for depression, fatigue, and other covariates related to PCS, such as Body Mass Index (BMI). CONCLUSION Our findings suggest that subjective cognitive functioning is influenced by self-reported immune status in PCS, emphasising the importance of immune status, cognitive, and mood screening as part of routine clinical care in PCS.
Collapse
Affiliation(s)
| | - Sinead Brown
- School of PsychologyUniversityCollege DublinDublinIreland
| | - Susan O'Flanagan
- Department of PsychologySt Vincent's University HospitalDublinIreland
| | - Stefano Savinelli
- Department of Infectious DiseasesSt Vincent's University HospitalDublinIreland
| | - Kathleen McCann
- Department of Infectious DiseasesSt Vincent's University HospitalDublinIreland
| | - Keith Gaynor
- School of PsychologyUniversityCollege DublinDublinIreland
| | - Patrick Mallon
- School of PsychologyUniversityCollege DublinDublinIreland
- Department of Infectious DiseasesSt Vincent's University HospitalDublinIreland
| | - Eoin Feeney
- School of PsychologyUniversityCollege DublinDublinIreland
- Department of Infectious DiseasesSt Vincent's University HospitalDublinIreland
| | - Grace Kenny
- Department of Infectious DiseasesSt Vincent's University HospitalDublinIreland
| | - Christine Boyd
- School of PsychologyUniversityCollege DublinDublinIreland
| | - Fiadhnait O'Keeffe
- School of PsychologyUniversityCollege DublinDublinIreland
- Department of PsychologySt Vincent's University HospitalDublinIreland
| | - Jessica Bramham
- School of PsychologyUniversityCollege DublinDublinIreland
- Department of PsychologySt Vincent's University HospitalDublinIreland
| |
Collapse
|
156
|
Saleh W, Alharbi H, Yue S, Fernandes RP. Lichen planus after COVID-19 infection and vaccination. Oral Dis 2024; 30:3925-3930. [PMID: 38069546 DOI: 10.1111/odi.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/24/2023] [Accepted: 11/24/2023] [Indexed: 09/03/2024]
Abstract
BACKGROUND Lichen planus is one of the common adverse reactions after COVID-19 infection and vaccination. Despite it being reported in several case reports, the literature including a large sample of the studied population is lacking. The current study was performed to assess the risk of LP after COVID-19 infection as well as COVID-19 vaccination. METHODS The current study was designed as a retrospective cross-sectional hospital-based study of registered patients at the University of Florida (UF) health centers. The diagnoses of LP, COVID-19 infection, and COVID-19 vaccines were detected. The logistic regression model was used to assess the risk of developing LP after COVID-19 infection and vaccination. RESULTS A total hospital patient of 684,110 attended UF Health centers were included in this study. 181 patients reported LP after COVID-19 vaccination and 24 patients developed LP after COVID-19 infection. The risk of developing LP after COVID-19 vaccination was 1.573 while the risk of developing LP after COVID-19 infection was 1.143. CONCLUSION The odds of getting LP after COVID-19 vaccination are significantly developed. The current study showed that COVID-19 infection and vaccination are associated with LP. So, healthcare practitioners should be aware of this reaction for rapid recognition and treatment.
Collapse
Affiliation(s)
- Wafaa Saleh
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Hamad Alharbi
- Department of Oral and Maxillofacial Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sijia Yue
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rui P Fernandes
- Department of Oral and Maxillofacial Surgery, Division of Head and Neck Oncologic Surgery and Microvascular Reconstruction, College of Medicine, University of Florida, Jacksonville, Florida, USA
| |
Collapse
|
157
|
Capraz M, Tekcan A, Cihangiroglu M, Nursal AF, Capraz A, Menekse E, Dortok Demir H, Kuruca N, Yigit S. The effect of the MBL2 gene rs1800450 variant on COVID-19 development in Turkish patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:79-89. [PMID: 39210720 DOI: 10.1080/15257770.2024.2395872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is a recent pandemic occurring worldwide due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, spreading mainly through large respiratory droplets or maybe through other transmission routes. The human genome has the most varied immune response genes correlated with infectious diseases. Genetic variants of mannose-binding lectin 2 (MBL2), an immunomodulatory gene, were associated with the risk, severity, and frequency of viral infections. In the present study, we hypothesized that the MBL2 gene rs1800450 variant could be associated with the development of COVID-19 disease in a Turkish population. Ninety-eight COVID-19 patients and 98 healthy, ethnically matched controls were studied. We isolated genomic DNA from whole blood and analyzed the MBL2 rs1800450 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Associations were analyzed with the SPSS 20 statistical software. We found that MBL2 rs1800450 genotype distribution was significantly different between patients and controls. The patients had a higher MBL2 rs1800450 AA genotype than the controls had (4.94% in patients vs. 3.12% in controls, p = 0.006). The subjects carrying AA genotype had a 10.83-fold increased risk for COVID-19 disease (OR = 10.83, %95 CI = 1.359-86.349). We could not detect any significant difference between the COVID-19 patients and healthy controls in allele frequencies. Our findings demonstrated that the MBL2 rs1800450 BB genotype might increase the susceptibility to COVID-19 disease in the Turkish population. We suggest further studies with a larger sample size and other ethnic populations.
Collapse
Affiliation(s)
- Mustafa Capraz
- Department of Internal Medicine, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Akin Tekcan
- Department of Medical Biology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Mustafa Cihangiroglu
- Department of Infectious Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Aylin Capraz
- Department of Chest Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Elif Menekse
- Laboratory of Medical Biochemistry, Amasya University Sabuncuoglu Serefeddin Education and Research Hospital, Amasya, Turkey
| | - Hatice Dortok Demir
- Department of Medical Biochemistry, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
158
|
Liu GY, Yan MD, Mai YY, Fu FJ, Pan L, Zhu JM, Ji WJ, Hu J, Li WP, Xie W. Frontiers and hotspots in anxiety disorders: A bibliometric analysis from 2004 to 2024. Heliyon 2024; 10:e35701. [PMID: 39220967 PMCID: PMC11365340 DOI: 10.1016/j.heliyon.2024.e35701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to analyze research on anxiety disorders using VOSviewer and CiteSpace to identify research hotspots and future directions. Methods We conduct ed a comprehensive search on the Web of Science Core Collection (WoSCC) for relevant studies about anxiety disorders published within the past two decades (from 2004 to 2024). VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results A total of 22,267 publications related to anxiety disorders were retrieved. The number of publications about anxiety disorders has generally increased over time, with some fluctuations. The United States emerged as the most productive country, with Harvard University identified as the most prolific institution and Brenda W. J. H. Penninx as the most prolific author in the field. Conclusion This research identified the most influential publications, authors, journals, institutions, and countries in the field of anxiety research. Future research directions are involved advanced treatments based on pharmacotherapy, psychotherapy and digital interventions, mechanism exploration to anxiety disorders based on neurobiological and genetic basis, influence of social and environmental factors on the onset of anxiety disorders.
Collapse
Affiliation(s)
- Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Ming-De Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Yi-Yin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fan-Jia Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Lei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Jun-Ming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Wen-Juan Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China, China
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
159
|
Li X, Luo X, Wang B, Fu L, Chen X, Lu Y. Clofazimine inhibits innate immunity against Mycobacterium tuberculosis by NF-κB. mSphere 2024; 9:e0025424. [PMID: 39046230 PMCID: PMC11351037 DOI: 10.1128/msphere.00254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Tuberculosis (TB) remains one of the infectious diseases with high incidence and high mortality. About a quarter of the population has been latently infected with Mycobacterium tuberculosis. At present, the available TB treatment strategies have the disadvantages of too long treatment duration and serious adverse reactions. The sustained inflammatory response leads to permanent tissue damage. Unfortunately, the current selection of treatment regimens does not consider the immunomodulatory effects of various drugs. In this study, we preliminarily evaluated the effects of commonly used anti-tuberculosis drugs on innate immunity at the cellular level. The results showed that clofazimine (CFZ) has a significant innate immunosuppressive effect. CFZ significantly inhibited cytokines and type I interferons (IFNα and IFNβ) expression under both lipopolysaccharide stimulation and CFZ-resistant strain infection. In further mechanistic studies, CFZ strongly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65 and had no significant effect on the phosphorylation of p38. In conclusion, our study found that CFZ suppresses innate immunity against Mycobacterium tuberculosis by NF-κB, which should be considered in future regimen development. IMPORTANCE The complete elimination of Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, from TB patients is a complicated process that takes a long time. The excessive immune inflammatory response of the host for a long time causes irreversible organic damage to the lungs and liver. Current antibiotic-based treatment options involve multiple complex drug combinations, often targeting different physiological processes of Mtb. Given the high incidence of post-tuberculosis lung disease, we should also consider the immunomodulatory properties of other drugs when selecting drug combinations.
Collapse
Affiliation(s)
- Xinda Li
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyi Luo
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Wang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xi Chen
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
160
|
Binabaji S, Rahimi M, Rajabi H, Keshavarz M, Rahimi R, Ahmadi A, Gahreman D. Effects of physical training on coagulation parameters, interleukin-6, and angiotensin-converting enzyme-2 in COVID-19 survivors. Sci Rep 2024; 14:18968. [PMID: 39152162 PMCID: PMC11329640 DOI: 10.1038/s41598-024-67522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
COVID-19 is a highly contagious virus that uses Angiotensin-converting enzyme 2 (ACE2) as a receptor to enter human cells. The virus leads to an increase in inflammatory cytokines (i.e. IL-6) and an impaired coagulation system, which can cause serious complications during and after the disease. Physical exercise has been shown to improve COVID-19 complications through various mechanisms, such as modulation of the immune and coagulation systems. Therefore, this study investigated the effects of 8 weeks of training on inflammatory, coagulation, and physical factors in patients with COVID-19 during the recovery phase. Twenty-seven male and female volunteers (age 20-45 years) who recently recovered from COVID-19 were assigned to the control (n = 13) or the training group (n = 14). Blood samples, aerobic capacity and muscle endurance were collected 24 h before the start of the interventions and 24 h after the final training session in week 4 and 48 h after the final training session in week 8. IL-6, ACE2, fibrinogen, and D-dimer were measured using ELISA. The training group showed a significant increase in muscle endurance (p = 0.004) and aerobic capacity (p = 0.009) compared to the control group. Serum levels of IL-6 and fibrinogen decreased in the training group but this decrease was not statistically significant (p > 0.05). Despite a slight increase in the quality of life and sleep in the training group, no statistically significant difference was observed between the training and the control group. It appears that physical training has beneficial effects on the coagulation system, inflammatory factors, and sleep quality and can facilitate the recovery of COVID-19 patients.
Collapse
Affiliation(s)
- Soheila Binabaji
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Rahimi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran.
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rahimeh Rahimi
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Ahmadi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Daniel Gahreman
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
161
|
Komaenthammasophon C, Pachinburavan M, Chokesuwattanaskul R. Heart rate variability and mortality in critically ill COVID-19 pneumonia patients. Heliyon 2024; 10:e34842. [PMID: 39157314 PMCID: PMC11328018 DOI: 10.1016/j.heliyon.2024.e34842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Heart rate variability (HRV) has prognostic value for predicting mortality in both cardiovascular and sepsis patients. Decreased HRV has been associated with increased mortality and morbidity. However, the prognostic significance of HRV in critically ill patients COVID-19 pneumonia still remains unknown. The current study aimed to (1) evaluate prognostic utility of HRV parameters on outcomes in patients with severe COVID-19 pneumonia and (2) assess the correlation between HRV parameters and inflammatory markers. Methods Consecutive critically ill patients with COVID-19 pneumonia admitted to a tertiary referral intensive care unit from October 2021 to June 2022 in Bangkok, Thailand were enrolled. HRV parameters over the 24 h following intensive care unit admission were recorded using telemetry and analyzed using the Holter program (Philips Holter 2010 Plus/1810 Series). Receiver-operating characteristic (ROC) curve analysis was used to determine optimum threshold cutoffs of various HRV parameters. Formal comparisons of in-hospital mortality between patients with and without a decrease in HRV were performed using Cox regression after adjusting for potential confounders. Results A total of 65 patients were enrolled in the study. Patients were classified into two groups: survivors (n = 44, 68 %) and non-survivors (n = 21, 32 %). The standard deviation of normal-to-normal intervals (SDNN) was significantly lower in non-survivors than in survivors (70.30 vs. 105.95; p = 0.03). The SDNN predicted in-hospital mortality with an area under the ROC curve of 0.67 (95 % CI 0.55-0.79). At a cutoff of 70 ms, the SDNN showed a sensitivity and specificity of 0.48 and 0.86. The low SDNN group (<70 ms) demonstrated higher median ferritin, IL-6, and hs-C-reactive protein levels than did the normal SDNN group, although such differences did not reach statistical significance (1139.0 vs. 508.4; p = 0.137 and 91.2 vs. 64.4; p = 0.352, respectively). After adjusting for potential confounders in the multivariable model, the adjusted hazard ratio for in-hospital mortality in those with SDNN <70 ms was 3.70 (95 % CI 1.34-10.24). Conclusion A decrease in SDNN, a commonly used HRV parameter, was associated with mortality and inflammatory biomarkers in critically ill patients with COVID-19 pneumonia.
Collapse
Affiliation(s)
- Chalermchai Komaenthammasophon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Division of Cardiology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Monvasi Pachinburavan
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Ronpichai Chokesuwattanaskul
- Division of Cardiology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Arrhythmia Research, Cardiac Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
162
|
Dimri I, Roguin A, Hamuda N, Abu Fanne R, Barel M, Leshem E, Kobo O, Margolis G. The Trends in Atrial Fibrillation-Related Mortality before, during, and after the COVID-19 Pandemic Peak in the United States. J Clin Med 2024; 13:4813. [PMID: 39200954 PMCID: PMC11355373 DOI: 10.3390/jcm13164813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Background: During the first months of the COVID-19 outbreak, an increase was observed in atrial fibrillation (AF)-related mortality in the United States (U.S). We aimed to investigate AF-related mortality trends in the U.S. before, during, and after the COVID-19 pandemic peak, stratified by sociodemographic factors. Methods: using the Wide-Ranging Online Data for Epidemiologic Research database of the Centers for Disease Control and Prevention, we compared the AF-related age-adjusted mortality rate (AAMR) among different subgroups in the two years preceding, during, and following the pandemic peak (2018-2019, 2020-2021, 2022-2023). Result: By analyzing a total of 1,267,758 AF-related death cases, a significant increase of 24.8% was observed in AF-related mortality during the pandemic outbreak, followed by a modest significant decrease of 1.4% during the decline phase of the pandemic. The most prominent increase in AF-related mortality was observed among males, among individuals younger than 65 years, and among individuals of African American and Hispanic descent, while males, African American individuals, and multiracial individuals experienced a non-statistically significant decrease in AF-related mortality during the pandemic decline period. Conclusions: Our findings suggest that in future healthcare crises, targeted healthcare policies and interventions to identify AF, given its impact on patients' outcomes, should be developed while addressing disparities among different patient populations.
Collapse
Affiliation(s)
- Inon Dimri
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Nashed Hamuda
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Rami Abu Fanne
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Maguli Barel
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Eran Leshem
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Ofer Kobo
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Gilad Margolis
- Department of Cardiology, Hillel Yaffe Medical Centre, Hadera 3820302, Israel; (I.D.); (R.A.F.); (E.L.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
163
|
Charoensuk L, Pinlaor S, Nimala B, Suttiprapa S, Prakobwong S. Characteristics of SARS-CoV-2 and Opisthorchis viverrini coinfections: insights into immune responses and clinical outcomes. Parasitol Res 2024; 123:297. [PMID: 39120805 DOI: 10.1007/s00436-024-08317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The effects of co-infections with SARS-CoV-2 and parasitic diseases have been little investigated in terms of immune response, disease dynamics, and clinical outcomes. This study aimed to explore the impact of co-infection with Opisthorchis viverrini and SARS-CoV-2 on the immune response concerning clinical symptoms and the severity of pulmonary abnormalities. A cross-sectional study was conducted, including healthy participants as controls, participants with opisthorchiasis, SARS-CoV-2 infection, and a co-infection group with both diseases. Characteristics of SARS-CoV-2 infection were assessed based on clinical parameters and severity of pulmonary abnormalities, whereas opisthorchiasis burden was evaluated by eggs-per-gram (EPG) counts. Immune responses were assessed by measuring levels of interferon-γ (IFN-γ), SARS-CoV-2 anti-spike receptor binding domain (RBD) IgG, and neutralizing antibody against SARS-CoV-2. In the co-infected group, clinical parameters and hospitalization rates were lower than in the SARS-CoV-2 group. Pulmonary abnormalities, such as bronchial fibrosis, were commonly observed in the SARS-CoV-2 group, leading to hospitalization in some cases. Participants with opisthorchiasis had higher IFN-γ levels than healthy individuals. IFN-γ levels were significantly lower in the co-infection group compared with the SARS-CoV-2 group (P = 0.002). There was a significant (P = 0.044) positive correlation between RBD-specific IgG and percent neutralization levels in the SARS-CoV-2 group. Levels of both were somewhat lower (not statistically significant) in the co-infection group. A negative correlation was observed between opisthorchiasis burden (EPG counts) and IFN-γ and RBD-specific IgG levels in the co-infected group. Following vaccination, the increase in IgG levels against the RBD protein was significantly lower in the co-infected group than in the SARS-CoV-2 group. These results suggest that O. viverrini infection suppresses immune responses and may lead to a reduction in severity in cases of SARS-CoV-2 co-infection.
Collapse
Affiliation(s)
- Lakhanawan Charoensuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Boonpeng Nimala
- Nam-Phon Hospital of Health Promotion, Nong Wua Sor District, Udon Thani, 41360, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suksanti Prakobwong
- Department of Biology, Geoinformatics, Environment and Health Science Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand.
| |
Collapse
|
164
|
Martínez S, Albóniga OE, López-Huertas MR, Gradillas A, Barbas C. Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients Using a Multiplatform Mass Spectrometry-Based Metabolomics Approach. J Proteome Res 2024; 23:3025-3040. [PMID: 38566450 DOI: 10.1021/acs.jproteome.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.
Collapse
Affiliation(s)
- Sara Martínez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Oihane E Albóniga
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
- Asociación Centro de Investigación Cooperativa en Biociencias (CICbioGUNE), Bizkaia Science and Technology Park bld 800, 48160 Derio, Bizkaia, Spain
| | - María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
165
|
Mukkawar RV, Reddy H, Rathod N, Kumar S, Acharya S. The Long-Term Cardiovascular Impact of COVID-19: Pathophysiology, Clinical Manifestations, and Management. Cureus 2024; 16:e66554. [PMID: 39258051 PMCID: PMC11384648 DOI: 10.7759/cureus.66554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has resulted in a substantial global health crisis, with effects extending far beyond the acute phase of infection. This review aims to provide a comprehensive overview of the long-term cardiovascular impact of COVID-19, focusing on the pathophysiology, clinical manifestations, diagnostic approaches, management strategies, and future research directions. SARS-CoV-2 induces cardiovascular complications through mechanisms such as inflammation, endothelial dysfunction, and direct myocardial injury, leading to conditions like myocarditis, heart failure, arrhythmias, and thromboembolic events. These long-term effects, collectively called "long COVID" or post-acute sequelae of SARS-CoV-2 infection (PASC), present significant challenges for healthcare systems and patient management. Diagnostic approaches include imaging techniques and laboratory tests to identify and monitor cardiovascular complications. Management strategies emphasize a holistic approach, incorporating pharmacological treatments and lifestyle modifications. Special attention is required for vulnerable populations, including those with pre-existing cardiovascular conditions. Ongoing research is essential to understand the full spectrum of long-term cardiovascular impacts and to develop effective treatments. This review highlights the critical need for continued vigilance, multidisciplinary care, and research to address the cardiovascular sequelae of COVID-19 and improve long-term health outcomes for survivors.
Collapse
Affiliation(s)
- Rushi V Mukkawar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nishant Rathod
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
166
|
Simões JLB, Braga GDC, Coiado JV, Scaramussa AB, Rodrigues APB, Bagatini MD. Takotsubo syndrome as an outcome of the use of checkpoint inhibitor therapy in patients with COVID-19. Biochem Pharmacol 2024; 226:116388. [PMID: 38914315 DOI: 10.1016/j.bcp.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Takotsubo Syndrome (TS) is a heart disease caused by extreme exposure of the body to physical or psychological stress. In the context of COVID-19, the virus can be a significant source of stress, with particular attention being paid to the cytokine storm as a cause of damage to the body. New research shows that the production of specific cytokines is linked to the activation of immune checkpoint proteins such as PD-1, PD-L1, and CTLA-4 on T cells. Although initially beneficial in combating infections, it can suppress defense and aid in disease progression. Therefore, checkpoint inhibitor therapy has been highlighted beyond oncological therapies, given its effectiveness in strengthening the immune system. However, this treatment can lead to excessive immune responses, inflammation, and stress on the heart, which can cause Takotsubo Syndrome in patients. Several studies investigate the direct link between this therapy and cardiac injuries in these patients, which can trigger TS. From this perspective, we must delve deeper into this treatment and consider its effects on the prognosis against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | | | | |
Collapse
|
167
|
Zhang L, Li Y, Hu W, Gao S, Tang Y, Sun L, Jiang N, Xiao Z, Han L, Zhou W. Computational identification of mitochondrial dysfunction biomarkers in severe SARS-CoV-2 infection: Facilitating therapeutic applications of phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155784. [PMID: 38878325 DOI: 10.1016/j.phymed.2024.155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the ongoing risk of mutations and the potential for severe COVID-19. The impairment of monocyte mitochondrial function caused by SARS-CoV-2, leading to a metabolic and immune dysregulation, is a crucial factor in the development of severe COVID-19. PURPOSE Discover effective phytomedicines based on mitochondrial-related biomarkers in severe SARS-CoV-2 infection. METHODS Firstly, differential gene analysis and gene set enrichment analysis (GSEA) were conducted on monocytes datasets to identify genes and pathways distinguishing severe patients from uninfected individuals. Then, GO and KEGG enrichment analysis on the differentially expressed genes (DEGs) obtained. Take the DEGs and intersect them with the MitoCarta 3.0 gene set to obtain the differentially expressed mitochondrial-related genes (DE-MRGs). Subsequently, machine learning algorithms were employed to screen potential mitochondrial dysfunction biomarkers for severe COVID-19 based on score values. ROC curves were then plotted to assess the distinguish capability of the biomarkers, followed by validation using two additional independent datasets. Next, the effects of the identified biomarkers on metabolic pathways and immune cells were explored through Gene Set Variation Analysis (GSVA) and CIBERSORT. Finally, potential nature products for severe COVID-19 were screened from the expression profile dataset based on dysregulated mitochondrial-related genes, followed by in vitro experimental validation. RESULTS There are 1812 DEGs and 17 dysregulated mitochondrial processes between severe COVID-19 patients and uninfected individuals. A total of 77 DE-MRGs were identified, and the potential biomarkers were identified as RECQL4, PYCR1, PIF1, POLQ, and GLDC. In both the training and validation sets, the area under the ROC curve (AUC) for these five biomarkers was greater than 0.9. And they did not show significant changes in mild to moderate patients (p > 0.05), indicating their ability to effectively distinguish severe COVID-19. These biomarkers exhibit a highly significant correlation with the dysregulated metabolic processes (p < 0.05) and immune cell imbalance (p < 0.05) in severe patients, as demonstrated by GSVA and CIBERSORT algorithms. Curcumin has the highest score in the predictive model based on transcriptomic data from 496 natural compounds (p = 0.02; ES = 0.90). Pre-treatment with curcumin for 8 h has been shown to alleviate mitochondrial membrane potential damage caused by the SARS-CoV-2 S1 protein (p < 0.05) and reduce elevated levels of reactive oxygen species (ROS) (p < 0.01). CONCLUSION The results of this study indicate a significant correlation between severe SARS-CoV-2 infection and mitochondrial dysfunction. The proposed mitochondrial dysfunction biomarkers identified in this study are associated with the disease progression, metabolic and immune changes in severe SARS-CoV-2 infected patients. Curcumin has a potential role in preventing severe COVID-19 by protecting mitochondrial function. Our findings provide new strategies for predicting the prognosis and enabling early intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lihui Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yuehan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Wanting Hu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Shengqiao Gao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yiran Tang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lei Sun
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
168
|
Chen S, Zhang L, Song Y, Xie K, Wang Y, Liang Y. A Comprehensive Analysis of NRP1 in Malignancies Provide Therapeutic Implication for Treating Cancer Patients Infected with SARS-CoV-2. Biochem Genet 2024; 62:2399-2417. [PMID: 37938510 DOI: 10.1007/s10528-023-10518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
COVID-19 (Coronavirus disease 2019) is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which can lead to pneumonia, cytokine storms, and lymphopenia. Patients with cancer are more susceptible to SARS-CoV-2 infection and severe COVID-19 due to immunosuppression. Recent studies have indicated that NRP1 (Neuropilin 1) may act as a novel mediator of SARS-CoV-2 entry into the host cell. As no systematic review has been performed investigating the characteristics of NRP1 in pan-carcinoma, we comprehensively analyzed NRP1 in patients with pan-cancer. Using a bioinformatics approach, we aimed to systematically examine NRP1 expression profiles in both pan-carcinoma and healthy tissues. We found that lung and genitourinary cancers have a relatively higher NRP-1 expression than other cancer patients, suggesting that these patients may be more susceptible to SARS-CoV-2. Our analysis further revealed that NRP1 expression was downregulated in Vero E6 cells, whole blood, lung organoids, testis tissue, and alveolospheres infected with SARS-CoV-2. Notably, NRP1 was associated with immune cell infiltration, immune checkpoint genes, and immune-related genes in most patients with cancer. These findings suggest that, in patients with specific types of cancer, especially lung and genitourinary, high expression of NRP1 contributes to greater susceptibility to SARS-CoV-2 infection and an increased risk of damage due to cytokine storms. Overall, NRP1 appears to play a critical role in regulating immunological properties and metabolism in many tumor types. Specific inhibitors of the NRP1 antigen (pegaptanib, EG00229, or MNRP1685A) combined with other anti-SARS-CoV-2 strategies may aid in treating patients with lung and genitourinary cancers following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuzhao Chen
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Limei Zhang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yiling Song
- Department of Clinical Laboratory, SunYat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kunying Xie
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
169
|
Méndez Rodríguez ML, Ponciano-Gómez A, Campos-Aguilar M, Tapia-Sánchez WD, Duarte-Martínez CL, Romero-Herrera JS, Olivas-Quintero S, Saucedo-Campos AD, Méndez-Cruz AR, Jimenez-Flores R, Ortiz-Navarrete V, Romero-Ramírez H, Santos-Argumedo L, Rosales-García VH. Neutrophil-to-Lymphocyte Ratio and Cytokine Profiling as Predictors of Disease Severity and Survival in Unvaccinated COVID-19 Patients. Vaccines (Basel) 2024; 12:861. [PMID: 39203987 PMCID: PMC11360520 DOI: 10.3390/vaccines12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, identifying reliable biomarkers for predicting disease severity and patient outcomes in unvaccinated individuals is essential. This study evaluates the efficacy of key hematological markers, including leukocyte and neutrophil counts, Neutrophil-to-Lymphocyte Ratio (NLR), and cytokine profiles (IL-6, INF-γ, TNF-α, IL-17A, CCL2, and CXCL10) for predicting the necessity for mechanical ventilation and assessing survival probabilities. METHODS We conducted an in-depth analysis on a cohort of COVID-19 patients, emphasizing the relationship between NLR, cytokine profiles, and clinical outcomes, utilizing routine leukocyte counting and cytokine quantification by flow cytometry. RESULTS Elevated leukocyte and neutrophil counts, increased NLR, and significant cytokine elevations such as IL-6 and IL-10 were strongly associated with the need for mechanical ventilation, reflecting a pronounced systemic inflammatory response indicative of severe disease outcomes. CONCLUSION Integrating hematological markers, particularly NLR and cytokine profiles, is crucial in predicting mechanical ventilation needs and survival in non-vaccinated COVID-19 patients. Our findings provide critical insights into the pathophysiology of COVID-19, supporting the development of more targeted clinical interventions and potentially informing future strategies for managing infectious disease outbreaks.
Collapse
Affiliation(s)
- Miguel Leonardo Méndez Rodríguez
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Wilfrido David Tapia-Sánchez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Carlos Leonardo Duarte-Martínez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Jesús Salvador Romero-Herrera
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Sandra Olivas-Quintero
- Departamento de Ciencias de la Salud Culiacán, Universidad Autónoma de Occidente, Culiacan 80020, Sinaloa, Mexico;
| | - Alberto Daniel Saucedo-Campos
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Adolfo Rene Méndez-Cruz
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Rafael Jimenez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
| | - Hector Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Victor Hugo Rosales-García
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 14330, Mexico
| |
Collapse
|
170
|
Zhuang Z, Chen Y, Liu Z, Fu Y, Wang F, Bai L. Pharmacological validation of a novel exopolysaccharide from Streptomyces sp. 139 to effectively inhibit cytokine storms. Heliyon 2024; 10:e34392. [PMID: 39816356 PMCID: PMC11734065 DOI: 10.1016/j.heliyon.2024.e34392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys. This infiltration leads to secondary tissue damage, acute respiratory distress syndrome (ARDS), organismal damage, and even death. However, there is currently no designated treatment for cytokine storm and the resulting ARDS. Consequently, there is a pressing need to identify a pharmaceutical agent that can effectively mitigate cytokine storms. Ebosin is a new exopolysaccharide generated by Streptomyces sp.139 and pharmacological activity for cytokine storm is investigated in vivo. The results show that Ebosin significantly augments the survival rates of mice, and its effectiveness increases with higher doses. It significantly inhibited the expression of cytokines IL-5, IL-6, IL-9 and chemokine Eotaxin in serum and lung tissues. Ebosin can alleviate the pathological damage in the lungs, liver, and spleen caused by LPS. Additionally, it can inhibit the phosphorylation of IKKα/β, Stat3 and NF-κB p65 upon LPS stimulation in vitro. We hypothesized that Ebosin may decrease cytokine release by inhibiting the phosphorylation of IKKα/β, Stat3, and NF-κB p65, neutrophil infiltration in animals. The article preliminarily elucidated the activity and mechanism of Ebosin against cytokine storm, which provides a reference for the study of anti-cytokine storm activity of microbial natural products.
Collapse
Affiliation(s)
- Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Zhe Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Wang
- The Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
171
|
Quagliariello V, Canale ML, Bisceglia I, Maurea C, Gabrielli D, Tarantini L, Paccone A, Inno A, Oliva S, Cadeddu Dessalvi C, Zito C, Caraglia M, Berretta M, D’Aiuto G, Maurea N. Addressing Post-Acute COVID-19 Syndrome in Cancer Patients, from Visceral Obesity and Myosteatosis to Systemic Inflammation: Implications in Cardio-Onco-Metabolism. Biomedicines 2024; 12:1650. [PMID: 39200115 PMCID: PMC11351439 DOI: 10.3390/biomedicines12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology described several shared risk factors that predispose patients to both cardiovascular disease and cancer. Post-acute COVID-19 syndrome is a chronic condition that occurs in many patients who have experienced a SARS-CoV-2 infection, mainly based on chronic fatigue, sedentary lifestyle, cramps, breathing difficulties, and reduced lung performance. Post-acute COVID-19 exposes patients to increased visceral adiposity, insulin resistance, myosteatosis, and white adipose tissue content (surrounded by M1 macrophages and characterized by a Th1/Th17 phenotype), which increases the risk of cardiovascular mortality and cancer recurrence. In this review, the main metabolic affections of post-acute COVID-19 syndrome in cancer patients at low and high risk of cardiomyopathies will be summarized. Furthermore, several non-pharmacological strategies aimed at reducing atherosclerotic and cardiac risk will be provided, especially through anti-inflammatory nutrition with a low insulin and glycemic index, appropriate physical activity, and immune-modulating bioactivities able to reduce visceral obesity and myosteatosis, improving insulin-related signaling and myocardial metabolism.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carlo Maurea
- Neurology Department, University of Salerno, 84084 Fisciano, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Luigi Tarantini
- Divisione di Cardiologia, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio-Emilia, 42122 Reggio Emilia, Italy;
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Concetta Zito
- Cardiology Division, University Hospital Polyclinic G. Martino, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| |
Collapse
|
172
|
Hawryłkowicz V, Stasiewicz B, Maciejewska D, Sołek-Pastuszka J, Komorniak N, Skonieczna-Żydecka K, Martynova-Van Kley A, Stachowska E. The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status. Int J Mol Sci 2024; 25:7899. [PMID: 39063142 PMCID: PMC11276903 DOI: 10.3390/ijms25147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | | | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| |
Collapse
|
173
|
Zong L, Zheng Y, Yu X, Dai X, Huang R, Yan G, Xu Y, Zheng M. ICOS-ICOSL pathway enhances NKT-like cell antiviral function in pregnant women with COVID-19. Int J Med Sci 2024; 21:1890-1902. [PMID: 39113896 PMCID: PMC11302565 DOI: 10.7150/ijms.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Objective: The immune response initiated by SARS-CoV-2 infection in pregnancy is poorly elucidated. We aimed to access and compare the antiviral cellular responses and lymphocytes activation between healthy pregnancies and pregnant women infected with SARS-CoV-2. Methods: We detected the immunological changes of lymphocytes in peripheral blood of healthy non-pregnant women, non-pregnant women with COVID-19, healthy pregnant women, pregnant women with COVID-19 and convalescent group by flow cytometry. In vitro blockade was used to identify NKT-like cell activation through ICOS-ICOSL pathway. Results: We found that CD3+CD56+ NKT-like cells decreased significantly in COVID-19 positive pregnant women compared to healthy pregnant women. NKT-like cells of pregnant women expressed higher level of activating receptors CD69 and NKp46 after SARS-CoV-2 infection. Particularly, they also increased the expression of the co-stimulatory molecule ICOS. NKT-like cells of pregnant women with COVID-19 up-regulated the expression of IFN-γ, CD107a and Ki67. Meanwhile, we found that ICOSL expression was significantly increased on pDCs in pregnant women with COVID-19. Blocking ICOS in vitro significantly decreased the antiviral activity of NKT-like cells in COVID-19 positive pregnant women, suggesting that ICOS-ICOSL may play an important role in the virus clearance by NKT-like cells. Conclusions: During SARS-CoV-2 infection, NKT-like cells of pregnant women activated through ICOS-ICOSL pathway and played an important role in the antiviral response.
Collapse
Affiliation(s)
- Lu Zong
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanling Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaojing Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaoran Dai
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Guoxiu Yan
- Department of Clinical Laboratory, Anhui Provincial Maternity and Child Health Hospital, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
174
|
Liu D, Li H, Li X, Rodriguez GD, Pietz H, Fiel RH, Konadu E, Singh V, Loo F, Rodgers WH. Comparative Analysis of Viral Load and Cytokines during SARS-CoV-2 Infection between Pregnant and Non-Pregnant Women. Int J Mol Sci 2024; 25:7731. [PMID: 39062978 PMCID: PMC11277191 DOI: 10.3390/ijms25147731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
To better understand the vulnerabilities of pregnant women during the COVID-19 pandemic, we conducted a comprehensive, retrospective cohort study to assess differences in immune responses to SARS-CoV-2 infection between pregnant and non-pregnant women. Nasopharyngeal swabs and serum specimens from 90 pregnant and 278 age-matched non-pregnant women were collected from 15 March 2020 to 23 July 2021 at NewYork-Presbyterian Queens Hospital in New York City. Multiplex reverse transcription polymerase chain reaction, neutralizing antibody, and cytokine array assays were used to assess the incidence, viral load, antibody titers and profiles, and examine cytokine expression patterns. Our results show a lower incidence of SARS-CoV-2 infection in pregnant women compared with non-pregnant women. Pregnant women infected with SARS-CoV-2 exhibited a substantially lower viral load. In addition, the levels of both anti-spike protein receptor-binding domain IgG neutralizing antibodies and anti-N Protein IgG were elevated in pregnant women. Finally, cytokine profiling revealed differential expression of leptin across cohorts. These findings suggest that pregnancy is associated with distinct immune and virological responses to SARS-CoV-2 infection, characterized by lower infection rates, substantially lower viral loads, and enhanced antibody production. Differential cytokine expression indicates unique immune modulation in pregnant women.
Collapse
Affiliation(s)
- Dakai Liu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - Hui Li
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - Xiaofeng Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China
| | - George D. Rodriguez
- NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - Harlan Pietz
- NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | | | - Eric Konadu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - Vishnu Singh
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - Florence Loo
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
| | - William Harry Rodgers
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA
- Department of Pathology and Laboratory Medicine, Weil Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
175
|
Corrao S, Raspanti M, Agugliaro F, Gervasi F, Di Bernardo F, Natoli G, Argano C. Safety of High-Dose Vitamin C in Non-Intensive Care Hospitalized Patients with COVID-19: An Open-Label Clinical Study. J Clin Med 2024; 13:3987. [PMID: 38999551 PMCID: PMC11242388 DOI: 10.3390/jcm13133987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Vitamin C has been used as an antioxidant and has been proven effective in boosting immunity in different diseases, including coronavirus disease (COVID-19). An increasing awareness was directed to the role of intravenous vitamin C in COVID-19. Methods: In this study, we aimed to assess the safety of high-dose intravenous vitamin C added to the conventional regimens for patients with different stages of COVID-19. An open-label clinical trial was conducted on patients with COVID-19. One hundred four patients underwent high-dose intravenous administration of vitamin C (in addition to conventional therapy), precisely 10 g in 250 cc of saline solution in slow infusion (60 drops/min) for three consecutive days. At the same time, 42 patients took the standard-of-care therapy. Results: This study showed the safety of high-dose intravenous administration of vitamin C. No adverse reactions were found. When we evaluated the renal function indices and estimated the glomerular filtration rate (eGRF, calculated with the CKD-EPI Creatinine Equation) as the main side effect and contraindication related to chronic renal failure, no statistically significant differences between the two groups were found. High-dose vitamin C treatment was not associated with a statistically significant reduction in mortality and admission to the intensive care unit, even if the result was bound to the statistical significance. On the contrary, age was independently associated with admission to the intensive care unit and in-hospital mortality as well as noninvasive ventilation (N.I.V.) and continuous positive airway pressure (CPAP) (OR 2.17, 95% CI 1.41-3.35; OR 7.50, 95% CI 1.97-28.54; OR 8.84, 95% CI 2.62-29.88, respectively). When considering the length of hospital stay, treatment with high-dose vitamin C predicts shorter hospitalization (OR -4.95 CI -0.21--9.69). Conclusions: Our findings showed that an intravenous high dose of vitamin C is configured as a safe and promising therapy for patients with moderate to severe COVID-19.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Massimo Raspanti
- Cardiology and Intensive Care Unit, A. Aiello Hospital, 91026 Mazzara del Vallo, Italy;
| | - Federica Agugliaro
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Francesco Gervasi
- Specialized Laboratory of Oncology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Francesca Di Bernardo
- Department of Microbiology and Virology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Giuseppe Natoli
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| |
Collapse
|
176
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
177
|
Singh M, Verma H, Gera N, Baddipadige R, Choudhary S, Bhandu P, Silakari O. Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: a bioinformatics and structure-based drug designing approach. J Biomol Struct Dyn 2024; 42:5159-5177. [PMID: 37551029 DOI: 10.1080/07391102.2023.2245039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/08/2023] [Indexed: 08/09/2023]
Abstract
Since the SARS-CoV-2 epidemic, researchers have been working on figuring out ways to tackle multi-organ failure and hyperinflation, which are brought on by a cytokine storm. Angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike glycoprotein's cellular receptor, is involved in complicated molecular processes that result in hyperinflammation. Cordyceps militaris is one of the traditional Chinese medicines that is used as an immune booster, and it has exhibited efficacy in lowering blood glucose levels, seminal emissions, and infertility. In the current study, we explored the potential of Cordyceps militaris steroids as key agents in managing the anger of cytokine storm in Covid-19 using network ethnopharmacological techniques and structure-based drug designing approaches. The steroids present in Cordyceps militaris were initially screened against the targets involved in inflammatory pathways. The results revealed that out of 16 steroids, 5 may be effective against 17 inflammatory pathways by targeting 11 pathological proteins. Among the five steroids, beta-sitosterol, Cholest-5-en-3β-ol, 3β, and 7α-Dihydroxycholest-5-ene were found to interact with thrombin (F2), an important protein reported to reduce the severity of inflammatory mediators and Cholest-4-en-3-one was found to target Glucocorticoid receptor (NR3C1). The top docked steroid displayed key interactions with both targets, which retained key interactions throughout the 100 ns simulation period. These compounds were also shown high binding free energy scores in water swap studies. Based on obtained results the current study suggests the use of Cordyceps militaris as an add-on therapy that may reduce the progression of inflammatory co-morbidities among patients infected with SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manmeet Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Narendra Gera
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Raju Baddipadige
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Priyanka Bhandu
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
178
|
Qu Y, Chu B, Li J, Deng H, Niu T, Qian Z. Macrophage-Biomimetic Nanoplatform-Based Therapy for Inflammation-Associated Diseases. SMALL METHODS 2024; 8:e2301178. [PMID: 38037521 DOI: 10.1002/smtd.202301178] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Inflammation-associated diseases are very common clinically with a high incidence; however, there is still a lack of effective treatments. Cell-biomimetic nanoplatforms have led to many breakthroughs in the field of biomedicine, significantly improving the efficiency of drug delivery and its therapeutic implications especially for inflammation-associated diseases. Macrophages are an important component of immune cells and play a critical role in the occurrence and progression of inflammation-associated diseases while simultaneously maintaining homeostasis and modulating immune responses. Therefore, macrophage-biomimetic nanoplatforms not only inherit the functions of macrophages including the inflammation tropism effect for targeted delivery of drugs and the neutralization effect of pro-inflammatory cytokines and toxins via membrane surface receptors or proteins, but also maintain the functions of the inner nanoparticles. Macrophage-biomimetic nanoplatforms are shown to have remarkable therapeutic efficacy and excellent application potential in inflammation-associated diseases. In this review, inflammation-associated diseases, the physiological functions of macrophages, and the classification and construction of macrophage-biomimetic nanoplatforms are first introduced. Next, the latest applications of different macrophage-biomimetic nanoplatforms for the treatment of inflammation-associated diseases are summarized. Finally, challenges and opportunities for future biomedical applications are discussed. It is hoped that the review will provide new ideas for the further development of macrophage-biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
179
|
de Antonellis P, Ferrucci V, Miceli M, Bibbo F, Asadzadeh F, Gorini F, Mattivi A, Boccia A, Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Fusco G, Viscardi M, Brandi S, Cerino P, Monaco V, Choi DR, Cheong JH, Iolascon A, Amente S, Monti M, Fava LL, Capasso M, Kim HY, Zollo M. Targeting ATP2B1 impairs PI3K/Akt/FOXO signaling and reduces SARS-COV-2 infection and replication. EMBO Rep 2024; 25:2974-3007. [PMID: 38816514 PMCID: PMC11239940 DOI: 10.1038/s44319-024-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.
Collapse
Affiliation(s)
- Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
| | - Francesca Bibbo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- European School of Molecular Medicine, SEMM, Naples, Italy
| | - Francesca Gorini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | | | - Roberta Russo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Immacolata Andolfo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | | | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Dong-Rac Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Stefano Amente
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Hong-Yeoul Kim
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy.
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- European School of Molecular Medicine, SEMM, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'Federico II' University of Naples, 80131, Naples, Italy.
| |
Collapse
|
180
|
Azekawa S, Maetani T, Chubachi S, Asakura T, Tanabe N, Shiraishi Y, Namkoong H, Tanaka H, Shimada T, Fukushima T, Otake S, Nakagawara K, Watase M, Terai H, Sasaki M, Ueda S, Kato Y, Harada N, Suzuki S, Yoshida S, Tateno H, Yamada Y, Jinzaki M, Hirai T, Okada Y, Koike R, Ishii M, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. CT-derived vertebral bone mineral density is a useful biomarker to predict COVID-19 outcome. Bone 2024; 184:117095. [PMID: 38599262 DOI: 10.1016/j.bone.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The low vertebral bone computed tomography (CT) Hounsfield unit values measured on CT scans reflect low bone mineral density (BMD) and are known as diagnostic indicators for osteoporosis. The potential prognostic significance of low BMD defined by vertebral bone CT values for the coronavirus disease 2019 (COVID-19) remains unclear. This study aimed to assess the impact of BMD on the clinical outcome in Japanese patients with COVID-19 and evaluate the association between BMD and critical outcomes, such as high-flow nasal cannula, non-invasive and invasive positive pressure ventilation, extracorporeal membrane oxygenation, or death. We examined the effects of COVID-19 severity on the change of BMD over time. This multicenter retrospective cohort study enrolled 1132 inpatients with COVID-19 from the Japan COVID-19 Task Force database between February 2020 and September 2022. The bone CT values of the 4th, 7th, and 10th thoracic vertebrae were measured from chest CT images. The average of these values was defined as BMD. Furthermore, a comparative analysis was conducted between the BMD on admission and its value 3 months later. The low BMD group had a higher proportion of critical outcomes than did the high BMD group. In a subanalysis stratifying patients by epidemic wave according to onset time, critical outcomes were higher in the low BMD group in the 1st-4th waves. Multivariable logistic analysis of previously reported factors associated with COVID-19 severity revealed that low BMD, chronic kidney disease, and diabetes were independently associated with critical outcomes. At 3 months post-infection, patients with oxygen demand during hospitalization showed markedly decreased BMD than did those on admission. Low BMD in patients with COVID-19 may help predict severe disease after the disease onset. BMD may decrease over time in patients with severe COVID-19, and the impact on sequelae symptoms should be investigated in the future.
Collapse
Affiliation(s)
- Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan.
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan; Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Takashi Shimada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Mamoru Sasaki
- Internal Medicine, JCHO (Japan Community Health Care Organization) Saitama Medical Center, Saitama, Japan
| | - Soichiro Ueda
- Internal Medicine, JCHO (Japan Community Health Care Organization) Saitama Medical Center, Saitama, Japan
| | - Yukari Kato
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shuichi Yoshida
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ryuji Koike
- Health Science Research and Development Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
181
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
182
|
Di Spigna G, Covelli B, Vargas M, Di Caprio R, Rubino V, Iacovazzo C, Napolitano F, Servillo G, Postiglione L. The Behaviour of IL-6 and Its Soluble Receptor Complex during Different Waves of the COVID-19 Pandemic. Life (Basel) 2024; 14:814. [PMID: 39063569 PMCID: PMC11278279 DOI: 10.3390/life14070814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In late December 2019, SARS-CoV-2 was identified as the cause of a new pneumonia (COVID-19), leading to a global pandemic declared by the WHO on 11 March 2020, with significant human, economic, and social costs. Although most COVID-19 cases are asymptomatic or mild, 14% progress to severe disease, and 5% develop critical illness with complications such as interstitial pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ dysfunction syndrome (MODS). SARS-CoV-2 primarily targets the respiratory system but can affect multiple organs due to the widespread presence of angiotensin-converting enzyme 2 (ACE2) receptors, which the virus uses to enter cells. This broad distribution of ACE2 receptors means that SARS-CoV-2 infection can lead to cardiovascular, gastrointestinal, renal, hepatic, central nervous system, and ocular damage. The virus triggers the innate and adaptive immune systems, resulting in a massive cytokine release, known as a "cytokine storm", which is linked to tissue damage and poor outcomes in severe lung disease. Interleukin-6 (IL-6) is particularly important in this cytokine release, with elevated levels serving as a marker of severe COVID-19. IL-6 is a multifunctional cytokine with both anti-inflammatory and pro-inflammatory properties, acting through two main pathways: classical signalling and trans-signalling. Classical signalling involves IL-6 binding to its membrane-bound receptor IL-6R and then to the gp130 protein, while trans-signalling occurs when IL-6 binds to the soluble form of IL-6R (sIL-6R) and then to membrane-bound gp130 on cells that do not express IL-6R. The soluble form of gp130 (sgp130) can inhibit IL-6 trans-signalling by binding to sIL-6R, thereby preventing it from interacting with membrane-bound gp130. Given the central role of IL-6 in COVID-19 inflammation and its association with severe disease, we aimed to analyse the behaviour of IL-6 and its soluble receptor complex during different waves of the pandemic. This analysis could help determine whether IL-6 levels can serve as prognostic markers of disease severity.
Collapse
Affiliation(s)
- Gaetano Di Spigna
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| | - Bianca Covelli
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| | - Maria Vargas
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Roberta Di Caprio
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| | - Giuseppe Servillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.); (G.S.)
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (B.C.); (R.D.C.); (V.R.); (F.N.)
| |
Collapse
|
183
|
Liu JW, Li YY, Wang MK, Yang JS. Combined prevention and treatment measures are essential to control nosocomial infections during the COVID-19 pandemic. World J Virol 2024; 13:91286. [PMID: 38984081 PMCID: PMC11229840 DOI: 10.5501/wjv.v13.i2.91286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 06/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 is a highly contagious positive-sense, single-stranded RNA virus that has rapidly spread worldwide. As of December 17, 2023, 772838745 confirmed cases including 6988679 deaths have been reported globally. This virus primarily spreads through droplets, airborne transmission, and direct contact. Hospitals harbor a substantial number of confirmed coronavirus disease 2019 (COVID-19) patients and asymptomatic carriers, accompanied by high population density and a larger susceptible population. These factors serve as potential triggers for nosocomial infections, posing a threat during the COVID-19 pandemic. Nosocomial infections occur to varying degrees across different countries worldwide, emphasizing the urgent need for a practical approach to prevent and control the intra-hospital spread of COVID-19. This study primarily concentrated on a novel strategy combining preventive measures with treatment for combating COVID-19 nosocomial infections. It suggests preventive methods, such as vaccination, disinfection, and training of heathcare personnel to curb viral infections. Additionally, it explored therapeutic strategies targeting cellular inflammatory factors and certain new medications for COVID-19 patients. These methods hold promise in rapidly and effectively preventing and controlling nosocomial infections during the COVID-19 pandemic and provide a reliable reference for adopting preventive measures in the future pandemic.
Collapse
Affiliation(s)
- Jing-Wen Liu
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
- School of Pharmacy, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yue-Yue Li
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
- School of Pharmacy, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
184
|
Attur M, Petrilli C, Adhikari S, Iturrate E, Li X, Tuminello S, Hu N, Chakravarti A, Beck D, Abramson SB. Interleukin-1 Receptor Antagonist Gene (IL1RN) Variants Modulate the Cytokine Release Syndrome and Mortality of COVID-19. J Infect Dis 2024; 229:1740-1749. [PMID: 38871359 PMCID: PMC11175666 DOI: 10.1093/infdis/jiae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND We examined effects of single-nucleotide variants (SNVs) of IL1RN, the gene encoding the anti-inflammatory interleukin 1 receptor antagonist (IL-1Ra), on the cytokine release syndrome (CRS) and mortality in patients with acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS IL1RN CTA haplotypes formed from 3 SNVs (rs419598, rs315952, rs9005) and the individual SNVs were assessed for association with laboratory markers of inflammation and mortality. We studied 2589 patients hospitalized with SARS-CoV-2 between March 2020 and March 2021. RESULTS Mortality was 15.3% and lower in women than men (13.1% vs 17.3%, P = .0003). Carriers of the CTA-1/2 IL1RN haplotypes exhibited decreased inflammatory markers and increased plasma IL-1Ra. Evaluation of the individual SNVs of the IL1RN, carriers of the rs419598 C/C SNV exhibited significantly reduced inflammatory biomarker levels and numerically lower mortality compared to the C/T-T/T genotype (10.0% vs 17.8%, P = .052) in men, with the most pronounced association observed in male patients ≤74 years old, whose mortality was reduced by 80% (3.1% vs 14.0%, P = .030). CONCLUSIONS The IL1RN haplotype CTA and C/C variant of rs419598 are associated with attenuation of the CRS and decreased mortality in men with acute SARS-CoV-2 infection. The data suggest that the IL1RN pathway modulates the severity of coronavirus disease 2019 (COVID-19) via endogenous anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mukundan Attur
- Division of Rheumatology, Department of Medicine, New York University Langone Orthopedic Hospital, New York University Langone Health, New York, New York, USA
| | - Christopher Petrilli
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA
| | - Samrachana Adhikari
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Eduardo Iturrate
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA
| | - Xiyue Li
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Stephanie Tuminello
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Nan Hu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| | - Aravinda Chakravarti
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| | - David Beck
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| | - Steven B Abramson
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA
| |
Collapse
|
185
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
186
|
Szachowicz PJ, Wohlford-Lenane C, Heinen CJ, Ghimire S, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. A predominately pulmonary activation of complement in a mouse model of severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596892. [PMID: 38895461 PMCID: PMC11185570 DOI: 10.1101/2024.05.31.596892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Evidence from in vitro studies and observational human disease data suggest the complement system plays a significant role in SARS-CoV-2 pathogenesis, although how complement dysregulation develops in patients with severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of severe COVID-19, we identify significant serologic and pulmonary complement activation following infection. We observed C3 activation in airway and alveolar epithelia, and in pulmonary vascular endothelia. Our evidence suggests that while the alternative pathway is the primary route of complement activation, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia in response to cytokine exposure. This locally generated complement response appears to precede and subsequently drive lung injury and inflammation. Results from this mouse model recapitulate findings in humans, which suggest sex-specific variance in complement activation, with predilection for increased C3 activity in males, a finding that may correlate with more severe disease. Our findings indicate that complement activation is a defining feature of severe COVID-19 in mice and lay the foundation for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | | | - Cobey J. Heinen
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | | | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
187
|
Hussein M, Gallais F, Dégot T, Hirschi S, Leroux J, Riou M, Stauder J, Falcoz PE, Olland A, Kessler R, Renaud-Picard B. Impact of the COVID-19 pandemic on lung transplant patients and on a cohort of patients with rare lung disease: A single-center study. Respir Med Res 2024; 85:101100. [PMID: 38657294 DOI: 10.1016/j.resmer.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Due to the COVID-19 pandemic, France underwent several lockdown periods during 2020. Our aim was to evaluate its clinical and social impact on lung transplant (LT) patients treated at Strasbourg University Hospital, by comparing three periods: first lockdown (T1: March-May 2020), end of the first lockdown (T2: May-October 2020), and second lockdown (T3: November-December 2020) and the incidence of COVID-19 infections. A cohort of patients with rare lung disease (RLD) was also studied during T2. METHODS We used clinical and paraclinical data collected during routine follow-up. A questionnaire was submitted to each patient at each period to assess their lifestyle, adherence to protective measures against COVID-19, contacts with their family and friends, and contagion risk. The incidence of new COVID-19 cases was also assessed. RESULTS Overall, 283 LT and 57 RLD patients were included. We observed only eight COVID-19 cases over the three periods (n = 4 during T1, n = 0 during T2, and n = 4 during T3) in LT patients, with 37.5 % of patients hospitalized, no ICU transfers, and 100 % favorable outcomes. No case of COVID-19 was diagnosed in the RLD cohort. When comparing the three periods in the LT group, fewer patients limited their out-of-home activities during T2 (p < 0.0001). The frequency of these activities increased after the first lockdown, for the purchase of basic necessities (p < 0.0001), and professional activity continued (p = 0.008). We observed a significant increase in unscheduled medical consultations and in the prescription of anti-infective treatments during the end of the lockdown (p = 0.0002 and p = 0.005, respectively). Adherence to lockdown and to protective measures was high in both groups of patients. CONCLUSION COVID-19 incidence remained low in both groups and there were significant lifestyle evolutions in LT patients and in those with RLD between first and second lockdown.
Collapse
Affiliation(s)
- Moustapha Hussein
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Floriane Gallais
- Laboratory of Virology, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Tristan Dégot
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Sandrine Hirschi
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Justine Leroux
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Marianne Riou
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Julien Stauder
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Pierre-Emmanuel Falcoz
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Anne Olland
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Romain Kessler
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France; INSERM UMR 1260 - Regenerative nanomedicine, Université de Strasbourg, Strasbourg, France
| | - Benjamin Renaud-Picard
- Strasbourg Lung Transplant Program, Hôpitaux universitaires de Strasbourg, Strasbourg, France; INSERM UMR 1260 - Regenerative nanomedicine, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
188
|
Gadelha LR, Costa MJB, Abreu JPAD, Venancio LPR, Fabres-Klein MH, Klein RC, Lima JB, Araújo-Santos T. Prostaglandin E 2/Leukotriene B 4 balance and viral load in distinct clinical stages of COVID-19: A cross-sectional study. Prostaglandins Other Lipid Mediat 2024; 172:106820. [PMID: 38346573 DOI: 10.1016/j.prostaglandins.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are eicosanoids involved in modulation of the antiviral immune response. Recent studies have identified increased levels of several eicosanoids in the plasma and bronchoalveolar lavage of patients with coronavirus disease (COVID-19). This study investigated correlations between plasma levels of PGE2 and LTB4 and clinical severity of COVID-19. METHODS This cross-sectional study involved non-infected (n = 10) individuals and COVID-19 patients classified as cured (n = 13), oligosymptomatic (n = 29), severe (n = 15) or deceased (n = 11). Levels of D-dimer a, known COVID-19 severity marker, PGE2 and LTB4 were measured by ELISAs and data were analysed with respect to viral load. RESULTS PGE2 plasma levels were decreased in COVID-19 patients compared to the non-infected group. Changes in PGE2 and LTB4 levels did not correlate with any particular clinical presentations of COVID-19. However, LTB4 was related to decreased SARS-CoV-2 burden in patients, suggesting that only LTB4 is associated with control of viral load. CONCLUSIONS Our data indicate that PGE2/LTB4 plasma levels are not associated with COVID-19 clinical severity. Hospitalized patients with COVID-19 are treated with corticosteroids, which may influence the observed eicosanoid imbalance. Additional analyses are required to fully understand the participation of PGE2 receptors in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Larisse Ricardo Gadelha
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Maria Juliana Bezerra Costa
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - João Paulo Alecrim de Abreu
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Larissa Paola Rodrigues Venancio
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Mary Hellen Fabres-Klein
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Raphael Contelli Klein
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil.
| |
Collapse
|
189
|
Lim SH, Choi SH, Ji YS, Kim SH, Kim CK, Yun J, Park SK. Comparison of antibody response to coronavirus disease 2019 vaccination between patients with solid or hematologic cancer patients undergoing chemotherapy. Asia Pac J Clin Oncol 2024; 20:346-353. [PMID: 37026374 DOI: 10.1111/ajco.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
AIM This study examined the serum antibody response of coronavirus disease 2019 (COVID-19) vaccines in solid and hematologic cancer patients undergoing chemotherapy. Levels of various inflammatory cytokines/chemokines after full vaccination were analyzed. METHODS Forty-eight patients with solid cancer and 37 with hematologic malignancy who got fully vaccinated either with severe acute respiratory syndrome coronavirus 2 messenger RNA (mRNA) or vector vaccines or their combination were included. After consecutively collecting blood, immunogenicity was assessed by surrogate virus neutralization test (sVNT), and cytokine/chemokines were evaluated by Meso Scale Discovery assay. RESULTS Seropositivity and protective immune response were lower in patients with hematologic cancer compared to those with solid cancers, regardless of vaccine type. Significantly lower sVNT inhibition was observed in patients with hematologic cancer (mean [SD] 45.30 [40.27] %) than in those with solid cancer (mean [SD] 61.78 [34.79] %) (p = 0.047). Heterologous vector/mRNA vaccination was independently and most markedly associated with a higher sVNT inhibition score (p < 0.05), followed by homologous mRNA vaccination. The mean serum levels of tumor necrosis factor α, macrophage inflammatory protein (MIP)-1α, and MIP-1β were significantly higher in patients with hematologic cancers compared to those with solid cancers after the full vaccination. In 36 patients who received an additional booster shot, 29 demonstrated increased antibody titer in terms of mean sVNT (%) (40.80 and 75.21, respectively, before and after the additional dose, p < 0.001). CONCLUSION Hematologic cancer patients receiving chemotherapy tended to respond poorly to both COVID-19 mRNA and vector vaccines and had a significantly lower antibody titer compared to those with solid cancers.
Collapse
Affiliation(s)
- Sung Hee Lim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Hyeok Choi
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Young Sok Ji
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Se Hyung Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Chan Kyu Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jina Yun
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Kyu Park
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
190
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
191
|
Jiang WP, Deng JS, Yu CC, Lin JG, Huang GJ. Anti-SARS-CoV-2 Viral Activity of Sweet Potato Trypsin Inhibitor via Downregulation of TMPRSS2 Activity and ACE2 Expression In Vitro and In Vivo. Int J Mol Sci 2024; 25:6067. [PMID: 38892254 PMCID: PMC11172529 DOI: 10.3390/ijms25116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Chia-Chen Yu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
192
|
Shen J, Li J, Lei Y, Chen Z, Wu L, Lin C. Frontiers and hotspots evolution in cytokine storm: A bibliometric analysis from 2004 to 2022. Heliyon 2024; 10:e30955. [PMID: 38774317 PMCID: PMC11107250 DOI: 10.1016/j.heliyon.2024.e30955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Background As a fatal disease, cytokine storm has garnered research attention in recent years. Nonetheless, as the body of related studies expands, a thorough and impartial evaluation of the current status of research on cytokine storms remains absent. Consequently, this study aimed to thoroughly explore the research landscape and evolution of cytokine storm utilizing bibliometric and knowledge graph approaches. Methods Research articles and reviews centered on cytokine storms were retrieved from the Web of Science Core Collection database. For bibliometric analysis, tools such as Excel 365, CiteSpace, VOSviewer, and the Bibliometrix R package were utilized. Results This bibliometric analysis encompassed 6647 articles published between 2004 and 2022. The quantity of pertinent articles and citation frequency exhibited a yearly upward trend, with a sharp increase starting in 2020. Network analysis of collaborations reveals that the United States holds a dominant position in this area, boasting the largest publication count and leading institutions. Frontiers in Immunology ranks as the leading journal for the largest publication count in this area. Stephan A. Grupp, a prominent researcher in this area, has authored the largest publication count and has the second-highest citation frequency. Research trends and keyword evaluations show that the connection between cytokine storm and COVID-19, as well as cytokine storm treatment, are hot topics in research. Furthermore, research on cytokine storm and COVID-19 sits at the forefront in this area. Conclusion This study employed bibliometric analysis to create a visual representation of cytokine storm research, revealing current trends and burgeoning topics in this area for the first time. It will provide valuable insights, helping scholars pinpoint critical research areas and potential collaborators.
Collapse
Affiliation(s)
- Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuqi Lei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhengrui Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingling Wu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunyan Lin
- Department of Teaching and Research Section of Internal Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
193
|
Xie Y, Xu Z, Zhang Y, Li Y, Du P, Wang C. First-episode psychiatric disorder risk from SARS-CoV-2 infection: A clinical analysis with Chinese psychiatric inpatients. J Biomed Res 2024; 39:50-60. [PMID: 38807424 PMCID: PMC11873594 DOI: 10.7555/jbr.38.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
The extensive spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout China in late 2022 has underscored the correlation between this virus and severe psychiatric disorders. However, there remains a lack of reported clinical and pathological features. Accordingly, we retrospectively reviewed the electronic medical records of psychiatric inpatients for seven days from early January 2023. Twenty-one inpatients who developed first-episode psychiatric disorders within two weeks after SARS-CoV-2 infection were recruited, while 24 uninfected first-episode psychiatric inpatients were selected as controls. Comparative analyses of clinical manifestations, routine laboratory tests, and imaging examinations were performed. Our investigation demonstrated a 330% increase in the incidence of first-episode psychiatric inpatients after SARS-CoV-2 infection in 2023, compared with the preceding year without SARS-CoV-2 infections. Most cases exhibited psychiatric symptoms within one week of SARS-CoV-2 infection, which resolved after approximately two weeks, with no residual symptoms after three months. One-way ANOVA demonstrated a significant difference in the highest fever temperature between inpatients with and without psychotic symptoms. Infected inpatients displayed elevated levels of interleukin-4, interleukin-8, and interferon-α, but decreased levels of eosinophils and basophils. These findings suggest that SARS-CoV-2 may contribute to the development of psychiatric disorders, likely mediated by the virus-induced inflammatory response and neuronal dysfunction in the context of psychological distress.
Collapse
Affiliation(s)
- Ya Xie
- Clinical Mental Health Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zifeng Xu
- Clinical Mental Health Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yumin Zhang
- Clinical Mental Health Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yisheng Li
- Clinical Mental Health Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengyu Du
- Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chun Wang
- Clinical Mental Health Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
194
|
Bloomquist R, Mondal AK, Vashisht A, Sahajpal N, Jones K, Vashisht V, Singh H, Farmaha J, Kolhe R. Gene Regulatory Network Analysis of Post-Mortem Lungs Unveils Novel Insights into COVID-19 Pathogenesis. Viruses 2024; 16:853. [PMID: 38932146 PMCID: PMC11209433 DOI: 10.3390/v16060853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the most significant global health crises in recent history. The clinical characteristics of COVID-19 patients have revealed the possibility of immune activity changes contributing to disease severity. Nevertheless, limited information is available regarding the immune response in human lung tissue, which is the primary site of infection. In this study, we conducted an extensive analysis of lung tissue to screen for differentially expressed miRNAs and mRNAs in five individuals who died due to COVID-19 and underwent a rapid autopsy, as well as seven control individuals who died of other causes unrelated to COVID-19. To analyze the host response gene expression, miRNA microarray and Nanostring's nCounter XT gene expression assay were performed. Our study identified 37 downregulated and 77 upregulated miRNAs in COVID-19 lung biopsy samples compared to the controls. A total of 653 mRNA transcripts were differentially expressed between the two sample types, with most transcripts (472) being downregulated in COVID-19-positive specimens. Hierarchical and PCA K-means clustering analysis showed distinct clustering between COVID-19 and control samples. Enrichment and network analyses revealed differentially expressed genes important for innate immunity and inflammatory response in COVID-19 lung biopsies. The interferon-signaling pathway was highly upregulated in COVID-19 specimens while genes involved in interleukin-17 signaling were downregulated. These findings shed light on the mechanisms of host cellular responses to COVID-19 infection in lung tissues and could help identify new targets for the prevention and treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Ryan Bloomquist
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | | | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | - Jaspreet Farmaha
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA; (R.B.); (A.K.M.); (A.V.); (K.J.); (V.V.); (H.S.); (J.F.)
| |
Collapse
|
195
|
Fajardo-Martinez V, Ferreira F, Fuller T, Cambou MC, Kerin T, Paiola S, Mok T, Rao R, Mohole J, Paravastu R, Zhang D, Marschik P, Iyer S, Kesavan K, Borges Lopes MDC, Britto JAA, Moreira ME, Brasil P, Nielsen-Saines K. Neurodevelopmental delay in children exposed to maternal SARS-CoV-2 in-utero. Sci Rep 2024; 14:11851. [PMID: 38789553 PMCID: PMC11126599 DOI: 10.1038/s41598-024-61918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It is unclear if SARS CoV-2 infection during pregnancy is associated with adverse neurodevelopmental repercussions to infants. We assessed pediatric neurodevelopmental outcomes in children born to mothers with laboratory-confirmed SARS CoV-2 infection during pregnancy. Neurodevelopmental outcomes of in-utero exposed children were compared to that of pre-pandemic control children in Los Angeles (LA), CA, USA and Rio de Janeiro, Brazil. Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), the gold standard tool for evaluating neurodevelopment until 36 months of age and Ages and Stages Questionnaires (ASQ-3), a frequently used screening instrument for evaluating neurodevelopment in this same age group were the assessment tools used. Developmental delay (DD) was defined as having a score < - 2 SD below the norm (< 70) in at least one of three Bayley-III domains, (cognitive, motor or language) or a score below the cut-off (dark zone) in at least one of five ASQ-3 domains (communication, gross motor, fine motor, problem solving, personal-social). Exposed children were born between April 2020 and December 2022 while control children were born between January 2016 to December 2019. Neurodevelopmental testing was performed in 300 children total: 172 COVID-19 exposed children between 5-30 months of age and 128 control children between 6-38 months of age. Bayley-III results demonstrated that 12 of 128 exposed children (9.4%) had DD versus 2 of 128 controls (1.6%), p = 0.0007. Eight of 44 additional exposed children had DD on ASQ-3 testing. Fully, 20 of 172 exposed children (11.6%) and 2 of 128 control children (1.6%), p = 0.0006 had DD. In Rio, 12% of exposed children versus 2.6% of controls, p = 0.02 had DD. In LA, 5.7% of exposed children versus 0 controls, p = 0.12 had DD. Severe/critical maternal COVID-19 predicted below average neurodevelopment in the exposed cohort (OR 2.6, 95% CI 1.1-6.4). Children exposed to antenatal COVID-19 have a tenfold higher frequency of DD as compared to controls and should be offered neurodevelopmental follow-up.
Collapse
Affiliation(s)
| | | | - Trevon Fuller
- UCLA Institute for the Environment and Sustainability, Los Angeles, CA, USA.
| | | | - Tara Kerin
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sophia Paiola
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Thalia Mok
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rashmi Rao
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Jyodi Mohole
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Dajie Zhang
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Peter Marschik
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Sai Iyer
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Noureddine R, Baba H, Aqillouch S, Abounouh K, Laazaazia O, Elmessaoudi-Idrissi M, Bahmani FZ, Tanouti IA, Ouladlahsen A, Sarih M, Dehbi H, Ezzikouri S. The Interleukin-6 gene variants may protect against SARS-CoV-2 infection and the severity of COVID-19: a case-control study in a Moroccan population. BMC Med Genomics 2024; 17:139. [PMID: 38783290 PMCID: PMC11112821 DOI: 10.1186/s12920-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The symptoms of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to severe forms marked by acute respiratory distress syndrome, multi-organ damage, and fatalities. Studies indicate a correlation between specific genes and susceptibility to SARS-CoV-2 infection and disease severity, particularly involving variants in genes linked to inflammation and immune responses. The objective of this study is to investigate the association between rs1800795 (- 174 G > C) and rs1800797 (- 597 A > G) variants in the interleukin-6 (IL-6) promoter region and susceptibility to SARS-CoV-2 infection. Additionally, we aim to explore their correlation with COVID-19 severity in a Moroccan population. In this case-control study, we enrolled 270 unvaccinated COVID-19 patients, consisting of 132 with severe COVID-19 and 138 with asymptomatic-moderate COVID-19. Additionally, we included 339 SARS-CoV-2-negative group. Genotyping of rs1800795 and rs1800797 polymorphisms of the IL-6 gene was performed using predesigned TaqMan SNP genotyping. The median age of SARS-CoV-2-negative controls was 50 years, while severe COVID-19 cases exhibited a median age of 61 years. Additionally, individuals with asymptomatic to moderate COVID-19 had a median age of 36 years. We observed a significant age difference between severe and mild COVID-19 patients (p < 0.0001), and an association was noted between gender and the severity of COVID-19 (p = 0.011). The allele and genotype frequencies of the IL-6 - 597G > A and - 174G > C variants did not show significant associations with susceptibility to SARS-CoV-2 infection (p > 0.05). However, further analysis revealed that the linkage disequilibrium between rs1800797 and rs1800795 indicated that individuals with the GC* haplotype (OR = 0.04, 95% CI 0.01-0.30, p = 0.001) and AG* haplotype (OR = 0.11, 95% CI 0.03-0.46, p = 0.002) were significantly associated with protection against SARS-CoV-2 infection. Moreover, in the overdominant model, the IL-6 - 174 G/C genotype was found to be protective against the development of severe disease compared to those with the G/G-C/C genotypes (p = 0.03; OR = 0.41, 95% CI 0.18-0.96). However, correlations between complete blood count markers, hematological markers, D-dimer, C-reactive protein, and ferritin levels according to - 597 A > G and - 174G > C genotypes showed no significant differences (all p > 0.05). Our findings provide valuable insights into the pathogenesis of COVID-19, suggesting that genetic variations at the IL-6 gene may contribute to the susceptibility to severe SARS-CoV-2 infection within the Moroccan population.
Collapse
Affiliation(s)
- Rachid Noureddine
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Maroc
- Laboratoire Morizgo d'analyses médicales, Casablanca, Maroc
| | - Hanâ Baba
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | - Safaa Aqillouch
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | - Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | - Oumaima Laazaazia
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | - Mohcine Elmessaoudi-Idrissi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | | | - Ikram Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc
| | - Ahd Ouladlahsen
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Maroc
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Maroc
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Maroc.
| |
Collapse
|
197
|
Vargas MH, Chávez J, Del-Razo-Rodríguez R, Muñoz-Perea C, Romo-Domínguez KJ, Báez-Saldaña R, Rumbo-Nava U, Guerrero-Zúñiga S. Glycine by enteral route does not improve major clinical outcomes in severe COVID-19: a randomized clinical pilot trial. Sci Rep 2024; 14:11566. [PMID: 38773199 PMCID: PMC11109244 DOI: 10.1038/s41598-024-62321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
There is a worrying scarcity of drug options for patients with severe COVID-19. Glycine possesses anti-inflammatory, cytoprotective, endothelium-protective, and platelet-antiaggregant properties, so its use in these patients seems promising. In this open label, controlled clinical trial, inpatients with severe COVID-19 requiring mechanical ventilation randomly received usual care (control group) or usual care plus 0.5 g/kg/day glycine by the enteral route (experimental group). Major outcomes included mortality, time to weaning from mechanical ventilation, total time on mechanical ventilation, and time from study recruitment to death. Secondary outcomes included laboratory tests and serum cytokines. Patients from experimental (n = 33) and control groups (n = 23) did not differ in basal characteristics. There were no differences in mortality (glycine group, 63.6% vs control group, 52.2%, p = 0.60) nor in any other major outcome. Glycine intake was associated with lower fibrinogen levels, either evaluated per week of follow-up (p < 0.05 at weeks 1, 2, and 4) or as weighted mean during the whole hospitalization (608.7 ± 17.7 mg/dl vs control 712.2 ± 25.0 mg/dl, p = 0.001), but did not modify any other laboratory test or cytokine concentration. In summary, in severe COVID-19 glycine was unable to modify major clinical outcomes, serum cytokines or most laboratory tests, but was associated with lower serum fibrinogen concentration.Registration: ClinicalTrials.gov NCT04443673, 23/06/2020.
Collapse
Affiliation(s)
- Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México.
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México
| | - Rosangela Del-Razo-Rodríguez
- Servicio Clínico de Neumología Pediátrica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Carolina Muñoz-Perea
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karina Julieta Romo-Domínguez
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Servicio de Neumología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - Renata Báez-Saldaña
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Uriel Rumbo-Nava
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Selene Guerrero-Zúñiga
- Unidad de Medicina del Sueño, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
198
|
Futatsusako H, Hashimoto R, Yamamoto M, Ito J, Matsumura Y, Yoshifuji H, Shirakawa K, Takaori-Kondo A, The Genotype to Phenotype Japan (G2P-Japan) Consortium, Sato K, Nagao M, Takayama K. Longitudinal analysis of genomic mutations in SARS-CoV-2 isolates from persistent COVID-19 patient. iScience 2024; 27:109597. [PMID: 38638575 PMCID: PMC11024907 DOI: 10.1016/j.isci.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
A primary reason for the ongoing spread of coronavirus disease 2019 (COVID-19) is the continuous acquisition of mutations by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism of acquiring mutations is not fully understood. In this study, we isolated SARS-CoV-2 from an immunocompromized patient persistently infected with Omicron strain BF.5 for approximately 4 months to analyze its genome and evaluate drug resistance. Although the patient was administered the antiviral drug remdesivir (RDV), there were no acquired mutations in RDV binding site, and all isolates exhibited susceptibility to RDV. Notably, upon analyzing the S protein sequence of the day 119 isolate, we identified mutations acquired by mutant strains emerging from the BF.5 variant, suggesting that viral genome analysis in persistent COVID-19 patients may be useful in predicting viral evolution. These results suggest mutations in SARS-CoV-2 are acquired during long-term viral replication rather than in response to antiviral drugs.
Collapse
Affiliation(s)
- Hiroki Futatsusako
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Kotaro Shirakawa
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2770882, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 8600811, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 1000004, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1138654, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2770882, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 8600811, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 1000004, Japan
| |
Collapse
|
199
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
200
|
Riyaz Tramboo S, Elkhalifa AM, Quibtiya S, Ali SI, Nazir Shah N, Taifa S, Rakhshan R, Hussain Shah I, Ahmad Mir M, Malik M, Ramzan Z, Bashir N, Ahad S, Khursheed I, Bazie EA, Mohamed Ahmed E, Elderdery AY, Alenazy FO, Alanazi A, Alzahrani B, Alruwaili M, Manni E, E. Hussein S, Abdalhabib EK, Nabi SU. The critical impacts of cytokine storms in respiratory disorders. Heliyon 2024; 10:e29769. [PMID: 38694122 PMCID: PMC11058722 DOI: 10.1016/j.heliyon.2024.e29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Cytokine storm (CS) refers to the spontaneous dysregulated and hyper-activated inflammatory reaction occurring in various clinical conditions, ranging from microbial infection to end-stage organ failure. Recently the novel coronavirus involved in COVID-19 (Coronavirus disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has been associated with the pathological phenomenon of CS in critically ill patients. Furthermore, critically ill patients suffering from CS are likely to have a grave prognosis and a higher case fatality rate. Pathologically CS is manifested as hyper-immune activation and is clinically manifested as multiple organ failure. An in-depth understanding of the etiology of CS will enable the discovery of not just disease risk factors of CS but also therapeutic approaches to modulate the immune response and improve outcomes in patients with respiratory diseases having CS in the pathogenic pathway. Owing to the grave consequences of CS in various diseases, this phenomenon has attracted the attention of researchers and clinicians throughout the globe. So in the present manuscript, we have attempted to discuss CS and its ramifications in COVID-19 and other respiratory diseases, as well as prospective treatment approaches and biomarkers of the cytokine storm. Furthermore, we have attempted to provide in-depth insight into CS from both a prophylactic and therapeutic point of view. In addition, we have included recent findings of CS in respiratory diseases reported from different parts of the world, which are based on expert opinion, clinical case-control research, experimental research, and a case-controlled cohort approach.
Collapse
Affiliation(s)
- Shahana Riyaz Tramboo
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ahmed M.E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Syed Quibtiya
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Medical College, Srinagar, 190011, Jammu & Kashmir, India
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Govt. Medical College, Srinagar, 191202, Jammu & Kashmir, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Fawaz O. Alenazy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Sanaa E. Hussein
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Ezeldine K. Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| |
Collapse
|